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Safe, Scalable, and Complete Motion Planning of Large Teams of
Interchangeable Robots

Abstract
Large teams of mobile robots have an unprecedented potential to assist humans in a number of roles ranging
from humanitarian efforts to e-commerce order fulfillment. Utilizing a team of robots provides an inherent
parallelism in computation and task completion while providing redundancy to isolated robot failures.
Whether a mission requires all robots to stay close to each other in a formation, navigate to a preselected set of
goal locations, or to actively try to spread out to gain as much information as possible, the team must be able
to successfully navigate the robots to desired locations.

While there is a rich literature on motion planning for teams of robots, the problem is sufficiently challenging
that in general all methods trade off one of the following properties: completeness, computational scalability,
safety, or optimality. This dissertation proposes robot interchangeability as an additional trade-off
consideration. Specifically, the work presented here leverages the total interchangeability of robots and
develops a series of novel, complete, computationally tractable algorithms to control a team of robots and
avoid collisions while retaining a notion of optimality.

This dissertation begins by presenting a robust decentralized formation control algorithm for control of robots
operating in tight proximity to one another. Next, a series of complete, computationally tractable multiple
robot planning algorithms are presented. These planners preserve optimality, completeness, and
computationally tractability by leveraging robot interchangeability. Finally, a polynomial time approximation
algorithm is proposed that routes teams of robots to visit a large number of specified locations while bounding
the suboptimality of total mission completion time. Each algorithm is verified in simulation and when
applicable, on a team of dynamic aerial robots.
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ABSTRACT

SAFE, SCALABLE, AND COMPLETE MOTION PLANNING OF
LARGE TEAMS OF INTERCHANGEABLE ROBOTS

Matthew Turpin

Vijay Kumar

Nathan Michael

Large teams of mobile robots have an unprecedented potential to assist humans in a

number of roles ranging from humanitarian efforts to e-commerce order fulfillment. Utiliz-

ing a team of robots provides an inherent parallelism in computation and task completion

while providing redundancy to isolated robot failures. Whether a mission requires all

robots to stay close to each other in a formation, navigate to a preselected set of goal

locations, or to actively try to spread out to gain as much information as possible, the

team must be able to successfully navigate the robots to desired locations.

While there is a rich literature on motion planning for teams of robots, the prob-

lem is sufficiently challenging that in general all methods trade off one of the following

four attributes: completeness, computational scalability, safety, or optimality. This dis-

sertation proposes robot interchangeability as an additional attribute for consideration.

Specifically, the work presented here leverages the total interchangeability of robots and

develops a series of novel, complete, computationally tractable algorithms to control a

team of robots and avoid collisions while retaining a notion of optimality.

This dissertation begins by presenting a robust decentralized formation control algo-
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rithm for control of robots operating in tight proximity to one another. Next, a series

of complete, computationally tractable multiple robot planning algorithms are presented.

These planners exploit the interchangeability property to achieve optimality, complete-

ness, and computational tractability. Finally, a polynomial time approximation algorithm

is proposed that routes teams of robots to visit a large number of specified locations while

bounding the suboptimality of total mission completion time. Each algorithm is verified

in simulation and empirically evaluated on an experimental testbed consisting of a team

of dynamic aerial robots.

iv



Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

2 Scientific Background 6
2.1 Single Agent Trajectory Planning Review . . . . . . . . . . . . . . . . . . 6
2.2 Planning for Multiple Robots . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Formation Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Robot Interchangeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Vehicle Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Formation Control 23
3.1 Modeling the Robot Formation . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Formation Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Consensus on Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Simulations Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Performance with Variable Maximum Velocity and Acceleration . . 41
3.5.2 Performance with Degraded Network Communication . . . . . . . 43
3.5.3 Performance with Critical Robot Failures . . . . . . . . . . . . . . 44

3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Concurrent Assignment and Planning of Trajectories Capt 48
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 c-Capt: a Centralized Obstacle-Free Capt Solution . . . . . . . . . . . 54

4.2.1 Minimum Sum of Distances Trajectories . . . . . . . . . . . . . . . 55
4.2.2 Minimum Velocity Squared Trajectories . . . . . . . . . . . . . . . 57
4.2.3 c-Capt Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 c-Capt for Fewer Robots than Goals . . . . . . . . . . . . . . . . . . . . 64
4.4 c-Capt for Dynamic Robots . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5 d-Capt: a Decentralized Algorithm for Obstacle-Free Capt . . . . . . . . 66
4.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.7 Experimental Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.8 Pathological Case for d-Capt and Resolution . . . . . . . . . . . . . . . . 73
4.9 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

v



5 Goal Assignment and Planning Gap 83
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Graph Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.2 Computing Individual Trajectories . . . . . . . . . . . . . . . . . . 89
5.2.3 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.4 Prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.5 Parameterization and Collision Avoidance . . . . . . . . . . . . . 95
5.2.6 Optional Trajectory Refinement . . . . . . . . . . . . . . . . . . . 97
5.2.7 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.8 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Case Study: Minimum Distance Paths for Two-Dimensional Robots . . . 100
5.3.1 Explicit Example for a Team of Robots with Constrained Motion . 100
5.3.2 Constrained Movement Relaxation . . . . . . . . . . . . . . . . . . 102
5.3.3 Optimal Solution With Second Order Dynamics . . . . . . . . . . 104

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Multi-Robot Routing 116
6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3 Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.1 Optimality Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . 126

6.4 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.4.1 Sequence Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5 Collision Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Conclusion 135
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A Quadrotor Basics and Control 139

vi



Chapter 1: Introduction

Recent years have seen teams of mobile robots introduced in commercial applications

ranging from e-commerce order fulfillment [19] to entertainment and advertising [37].

Using more than one robot is appealing since in addition to providing increased compu-

tational power, each robot can pass through, explore, or monitor a different area. This

allows the team to provide a greater presence than any single robot (or human for that

matter) could ever hope to achieve. A team can also perform tasks that individuals cannot

perform such as cooperatively transporting payloads. In addition to the added capabili-

ties of a team, multiple robots inherently exhibits robustness to the failure of individual

robots since a subset of robots can continue to complete the assigned tasks. These teams

of robots may soon save lives operating in dangerous conditions such as automated mining

operations or assisting first responders by quickly search through unsafe buildings.

To successfully realize these applications using teams of robots requires robust solu-

tions to a number of challenges spanning many fields of research. These problems include

perception, localization, mapping, and planning among others. Perception is the ability

of the robots to gather information about the world and reason about this information.

Each robot must then use this information to localize itself by identifying its physical po-

sition in space. Mapping allows a team of robots to build a model of the physical world.

The team of robots needs to be able to plan motions through the world such that robots

do not collide with obstacles in the world or with other robots.
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While each of these problems merits substantial attention, this dissertation focuses

on the problem of planning for the team of robots. This document assumes each robot

has a known map of the environment, can accurately localize itself within that map,

and reliably communicate with a base station or nearby robots. Under this assumption,

planning team actions is the next critical step required.

There are a number of high quality algorithms to plan actions for a single robot in

a known environment. However, it is far more challenging to plan actions for a team

to navigate safely (without collision) through an environment than it is to plan for each

robot individually. In fact, planning time grows exponentially if single agent planning

methods are extended to the multi-robot case as a result of the explosion of the size of

the configuration space. Due to this exponential growth, other planning algorithms must

be used to ensure plans can be computed for more than a couple of robots in a reasonable

time.

Depending on the mission objectives, there are many possible methods that can be

used to generate these plans. First, consider a team of robots carrying a payload heavier

than any one robot can transport. For this objective, it is critical to ensure robots maintain

a fixed shape in space with close proximity to other robots. Since local separation is

critical, a leader-follower or formation control algorithm could be used. These algorithms

have the property that each robot reacts to neighboring robots to ensure local separation

is maintained and collisions between robots are avoided. This dissertation will present

a decentralized formation control approach that plans trajectories for robots to provide

smooth control policies for each robot with guaranteed convergence to the desired shape.

This algorithm functions well even on teams of robots with limited computational and

2



communication capabilities.

Unfortunately, this formation control approach relies on each robot being physically

close to its desired location in the formation to ensure collision avoidance. However,

if the robots are interchangeable, each robot can be reassigned to a new spot in the

formation that is close to where it actually is. By incorporating this interchangeability, a

new method is presented in this document to simultaneously assign robots to goals and

generate plans to get them safely to these specified goals. This method works for teams

of robots operating in open spaces without obstacles and a modification can be made to

transform the algorithm into a decentralized algorithm only considering local information.

So far, these approaches assume a simple, unobstructed environment. An alternate

approach must be used to navigate a team of robots to a set of goal locations in obstacle-

filled settings. While there are settings that require each robot to visit a specified goal

location and in particular for robots with different abilities, this dissertation focuses on

interchangeable robots. Utilizing interchangeable robots allows an assignment of robots

to goals ensures a collision-free plan will be found if one exists.

Finding plans such that the team of robots can be used to search a known environment

such as a damaged building requires a slight change to this problem. In this mission, each

goal location only needs to be visited momentarily and any robot can visit any goal. It

is often the case that the total mission time should be minimized as opposed to total

robot distance traveled. Due to the high number of possible assignments and orderings,

an approximation algorithm is presented that results in a close-to-optimal solution.

This dissertation contributes to the existing body of research by presenting a dis-

tributed formation control algorithm that provides dynamically feasible actions for a team

3



of robots as well as a series of computationally tractable, complete, planning algorithms

that provide guarantees on optimality. In each problem statement except for formation

control, these strong guarantees are made possible by exploiting the property of inter-

changeability within a team of robots. Preserving the completeness property is critical

to ensure mission completion whenever possible. Existing planners without completeness

guarantees often fail in environments that are of most interest for large numbers of robots

such as operating in close proximity and in tight spaces. By ensuring scalable compu-

tational complexity as the number of robots increases, applications such as search and

rescue will never be at risk of grinding to a halt when deployed in an unknown setting.

Existing solutions to the problems of single- of multi-robot planning and the benefits

and drawbacks of each approach are considered in Chapter 2. After this review, Chapter

3 presents the first contribution of this dissertation, a decentralized finite horizon leader

follower algorithm that guarantees convergence in trajectory space as opposed to the

general state space. The second contribution of this thesis, a complete multi-agent motion

planning algorithm with polynomial complexity bounds for robots in an obstacle-free

environment, is developed in Chapter 4. Next, an extension in Chapter 5 allows motion

planning in obstacle filled environments. Finally, a constant factor bounded suboptimality

approximation algorithm for generating plans to visit many more goals than robots is

presented in Chapter 6.

Many of the algorithms presented in this paper are validated experimentally using a

teams of robots. In particular, flying quadrotor Micro Aerial Vehicles (MAVs) are used.

These small, lightweight vehicles are capable of high speed flight over rough terrain that

would be impossible for ground robots to pass through. Their ability to hover in place

4



gives the MAVs the unique versatility to operate indoors where fixed-wing MAVs would

not have room to maintain the forward velocity necessary to stay in the air. Appendix A

reviews the basic dynamics of quadrotor MAVs.
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Chapter 2: Scientific Background

This chapter reviews a number of basic planning concepts that are referenced in later

chapters. Additionally, a literature review positions this dissertation with respect to state

of the art planning methods for teams of robots. Section 2.1 begins with a review of some

basic properties of planning paths and trajectories for a single robot. Then, multi-robot

planning and the associated challenges are considered in Sect. 2.2 and formation control

of teams is discussed in Sect. 2.3. Next, the concept of utilizing robot interchangeability

is introduced in Sect. 2.4. Finally, Sect. 2.5 studies how goals can be assigned to robots

and ordered when there are far more goals than robots.

2.1 Single Agent Trajectory Planning Review

Depending on the robot, environment, and assumptions made, there are numerous motion

planning algorithms to navigate a single robot through an environment. LaValle [43]

presents in-depth analysis of a great number of methods and discusses how to choose an

algorithm based on the setting. This work also details each method’s implementation and

can be an invaluable resource.

This dissertation uses sampling based motion planning, which has two general com-

ponents. The first component is sampling: constructing a graph G = (E, V ) with vertices

v ∈ V representing collision-free states and edges e ∈ E representing collision-free transi-

tions between vertices. The second component is finding a path through this graph from

6



the robot’s start to its goal.

There are many methods to create the underlying graph G including grid based meth-

ods, Probabilistic RoadMaps (PRM) [32] and visibility graphs [51]. Grid based methods

sample the environment at uniform intervals and an edge connects each sample to a

fixed number of neighbors that can be reached safely. PRMs are generated by randomly

sampling the environment and attempting to connect neighboring samples. By correctly

using PRMs, high dimensional spaces can often be searched more efficiently than a uni-

form grid. Visibility graphs can be used to generate minimum Euclidean distance paths

through polygonal two-dimensional environments by connecting obstacle vertices with

straight lines to yield the globally optimal solution to the planning problem. This section

presents an example using grid based methods, however other sampling methods will be

used later in this dissertation.

Consider the example two-dimensional circular robot in Fig. 2.1(a) that lives in a

plane. A simple unit-spaced grid can be used to sample the space in Fig. 2.1(b). Any

sample that would result in a collision with an obstacle is not considered. Each valid

sample is represented by a vertex and for this simple example, there are six vertices in

the graph:

v1 = (1, 1) v2 = (1, 2) v3 = (1, 3) v4 = (2, 2) v5 = (3, 2) v6 = (3, 3)

Then, an edge is added between each pair of neighboring vertices if a path can be generated

that connects the vertices without collision. In the simple example, there are 5 undirected

7



(a) Simple robot and goal

v1

v2

v3

v4 v5

v6

1 2 3

1

2

3

(b) Uniformly spaced samples

v1 = (1, 1)

v3 = (1, 3)

v4 = (2, 2)

v2 = (1, 2) v5 = (3, 2)

v6 = (3, 3)

e1

e2

e3 e4

e5

(c) Graph representation

Figure 2.1: A simple two-dimensional robot in a plane is shown in Fig. 2.1(a) where obstacles
are shown in grey and the goal for the robot is denoted with a star. Figure 2.1(b) displays a simple,
uniformly spaced grid to sample the space. The graph representing the vertices and corresponding
edges is shown in in Fig. 2.1(c), where the red vertex is the start vertex and the green vertex is
the goal vertex.

edges (motion in either direction is possible) that can be added between direct neighbors:

e1 = (v1, v2) e2 = (v2, v3) e3 = (v2, v4) e4 = (v4, v5) e5 = (v5, v6)

See Fig. 2.1(c) for a visualization of the graph for this simple example. Each edge has an

associated cost that is related to the desirability of traversing that edge. If the distance

is used as the cost function in Fig. 2.1(b), the cost of each edge is one.

Once the graph has been constructed, a graph search algorithm can be utilized to

find minimum cost paths through the graph. Dijkstra’s algorithm [15] is a well known

algorithm for finding the minimum cost path through the graph from a given vertex to

all other vertices. A? [27] is a variant of this approach which utilizes a best-first heuristic

to often provide better computational performance than Dijkstra’s algorithm in practice.
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A single agent planner is considered complete [43] if it has the following two properties.

First, if some solution exists, the planner must successfully return a solution. Second,

if a solution does not exist, the planner can recognize this and correctly returns that no

solution exists. A planner which is resolution complete will find a solution if one exists if

the resolution of the underlying graph is sufficiently fine. Both Dijkstra’s algorithm and

A? are optimal and complete algorithms that can be computed efficiently.

For the graph in Fig. 2.1(c), the plan, or sequence of vertices, that results in the

lowest cost plan from the start to goal is v1 → v2 → v4 → v5 → v6. This corresponds to

the robot moving from its initial state at (1, 1) to (1, 2) to (2, 2) to (3, 2) to the goal at

(3, 3). In this case, it is the only plan that does not revisit any vertices. The cost of this

plan is the sum of the cost of the edges used {e1, e3, e4, e5}, or a cost of 4.

This dissertation distinguishes between a path through the graph and a trajectory. A

trajectory is defined as the continuous mapping from a given time instant to the desired

state x(t). This state may consist of the position, orientation, or velocity of the robot.

The individual robot dynamics will determine how to best compute trajectories be-

tween states. The most basic approach for a simple, fully actuated, first order robot is to

linearly interpolate between states with constant speed. For example, a trajectory from

v1 = (1, 1) to v2 = (1, 2) in the example in Fig. 2.1 could be x(t) = 1̂i + (1 + t)̂j, t ∈ [0, 1].

The distinction of trajectories from paths is necessary because a robot cannot instan-

taneously transport between vertices. The trajectory generation problem is especially

challenging for dynamic robots that cannot always follow straight line trajectories. As a

result of using quadrotor MAVs throughout this dissertation, minimum snap trajectory

planning [53, 74] will be used since it is well suited to the dynamics of these robots.

9



2.2 Planning for Multiple Robots

This section outlines two common strategies used to plan collision-free trajectories for

a team of robots. The first class of planning algorithms are decoupled algorithms that

plan for each robot while disregarding other robots. These individual solutions are then

merged to form a plan for the team. The second type of algorithms are coupled planners

that combine the team of robots into a single higher dimensional agent. Each state of the

higher dimensional agent can be transformed back to the original robots to generate the

plan for the team.

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	


Figure 2.2: Multiple robots with specified goals. Each robot will attempt to navigate to the
appropriately colored goal location without colliding.

As an illustrative example, consider the team of two one-dimensional circular robots

in Fig. 2.2. In this example, the desired output is a plan for the red robot to navigate

to the red goal and the blue robot to the blue goal. A trajectory needs to be designed

for each robot such that it reaches the desired goal location without colliding with the

other robot. While this may appear to be a simple problem, outlining how coupled and

decoupled planners work illuminates the benefits and challenges of each method.

Decoupled methods begin by attempting to find a solution for each robot individually

while ignoring all other robots [20]. As discussed in Sect. 2.1, there are many possible

methods to plan for each robot in the team. In this section, sampling based method will

be used for consistency.

To demonstrate how a decoupled method works on the basic example in Fig. 2.2,
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(d) Red robot path through graph

Figure 2.3: Solving for each robot using a decoupled method. In this method, each robot plans
as if it were the only robot in the system.

initially consider the blue robot on its own. As noted before, the first step in a sampling

based method is to construct a graph consisting of a number of vertices and edges con-

necting the vertices that represent the space. Unit sampling results in possible states,

or vertices, that the blue robot can occupy as V = {v1 = (1), v2 = (2), . . . , v9 = (9)}.

Each of these states can be reached from its nearest neighbor such that there are 8 edges:

e1 = (v1, v2), e2 = (v2, v3) . . . e8 = (v8, v9). This graph is visualized in Fig. 2.3(a). The

next step in the sampling based method is to plan a path through the graph and this is

shown in Fig. 2.3(b). For this path, the blue robot will move from 5→ 6→ 7→ 8. Using

the same process results in generating the graph for the red robot in Fig. 2.3(c) and the

solution in Fig. 2.3(d).

Now, an attempt to merge the plans is carried out. The first step is to transform the

plans into time-parameterized trajectories as outlined in Sect. 2.1. For simplicity, each

robot will either remain motionless or move with constant speed of one unit of distance

in one unit of time. A typical method for merging plans is to prioritize robot motion such

that the robot with highest priority moves first and then the second highest priority robot
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Figure 2.4: The same problem as in Fig. 2.2, but with goals exchanged between robots.

and so on. If the blue robot moves first, it will reach its goal without colliding with the

red robot. Then, if the red robot waits until the blue robot is at its goal, the red robot

can reach its goal without colliding with the blue robot. Following these trajectories, the

locations of each at each integer time is as follows:

t0 t1 t2 t3 t4 t5 t6 t7
red robot position 2 2 2 2 3 4 5 6

blue robot position 5 6 7 8 8 8 8 8

Alternatively, the red robot can begin moving sooner than waiting until the blue robot

has finished:

t0 t1 t2 t3 t4
red robot position 2 3 4 5 6

blue robot position 5 6 7 8 8

At each time instant, note that the two robots are not in collision. It should also be clear

that in this example, the robots will not collide between time steps.

While decoupled approaches often work quite well when robots do not interact much

throughout their trajectories, they are unable to provide completeness guarantees. To

demonstrate this lack of completeness, consider the example problem with goals reversed

in Fig. 2.4. While each robot can plan a path individually to reach the goal, there is

no method that will guarantee both robots can reach their goals without collision. The

planner will not be able to return a collision-free set of trajectories, but will not be able

to guarantee that no solution exists.

In contrast to a decoupled planner, coupled methods do not plan for each robot on a

separate graph. Instead, the states of individual robots are concatenated to form a single
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(a) Coupled graph
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(b) Path through coupled graph

Figure 2.5: The coupled graph for the red and blue robots is presented in Fig. 2.5(a). The
starting state of the coupled robot is identified by the orange circle and the coupled goal is
denoted by the orange star. The optimal path through the graph is displayed in 2.5(b).

multi-robot state. For the two one-dimensional robots in Fig. 2.2, a coupled planner

considers the problem as that of a single two-dimensional robot. The coupled initial state

is (2, 5) with the first coordinate representing the red location and the second coordinate

representing the blue robot. Similarly, the goal state for the coupled system is (6, 8).

Next, a single two-dimensional graph is generated to represent the system. The graph

is constructed by sampling a regular grid and then connecting samples in this higher

dimensional space. This higher dimensional graph is visualized in Fig. 2.5(a). Note that

vertices along the diagonal are removed since these vertices represent the robots occupying

the same location and therefore result in a collision between robots.

At this point, it is clear that the graph search methods described in Sect. 2.1 can

be used to find a solution from the initial state of this multi-robot state. The minimum

cost solution is displayed in Fig. 2.5(b) and has a solution of (2, 5) → (3, 6) → (4, 7) →
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(5, 8) → (6, 8). To execute this plan, each state in the higher dimensional space can be

mapped back to the original one-dimensional problem for two robots:

t0 t1 t2 t3 t4
red robot position 2 3 4 5 6

blue robot position 5 6 7 8 8

Since each state in the graph of the coupled agent is collision-free and each edge represents

a collision-free trajectory, this plan is guaranteed to be collision-free.
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Figure 2.6: The coupled graph for Fig. 2.4. There is no solution to reach the goal state from
the initial state.

A benefit of coupled methods over decoupled methods is that coupled methods preserve

the completeness guarantees of the single agent planner used. If goal locations are switched

as in Fig. 2.4, the coupled planner generates the graph in Fig. 2.6 and is able to correctly

identify that there is no solution from the initial configuration to the goal configuration.

Unfortunately, the dimensionality of the graph for coupled planners grows linearly in

the number of robots. As a consequence, the number of samples required grows exponen-

tially with the number of robots [20, 43]. As a point of comparison, the coupled graph in

Fig. 2.5(a) has 72 vertices and 210 edges after removing collision edges and there are only
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9 vertices and 8 edges for each decoupled robot. While probabilistic sampling methods

(eg. PRM) or probabilistic planners (such as RRTs) are more successful at in high di-

mensional spaces than grid based methods, they simply cannot handle the dimensionality

of the search space for medium to large teams of robots.

Recently, there has been interest in combining the best elements of coupled and de-

coupled planners. Optimal decoupling [91] attempts to only couple robots that must

be coupled and minimizes the highest coupled state space. Similarly, subdimensional

expansion [95, 96] can be employed to mitigate increased computational complexity by

selectively expanding the higher-dimensional state space only as required. Each of these

methods can have exponential complexity in the number of robots if robots interact sub-

stantially.

Other notable multi-robot planing approaches switch robot positions until robots can

easily navigate to goal positions without collision [52, 69]. However, many of these rule

based methods can generate poor trajectories consisting of all robots initially moving away

from their goals before one by one navigating to the correct goal locations. The opera-

tions research community also considers planning for multiple vehicles to move through a

space while avoiding collision. There is a wide variety of modifications that can be used

including sequential routing [34, 35, 57], integer coupled methods [62], and those without

optimality guarantees [24, 39, 70]. An alternative strategy is to formulate multi-robot

coordination and collision avoidance as reactive control or local coordination problems.

The decentralized collision avoidance method proposed in [90] enables a robot team to

navigate to an assigned set of goals and scales well with the number of agents but lacks

safety and optimality guarantees for systems with higher-order dynamics.
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2.3 Formation Control

An alternative to planning unique actions for each robot in the team is to maintain a

specified formation and then plan a single basic group motion. Planning in this manner

can reduce the computational complexity to the equivalent of planning for a single agent,

but requires a robust control approach to maintain the formation. Some examples of tasks

that work well for formation control include cooperative manipulation of large payloads

either via grippers or cables, reconnaissance where imagery from different sensors needs

to be registered and stitched together, and persistent surveillance where robots maintain

coverage of a dynamically changing environment.

Depending on the mission tasks, there are various methods for determining the forma-

tion specification and planning the formation’s motion. The desired formation specifica-

tion often consists of relative position or bearing information and might be time varying.

Virtual Structure (VS) methods are some of the most basic schemes used. In VS ap-

proaches, robots are virtually embedded in rigid shape and then single robot trajectory

generation methods can be used to plan bulk motion. The group trajectory may specify

a plan for the centroid of robots, the position of a single “leader” robot, or the position

of a virtual robot. Generating the group trajectory for a rigid formation is equivalent to

planning for a single robot (see Sect. 2.1) and can be computed quickly and reliably.

While centralized leader-follower schemes exist, they are limited in a few ways. First,

a centralized approach requires communication with every robot in the team. This may

not be possible for teams that are spread out over large areas. Instead, a decentralized

control approach only requires information from neighboring robots. Similarly, using
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the information of neighboring robots allows relative separation between neighbors to be

directly controlled. Using local information can result in a smaller relative error, allowing

tighter formations without risk of collision.

Similar to results presented in this dissertation, decentralized control of aerial vehicles

following the leader-follower framework is discussed in [26], where the performance of the

controllers are analyzed through experimentation. In addition to considering stability and

convergence properties, it is possible to derive conditions that ensure feasible formation

structures based on individual robot capabilities [80]. Input-to-state stability of forma-

tions is discussed in [81], by considering the construction of graphs from primitives which

provide known stability properties. The authors of [21, 65] consider information flow in

feedback-based controllers and the consequential effects on the stability of the system

to converge to the desired formation. One example distributed controller for trajectory

tracking by a team of robots maintaining a rigid VS is discussed in [17].

In addition to maintaing the formation, some works study transitions between forma-

tion specifications. One possible approach to plan between a number of formation de-

scriptions consisting of distance and bearing information is analyzed in [14]. The authors

of [63] develop stabilizing controllers for driving a formation of robots to rotate, trans-

late, expand, or contract based upon a VS representation. In [54], the authors consider

the controllability of state-dependent dynamic graphs. Consensus problems on formation

graph structures with switching topologies and time-delays are discussed in [66].
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2.4 Robot Interchangeability

Some applications of teams of robot require each robot in a team to reach a robot specific

destination. For example, consider an assembly task where robots are delivering parts

to the correct assembly area. Imagine one robot is carrying widget a, which is required

at site A, and another robot with widget b, required at site B. Each robot clearly must

navigate to the correct location to satisfy the objective. The general problem of matching

task to robots is discussed in [25].

However, there are also a large number of uses of multi-robot systems where any

robot visiting every site will satisfy all mission objectives. In the previous example, if

every robot had widget a and all sites required that widget, it is unimportant which

robot ends up at which goal. It is often the case that all robots contain the same set

of sensors and the sensors are the “widgets” to position. For example, the use of a

team of identical robots to position cameras and microphones for first responders or

law enforcement at points of interest is indifferent to which robot is at which location.

Other representative examples of such applications include automated storage and product

retrieval in warehouse applications [19] and automated structure construction in which

robots are commanded to fetch and place parts [48, 97] or when the robots themselves

are used as structural elements of a larger construction [64, 67].

In every application where robots are interchangeable, the assignment of robots to

goals provides an additional degree of freedom to consider in the design of the algorithm.

For completely interchangeable teams, any assignment is sufficient to meet the mission

objectives, but clearly some assignments are better than others. Because system demands
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depend on the particular event and can change quickly, it is important to not only quickly

choose or compute an assignment, but also choose a high quality assignment that will

quickly achieve the mission goals.

One of the most commonly used assignment problem statements is that of the linear

assignment problem. This problem is stated as follows: given N workers and N tasks

where each worker has a cost of achieving each task, find the minimum cost assignment

such that each worker is assigned one task and each task is completed by one worker.

Optimal solutions to the linear assignment problem have been developed in the operations

research community [41].

Some researchers have explored using the assignment which minimizes the sum of

Euclidean distance traveled for a set of completely interchangeable goals [31, 77]. Ignoring

collisions, this objective function will have the least possible robot motion for optimal

system efficiency. Similarly, [49] presents a hybrid method for the Euclidean assignment

algorithm for very large numbers of robots with both a global and local approach. [2]

finds a suboptimal assignment which seeks to minimize distance squared. Each of these

methods does not provide either completeness or collision avoidance guarantees.

An interesting approach is to consider coupling assignment with planning collision-

free trajectories for the team of robots to reach those objectives. A suboptimal approach

to solve this problem is presented in [36], which proposes a centralized algorithm to

create collision-free paths and solve the assignment problem for 2-dimensional robots.

Other recent work incorporating multi-robot task assignment into trajectory planning

includes [36, 49, 50]. As shown in [98], using network flow algorithms to design collision-

free trajectories can yield substantially improved performance for kinematic agents.
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2.5 Vehicle Routing

The problem of allocating a team of robots to visit a large set of spatially distributed tasks

without any preference for which robot visits which goal or in what order is common in

both the operations research and multi-robot community. In the case that a single robot

is required to visit more than a single goal, not only does the route to get to each goal need

to be planned, but the order in which to visit goals must be considered. This problem

is actually quite similar to the well-known Traveling Salesman Problem (TSP). The TSP

seeks to visit a number of cities and return to the original location while traveling the

least total distance. To formalize this idea, define a Hamiltonian cycle as a loop of vertices

in a graph such that every vertex is visited exactly once. The TSP is defined to find the

lowest cost, or minimum weight, Hamiltonian cycle in a graph. A distinction between a

Hamiltonian path and a Hamiltonian cycle in that the path visits each location but does

not form a loop. Unfortunately, finding either the minimum cost Hamiltonian cycle or

Hamiltonian path is NP-Hard.

Operations research literature contains a number of exact and approximation algo-

rithms to plan solutions to the Vehicle Routing Problem (VRP) [18]. These methods

generate routes for a team of agents leaving one or more depots, visiting a number of goal

locations, and returning back to the original depots. The VRP is especially well suited

to shipping industries where trucks are physically leaving depots at the start of a shift

and returning to the same depot at the end. The substantial body of literature on the

VRP contains a huge variety of differences in problem formulation and assumptions that

lead to drastically different solutions. These variations include the Pick-up and Delivery
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(a) Routing problem (b) Min cost solution (c) Min-max cost solution

Figure 2.7: Shown in 2.7(a) is a set of two robots and seven goals that need to be visited be
either robot. Figure 2.7(b) shows the typical minimum cost solution that requires one robot to
travel 7 spaces. Figure 2.7(c) displays the minimum maximum solution. The min-max solution
has a total cost of 8, but will complete after each robot travels 4 units. The minimum cost solution
takes nearly twice as long to complete as the min-max cost solution.

Vehicle Routing Problem (PDVRP), the Vehicle Routing Problem with Time Windows

(VRPTW), and many others [18].

Typically, VRP solutions seek to minimize the total distance traveled by all robots.

In these instances, it is possible that most robots travel a relatively short distance and a

few agents must travel much further to ensure all locations are visited. This cost function

is unacceptable for time critical applications. Consider the simple example in Fig. 2.7 to

demonstrate that minimizing the maximum cost for any robot reduces completion time.

The minimize maximum distance formulation of the VRP is referred to as the Minimum

Maximum Vehicle Routing Problem (MMVRP) [72].

In the robotics community where robots are not necessarily beginning at a common

starting location, the Multiple Depot Vehicle Routing Problem (MDVRP) [60] is a better

fit. In the MDVRP, agents are not required to start and finish at one central location,

but can instead operate out of up to N unique locations with each agent returning to its

original depot. Combining these two problems yields the Minimum Maximum Multiple
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Depot Vehicle Routing Problem (MMMDVRP) [9], which is especially useful in robotics.

Another related problem is the orienteering problem that is especially useful for battery

constrained robots. The orienteering problem is defined as follows: given time T , navigate

to as many of M specified points as possible [92]. The Team Orienteering Problem (TOP)

uses N agents to visit as many of the waypoints as possible in the allotted time. If the

time is sufficient to visit all of the waypoints, the solution very closely resembles the VRP

solution. However, the VRP, and TOP literature focuses on assignments which typically

ignore the collision avoidance constraint, which must be considered when routing teams

of robots.
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Chapter 3: Formation Control

As discussed in Sect. 2.3, achieving and maintaining a desired formation of au-

tonomous robots has wide appeal in increasing system redundancy, efficiency, and flexibil-

ity. By ensuring a formation is maintained, the problems of controlling a team of robots

becomes the more computationally manageable task of maintaining a single large rigid

body. However, for dynamic robots such as quadrotor MAVs, a closed loop control policy

must be used to ensure communication errors or execution noise does not drive the system

unstable. This chapter presents a decentralized formation control algorithm that guar-

antees convergence to the globally optimal solution for sufficiently fast communication

rates.

Formation control approaches can typically be classified into one or more of the follow-

ing categories: leader-follower [13], virtual-structure [47], and behavior-based control [6].

This chapter considers virtual-structure formations, but allows the structure, or shape, to

be time varying. In addition to the variety of control schemes, there are a great number of

sensing and information gathering modalities used to maintain the formation. Commonly

used sensors include range only ultra wideband radios [16], bearing only cameras [22],

wireless communications [1], or a combination of these sensing modalities.

Many approaches rely on a centralized robot manager to plan motions for each agent

of the team. In many cases, it is desirable for a team of robots to safely maintain the

formation using only local data. Imagine a school of fish or migrating geese maintaining
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the shape of the flock by rely on the information gleaned from their neighbors. By

utilizing only information available to each robot allows the system greater flexibility and

scalability since no centralized solution is required [55, 59, 99].

In these networked systems, data latencies and dropped packets over wireless links

are hard to predict and can have a dramatic negative effect on the overall system perfor-

mance. This is especially true when delayed data is substantially different than expected.

Data discontinuity can even cause robots to become unstable or crash. Despite failure

mitigation through intelligent planning and reactiveness, there are still a myriad of ways a

robot may separate from the team. These include robot collisions with obstacles, people,

or other robots. There are also unexpected hardware failures of robots such as battery

deterioration or mechanical breakage that removes a robots utility to the team. An intel-

ligent local control policy must be designed to handle these network and robot failures to

ensure the success of a decentralized policy.

This chapter proposes a decentralized approach for controlling a team of robots to

maintain a tight formation while moving quickly and precisely through the environment.

In addition to utilizing a time-varying virtual-structure, this proposed method makes use

of a leader robot to plan the formation bulk motion. While this chapter focuses on a team

of quadrotor MAVs, the approach presented is general enough to be applied to any team

of differentially flat robots. As a result of the complex dynamics of the quadrotor robots

outlined in Appendix A and the associated short time scales, reliance on typical causal

feedback policies does not yield acceptable performance. Planning reactively in state

space is simply insufficient to maintain high quality formation control for cooperative

payload transport or maintaining fixed imaging distances. Instead, the robots must be
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planned for in trajectory space using model predictive, or receding horizon control [30] to

plan trajectories for each robot over a short time horizon. More specifically, decentralized

model predictive control [33, 76] is used since the robots are controlling using only local

information.

It is assumed that every robot has knowledge of its place in the formation and a

single bulk trajectory is designed by the leader robot. Using the formulation controller

presented in this chapter, each robot communicates with and updates its neighbors with

its own motion plan. Then each robot plans its own local optimal trajectory based on

state information about its neighbors and the last communicated plan of the neighbors.

This iterative sequence of communication and re-planning is continued until mission com-

pletion.

A two-component representation for the formation consisting of the ensemble shape

and a dependence measure for each communication link is presented in Sect. 3.1. Sec-

tion 3.2 details control laws for formation control with a team of aerial robots and discusses

considerations for improving controller performance given degrading network performance

and robot failures. Section 3.3 discusses the expected convergence properties of the pro-

posed controllers. The chapter concludes with an series of simulations in Sect. 3.4 and

an experimental study in Sect. 3.5 to evaluates performance under varying system condi-

tions. In both simulation trials as well as experimental evaluation of this approach on a

team of quadrotors, suitable performance is maintained as the formation motions become

increasingly aggressive and as communication degrades or with individual robot failure.

The research contained in this chapter was initially published in [82–84].
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3.1 Modeling the Robot Formation

The virtual-structure formation control approach used in this chapter implies that each

robot in the team acts as a particle embedded in an imaginary solid object. As such,

a formation specification can be defined by a set of relative position vectors between

robots. In this chapter, the imaginary solid object is deformable and therefore a time-

varying shape vector sij(t) ∈ R3 is defined so the there is no ambiguity in formation shape.

This is represented as the vector from the location of robot i to the location of robot j in

an inertial frame:

sij(t) = xj(t)− xi(t) (3.1.1)

Figure 3.1 displays a number of shape vectors. In a team of N robots, there are N2 shape

vectors that can be defined with
(
N
2

)
pairwise distances. However, many of these shape

vectors are coupled and must satisfy the following properties to produce a consistent

formation:

sik(t) = sij(t) + sjk(t)

sij(t) = −sji(t)
(3.1.2)

In fact, once N −1 unique shape vectors have been specified, the remaining shape vectors

that satisfy the properties in (3.1.2) can be directly computed. In this chapter, define

the position of each robot in the formation relative to a single reference location. This

is not a limiting property and ensures all agents always have the information required to

compute relative shape vector with any communicating neighbor. For consistency, use

robot 1 as the reference in the formation. Even if a set of robots are far from and have

never communicated with the reference robot, they can directly compute any required
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Figure 3.1: The team of robots maintains the formation described by shape vectors si,j while
the lead robot tracks a desired trajectory x1(t).

shape vectors using the properties in (3.1.2). It is assumed that shape vectors are chosen

to respect pairwise separation constraints and avoid robot-robot collisions.

A single robot is defined as the leader of the team and is responsible for determining the

bulk motion of the team. The leader can also be a virtual robot with a reference trajectory

for the formation, thus eliminating a single point of failure. This single trajectory can be

reliably computed using the methods presented in Sect. 2.1. In particular, the trajectories

used for all simulations and experiments in this chapter are computed using the minimum

snap methods presented in [53].

The set of all robots with a reliable communication link with robot i is defined as

communication set Ci and can contain up to (N − 1) robots. Unlike most leader-follower

controllers using hierarchical structures (for example [14]), in this chapter each follower

robot can use information received from every other robot in its communication set. Thus

follower robot i has the ability to utilize up to (N − 1) sets of information.

Since some of robots are further away than other robots, pairwise communication
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quality and the importance of maintaing precise relative positioning may vary substan-

tially. As a result, robot i uses a convex combination of dependence weights dij to reflect

the degree to which information from robot j is used:

∑
j∈Ci

dij = 1 and dij ≥ 0 (3.1.3)

These components are then used to construct the N × N dependence matrix, D, whose

entries are non-negative and the row sums are all 1. In other words, D is a right stochastic

matrix [42], a fact which will be leveraged later in this chapter. Also note that each robot

does not need to know the state of all other robots or even how many robots are in the

system, but only informations about its neighbors.

The lead robot has sole dependence on itself and no other robot has any dependence

on itself. For example, if robot 1 is the leader, its dependence coefficients are d11 = 1 and

d1j = 0, ∀j 6= 1. Since every other robot has no dependence on itself, dii = 0, ∀i 6= 1.

At least one robot must have positive dependence on the lead robot, or di1 > 0 for some

i. It is assumed that the dependence matrix represents a connected graph. Due to these

requirements, it is clear that the dependence matrix D is not symmetric.

With the exception of the leader robot, define the desired state of robot i as the

dependence weighted sum of relative separation:

xdes
i =

∑
j∈Ci

dij (xj(t) + sji(t)) (3.1.4)

Similar schemes appear in the consensus literature where each robot’s desired heading,

velocity or acceleration is obtained by a weighted average of information acquired from

neighbors [29, 94]. However, in this case the consensus-like rule (3.1.4) is used to define

entire trajectories that each robot computes as explained in the next section.
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3.2 Formation Control

As previously noted, the lead robot individually computes its desired trajectory and in

practice, a quadrotor robot will follow this trajectory using the methods described in

Appendix A. For the remaining robots, the error between the current system state and

the desired state as defined by sij(t) for all i, j is:

ei(t) = xi(t)− xdes
i =

∑
j∈Ci

dij(xi(t)− xj(t)− sij(t)) (3.2.1)

A receding horizon control approach is now proposed to address network delays and

other sources of information latency. It is assumed that all robots operate with a syn-

chronized system clock.

Denote tc as the current time and th as the time horizon used for robot trajectory

generation. At current time tc, constraints must be imposed to ensure continuity of

the trajectory. For a fourth order system like the quadrotor, this requires continuity

up to the third derivative of position. Additional constraints may be added to ensure

feasibility of the planned trajectory to respect the actuator limits of the robot and to

avoid collision with convex bounding constraints. Constraints to avoid collisions with any

obstacle can be included, however these objects can introduce non-convex constraints that

are challenging to solve in a computationally tractable manner. Each robot can generate

its own trajectory by minimizing the integral of the error squared from (3.2.1) over the

interval [tc, tc + th]:
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minimize
xi(t)

∫ tc+th

tc

ei(t)
Tei(t)dt

subject to xi(tc) = robot i current state

ẋi(tc) = robot i current velocity

ẍi(tc) = robot i current acceleration
...
x i(tc) = robot i current jerk

xi(t) within environment

xi(t) respects actuator limits

(3.2.2)

This will drive the system to zero error as quickly as physically possible. In the case of

the quadrotor, it is beneficial to slow down these convergence dynamics to ensure system

smoothness. To reduce the convergence rate, the error derivative terms can be included

in the optimization formulation:

minimize
xi(t)

∫ tc+th

tc

[
3∑

k=0

κk e
(k)
i (t)

]2

dt

subject to xi(tc) = robot i current state

ẋi(tc) = robot i current velocity

ẍi(tc) = robot i current acceleration
...
x i(tc) = robot i current jerk

xi(t) within environment

xi(t) respects actuator limits

(3.2.3)

where κk is the weight applied to the kth derivative and κ1 is greater than zero to ensure

error convergence to zero. Notationally, e
(k)
i is the kth derivative of the corresponding

component of the error.

Similar to the trajectory generation for a single robot, the trajectory is defined over

the finite horizon, tc ≤ t ≤ (tc + th) to be a polynomial of order p :

xi(t) =

p∑
k=0

αki t
k

where αki ∈ R3 is the ith robot’s kth polynomial coefficients. Similarly define all of the
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shape vectors over the interval of the lead robots trajectory t0 < t < tf as:

sij(t) =

p∑
k=0

σkijt
k

where σkij ∈ R3 is the kth polynomial coefficients of the shape between robots i and j.

Then, these polynomial representations can be substituted into the error of robot i in

(3.2.1):

ei(t) =
∑
j∈Ni

dij

(
p∑

k=0

(
αki − αkj − σkij

)
tk

)

With these definitions, (3.2.3) can be solved for robot i as a quadratic program in real

time to generate a reference trajectory which minimizes the weighted sum of the error

and the derivatives of the error.

Thus the basic algorithm for formation control (see Fig. 3.2) is as follows:

1. Each follower robot initializes with a stationary trajectory.

2. The lead robot computes its desired trajectory using the methods outlined in Ap-

pendix A and begins to follow this trajectory.

3. Every robot broadcasts its trajectory described by its polynomial coefficients (αi

for robot i) and the appropriate time interval to neighboring robots.

4. Each follower robot recomputes its trajectory for the finite time horizon, th, based

on the desired shape vectors sij(t) and neighboring robots’ trajectory information

using (3.2.3).

5. Steps 3-4 repeat until either the lead robot issues a termination command which

propagates through the system or a pre-specified time limit expires.
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A crucial benefit of using this method is that a centralized planner only needs to plan

the motion of the group at an abstract level in a low dimensional space. It computes the

trajectory for the group (or for a leader of the group), xdes
1 (t), and the desired shape sij(t)

for the formation. Individual robots are only required to compute local trajectories and

control inputs.

There are some variations to the basic theme in Fig. 3.2. First, the communications of

coefficients αi are shown for all connections, but there is the possibility that some agents

do not communicate with all others. In a real system, there are up to
(
N
2

)
possible com-

munications for a fully connected system every δ seconds. Second, when communication

performance degrades (as discussed in the experiments, Sect. 3.5), the robots extrapolate

based on the last trajectory specification from each neighboring robot and choose controls

accordingly. Finally, when critical failures occur, the robots modify their local dependence

measures, dij , accordingly. Robot failure is detected through the robot sending informa-

tion that is no longer useful to the team or absence of communication. It is assumed that

a robot can identify that it has failed, or it could continue sending incorrect information.

This local trajectory control law allows for asynchronous communication and planning

and is robust to changing network topology, network latency and dropped messages, as

well as critical robot failures.

3.3 Consensus on Trajectories

This section presents the convergence of the proposed scheme and simulation results. The

theoretical analysis requires three simplifying assumptions:
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Figure 3.2: System block diagram which clearly shows the centralized planner only needs to
initially compute a desired shape sij(t) and a group motion xdes1 (t). Chapter A outlines the com-
putation of xdes1 (t), which is shown the red dot-dash box. Section 3.1 formulates the decentralized
interactions in the blue dotted box.

(A1) There are no inequality constraints when computing trajectory coefficients α. In

such a setting, the trajectories satisfying (3.2.2) are decoupled polynomial functions

of time. Hence, the solution for each component of xi(t) is independent of other

components allowing a decoupled solution to (3.2.2) into three one-dimensional sub-

problems.

(A2) All robots are homogeneous and use exactly the same optimization criteria, and

therefore employ the same optimization coefficients κ in (3.2.2).

(A3) Robot clocks are synchronized and the solution to (3.2.2) can be calculated very

fast. If this calculation is instantaneous, all robots can be modeled as having syn-

chronous network updates with all neighbors every δ s.

Some of these assumptions will be relaxed in the experimental studies.
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Using (A1) above, the minimization for each component of xi(t) ∈ R3 for robot i is
as follows:

minimize
xi(t)

∫ tc+th

tc

[
3∑

k=0

κke
(k)
i (t)

]2

dt

subject to xi(tc) = f0
i

ẋi(tc) = f1
i

ẍi(tc) = f2
i

...
x i(tc) = f3

i

(3.3.1)

where fki is the current kth time derivative of the component of state of xi(t).

Define the coefficient vectors αi = [α0
i , α

1
i , . . . , α

p
i ]

T, σij = [σ0
ij , σ

1
ij , . . . , σ

p
ij ]

T, and t =

[t0, t1, . . . , tp]T. Additionally define fi = [f0
i , f

1
i , f

2
i , f

3
i ]T such that the equality continuity

constraints can then be vectorized as Eiαi = fi. The weighted shape variable for robot i

is computed as:

τ i =
∑
j∈Ni

(dij(αj + σij))

The integrand in 3.3.1 can evaluated and then reformulated to:

(αi − τ i)
THi (αi − τ i)

where αi and τ i have dimension (p+ 1)× 1, Hi is (p+ 1)× (p+ 1). Then the following

Quadratic Program (QP) is equivalent to the optimization in 3.3.1:

minimize
αi

1

2
αiHiαi − τ i

THiαi

subject to Eiαi = fi

where Ei is 4× (p+ 1). This QP can be rewritten as an unconstrained optimization using

a vector of Lagrange multipliers, λi:

minimize
αi,λi

1

2
αiHiαi − τ i

THiαi + λT
i (Eiαi − fi)

The solution to the reformulated optimization problem is given by the solution to:[
Hi Ei

T

Ei 0

] [
αi

λi

]
=

[
Hiτ i

fi

]
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Using the Schur compliment, the closed form solution for αi is

αi = (I− ZiEi) τ i + Zifi

where

Zi = H−1
i Ei

T
(
EiH

−1
i Ei

T
)−1

Now let A be a N(p + 1)× 1 vector of αj , G a N(p + 1)× 1 vector of σ1j , and F a

4N × 1 vector of fi as follows:

A = [α1
T,α2

T, . . . ,αN
T]T

G = [σ11
T,σ12

T, . . . ,σ1N
T]T

F = [f1
T, f2

T, . . . , fN
T]T

From (A2), all robots have the same κ weights, which yields Hi = H, Ei = E, and Zi = Z.

Under assumption (A3), each robot will have to recalculate its controls every δ s. The

desired shape trajectory, sij(t), is now reparameterized in time to get:

sij(t+ δ) = σ̄ij
Tt̄

where t̄ = t + δ and t̄ = [(t + δ)0, (t + δ)1, . . . , (t + δ)p]T. Define the (p + 1) × (p + 1)

matrix Y such that the new coefficients for this δ-shifted trajectory are:

σ̄ij = Yσij

and correspondingly:

T = I⊗Y

In particular, the desired shape at time tc + δ is given by

G(tc + δ) = TG(tc)
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According to (A3), all robots follow their trajectory based on the coefficients αi for

δ s. The robots then exchange information with their neighbors and calculate their new

coefficients independently. The new coefficients for all robots will be given by the equation:

A(k + 1) = MA(k) + LTG(k)

where A(k) and G(k) are the coefficients at time kδ and

M = (D⊗ (I− ZE) + I⊗ ZE) T

L = (D− I)⊗ (I− ZE)

From this, it can be shown that:

A(k) = MkA(0) +

k−1∑
j=0

MjLT(k−j)G(0) (3.3.2)

Theorem 3.3.1 proves that the trajectories of the individual robots, given by the coeffi-

cients in A converge to the centralized optimal Ac in the limit as communications delay

δ approaches zero.

Theorem 3.3.1. Under Assumptions (A1-A3), as the time between updates, δ, tends to

zero, limk→∞A(k)→ Ac.

Proof. As δ approaches zero, the reparametrization in shape can be ignored such that:

lim
δ→0

Y = I

which in turn means T = I⊗ I. Taking these limits, (3.3.2) can be converted to:

A(k) = QkA(0) +

k−1∑
j=0

QjR
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where

Q = D⊗ (I− ZE)

and

R = ((D− I)⊗ (I− ZE))G + (I⊗ ZE)A(0)

Note that for k > 0:

Qk = Dk ⊗ (I− ZE).

Because D is a right stochastic matrix, from the Perron-Frobenius theorem the largest

absolute value of an eigenvalue is always 1 [42]. Additionally, this Perron-Frobenius

eigenvalue corresponds to the eigenvector 1. All other eigenvalues are guaranteed to be

less than 1 in magnitude and

lim
k→∞

Dk =


1 0 · · · 0
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0


Thus Qk converges to a constant and this in turn implies limk→∞A(k)→ Ac, a constant.

In other words, the robots reach consensus on their trajectories.

3.4 Simulations Results

A series of simulations following the trajectory generation method outlined in Sect. 3.2

are presented in this section. Each simulation makes use of all of the assumptions (A1) -

(A3). To closely model what actual quadrotors are able to achieve, the following values

are used: p = 10, κ0 = 1, κ1 = 1, κ2 = 0.25, κ3 = 0, th = 2 sec, and tf = 8 sec. Initial

conditions fi are randomly chosen values with zero mean and standard deviation 1 with

appropriate SI units.
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The first simulation in Fig. 3.3 verifies that this method produces high quality con-

vergence to the desired shape for a team of four fourth order robots. This simulation uses

a fully connected and equally weighted dependence matrix:

D =


1 0 0 0

1/3 0 1/3 1/3
1/3 1/3 0 1/3
1/3 1/3 1/3 0


and communications time δ = 0.1 sec.In order to show a formation which changes its

shape over time, σ1i is selected for all agents such that the desired formation is ex-

panding. Additionally, the leader’s trajectory is chosen to be accelerating in the positive

direction. Initial randomly chosen positions f0
i are shifted to avoid collision, although a

more formulaic collision avoidance method is considered in Chapter 4.

The second simulation in Fig. 3.4 studies the effect of changing δ on the convergence

properties of the system. The lead robot’s trajectory, xdes
1 (t), is held constant at zero

and the shape vectors are chosen to be a constant unit distance from each other, sij(t) =

1 ∀j = i + 1. Initial randomly chosen positions f0
i are shifted to avoid collision. D is

designed such that the system is a chain so that robot i only broadcasts to robot i+ 1, a

classical leader-follower formation. This results in a dependence matrix for 4 robots of:

D =


1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0


This simulation is carried out using δ = {0.45, 0.15, 0.05} sec. As in the previous simu-

lation, each agent’s error converges to zero. Clearly and intuitively, trajectories converge

more rapidly as the communications time decreases. Notice as well that robots further

down the chain experience delayed errors corresponding to large δ, but not nearly as
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Figure 3.3: Simulation of a team of four agents with accelerating leader and expanding formation.
Figure 3.3(a) shows the positions of each agent as solid lines and the dotted lines represent the
desired position of each agent relative to the leader (This is only provided as visual reference. The
actual error values are defined in (3.2.1)). Figure 3.3(b) illustrates that the error of each robot
converges to zero.

prominent with smaller δ. This simulation supports the conclusions made in Sect. 3.3

about the effects of communications time.

3.5 Experimental Results

This section experimentally evaluates the method presented in this chapter with three

different studies. The first investigation in Sect. 3.5.1 analyzes trajectory tracking perfor-

mance as desired velocities and accelerations vary. The second study in Sect. 3.5.2 tests
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Figure 3.4: Simulations of a team of four agents with constant shape and a stationary leader, but
with varying communications time δ = {0.45, 0.15, 0.05}. The circles are displayed at instances of
communications. Dotted lines are provided in Fig. 3.4(a) to show the desired position for each
agent relative to the leader.

system performance given emulated communication degradation. Section 3.5.3 demon-

strates system resilience to critical individual robot failure.

All robot are homogenous in these experimental trials per assumption (A2). However,

(A1) is removed for all experimental trials since inequality constraints are required to

ensure the robots’ trajectories are feasible and within the workspace. By removing this

assumption, no analytical solution to the QP exists. Instead, an off the shelf QP solver

is be used instead. Assumption (A3) is used for trials in Sect. 3.5.1, but synchronous
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updates are necessarily removed in degraded network studies. To simulate real conditions

in Sect. 3.5.3, the broken robot does not communicate with any robots after the simulated

failure.

The experiments emulate true decentralized control by separately encapsulating the

computation of each robot’s trajectory with no global knowledge. The only information

available to a robot is through emulated inter-robot communications. Individual mes-

sages are subjected to random time delays and dropped packets to simulate imperfect

communications in Sect. 3.5.2.

All experimental studies consist of a formation of four robots with specified constant

shape vectors. Robots utilize inequality constraints to enforce velocity and acceleration

bounds. Dependence matrices (D) are chosen such that each follower robot places equal

weight on trajectories of all other robots with which it had recent communication.

3.5.1 Performance with Variable Maximum Velocity and Acceleration

To evaluate the performance of these methods with demanding trajectories, the leader

trajectory is designed to give a variety of motions with high speeds and high accelerations

in all dimensions. Time scaling of trajectories [53] is used to vary the velocities and

accelerations demanded of the quadrotors. The duration of leader trajectories are 32, 24,

16, 12, and 10 sec. See Fig. 3.6(a) for a plot of tracked trajectories by the quadrotors

for the trial requiring 16 s. To understand how well each robot is tracking its desired

trajectory, see Fig. 3.6(b) for the cumulative distribution function of the error in R3

for the lead robot. All follower robots have similar errors to the lead robot for every

trajectory tracked in every trial run. Figure 3.5 displays snapshots of a fast trajectory
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(a) (b)

(c) (d)

Figure 3.5: A team of four Ascending Technologies [5] Hummingbird quadrotors fly in formation
while achieving maximum velocities and accelerations exceeding 3 m

s and 6 m
s2 , respectively.

(with accelerations of greater than 0.5 g) being tracked highlighting that even during large

deviation from near hover operation, all robots remain in close formation.

As the speeds of the trajectories are increased, it is expected that error from the desired

trajectory should increase as time delays and modeling errors of quadrotor parameters

become more significant. Datasets from all trials in this performance study were merged

to analyze how well the robots maintained formation in demanding situations. Every

data point collected was analyzed to relate speed and magnitude of desired acceleration

to error from desired trajectory and error from formation with all other robots. The

mean and variance of this data are plotted in Fig. 3.7. As one might expect, it is clear

that as speed and acceleration increase, the error from the desired trajectory increases
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Figure 3.6: The trajectories traversed by each robot in the formation where thin lines show the
desired trajectory and bold lines indicate the actual trajectory (Fig. 3.6(a)). Note that the desired
and actual trajectories are sufficiently close that only the actual trajectory is readily visible. The
inverse cumulative probability distribution function for the error in R3 for the lead robot while
tracking the waypoints used for the performance study (Fig. 5.14). Half of all measurements are
within 2.7 cm of the desired trajectory.

substantially. However, the shape error remains relatively constant across all tested speeds

and accelerations. This resilience to relative formation error during aggressive maneuvers

confirms that these methodologies are sound and will ensure collision avoidance of robots

in the formation.

3.5.2 Performance with Degraded Network Communication

This study is concerned with the practical complication of communication and sensing

latencies, errors, and failures. To study how packet loss affects formation errors, various

levels of failure of interagent communication are simulated and the formation response is

measured. Each robot to robot communication is allowed to be transmitted successfully
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(a) (b)

Figure 3.7: As the robots’ speed and acceleration increase, the shape errors (deviations from
the entries in the specified shape vectors) remain relatively constant. Each plot depicts the mean
squared error (solid and dashed lines) and standard deviation in error (filled regions) between the
desired and actual robot trajectories (solid, blue) and shape (dashed, red) using data collected
from many trials.

with probability ρ. For example, a value of ρ = 0.75 signifies on average three out of

every four attempted communications is successful. A large initial error trajectory was

utilized to clearly demonstrate the decay to the desired shape. Figure 3.8 shows trials

with four values of ρ ranging from 0.4 to 1.0. The slight initial offsets between trials are a

result of different starting conditions between trials. As expected, the same decay rate is

experienced regardless of the rate of communications failure. These results confirm that

for even very unreliable networks, these controllers will converge to the desired shape.

3.5.3 Performance with Critical Robot Failures

To simulate a complete robot failure, at a prescribed time ts, robot 2 ceases all commu-

nications and safely moves away from the remaining formation. The remaining agents

initially attribute the lack of new information from robot 2 to a temporary communica-

tion failure and continue planning based on the most recent trajectory transmitted by
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Figure 3.8: Convergence of robots to the desired shape with simulated communication failures.
ρ is the probability that communications are successful.

robot 2. Over time, the remaining robots recognize that the data from robot 2 is too

outdated to continue planning with and update their respective entries in the dependence

matrix to reflect this fact. In practice, once the most recent communication with a robot

is older than th/2, the dependence in that robot is set to zero and other dependence scores

are scaled to preserve the row sum of D. The same trial was also conducted with all

robots functional throughout for comparison. The complete robot failure and baseline

non-failure cases are compared in Fig. 3.9. The interagent distances between all remain-

ing robots continue to decay at the same rate whether or not there is a robot failure. As

long as failing robots do not physically disable other robots in a crash, this controller is

designed to recognize the failure and automatically compensate without any formation

tracking quality loss.

3.6 Chapter Summary

This chapter considers the problem of controlling a team of micro-aerial vehicles moving

quickly through a three-dimensional environment while accurately maintaining a tight

formation. The solution presented is based on the leader-follower control paradigm with
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the follower robots controlling to maintain a desired formation shape. A set of poten-

tially time varying shape vectors describe the desired ensemble shape and the dependence

matrix dictates each robot’s reliance on other the robots’ state information for its trajec-

tory generation and control. The computational complexity is independent of the total

size of the group since each robot uses only local information to compute a trajectory.

The method presented ensures that the system converges to the desired formation while

undergoing bulk motion given sufficient communications rate. Unlike previous research

on leader-follower control schemes or consensus algorithms, this approach addresses the

synthesis of trajectories for multiple robots satisfying dynamic constraints and consensus

across trajectories. An experimental evaluation of the approach on a team of quadrotors

suggests that suitable performance is maintained as the group motions become increas-

ingly aggressive even as inter-robot communication degrades.
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Figure 3.9: A simulated failure case of robot 2 at ts = 3 sec with non-trivial starting error from
the desired shape. The pairwise shape error between robots {1, 2}, {2, 3}, and {1, 3} are shown
in Figs. 3.9(a)–3.9(c), respectively.
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Chapter 4: Concurrent Assignment and Planning of

Trajectories Capt

This chapter considers the problem of Concurrent Assignment and Planning of Tra-

jectories (denoted Capt) for a team of robots. This problem involves simultaneously

addressing two challenges: (1) the combinatorially complex problem of finding a suit-

able assignment of robots to goal locations, and (2) the generation of collision-free, time

parameterized trajectories for every robot. See Sect. 2.2 for a review of the challenges

associated with planning for a team of robots. Additionally, Sect. 2.4 discusses the bene-

fits of considering interchangeable robots. This chapter examines the Capt problem for

unlabeled (interchangeable) robots and proposes algorithmic solutions to two variations

of the Capt problem. The first algorithm, c-Capt, is a provably-correct, complete, cen-

tralized algorithm which guarantees collision-free optimal solutions to the Capt problem

in an obstacle-free environment. To achieve these strong claims, c-Capt exploits the syn-

ergy obtained by combining the two subproblems of assignment and trajectory generation

to provide computationally-tractable solutions for large numbers of robots. This chapter

then presents a decentralized solution to the Capt problem through d-Capt, a decentral-

ized algorithm that provides suboptimal results compared to c-Capt. These algorithms

and resulting performance are demonstrated through simulation and experimentation.

By definition, the Capt problem seeks an assignment of N unlabeled (permutation
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invariant) robots to M desired goal locations. To explore the complexity of this prob-

lem, consider the case when N = M . Each possible assignment of robots to goals can

be represented by an N × N permutation matrix and the space of all possible assign-

ments is isomorphic to SN , or the group of all permutations. To completely enumerate all

possible assignments requires N ! evaluations and is infeasible for any system with more

than just a few robots. Fortunately, the task assignment problem occurs naturally in a

number of disciplines including distributed computing, operations research, and robotics.

As such, there has been significant study into generating optimal solutions and useful

suboptimal solutions. While there are multiple classes of the task assignment problem,

this work focuses on the linear assignment problem. The linear assignment problem seeks

to minimize the sum of individual costs for robot-goal pairs. The well-known Hungar-

ian Algorithm [41] solves the linear assignment problem with computational complexity

bounded polynomially in the number of robots, O(N3), and is the most efficient known

method to optimally solve the linear task assignment problem. There are also a num-

ber of relaxations of the linear assignment problem to find near optimal solutions. For

example [73] uses a heuristic to minimize the sum of Euclidean distance traveled for a

simplified Euclidean linear assignment problem with complexity bound O(N
5
6 ).

An approach to minimizing computational complexity is to consider decentralized

solutions to the Capt problem. The trajectory planning problem is naturally decoupled

when robots are far away from each. Thus, it is logical to have robots independently plan

trajectories to assigned goals, but reevaluate their assignments and planned trajectories

as they approach each other. In this context, it is useful to introduce the abstraction of a

communication or sensing range, h, outside which robots ignore their neighbors allowing
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decentralized planning and execution. When a robot comes within h of a neighbor, it

must coordinate its actions with its neighbor. Indeed it is possible to define reactive

controllers using artificial potential functions [100] that modify trajectories locally when

robots come close to each other while pursuing their assigned goals. In addition, there

is literature on controlling groups of robots to goal destinations [59] or goal sets [10]. In

general, these gradient descent approaches lead to unpredictable trajectories, may take a

long time to converge, and some do not guarantee complete assignment.

The complete decentralized solution, d-Capt, does not, in general, guarantee op-

timal solutions. However, every local modification of trajectories is associated with a

reassignment of goals that improves the quality of the resulting solution. By considering

only local interactions, d-Capt has substantially reduced computational requirements.

This allows the algorithm to scale well as the team size increase and suffers only a minor

decrease in optimality.

After the presentation of preliminaries in Sect. 4.1, Sect. 4.2 introduces c-Capt. This

centralized optimal solution to the Capt problem requires an obstacle-free environments

and is computationally tractable for many hundreds of agents and goals. A basic iterative

approach to visiting more goals than robots available is presented in 4.3. Not that this is

similar to the Vehicle Routing Problem discussed in Sect. 2.5 and will be considered in

more detail in Chapter 6. Section 4.4 demonstrates the flexibility of c-Capt by incorpo-

rating the dynamics of a quadrotor UAV. Then Sect. 4.5 introduces d-Capt, a distributed

suboptimal version of c-Capt. Finally, section 4.6 presents numerical simulations and

analysis of c-Capt and d-Capt.

The work in this chapter was originally presented in [85, 87].
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4.1 Preliminaries

Consider N robots with radius R navigating from initial locations to M desired goal

locations in an n-dimensional Euclidean space. Define the set of integers between 1 and

positive integer Z as: IZ ≡ {1, 2, . . . , Z}. For example, if there are 3 goal locations,

M = 3 and IM = {1, 2, 3}.

The location of the ith robot is specified by xi(t) ∈ Rn, i ∈ IN and similarly, the jth

goal location is specified by gj ∈ Rn, j ∈ IM . Next, define the Nn-dimensional system

state vector, X ∈ RNn:

X(t) = [x1(t)T,x2(t)T, . . . ,xN (t)T]T.

and similarly define the system goal state vector G ∈ RMn:

G = [g1
T,g1

T, . . . ,gM
T]T

Define the assignment matrix φ ∈ RN×M , which assigns agents to goals:

φij =


1 if robot i is assigned to goal j

0 otherwise

(4.1.1)

It is required that either all goals to be assigned or all robots to be assigned which results

in:

φTφ = IM if N ≥M

φφT = IN if N ≤M
(4.1.2)

where IZ is the Z×Z identity matrix. It is also useful to define the expanded assignment

matrix Φ ≡ φ⊗ In where ⊗ signifies the Kronecker product.
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The Capt problem seeks to find Nn-dimensional trajectories:

γ : t→ X

where t0 and tf are the initial and final times respectively. Initial robot positions xi(t0) ∀i ∈

IN provide initial conditions for the trajectories:

γ(t0) = X(t0) (4.1.3)

The assignment is defined such that it provides terminal conditions such that goal loca-

tions are occupied by robots:

ΦTγ(tf ) = G

However, in the case that M > N , these assignments are not unique. To find a unique

assignment, premultiply this condition by Φ:

ΦΦTγ(tf ) = ΦG

and solve for γ(tf ):

γ(tf ) = (ΦΦT)−1ΦG

Using (4.1.2), M > N implies that ΦΦT = INn. Therefore, the assignment of robots to

goals supplies the following trajectory terminal conditions:

ΦTγ(tf ) = G if N ≥M

γ(tf ) = ΦG if N < M

(4.1.4)

Clearance ε is defined as the minimum space between any pair of robots at any time

during the trajectory:

ε(t) = inf
i 6=j∈IN ,t∈[t0,tf ]

||xi(t)− xj(t)|| − 2R
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Figure 4.1: For the locations of goals and agents in R2 in Fig. 4.1(a), K is designated by the

closed area in Fig. 4.1(b).

With the exception of Sect. 4.4, the robots are assumed to have simple first order dy-

namics:

ẋi(t) = ui

||ui||2 ≤ vmax
(4.1.5)

To ensure collision avoidance for all robots, clearance is required to always be greater

than zero:

ε(t) > 0 t ∈ [t0, tf ] (4.1.6)

Define K as the convex hull of initial locations and goal locations with the Minkowski

sum of a ball of radius R:

K ≡ conv
(
{xi(t0)

∣∣i ∈ IN} ∪ {gj∣∣j ∈ IM})⊕ BR (4.1.7)

See Fig. 4.1 for a 2-dimensional pictorial example of K. Section 4.2 presents c-Capt,

which requires an obstacle-free environment such that K is free of obstacles.
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4.2 c-Capt: a Centralized Obstacle-Free Capt Solution

This section explicitly defines the requirements of a centralized Capt solution and the

necessary assumptions for an obstacle-free environment. Then, a minimum distance solu-

tion to the assignment problem in Sect. 4.2.1 is studied. Section 4.2.2 modifies this cost

function and evaluates the solution generated by a minimum velocity squared trajectory.

Finally, Sect. 4.2.3 presents equations which generate a solution to the Capt problem in

an obstacle-free environment.

Problem Definition c-Capt seeks to find optimal trajectories γ?(t) which minimize
a specified cost functional:

γ?(t) = argmin
γ(t)

∫ tf

t0

L(γ(t))dt

subject to Eq. (4.1.1) : Valid Assignment

Eq. (4.1.2) : Full Resource Utilization

Eq. (4.1.3) : Initial Conditions

Eq. (4.1.4) : Terminal Conditions

Eq. (4.1.5) : Robot Capabilities

Eq. (4.1.6) : Collision Avoidance

(4.2.1)

Assumptions Explicitly stating the assumptions required for c-Capt:

(A1) All robots are interchangeable with no preference of goal location.

(A2) The extend of each robot is confined to BR, a ball with radius R.

(A3) The region K as defined in (4.1.7) is obstacle-free.

(A4) The initial and goal locations are spaced ∆ apart:

||xi(t0)− xj(t0)|| > ∆ ∀ i 6= j ∈ IN ,

||gi − gj || > ∆ ∀ i 6= j ∈ IM
(4.2.2)
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where ∆ will be defined later. Clearly ∆ > 2R to ensure collision avoidance (4.1.6)

at the boundary conditions. Additionally require:

||xi(t0)− gj || > ∆ ∀i ∈ IN , j ∈ IM if N > M

(A5) Robots are fully actuated differentially flat systems, do not have any actuation error,

and always have perfect state knowledge.

Sections 4.2.1 and 4.2.2 propose different cost functions L(γ) in (4.2.1) which both

seek to simultaneously find an assignment matrix φ and collision-free trajectories γ(t) for

all robots in the system such that the boundary conditions (4.1.3, 4.1.4) are satisfied.

4.2.1 Minimum Sum of Distances Trajectories

The first cost function analyzed is commonly applied to the location assignment problem

and seeks to minimize the sum of distances traveled by all agents:

minimize
φ,γ(t)

N∑
i=1

∫ tf

t0

√
ẋi(t)

Tẋi(t)dt

subject to (4.1.1), (4.1.2), (4.1.3), (4.1.4), (4.1.5), (4.1.6)

Temporarily ignoring clearance requirements, it is clear that the solution reduces to pos-

itive progress on straight line paths for t ∈ [t0, tf ]. Thus, this problem reduces to:

minimize
φ

M∑
j=1

N∑
i=1

φij
∣∣∣∣xi(t0)− gj

∣∣∣∣
2

subject to (4.1.1), (4.1.2), (4.1.3), (4.1.4), (4.1.5)

(4.2.3)

This is the well-known transportation assignment problem. Theorem 4.2.1 demonstrates

that the assignment from this optimization guarantees paths that almost never intersect

in any n > 1-dimensional Euclidean space.
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Figure 4.2: For agents in n-dimensional Euclidean space, if paths intersect and are not collinear
as is the case for straight lines along r1,2 and r2,1, it is clear that by using the triangle inequality,
switching assignments will always lead to shorter non-intersecting paths.

Theorem 4.2.1. The optimal assignment φ using the minimum sum of distance opti-

mization in (4.2.3) results in non-intersecting paths with the exception of the special case

when a pair of robots have collinear start and goal locations.

Proof. Assume the paths of agents i and j intersect but do not all fall on a line. These

paths necessarily exist in a plane and therefore can be reduced to an equivalent n = 2

problem. Since these paths intersect, the switching the assignment will always reduce

the sum of distances by using the triangle inequality and the given φ is not optimal

for (4.2.3). Therefore, the minimum assignment found in (4.2.3) will never result in

intersecting paths.

Unfortunately, it can be shown with the simple example depicted in Fig. 4.3 that

agents with finite extent using the assignment from (4.2.3) are not guaranteed collision-

free trajectories, rendering these trajectories useless for real robots with physical extent.

This minimum distance assignment can be used to find trajectories which avoid collisions,

but are suboptimal, may require enlargement of the region K, and are more difficult to

compute than those which will be presented in Sect. 4.2.2.
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Figure 4.3: For the example with two agents in Fig. 4.3(a) it is clear that the minimum sum
of distances paths (calculated by (4.2.3)) never intersect. However, having intersection-free paths
does not guarantee collision-free trajectories for agents with finite size. In this case, merely
switching goal assignments, as shown in Fig. 4.3(b), does ensure collision-free trajectories. It
should be noted that minimizing the sum of distance traveled squared arrives at the collision-free
assignment in Fig. 4.3(b).

4.2.2 Minimum Velocity Squared Trajectories

The second proposed method is to minimize the sum of the integral of velocity squared

traveled by all agents:

minimize
φ,γ(t)

N∑
i=1

∫ tf

t0

ẋi(t)
Tẋi(t)dt

subject to (4.1.1), (4.1.2), (4.1.3), (4.1.4), (4.1.5), (4.1.6)

which is equivalent to:

minimize
φ,γ(t)

∫ tf

t0

Ẋ(t)TẊ(t)dt

subject to (4.1.1), (4.1.2), (4.1.3), (4.1.4), (4.1.5), (4.1.6)

(4.2.4)

The remainder of this section details c-Capt and its use as a solution to this problem

To clarify how the optimization in Sect. 4.2.2 differs from that in Sect. 4.2.1, consider

moving a contiguous block of a number of books each with identical width to another

contiguous block, but moved one book over and ignoring collisions. One solution is to

move the first book to the last position, where another is to move each book one position

over. Both schemes result in the same sum of distance traveled, however moving each book
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one unit over results in a lower sum of distances squared as a result of distance squared

being a strictly convex cost function. Notice that in the many smaller moves solution, one

book will not cross another. To relate this simple example to the Capt problem, note

that all of the books can be simultaneously shifted to their new location without collision.

Temporarily relax (4.2.4) to ignore the clearance requirements in (4.1.6):

minimize
φ,γ(t)

∫ tf

t0

Ẋ(t)TẊ(t)dt

subject to (4.1.1), (4.1.2), (4.1.3), (4.1.4), (4.1.5)

(4.2.5)

The solution to (4.2.5) will consist of straight line trajectories which satisfy the bound-

ary conditions while minimizing the sum of distance traveled squared.

Optimal Assignment

First consider the assignment problem and create a distance squared matrix D ∈ RN×M :

Dij = ||xi(t0)− gj ||2 i ∈ IN , j ∈ IM

Then solve for the optimal distance squared assignment matrix φ?:

φ? = argmin
φ

N∑
i=1

M∑
j=1

φijDij (4.2.6)

Note that φ? satisfies (4.1.1) and (4.1.2).

This is a linear assignment problem and therefore an optimal assignment solving al-

gorithm such as the Hungarian Algorithm can be used to solve for φ?. In Matlab on a

standard laptop computer, solve times of under ten seconds for 400 robot/goal pairs is

typical. Figure 4.4 displays run times that trend toward cubic growth in N .
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Figure 4.4: Solution times for the Hungarian Algorithm to solve (4.2.6) in Matlab on a standard
laptop computer. The box-plot is generated based on 10 trials for each value of N . Note that
the algorithm runtime trends toward N3 growth. Boxes represent the 25th and 75th percentiles,
whiskers denote the 99% confidence interval and outliers are marked using “+”.

Trajectory Generation

The termination time tf can be computed as follows:

tf = maximize
i

∣∣∣∣∣∣xi(t0)−∑M
j=1 φ

?
ijgj

∣∣∣∣∣∣
2

vmax
(4.2.7)

Define the mapping β : t→ [0, 1] as a polynomial function of time:

β(t) ≡
k∑
i=0

αit
i

such that β(t0) = 0 and β(tf ) = 1.

A straight forward application of the calculus of variations shows that the trajectories

which minimize the integral of velocity squared are those with constant velocity and

satisfy the boundary conditions:

γ?(t) = (1− β(t)) X(t0) + β(t)
(
ΦG + (INn − ΦΦT)X(t0)

)
(4.2.8)

where β is defined by the first order polynomial:

α0 =
−t0

tf − t0
, α1 =

1

tf − t0
, α2 = 0 . . . αk = 0
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It is clear that at t = t0, γ?(t0) = X(t0), and therefore (4.2.8) satisfies the initial

conditions in (4.1.3).

In equation 4.2.8, the term, INn−ΦΦT, selects all unassigned robots and ensures that

these robots remain at their original location. If M ≥ N , using (4.1.2), this term will

disappear as expected, resulting from the fact that all robots will be assigned.

Verify that γ?(t) satisfies the final boundary conditions specified in (4.1.4):

γ?(tf ) = ΦG + (INn − ΦΦT)X(t0)

If M ≥ N , then using (4.1.2), ΦΦT = INn and γ?(tf ) = ΦG. If instead N ≥ M ,

premultiply (4.2.8) by ΦT:

ΦTγ?(tf ) = ΦTΦG + (ΦTINn − ΦTΦΦT)X(t0)

From (4.1.2), ΦTΦ = IMn to thus verify that ΦTγ?(tf ) = G. Therefore, the trajectories

defined in (4.2.8) satisfy the terminal conditions in (4.1.4).

The definition of the termination time tf in (4.2.7) guarantees that all robots satisfy

their actuation bounds in (4.1.5).

Collision Avoidance

Thus far, it has been shown that (4.2.6) and (4.2.8) generate the solution to the relaxed

problem without considering collisions in (4.2.5). However, utilizing the properties of the

Capt problem demonstrates in Theorem 4.2.3 that if ∆ > 2
√

2R, these equations also

provide the solution to the full collision avoidance problem in (4.2.4).

For notational convenience, define:

rij ≡ xj(tf )− xi(t0) uij ≡ xj(t0)− xi(t0) wij ≡ xj(tf )− xi(tf )
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Lemma 4.2.2. The optimal solutions to (4.2.5) satisfy:

wij
Tuij ≥ 0 ∀i, j ∈ IN (4.2.9)

Proof. Globally minimize the sum of integrated velocity squared in (4.2.5) such that

switching goal states of agent i with agent j will not decrease the sum of distance squared,

or:

||rii||2 + ||rjj ||2 ≤ ||rij ||2 + ||rji||2 ∀i, j ∈ IN (4.2.10)

Then substitute:

||rij ||2 = rij
Trij = xj(tf )Txj(tf )− 2xi(t0)Txj(tf ) + xi(t0)Txi(t0)

into (4.2.10) and simplify:

(xj(tf )− xi(tf ))T(xj(t0)− xi(t0)) ≥ 0 ∀i, j ∈ IN

or

wij
Tuij ≥ 0 ∀i, j ∈ IN (4.2.11)

Theorem 4.2.3. If ∆ > 2
√

2R, trajectories in (4.2.8) will satisfy (4.1.6) and be collision-

free.

Proof. The location of robot i following the trajectory specified in (4.2.8) is:

xi(t) = (1− β)xi(t0) + βxi(tf )

Therefore the distance between robots i and j is:

||xj(t)− xi(t)|| = ||(1− β)xj(t0) + βxj(tf )− (1− β)xi(t0)− βxi(tf )||
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and the distance squared between these robots is:

||xj − xi||2 = ||(1− β)(xj(t0)− xi(t0)) + β(xj(tf )− xi(tf ))||2

= ||uij + β(wij − uij)||2

Rewrite this result:

||xj − xi||2 = (uij + β(wij − uij))
T(uij + β(wij − uij)) (4.2.12)

Define for notational convenience:

a ≡ uij
Tuij b ≡ wij

Tuij c ≡ wij
Twij

Equation (4.2.12) simplifies to:

||xi − xj ||2 = a− 2β(a− b) + β2(a− 2b+ c) (4.2.13)

Find the value of β which minimizes the distance squared (and therefore the distance)

between agents i and j (i 6= j):

β?ij = argmin
β

||xi − xj || =
a− b

a− 2b+ c
(4.2.14)

If β?ij is outside the range [0, 1], the agents are at a minimum at either the start or end

of the trajectory and the agents will not collide due to (A4). If however, β?ij ∈ [0, 1], the

minimum distance between robots i and j over the course of their planned trajectories

can be found by combining (4.2.13) and (4.2.14): The minimum distance squared is:

||xi − xj ||2min =
ac− b2
a− 2b+ c

(4.2.15)

Next, starting conditions which minimize this minimum distance can be analyzed.

From their definitions, a, b, and c are all independent with the exception that b < c
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and b < a are guaranteed from the fact that β ∈ [0, 1]. It is clear that this minimum-

minimum distance decreases as b decreases. However, as shown in Lemma 4.2.2, b ≥ 0

and the minimum possible distance between robots occurs when b = 0:

||xi − xj ||2min ≥
ac

a+ c

Assumption (A4) specifies:

||xi(t0)− xj(t0)|| > ∆ ||xi(tf )− xj(tf )|| > ∆

These are equivalent to:

√
uij

Tuij > ∆
√

wij
Twij > ∆

From the assumption ∆ > 2
√

2R, these inequalities are equivalent to:

a > 8R2 c > 8R2

Using these inequalities, it is straightforward to show:

||xi − xj ||2min ≥
ac

a+ c
> 4R2

And therefore:

||xi − xj ||min > 2R

Thus a robot with radius R can never intersect another robot with radius R and

collision avoidance is guaranteed.

4.2.3 c-Capt Definition

c-Capt is defined as the solution to (4.2.4). Equation 4.2.16 reiterates (4.2.6) and (4.2.8),

which provide collision-free trajectories that satisfy all requirements for the obstacle-free
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Capt problem.

φ? = argmin
φ

N∑
i=1

M∑
j=1

φijDi,j

γ?(t) = (1− β(t)) X(t0) + β(t)
(
Φ?G + (INn − Φ?Φ?T)X(t0)

) (4.2.16)

4.3 c-Capt for Fewer Robots than Goals

In the event that M > N , or there are more goal locations to visit than robots to assign,

there are many possible solutions that may be considered to solve the Capt problem. One

potential algorithm design is to use c-Capt to find the set of trajectories which safely

navigate the robots to the goals which minimizing the sum of distance traveled squared

and consider the problem solved. This is appropriate when the mission goal is for each

robot to be occupying one of the goal locations.

In the event that the operator wants the robots to inspect each of the M � N goal

locations, the problem could alternately be cast as an instance of the vehicle routing

problem (VRP). This will be addressed in far greater detail in Chapter 6, but Algorithm

1 presents a simple solution to the VRP that guarantees all goals will be visited while

ensuring collision avoidance and dynamic constraints by iteratively solving c-Capt for

assignments and trajectories until there are no remaining unreached goal locations. See

Fig. 4.10 for a simulated example with 6 robots and 20 goal locations.

Algorithm 1 c-Capt with M > N

while M > N do
c-Capt
remove goals assigned by φ?

c-Capt

While the paths generated by Algorithm 1 provide a solution to the VRP, the so-
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lution is not necessarily optimal and in fact can be very suboptimal. Each iteration of

c-Capt guarantees local optimality in the sense of (4.2.4). For M ≈ N , Algorithm 1

generates solutions very close to the optimal solution of the vehicle routing problem. As

the ratio of goals to robots (M/N) increases, the benefits from solving the Capt prob-

lem diminish and solutions from Algorithm 1 appear similar to a greedy solution of the

traveling salesman problem.

4.4 c-Capt for Dynamic Robots

As detailed in Appendix A, the dynamics of the quadrotor necessitate C3 smooth trajec-

tories for accurate tracking. It is well known that minimizing the square of the norm of

the snap (the fourth derivative of position) of the trajectory yields reference trajectories

and inputs that are excellent for quadrotors [53]. Fortunately, this only results in a simple

modification to the cost function in (4.2.4):

minimize
φ,γ(t)

∫ tf

t0

....
X (t)T

....
X (t)dt

subject to (4.1.1), (4.1.2), (4.1.3), (4.1.4), (4.1.6),

(4.4.1)

A straight forward application of optimal control theory shows that each of the individual

robot trajectories returned from this optimization will be those that minimize snap along

straight line paths from the initial position to the goal location. It also follows that

these minimum snap trajectories are seventh order polynomial functions of time. Because

homogeneous boundary conditions are required (zero velocity, acceleration, and jerk at

the initial and final conditions) the minimum snap trajectory has the same path as before

but reparameterized by β(t) with k = 7. This analysis can be easily applied to any robotic

system. For example, a mobile ground robot which can be modeled as a second order
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system would require a third order polynomial β(t) with k = 3.

Because the boundary conditions are homogeneous, the integral of snap squared for a

given trajectory will be exactly a constant factor times the integral of velocity squared in

the original problem statement (4.2.16). This factor is constant for all assignments and

therefore, the optimal assignment is independent of β(t), and is the same as that obtained

by solving the original problem.

4.5 d-Capt: a Decentralized Algorithm for Obstacle-Free Capt

For very large systems, solving the Hungarian Algorithm begins to be prohibitively expen-

sive as seen in Fig. 4.4. This, coupled with the fact that interactions are inherently local,

means that a decentralized algorithm may be preferred even when considering a fully

connected network with centralized coordinator to improve computational performance

at the cost of optimality.

This section exploits some properties of the centralized minimum velocity squared

solution proposed in Sect. 4.2.2 to formulate a computationally tractable, online, de-

centralized algorithm to generate collision-free paths for all robots. The decentralized

method takes inspiration from (4.2.11) and is based on reassignment of goal locations to

arrive at a locally-optimal solution.

First, define the robots’ communication or sensing range, h. When a robot comes

within h of a neighbor, it must coordinate its actions with its neighbor.This distance h

must be large enough so that robots can ignore neighbors outside this range.

This section requires assumptions (A1)-(A5) as well as two additional assumptions

in (A6)-(A7):

66



(A6) All robots are capable of exchanging information about their current state and their

assigned goals to other robots closer than distance h. Of course h must be greater

than ∆. If communication or sensing take significant time, it is clear that h >> ∆.

(A7) N = M , where each goal location is initially assigned to exactly one robot.

As a result of robots communicating with neighboring robots within the communica-

tions range h, a moving robot can constantly be encountering new neighbors, and therefore

learn new information about its neighbors, and by extension, information from its neigh-

bors’ neighbors and so on. The key feature of this algorithm is for every message sent,

the system is locally minimizing a modified version of the cost functional in (4.2.4).

Similar to how communications were treated in Chapter 3, define the communication

set Ci(t) as a list of all robots within the communications range of agent i at time t:

Ci(t) = {j | ‖xj(t)− xi(t)‖ ≤ h, j 6= i} ⊂ IN (4.5.1)

Then, define the update list Ui(t) ⊂ Ci(t) as the list of robots to which robot i will attempt

to send new information.

Again, use tc to denote the current time of computation such that t0 ≤ tc < tf .

Slightly modify the definitions of uij and rij :

rij ≡ xj(tf )− xi(tc) uij ≡ xj(tc)− xi(tc)

Redefine gi as the goal currently assigned to robot i.

In d-Capt presented in Algorithm 2, the ith robot locally minimizes the contribution

to (4.2.4) from every pair of i and j that satisfy (4.5.1):

minimize
gi,gj ,γ(t)

∫ tf

tc

ẋi(t)
Tẋi(t)dt+

∫ tf

tc

ẋj(t)
Tẋj(t)dt
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The trajectory for the remaining time t ∈ [tc, tf ] is computed in a similar fashion to the

centralized version (4.2.8):

xi(t) =

(
1− t− tc

tf − tc

)
xi(tc) +

(
t− tc
tf − tc

)
gi (4.5.2)

Algorithm 2 xi(t) = d-Capt(xi(t0),gi)

1: compute trajectory using (4.5.2)
2: Ui = Ci(t0)
3: tprev ← t0
4: while t < tf do
5: tc ← t
6:

7: for j ∈ Ci(tc) do
8: if j /∈ Ci(tprev) then
9: Ui = Ui

⋃
j

10: Ui = Ui
⋂ Ci(tc)

11:

12: for j ∈ Ui do
13: request xj(tc) and gj from agent j
14: if uij

Twij < 0 then
15: send to robot j to change goal location to gi
16: gi ← gj
17: Ui = Ci(tc)
18: recompute trajectory using (4.5.2)
19: Ui = Ui \ j
20:

21: if robot j sends gj as the new robot i goal then
22: gi ← gj
23: Ui = Ci(tc)
24: recompute trajectory using (4.5.2)
25: Ui = Ui \ j
26: tprev ← tc

Note that Algorithm 2 ensures only new information is transmitted to the robots in

Ci(t) without making unnecessary communications. Using similar reasoning to Lemma

4.2.2, Lemma 4.5.1 demonstrates that Algorithm 2 converges to a locally optimal solution

to (4.2.4).
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Lemma 4.5.1. A change in goal locations between any pair of robots i and j in Algorithm

2 results in a decrease of the sum of distance remaining squared.

Proof. After two robots trade their assigned goals, it is necessarily the case that:

uij
Twij > 0

Using algebra similar to that in Lemma 4.2.2:

||rii||2 + ||rjj ||2 < ||rij ||2 + ||rji||2

When a pair of robots exchange goal locations, the sum of distance squared remaining for

those two agents decreases. All other robots are unaffected by the trade so the total sum

of distance remaining squared decreases for the whole system.

Theorem 4.5.2. Algorithm 2 navigates each robot to a goal without any collisions.

Proof. Define the cost-to-go function V :

V =

N∑
i=1

||xi − gi||2 (4.5.3)

For an arbitrarily small constant, η, use Lemma 4.5.1 and the trajectories defined in

(4.5.2) to see that V is strictly decreasing:

V (t+ η) < V (t)

Further, by (4.5.2), the final value of the cost-to-go function will be zero:

V (tf ) = 0.

From Theorem 4.2.3, all trajectories will be free of collisions if all assumptions are met

for every pairwise interaction.
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This pairwise algorithm is valid when the distance constraints in (A4) are met at the

start of a pairwise interaction. However, there are pathological inputs that break these

initial conditions. Section 4.8 addresses this in greater detail and provides two potential

solutions. Note here that these conditions are extremely unlikely to arise in practice.

4.6 Simulation Results

This section presents a series of simulations of c-Capt and d-Capt on a large variety of

boundary conditions to study their performance. Prior to each trial a series of randomly

generated starting and goal locations are generated that satisfy (A4).

The first set of simulations is shown in Fig. 4.5 comparing c-Capt and d-Capt on

the same set of initial locations for 10 robots and 10 goal locations. In this example,

h = 1.1∆, very near the lower limit (h > ∆). In general, h should be much larger than

this in an experimental system to account for real world uncertainties.

Shown in Fig. 4.6 is the verification that the energy function defined in (4.5.3) is

indeed strictly decrescent by using a d-Capt simulation with N = M = 100 in three

dimensions with h = 1.5∆. It can be easily seen that V̇ < 0 and V (tf ) = 0.

The third set of simulation runs explore the scaling of d-Capt as the number of robots

increases. In Fig. 4.7 presents a number of trends with h
∆ >> 1 in three dimensions.

Note that the number of reassignments increases approximately linearly in N . The total

number of communications grows approximately as N2. Also computed is a comparison

of the sum of distance traveled squared using d-Capt to the optimal value returned from

c-Capt.
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(a) c-Capt, to (b) c-Capt, (tf − to)/3 (c) c-Capt, tf

(d) d-Capt, to (e) d-Capt, (tf − to)/3 (f) d-Capt, tf

Figure 4.5: Comparing c-Capt and d-Capt simulations of 10 robots seeking 10 goal locations.
In all figures, blue squares represent starting locations, green stars represent goal locations, small
red circles represent the robots, red dotted lines indicate the planned trajectory, blue solid lines
indicate the path already traversed, and cyan larger circles represent the communication range.

It should be noted that even with a fully connected network, optimality is not guar-

anteed with more than two robots. A simple example with three robots is presented in

Fig. 4.8.

The next set of simulations in Fig. 4.9 vary communications ranges used by d-Capt for

N = M = 20. The communications range is varied from the minimum value of h
∆ = 1

through large values ( h∆ >> 1). Note that the number of messages sent decreases as the

communications range decreases at the cost of becoming quite suboptimal. Additionally,

the minimum clearance ε between robots decreases with smaller communications ranges
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Figure 4.6: Visualization of decay of the cost-to-go function V in (4.5.3) for d-Capt with
N = M = 100, and n = 3. The instantaneous drops are a result of reassignments and the
continuous decay is a result of trajectory tracking.

as one might expect, but always satisfy the clearance requirement in (4.1.6).

Finally demonstrated in Fig. 4.10 is c-Capt with fewer agents than goals as outlined

in Sect. 4.3. In this example, a brute force computation of the minimum distance solution

is computationally infeasible. Instead, this image displays a feasible collision-free solution

generated using Algorithm 1.

4.7 Experimental Verification

This section presents representative results from experiments in which a team of eight

robots was tasked to visit a sequence of randomly generated goal locations. The robots

used for experimentation are shown in Fig. 4.11. A bank of motion capture cameras

provides feedback as shown in Fig. 4.12. Figure 4.13 shows the sequence of waypoints

visited. All experiments resulted in safe execution and completion of the task. Minimum

clearance between robots for the entire experiment is shown in Fig. 4.14. It is clear from
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this plot that all robots were never in or near a collision state with any other robot.

4.8 Pathological Case for d-Capt and Resolution

In d-Capt presented in Sect 4.5, there is a class of initial conditions that can break

the guarantee of collision avoidance for some pairs of robots. This pathological case

arises when multiple unconnected networks of robots merge and the initial conditions

in Eq. (4.1.3) are not satisfied. This happens only when at least one robots is out of

communications range with the rest of the team while other networks are in very close

proximity to one another and happen to break the initial condition requirement. This

problem is addressed in more detail and a resolution is given in [68]. The most basic

example of this case can be visualized in the three robot example in Fig. 4.15.

One potential solution is for all agents in the network to reverse directions long enough

to ensure that the new trajectories are collision-free as displayed in Figs. 4.15(d)-4.15(f).

This however requires all agents in the connected network to coordinate this reverse.

Another solution is to control affected robots to spread out enough while remaining in K

until Eq. (4.1.3) is satisfied and then resuming Algorithm 2 until convergence. A final

approach is to use the recent results in [68].

Fortunately, the conditions for this scenario to arise are extremely rare. Over hundreds

of millions of simulated robot-robot communications using random starting locations,

goals, and initial assignments, this scenario has never presented itself.
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4.9 Chapter Summary

This chapter discusses the problem of Concurrent Assignment and Planning Trajectories,

or Capt, for multi-robot systems. First developed is c-Capt, a centralized solution to the

problem of assigning goals and planning trajectories that minimize a cost functional based

on the square of velocity along the trajectory. The resulting trajectories are shown to be

globally optimal and safe. c-Capt is modified to be suitable for use on highly dynamic

quadrotor micro aerial vehicle robots. Then, decentralized algorithm d-Capt is derived

and relies solely on the exchange of information between robots within communication

range. This decentralized algorithm requires local reassignment and re-planning across a

pair of robots when maximum distance traveled can be reduced while simultaneously in-

creasing minimum clearance. Both algorithms are evaluated in simulation and c-Capt is

experimentally validated on a team of 8 quadrotor robots.
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Figure 4.7: d-Capt trends on simulated 3-dimensional random configurations and initial assign-
ments for M = N robots and goals. Each data point was tested with 100 random trials. Figure
4.7(c) shows the distance traveled squared divided by the optimal value returned from c-Capt.
The “+” marks designate statistical outliers.
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(a) (b)

Figure 4.8: Simple case when d-Capt does not find optimal solution for a fully connected team
of n > 2 robots. For each pair of robots the scenario in Fig. 4.8(a), exchanging goals will not
reduce the sum of distance squared. However, a permutation to modify all assignments to that in
Fig. 4.8(b) does lower the sum of distance squared.
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Figure 4.9: Box plots of d-Capt statistics on 100 simulated 3-dimensional random configu-
rations and initial assignments with varying communications distance h with N=M=20. Figure
4.9(c) shows that as the communications range decreases, the number of messages sent using d-
Capt drastically decreases at the expense of clearance in Fig. 4.9(b) and optimality in 4.9(a).
Note that despite these small communications distances, the clearance requirement in (4.1.6) is
never violated. “+” marks designate statistical outliers.
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(a) (b) t = 0 (c) t = 1

(d) t = 2.5 (e) t = 3 (f) t = 4

Figure 4.10: c-Capt iteratively evaluating all goal locations when there are more goals than
robots. Figure 4.10(a) shows the initial conditions with 6 robots and 20 goal locations. Figure
4.10(b) shows the first assignment of robots to goals and once this is completed, Fig. 4.10(c)
shows another optimal assignment. Figure 4.10(d) displays the midpoint of the third segment for
all robots. Figure 4.10(e) shows the case where there are now more remaining unvisited goals than
robots and only some of the robots have assigned goals. Figure 4.10(f) shows the final state of
system.
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Figure 4.11: Team of eight KMel Robotics NanoQuad quadrotors used in experimentation. More

information about these robots is available at www.kmelrobotics.com.

Figure 4.12: Eight robots flying in an indoor laboratory with feedback from motion capture

cameras.
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Figure 4.13: The 3 dimensional trajectories of the team of 8 quadrotor robots are shown here.

The thin black lines show the desired trajectories and each colored line shows the actual paths

followed of a particular robot.
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Figure 4.14: Plot of the minimum clearance between any two robots while tracking their tra-

jectories. The upper black line represents the actual separation. The lower blue line represents

a conservative parabolic estimate of the quadrotor shape, further explained in Appendix A. The

dotted black line shows the actual diameter of the robots. Notice that collision avoidance is clear

from the fact that the clearance is always larger than a robot’s diameter.
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(a) (b) (c)

(d) (e) (f)

Figure 4.15: Figure 4.15(a) displays initial conditions which will result in a failure of d-Capt.
Figure 4.15(b) shows progress along the path, but Fig. 4.15(c) shows the time step immediately
after the robots have converged to a connected graph and the left most robots both instantaneously
make progress toward their goals. Figure 4.15(d) shows the robots reversing along their paths until
Fig. 4.15(e) and 4.15(f) show the algorithm successfully navigating all robots to goals.
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Chapter 5: Goal Assignment and Planning Gap

This chapter presents Goal Assignment and Planning (Gap): a computationally

tractable, complete algorithm that generates dynamically feasible trajectories for N in-

terchangeable robots navigating through known cluttered environments to M goal states.

The computational complexity of this algorithm grows polynomially in the number of

robots and goals- superior to the expected exponential complexity for multi-robot plan-

ning as discussed in Sect. 2.2. As a result, the Gap algorithm can be used to plan safe

trajectories for dozens of highly dynamic robots in a few seconds.

Similar to c-Capt from Chapter 4, Gap addresses the problem of finding both as-

signments and trajectories. However, working in obstacle filled environments requires

a substantially different solution to this problem. The algorithm must find safe, time-

parameterized trajectories which do not collide with obstacles or other robots. The first

step in Gap is to plan for each robot individually as through no other robots existed.

Therefore, this planning problem is equivalent to planning for a single robot. On first

glance, this appears similar to the decoupled approaches discussed in Sect. 2.2. Although

in the Gap algorithm, the single agent planner attempts to plan valid trajectories from a

robot’s initial state to all goal locations. Then, goals are assigned to minimize the maxi-

mum cost trajectory for any robot. Recall the intuition for minimizing the maximum cost

from Sect. 2.5. Finally, the trajectories are given a final time parameterization which

ensures collision avoidance between robots. It is important to note that the Gap algo-
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rithm preserves the complete guarantees of the single robot planner (see Sect. 2.1 for a

discussion on completeness) by leveraging the interchangeability of robots.

Minimizing the maximum cost is a particularly well suited method for tasks that must

be performed as quickly as possible. For instance, imagine a search-and-rescue situation

in which a number of robots must visit every room in a building to locate humans in need

of assistance. Similarly, it is conducive for energy constrained robots to load share using

min-max distance trajectories, even if the mission completion time is not minimized.

This chapter develops and extends the core ideas from Chapter 4 to incorporate plan-

ning in environments with static obstacles and for more complex dynamic systems. First,

Sect. 5.1 introduces notation and explicitly lists all assumptions. The Gap algorithm is

presented in Sect. 5.2. Section 5.3 presents a number of case studies to plan min-max

distance safe trajectories for teams of two-dimensional kinematic robots. Then in Sect.

5.4, Gap is experimentally validated with a team of six quadrotor vehicles in a complex

three-dimensional environment.

The work in this chapter originally appeared in [86, 88, 89].

5.1 Preliminaries

Let the set of natural numbers between 1 and Z be represented by IZ ≡ {1, 2, . . . , Z}.

Designate the state of robot i ∈ IN as xi ∈ X where X is the state space of a single robot.

While the state space often represents the physical location of a robot, it can also contain

a number of other properties about the state of the robot including orientation, velocity,

and angular rates. Define the initial state of robot i as si = xi(0). Similarly, gj specifies

the j ∈ IM desired goal state.
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The set of all points in Euclidean space occupied by robot i is represented by the open

set B(xi) ⊂ Rd, where d is the dimensionality of the robot extent. With slight abuse

of notation, B(τ) ⊂ Rd is the set of all points swept out by a robot tracking trajectory

τ : t→ X .

It should be stressed at this point that the algorithm will only work when robots have

the ability to remain at states si and gj indefinitely. This requirement may preclude the

use of fixed wing aerial vehicles that require forward velocity to remain in flight.

The assignment of robots is represented by the mapping φ : IN → IM ∪ 0 where each

goal can be assigned to a maximum of one robot such that:

φ(i) =

{
j if robot i is assigned to goal j

0 otherwise

For notational simplicity, φi will be used equivalently to φ(i).

5.2 Algorithm

The Goal Assignment and Planning (GAP) algorithm presented in Algorithm 3 synthe-

sizes assignment and trajectory generation methods to generate collision-free trajectories

for a large number of robots. It is assumed that each vehicle is locally executing a trajec-

tory tracking controller and that trajectories are dynamically feasible.

Section 5.2.1 details the generation of graphG, which is embedded in X , the state space

of a single robot. Gap then computes the cost of the optimal paths for each robot to every

goal in the absence of other robots, a process discussed in Sect. 5.2.2. Section 5.2.3 defines

the optimal assignment as that which solves the Lexicographic Bottleneck Assignment

Problem. Next, Sect. 5.2.4 introduces the notion of prioritization of robots, which is

85



Algorithm 3 Goal Assignment and Planning (G, s,g)

1: for i ∈ IN do
2: for j ∈ IM do
3: Compute γij(t), optimal trajectory from si to gj
4: Compute φ∗, the optimal assignment of goals to robots
5: for i ∈ IN do
6: for j ∈ IN \ i do
7: if si ∈ P ?(sj , gφ?j ) then
8: Assign partial order P: j � i
9: if gi ∈ P ?(sj , gφ?j ) then

10: Assign partial order P: i � j
11: Construct suitable total ordering ψ from partial ordering P
12: Optional refinement of γiφ?i (t). See Sect. 5.2.6
13: for i = 1→ N do
14: Compute t̂ψi , time offset of robot with priority i
15: return trajectories γiφ?i (t− t̂ψi)

always possible due to the minimum maximum cost property of the optimal assignment.

In Sect. 5.2.5, trajectories are computed that satisfy robot dynamics and avoid collisions

with the environment and other robots. Optional trajectory refinement is presented in

Sect. 5.2.6. Finally, completeness of Algorithm 3 is shown in 5.2.7 and a complexity

analysis is performed in Sect. 5.2.8.

5.2.1 Graph Generation

To facilitate single agent planning as discussed in Sect. 2.1, a directed graph G = (V,E)

is constructed by sampling the state space using either a deterministic or probabilistic

planner such as a Probabilistic Roadmap (PRM). A planner which is resolution complete

will find a solution if one exists if the resolution of the underlying graph is sufficiently fine.

Similarly, probabilistic completeness signifies that the probability of a random sampling

motion planner will fail to return a path if one exists approaches zero as the number of

samples goes to infinity. Although this chapter only presents proof of resolution com-
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pleteness, Gap also permits probabilistically complete planning.

Each vertex vi ∈ V represents a valid, collision-free state in X and V must contain all

starting and goal states:

si ∈ V ∀ i ∈ IN , gj ∈ V ∀ j ∈ IM (5.2.1)

As discusse previously, an edge eij ∈ E corresponds to a collision-free trajectory

segment τij(t) where τij(t0) = vi, τij(tf ) = vj and has cost C(τij) > 0. The underlying

dynamics of the system will determine how to best compute these segments. Possible cost

functions C include distance traveled, energy used, and trajectory duration.

The graph G cannot include edges ekl corresponding to trajectories τkl that would

result in a collision with a robot at states si or gj unless one of the vertices vk or vl is si

or gj :

vk 6= si AND vl 6= si =⇒ B(τkl) ∩B(si) = ∅

vk 6= gi AND vl 6= gi =⇒ B(τkl) ∩B(gi) = ∅
(5.2.2)

For example, a regular orthogonally-connected grid for spherical robots satisfies Eq.

(5.2.2).

A path in the graph G is represented by an ordered list of its edges, P (vi, vj) =

eik, ekl . . . , emn, enj . The cost of a path in the graph is represented using the norm:

||P (vi, vj)|| =
∑

ekl∈P (vi,vj)

C(τkl)

The optimal path is that which minimizes the sum of costs of edges between vertices:

P ?(vi, vj) = arg min
P (vi,vj)

||P (vi, vj)||
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The corresponding trajectory for a path from the graph can be constructed by the con-

catenation of trajectory segments. For example, γij(t) is the optimal trajectory from si

to gj and can be written as the sequence: γij = {τik, τkl, . . . , τmn, τnj}.

Sufficient Conditions for Resolution Completeness To ensure resolution com-

pleteness, it is critical that a path generated by the single robot planning algorithm

reflect the possibilities of the full muti-robot system. This section presents one set of

sufficient conditions that ensure the resolution completeness of Gap.

First, define Yi as the set of all valid states that, if occupied by a robot, would be

in collision with a robot at si. For a team of circular robots with radius R, Yi would be

the set of all vertices closer than 4R from si. Similarly, define Wi as the set of all valid

states that, if occupied by a robot, would be in collision with a robot at gi. It will be

shown that Gap is resolution complete if the following conditions are respected. First,

every valid state in Yi must be reachable from si without colliding with a robot at sj , for

all i 6= j. A related constraint is that si must be reachable from every valid state in Yi

without colliding a robot at sj , for all i 6= j. Additionally, these constraints must also

hold for the set of goal conditions.

Mathematically, these conditions can be represented by the following sets of equations:

∀vj ∈ Yi ∃τij
∣∣ vi = si, B(τij) ∩B(sk) = ∅ ∀ k ∈ IN \ i

∀vj ∈ Yi ∃τji
∣∣ vi = si, B(τji) ∩B(sk) = ∅ ∀ k ∈ IN \ i

(5.2.3)

∀vj ∈Wi ∃τij
∣∣ vi = gi, B(τij) ∩B(gk) = ∅ ∀ k ∈ IM \ i

∀vj ∈Wi ∃τji
∣∣ vi = gi, B(τji) ∩B(gk) = ∅ ∀ k ∈ IM \ i

(5.2.4)

An intuition for these conditions is that a robot at its start or goal state should not modify
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the reachable configuration space of other robots. For kinematic fully actuated robots,

conditions (5.2.3) and (5.2.4) reduce to:

Yi ∪ Yj ∅ ∀i 6= j

Wi ∪Wj ∅ ∀i 6= j

See Fig. 5.1 for an example of initial conditions which violate the assumption in Eq.

(5.2.3) and a slightly modified environment which respects this condition.

(a) (b)

Figure 5.1: In each of Fig. 5.1(a) and Fig. 5.1(b), example initial locations for two-dimensional
circular robots are shown. Tan circles represent the initial states of the two robots and the gray
rectangular regions indicate obstacles. The dotted regions represent Y . Figure. 5.1(a) shows an
example of poor initial conditions which do not satisfy Eq. (5.2.3). This is clear since to reach
the rightmost side of Y for the robot on the left results in a collision with the robot on the left.
Figure 5.1(b) slightly modifies the initial conditions such that there exists a valid trajectory from
the starting location to every point in the region Y and therefore this initial condition is valid.

5.2.2 Computing Individual Trajectories

After construction of graph G, the graph is searched for the minimum cost path for all

NM combinations of robots and goal states. Dijkstra’s algorithm [15] is a natural choice

for this graph search as it returns optimal paths in the graph from the start vertex of a

robot to all other vertices.

After the optimal path through the graph is found, full robot trajectories can be
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constructed from the trajectory segments τkl corresponding to ekl ∈ E to form γij(t) for

robot i such that γij(ti,0) = si and γij(ti,f ) = gj . Each robot will remain at its starting

vertex when t < ti,0 and its goal vertex if t > ti,f .

If the graph search finds that goal gj is unreachable from start location si, the cost

C(γij) is infinite.

5.2.3 Assignment

The optimal assignment φ? is defined as that which solves the Lexicographic Bottleneck

Assignment Problem (LexBAP) [8]. Similar to the standard bottleneck assignment prob-

lem, the LexBAP solution finds the feasible solution that minimizes the largest cost.

Additionally, the LexBAP minimizes the second highest cost, as well as the third highest,

and so on. Using this cost function ensures any pairwise exchange of assignment between

robots i and j will not result in a decrease of maximum trajectory cost.

max
(
||P ?(si, gφ?i )||, ||P

?(sj , gφ?j )||
)
≤ max

(
||P ?(si, gφ?j )||, ||P

?(sj , gφ?i )||
)

(5.2.5)

The best solutions to the LexBAP have computational complexity of O(N4) [78]. An

intuition for the choice of the LexBAP is that it minimizes the L∞ norm of the cost. This

extends the concept in Chapter 4 to minimize the L2 norm.

In practice, it is possible to relax the optimal LexBAP and use the solution of the linear

assignment problem. This can be solved using the well-known Hungarian algorithm [41]

with bounded computational complexity of O(N3). The modified cost function minimizes

the p-norm of the costs incurred by the team:

φ∗ ≡ argmin
φ

∑
i∈IN

||P (si, gφi ||p
 1

p

(5.2.6)
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where p is sufficiently large such that the minimum-maximum cost principle in (5.2.5)

holds. The solution to the modified linear assignment problem can be checked in O(N2)

time to determine if the assignment in (5.2.6) satisfies (5.2.5). Ideally, p is as large as

possible, but unfortunately the size of p is bounded due to numerical issues. If (5.2.5) is

not satisfied, the O(N4) LexBAP solution can be utilized. In all of the simulation and

experimentation trials used, a value of p = 50 was sufficient to satisfy (5.2.5) and the

LexBAP solver was never required.

Recall that φi = 0 signifies that robot i in not assigned to visit any goal location. The

cost of a path to g0 is defined to be a value larger than any feasible cost. This choice

will force as many robots as possible to navigate to a goal state. Excess goals will not be

assigned to any robot through this assignment procedure and Algorithm 3 must be used

iteratively to ensure all goals are eventually visited.

5.2.4 Prioritization

The prioritization stage induces an ordering (≺) among all of the robots:

si ∈ P ?(sj ,gφ?j ) =⇒ i ≺ j ∀i 6= j (5.2.7)

gi ∈ P ?(sj ,gφ?j ) =⇒ i � j ∀i 6= j (5.2.8)

Theorem 5.2.1. The conditions in Eq. (5.2.7) and Eq. (5.2.8) induce partial ordering

P.

Proof. This ordering inherently is reflexive and the properties of antisymmetry and transi-

tivity are shown in Lemma 5.2.2 and Lemma 5.2.3, respectively. Therefore the conditions

in Eq. (5.2.7) and Eq. (5.2.8) induce a valid partial ordering.
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Lemma 5.2.2. Eq. (5.2.7)-(5.2.8) satisfy the antisymmetry property i ≺ j =⇒ i � j

Proof. Assume i ≺ j and i � j. Without loss of generality, this requires one of the

following cases:

Case 1: si ∈ P ?(sj ,gφ?j ), sj ∈ P
?(si,gφ?i )

Case 2: gφ?j ∈ P
?(si,gφ?i ),gφ?i ∈ P

?(sj ,gφ?j )

Case 3: si ∈ P ?(sj ,gφ?j ),gφ?i ∈ P
?(sj ,gφ?j )

First, consider Case 1. This implies both of the following equalities:

||P ?(sj ,gφ?j )|| = ||P
?(sj , si)||+ ||P ?(si,gφ?j )||

||P ?(si,gφ?i )|| = ||P
?(si, sj)||+ ||P ?(sj ,gφ?i )||

Applying these to Eq. (5.2.5) yields:

max
(
||P ?(si, sj)||+ ||P ?(sj ,gφ?i )||, ||P

?(sj , si)||+ ||P ?(si,gφ?j )||
)

≤ max
(
||P ?(si,gφ?j )||, ||P

?(sj ,gφ?i )||
)

This is clearly a contradiction and therefore Case 1 is not possible.

It can be similarly shown that Case 2 is also impossible using a change of variables.

Next, consider Case 3. Due to the optimal graph search, either

P (si,gφ?i ) ⊂ P (sj ,gφ?j ) OR P (sj ,gφ?j ) = P (sj ,gφ?i ) + P (gφ?i , si) + P (si,gφ?j )

Regardless of which of these conditions is present, it is relatively straightforward to show

that Eq. (5.2.5) is violated in much the same manner as Case 1 was handled.

As there are no conditions which allow for both i ≺ j and i � j, it is clear that

i ≺ j =⇒ i � j

Lemma 5.2.3. The conditions in (5.2.7)-(5.2.8) satisfy the transitivity property i ≺ j

AND j ≺ k =⇒ i ≺ k
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Proof. Assume i ≺ j AND j ≺ k AND k ≺ i

Without loss of generality, there are the following conditions which result in this:

Case 1: si ∈ P ?(sj ,gφ?j ), sj ∈ P
?(sk,gφ?k), sk ∈ P ?(si,gφ?i )

Case 2: si ∈ P ?(sj ,gφ?j ), sj ∈ P
?(sk,gφ?k),gi ∈ P ?(sk,gφ?k)

Case 3: si ∈ P ?(sj ,gφ?j ),gk ∈ P
?(sj ,gφ?j ),gi ∈ P

?(sk,gφ?k)

Case 4: gj ∈ P ?(si,gφ?i ),gk ∈ P
?(sj ,gφ?j ),gi ∈ P

?(sk,gφ?k)

First, consider Case 1. The following conditions result:

||P ?(sj ,gφ?j )|| = ||P
?(sj , si)||+ ||P ?(si,gφ?j )||

||P ?(sk,gφ?k)|| = ||P ?(sk, sj)||+ ||P ?(sj ,gφ?k)||

||P ?(si,gφ?i )|| = ||P
?(si, sk)||+ ||P ?(sk,gφ?i )||

(5.2.9)

it can be shown that the equalities (5.2.9) cannot be a solution to the LexBAP and: ∑
l∈{i,j,k}

||P (sl,gφ?l )||p
 1

p

>
(
||P ?(si,gφ?j )||

p + ||P ?(sj ,gφ?k)||p + ||P ?(sk,gφ?i )||
p
) 1
p

Therefore, Case 1 is not a valid set of conditions.

Next, consider Case 2:

||P ?(sj ,gφ?j )|| = ||P
?(sj , si)||+ ||P ?(si,gφ?j )||

||P ?(sk,gφ?k)|| = ||P ?(sk, sj)||+ ||P ?(sj ,gφ?i )||+ ||P
?(gφ?i ,gφ?k)||

(5.2.10)

Applying Eq. (5.2.5) for robots k and j while utilizing Eq. (5.2.10) yields:

max(||P ?(sk, sj)||+ ||P ?(sj ,gφ?i )||+ ||P
?(gφ?i ,gφ?k)||, ||P ?(sj , si)||+ ||P ?(si,gφ?j )||)

≤ max(||P ?(sk, sj)||+ ||P ?(sj , si)||+ ||P ?(si,gφ?j )||, ||P
?(sj ,gφ?i )||+ ||P

?(gφ?i ,gφ?k)||)
(5.2.11)

Make the following definitions:

a = ||P ?(sk, sj)|| b = ||P ?(sj ,gφ?i )|| c = ||P ?(gφ?i ,gφ?k)||

d = ||P ?(sj , si)|| e = ||P ?(si,gφ?i )|| f = ||P ?(si,gφ?j )||
(5.2.12)
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Then, rewrite Eq. (5.2.11) using these definitions:

max ((a+ b+ c), (d+ f)) ≤ max ((a+ d+ f), (b+ c))

If b + c ≥ a + d + f , it is clear from the previous equation that b + c ≥ a + b + c, which

implies c ≤ 0. As c is defined as ||P ?(gφ?i ,gφ?k)||, this value must be strictly greater than

zero. Therefore, the fact that a+ d+ f ≥ b+ c is used:

max ((a+ b+ c), (d+ f)) ≤ a+ d+ f

Clearly a+ d+ f ≥ d+ f , so this can be simplified to:

a+ b+ c ≤ a+ d+ f

and further to:

d+ f ≥ b+ c (5.2.13)

Applying Eq. (5.2.5) for robots i and j and using Eq. (5.2.10):

max
(
||P ?(si,gφ?i )||, ||P

?(sj , si)||+ ||P ?(si,gφ?j )||
)
≤ max

(
||P ?(si,gφ?j )||, ||P

?(sj ,gφ?i )||
)

Using the definitions in (5.2.12), this can be rewritten as:

max (e, (d+ f)) ≤ max (b, f)

It can be shown through simple contradiction that b ≥ f to simplify this equation to:

max (e, (d+ f)) ≤ b

Which means that b ≥ d + f . Incorporating the knowledge from (5.2.13), this implies

that:

b ≥ d+ f ≥ b+ c =⇒ 0 ≥ c
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However, c is defined to be strictly greater than zero and therefore it is impossible for Eq.

(5.2.4) to be satisfied and therefore Case 2 is impossible.

Case 3 is equivalent to Case 2 with a change of variables and is not possible.

Case 4 is equivalent to Case 1 with a change of variables and is not possible.

As there are no conditions which allow i ≺ j AND j ≺ k AND k ≺ i, then it is clear

that i ≺ j AND j ≺ k =⇒ i ≺ k. Therefore the conditions in Eq. (5.2.7) and Eq. (5.2.8)

satisfy the transitivity property.

The next step is to construct a total ordering which respects all relations of the partial

ordering P. In the case of an ambiguity in the partial ordering, the cost of the trajectories

can be used as a tie breaker when constructing this total ordering. This total ordering

can then be represented by the mapping ψ : IN → IN where ψi identifies the robot with

priority i.

5.2.5 Parameterization and Collision Avoidance

At this point, feasible trajectories have been computed for every robot-goal pair (γij) with

robots either assigned to a goal destination φ?i = j ∈ IM or stationary φ?i = 0, and a

prioritization order (ψi). The trajectories γiφ?i (t) will navigate the robot from the initial

state si to the final assigned state gφ?i . However at this point, there may be collisions

between robots. This section details a reparametrization of the planned trajectories,

making use of the resting boundary conditions assumption.

Similar to greedy direct sequential routing in [75], robots are systematically assigned

time offsets, t̂ ≥ 0, to avoid collision with robots of higher priority. The robot with highest

priority (ψ1) begins with an offset of t̂ψ1 = 0. Then, the robot with the second highest
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priority (ψ2) computes an offset such that its trajectory never collides with the robot with

highest priority. It is usually best to minimize the offset times:

t̂ψ2 = arg min
t̂

B(γψ2,φψ2
(t− t̂)) ∩B(γψ1,φψ1

(t− t̂ψ1)) = ∅ (5.2.14)

Similarly, the robot with the third highest priority then finds the minimum time offset

which results in a collision-free trajectory between it and all other robots with higher

priority. This continues with each robot requiring knowledge of the full trajectory of all

robots with higher priority than itself until all offset times are computed, t̂i ∀ i ∈ IN .

Lemma 5.2.4 demonstrates that such a time offset always exists to avoid collision with all

robots.

Lemma 5.2.4. Time offset t̂i exists for all robots such that no collisions occur for robots

to navigate to their assigned goal location.

Proof. The robot with highest priority will be able to have a time offset of t̂ψ1 = 0. This

robot will be able to navigate to its goal location using the trajectory corresponding to its

assignment without colliding with any robots at their starting locations. If a collision were

going to occur between robot ψ1 and robot j remaining at its starting state, using Eq.

(5.2.2) and Eq. (5.2.7) dictates that robot j would have higher priority and contradicting

the fact that robot ψ1 has highest priority.

Robot ψ2 can find time offset t̂ψ2 ≥ 0. Using a similar logic to that of robot ψ1, robot

ψ2 will not collide with any robots having lower priority if they are to remain at their

initial state. If t̂ψ2 is large enough, robot ψ1 will have arrived at its goal location. In this

case, either robot ψ2 cannot collide with robot ψ1 or the condition in Eq. (5.2.2) results

in a contradiction with Eq. (5.2.8).
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Existence of time offsets for all other robots can be found by extension.

In the worst case, Lemma 5.2.4 would have only one robot moving at a time, in order

of priority. In practice, trajectories will complete much more quickly than this bound.

5.2.6 Optional Trajectory Refinement

While the algorithm presented thus far in Sect. 5.2 is very general for dynamic systems,

systems with complex dynamics may require trajectory planning in the complete state

space which may be very difficult, time consuming, or memory intensive to perform.

Therefore, this section presents an optional method to refine trajectories, allowing a lower

resolution graph to be constructed or even the use of a lower dimensional robot state.

An assigned trajectory γiφ?i can be optionally refined to γ̃iφ?i immediately preceding

calculation of time parameterization in Sect. 5.2.5.

There are four requirements for a valid trajectory refinement. First, the refined tra-

jectories must be dynamically feasible and not cause a collision with any obstacle. Next,

refined trajectories must satisfy the boundary conditions si and gi. Third, refined trajec-

tories must respect the constraints specified by the computed total ordering ψ:

ψi > ψj =⇒ B(γ̃iφ?i ) ∩B(gj) = ∅

ψi < ψj =⇒ B(γ̃iφ?i ) ∩B(sj) = ∅

Finally, the refinement must decrease the cost of the trajectory for an individual robot:

C(γ̃iφ?i ) < C(γiφ?i ) =
∑

eij∈P ?(si,gφ?
i

)

C(τij)

If these conditions are met, the results from Theorem 5.2.5 continue to apply and collision

avoidance is guaranteed. The basic steps of trajectory refinement are shown in Fig. 5.2.
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Figure 5.2: Optional refinement of trajectories. Figure 5.2(a) shows optimal initial trajectories
and Fig. 5.2(b) shows trajectory refinement of a higher priority robot. The robot must avoid
collisions with the starting states of all robots with lower priority. Figure 5.2(c) shows trajectory
refinement of a lower priority robot. This robot must avoid goal states of higher priority robots.

5.2.7 Completeness

Theorem 5.2.5. Gap, as presented in Algorithm 3, is resolution complete and returns

collision-free trajectories tasking as many robots to goal states as possible.

Proof. Resolution completeness requires finding a solution if one exists and otherwise

correctly returning that there is no solution.

By design, all trajectories are dynamically feasible and do not result in robot-obstacle

collision. The assumptions in Eq. (5.2.3) and (5.2.4) specify a robot at either a start or

goal state cannot change the topology of the configuration space of any robot. Combining

this with the fact that Dijkstra’s algorithm is resolution complete implies that if there is

a solution for robot i to reach goal gj in the coupled planning problem, it will be found

using the single robot planner in a sufficiently sampled graph. If there is not a trajectory

for any robot to reach goal gj in the coupled planning problem, clearly the single agent

planner will not find it.

The optimal task assignment presented in Sect. 5.2.3 ensures that as many goals as

possible will be visited. The partial ordering imposed in (5.2.7) and (5.2.8) guarantees

98



that a valid total ordering is always found for a given assignment. Finally, Lemma 5.2.4

states that a set of valid time offset exists for a valid total ordering.

Therefore, the Gap algorithm is resolution complete.

5.2.8 Complexity Analysis

This section will analyze the computational complexity of the presented algorithm in

terms of number of the robots, N , the number of goals, M , the number of vertices in the

graph, |V |, and the number of edges in the graph, |E|. Sect. 5.2.2 outlines the systematic

planning of individual robot trajectories and makes the assumption that G has already

been constructed.

To search for the optimal solution using Dijkstra’s algorithm using a min priority queue

for each start location to all vertices has complexity bound of O(|E| + |V |log|V |) [23].

Therefore, finding paths from all starting locations to all goal locations has bounded

complexity of O(N(|E|+ |V |log|V |)). As discussed in Sect. 5.2.3, LexBAP can be solved

in O(max(N,M)4). Although, typically, the linear assignment problem solution will be

used with a complexity bound of O(max(N,M)3). The prioritization scheme designed

in Sect. 5.2.4 considers pairwise interactions between robots and therefore grows with

a complexity bound of O(N2). Computing time offsets in Sect. 5.2.5 grows with com-

plexity bound O(N2). The optional refinement step considers robots one at a time and

has complexity bound O(N). Therefore, the worst case complexity of this algorithm is

O(max(N,M)4 + N(|E| + |V |log|V |)). This computational complexity is quartic in the

number of robots or goals, which will tend to dominate the solution time at high N or M .

However, in practice, the bound tends to be dominated by the O(max(N,M)3) Hungar-
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ian algorithm, which is the best known complexity bound for the optimal solution to the

assignment problem. To visualize these bounds, Fig. 5.15 shows the computation times

for a large number of simulated trials and the trends as the number of robots changes.

5.3 Case Study: Minimum Distance Paths for Two-Dimensional

Robots

In this section, the problem of navigating a team of circular interchangeable two-dimensional

robots is considered. Section 5.3.1 explores a simple example to show explicitly how each

step of Algorithm 3 is computed. In Sect. 5.3.2, movement restrictions are lifted to show

how the initial condition requirements affects the allowable graphs. For this system, a

deterministic grid and a Probabilistic Road Map are compared. In Sect. 5.3.3, the unique

minimum distance solution is considered as well as how to generate feasible trajectories

for a robot with second order dynamics.

5.3.1 Explicit Example for a Team of Robots with Constrained Motion

This section considers a team of interchangeable circular kinematic robots with diameter

1 that are restricted to move along a unit length four-connected grid. The state is repre-

sented as a two-dimensional position vector, X = R2 and the space occupied by each robot

is a disk of radius 1/2. Additionally, all initial and goal locations for this system fall on

a regular grid of edge length 1. The edges between neighboring cells have corresponding

straight lines trajectories with constant velocity:

τij(t) = (vi − vj)
(
t− t0
tf − t0

)

For motivation for this system, see the Kiva Systems mobile fulfillment solution [19].

100



It is critical to ensure that this system respects the requirements specified in Sect. 5.1.

Since all vertices fall along the grid, Eq. (5.2.1) is necessarily satisfied. The graph only

contains orthogonal connections, resulting in each trajectory only causing collision with a

vertex if that one of the endpoints of that trajectory are the vertex in the collision state.

As this is satisfied for all vertices, it is satisfied for initial and goal vertices and satisfies

Eq. (5.2.2). As all possible vertices and edges are included, Eq. (5.2.3) and Eq. (5.2.4)

are not required for resolution completeness.

The edge costs are defined as the distance traveled:

C(τij) = ||vi − vj ||2 = D = 1

s1

s2

s3

g3

g2

g1

s4

(a) Initial states (si), goal states (gi),
and obstacles (gray)

s1

s2

s3

s4

g3

g2

g1

(b) Computation of G = (V,E), tra-
jectories τ shown.

s1

s2

s3

g3

g2

g1

s4

(c) Optimal assignment trajectories
(φ?)

s2

g3

g2

g1

s4

s3

s1

(d) Snapshots of trajectory tracking
at t = 0.5, 1.0, 1.5, 2.0

Figure 5.3: Key algorithmic steps for a robotic team of N = 4 circular robots navigating to
M = 3 goal states.
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Now, consider the N = 4 robot system with M = 3 goals depicted in Fig. 5.3(a). The
graph and corresponding trajectories are constructed making use of the regular grid as
shown in Fig. 5.3(b). Then the optimal path through the graph is planned for each robot
to every goal, resulting in 12 trajectories. The trajectory costs returned for each of the
paths through the graph in Fig. 5.3(b) are:

[
||P ?(si,gj)||

]
=


7 9 6
9 11 8
4 6 3
2 2 3


The optimal assignment assigns robot 1 to goal 3, robot 3 to goal 1, and robot 4 to

goal 2, or φ?1 = 3, φ?2 = 0, φ?3 = 1, φ?4 = 2. The trajectories correlating to these assignments

are plotted in Fig. 5.3(c).

Notice how in Fig. 5.3(c), the starting location of robot 3 is in the path of robot 1,

or s3 ∈ P (s1, gφ?1). Therefore, according to (5.2.7), robot 3 has priority over robot 1, or a

partial order is induced of 1 � 3. A valid total ordering might be {3, 2, 1, 4}. In this case,

ψ1 = 3, ψ2 = 2, ψ3 = 1, and ψ4 = 4. Now, robot ψ1, or robot 3 assigns its time offset

of t̂3 = 0. Then robot ψ2 = 2 assignes its time offset, which can also be 0. Next, robot

ψ3 = 1 assigns its offset time, which can be t̂1 = 0 as well since the trajectory will not

lead to a collision even with zero offset. Finally robot ψ4 = 4 plans t̂4 = 0.

5.3.2 Constrained Movement Relaxation

At this point, we relax the assumption that all boundary locations fall on a unit-spaced

grid and allow robots to move in any direction. A much greater variety of systems are

now able to be considered compared to those in Sect. 5.3.1.

Next, consider the following conditions on the construction of the graph such that it

satisfies Eq. (5.2.2), Eq. (5.2.3), and Eq. (5.2.4) for this fully actuated system.

First, the position of all starting locations are required to be at least 4R from any
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other starting condition:

||si − sj ||2 > 4R ∀i 6= j ∈ IN

Similarly require all goal locations to be at least 4R from any other starting goal.

||gi − gj ||2 > 4R ∀i 6= j ∈ IM

Denote the configuration space as C and consider the regions Yi and Wi. These are

the areas in free configuration space that are within 2R of the starting location i or goal

location j as:

Yi = C ∩ (si ⊕ B2R)

Wj = C ∩ (gj ⊕ B2R)

where ⊕ is the Minkowski sum. The initial locations are valid if the set Yi is required to be

a connected region around si. If this is the case, there exists some continuous path from

the initial positions to anywhere that is in collision with the initial location, including its

boundary. Similarly, the set Wj ∀j ∈ IM must be a connected region around point gj .

Enforcing the 4R condition ensures no other starting or goal states cause collision

with any point in Yi. By also ensuring Yi ∀i ∈ IN is a connected region, this means

that the fully actuated robot can navigate from its initial state to any point in region

Yi. Therefore, this satisfies Eq. (5.2.3). Similarly, it can be shown that this condition

satisfies Eq. (5.2.4).

As before, define the cost function for trajectory segments as distance between the

end points and trajectories have constant velocity.

Figure 5.5 shows the graphs generated for an 8-connected grid as well as for a PRM

with the same number of vertices and a similar number of edges. A prominent feature of
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si

(a) Initial condition (b) Config. space, C (c) Region Yi

Figure 5.4: Example of valid initial conditions. The initial location of robot i is specified as si
in Fig. 5.4(a) and the gray triangle represents an obstacle. The configuration space C is the white
region in Fig. 5.4(b). The region Yi = C ∩ (si⊕B2R) is the blue region in Fig. 5.4(c). Every point
in this region is reachable from si and is therefore valid.

these two graphs is that no trajectories pass through the region within 2R of a start or

goal location unless the trajectory has an endpoint which is the start or goal location.

Fig. 5.7 shows that for the environment which requires tight interaction between

robots in Fig. 5.6 with 64 robots navigating on a PRM graph to 64 goals, clearance

constraints are always satisfied ensuring trajectories are collision-free.

5.3.3 Optimal Solution With Second Order Dynamics

While experimental details are outside of the scope of this paper, [64] demonstrates that

a team of interchangeable boats (See Fig. 5.8) with the capability to dock with other

boats is shown to have great potential as quick response bridges or landing platforms.

These boats utilize Gap and motivate the consideration of dynamics of the fully actuated

second order systems.

It is well known that the unique minimum distance trajectory for an individual two-

dimensional robot can be found using a visibility graph. The assumption that boundary

conditions are no closer than 4R from each other satisfy the requirements in Eq. (5.2.2).
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(a) (b)

(c)

Figure 5.5: Figure 5.5(a) shows a valid graph using an 8-connected grid with a grid-cell length
of D/2 and the paths associated with the optimal assignment for N = 4 robots navigating to
M = 4 goals. Figure 5.5(b) shows a PRM graph for the same environment. Figure 5.5(c) displays
the unique minimum distance solution. Note that while it not guaranteed to be the case, all
assignments are the same and the same partial orders are present using each of these graph
generation methods.
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Figure 5.6: A team of 64 robots mid-simulation using a PRM in a tight environment, forcing a
high degree of interaction.
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Figure 5.7: A plot of the minimum clearance between any two robots over the length of all
trajectories for 64 robots in Fig. 5.6. Clearance is defined as the space between robots. Collision
avoidance is evidenced by the fact that inter-robot and environment clearance is never negative.

Figure 5.8: Video of aquatic robots available at youtube.com/watch?v=2OY3nBtGqVU, image
courtesy of [64].
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However, in order to ensure Eq. (5.2.3) and Eq. (5.2.4) are satisfied, the following

conditions must be met. Not only must the regions Yi and Gj be connected regions, but

any trajectory passing within 2R of an initial or final condition must induce the ordering

as if that trajectory went through the vertex. This is the same condition present for

the work in [86], but can be shown to satisfy Eq. (5.2.3) and Eq. (5.2.4) after slight

modifications and trajectory refinement. See Fig. 5.5(c) for an example of a unique

minimum distance solution.
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Figure 5.9: State of second order robots with maximum velocity of 1m/s and maximum acceler-
ation of 0.5 m/s/s for the four robots in Fig. 5.5(c) with colors preserved. Note that the velocity
slows around corners and that either velocity or acceleration is always at its maximum value.

For the unique minimum distance paths, P ?(sj ,gφ?j ) will be C1 smooth as it will be a

concatenation of straight lines and arcs. As such, it is straightforward to find the unique

minimum distance paths and then parameterize them to allow robots with second order

constrained dynamics to minimize the time to track that path. For instance, see Fig. 5.9
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for time plots of position, velocity, and acceleration for a the team of robots in Fig. 5.5(c).

5.4 Experimental Results

The algorithm presented in this paper was implemented on a team of homogeneous

quadrotors to navigate a complex maze-like environment. Figure 5.10 shows the 75 gram

test vehicle used in these experiments. To guide the experiment design, consider a scenario

where a team of quadrotors enters a structure, explores a series of chambers connected by

narrow passageways, and departs the structure. The structure used for experimentation,

shown in Fig. 5.11, has been designed to be reconfigurable with small passageways. For

this experiment, the passageways are configured such that there exist very long internal

paths within the structure.

Due to their dynamics, quadrotors require planning in a 12-dimensional state space

to fully model the robots’ capabilities. Fortunately, the quadrotor has been shown to be

differentially flat with flat outputs of position and yaw: xi ∈ X = R3 × SO(2). For the

purpose of these experiments, orientation of the quadrotor is not relevant due to symmetry,

so the state of the robots is the position vector X = R3. Minimum snap trajectories have

been shown to be very well suited to quadrotors [53, 61] and these trajectories can be

generated through a number of waypoints quickly and reliably.

In a closed environment as in these experiments, aerodynamic effects such as ground

and inter-vehicle effects are substantial for the quadrotors, particularly between multiple

robots in a confined space. Therefore, B(x) is represented by an ellipsoid with elongated

vertical dimension to minimize downwash effects on other robots (as proposed in [56]) and

further explored in Appendix A. However, as the robots are navigating in a closed space
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with floors and ceilings in some of the chambers, additional considerations are required.

The robots’ extent is only valid within the chamber in which it is currently occupying.

The graph, G, is systematically generated by selecting a large number of vertices

vi ∈ R3 in and out of the structure which have zero velocity, acceleration, and jerk and

respect the conditions (5.2.1), (5.2.2). While it would be theoretically possible to sample

states in the full 12 dimensional state space, this is impractical in this setting. The

trajectory τij is generated by minimizing snap to navigate from one vertex to the next

where the cost function used is the integral of snap over the trajectory:

C(τij) =

∫ tf

to

||....xi (t)||2 dt

Edge eij is added if ||vi− vj ||2 is below a threshold distance and trajectory τij is obstacle

collision-free.

Then, optimal individual trajectories are computed by using Dijkstra’s algorithm.

Optimal assignment φ? and the total ordering ψ are then computed based on the optimal

paths, boundary conditions, and path costs. Finally, time offsets are computed in order

of priority ψ to ensure collision avoidance of trajectories. Additional time is added to

each time offset robots to minimize the effects of lingering aerodynamic turbulence and

downwash.

As the quadrotor has homogeneous boundary conditions at every vertex, the original

trajectories tend to take a substantial amount of time. Therefore, trajectory refinement

is used to complement the complex dynamics of the quadrotor. The zero velocity, accel-

eration, and jerk boundary conditions are relaxed where possible to allow the quadrotor

to make faster progress and expend less energy. In many instances, this results in longer
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distance traveled for each robot, but less energy expended and shorter mission completion

times.

Figure 5.10: KMel Robotics NanoQuad quadrotor used in experimentation.

Figure 5.11: The structure used for experimentation with 12 chambers.

One experimental trial begins with 6 quadrotors hovering outside of the structure.

Next, 6 goal states are specified, one goal state per chamber on the lower level of the

structure. The trajectory for every robot is then computed using GAP (Algorithm 3).

Figure 5.13 shows the trajectories computed, as well as the actual position of the robots

in an experiment at one instant. Next, 6 additional goal states are given with one in each
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chamber of the upper level and those trajectories are computed and then tracked. Finally,

6 goal states are specified on the outside of the structure. See Fig. 5.12 for an image of

the 6 robots arriving at specified waypoints.

Video results of single and multiple robot experiments are available online1. This video

also includes a simulation of 25 robots navigating a cluttered 3D environment, which was

computed in 0.5 seconds.

Figure 5.12: Six robots flying in the structure used for experimentation.

Figure 5.14 shows the spherical error probable (SEP) for a single robot tracking the

original trajectory, the SEP for a single robot tracking a refined trajectory, and the SEP

for 6 robots tracking refined trajectories. These plots clearly demonstrate the quadrotor’s

improved accuracy tracking these refined trajectories.

Robot states are tracked using a Vicon motion capture system. The material choice

for the structure was carefully chosen to ensure localization performance anywhere inside

1 http://youtu.be/DRJPgOyN2so
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Figure 5.13: Visualization of actual experiment with refined minimum snap trajectories being
tracked for 6 robots in confined structure. Video available online1.
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Figure 5.14: Spherical Error Probable (SEP) for trials with 1 robot following an unrefined
trajectory (blue, dash dot), 1 robot following a refined trajectory (black solid), and 6 robots
tracking refined trajectories as a team (red dashed). Notice that the refined trajectories give
substantially lower error. Additionally, the initial trajectory takes 6 times longer than a refined
trajectory to complete as it is frequently stopping and starting.
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or outside of the structure. All experiments are computed on an external computer which

is running control code to maintain the quadrotors in flight, as well as computing the tra-

jectories as a separate process. Code is mostly written in Matlab. Construction of the

graph with over 1000 vertices generally takes less than 100 ms. Path planning for N = 6

robots reliably takes less than 1 ms. Assignment takes less than 10 ms. Prioritization

generally takes 5 ms for 6 robots. Trajectory refinement using minimum snap trajectory

generation requires between 5 − 10 ms per robot, depending on the length of trajectory.

Computing time offsets requires a large number of collision checks of ellipsoids, and there-

fore takes between 10−100 ms for 6 robots depending on the length of trajectories. Thus,

the total computation time is typically just under 0.2 s to generate dynamically feasible

trajectories for 6 quadrotors through a tight space in MATLAB, however this could be

optimized substantially to get better performance.
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Figure 5.15: 100 simulation trials for each value of N to demonstrate time duration spent
computing each stage of the algorithm applied to quadrotors. Note that both the planning (red)
and refinement (green) grow roughly linearly in the number of robots and collision avoidance
(pink) grows roughly quadratically. As the number of robots grows larger, the O(N3) complexity
of the Hungarian algorithm begins to dominate.

A much larger environment, similar to the maze-like structure in 5.11, was modeled in

simulation to test the computational requirements as the number of robots grows much

larger than the current experimental space allows. This simulated graph has |V | > 104,

|E| > 6×105, which for N < 100 are roughly constant in the number of simulated robots.

The times of computation for each stage of the algorithm are displayed in Fig. 5.15.

This plot confirms the complexity analysis as a function of the number of robots in

5.2.8, where as the number of robots increases, solving the task assignment grows roughly

cubically and begins to dominate the computation time at about 16 robots for the given

parameters of the simulation. Of course, as |V | or |E| increase, the Dijkstra search will

contribute more, moving the crossover of graph search and task assignment to higher N .
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5.5 Chapter Summary

This chapter presents a complete trajectory generation method for a team of robots with

complex dynamics. In-depth proofs of completeness and collision avoidance are included.

The concept of trajectory refinement allows us to incorporate some robot dynamics while

planning in a low dimensional space. A number of clarifying examples are provided and

finally, the algorithm is applied to a team of quadrotor aerial vehicles.

115



Chapter 6: Multi-Robot Routing

The Multi-Robot Routing (MRR) problem seeks to safely and efficiently utilize a

team of robots to visit a large number of goal locations. MRR is a common problem in

autonomous exploration, surveillance, first response, and search and rescue. Consider a

team of robots searching every room in a building for humans in need of assistance. Not

only must the solution be of high quality, but it must be computationally tractable since

the team of robots must start as soon as possible. It is assumed that any robot can visit

any goal in any order, but every goal must eventually be visited by a robot. The MRR

is a natural extension of the Vehicle Routing Problem (VRP) as outlined in Section 2.5

by explicitly adding collision constraints. Unfortunately, even before considering collision

avoidance, this problem reduces to the travelling salesman problem for point robots and

as a result, generating optimal plans is NP-Hard.

Already, Chapter 5 presents a powerful, complete method for finding trajectories for

a team of interchangeable robots while avoiding collision. The Gap algorithm works very

well when the number of robots is equal or approximately equal to the number of goal

locations. However, Gap can yield quite poor solutions when a team of robots is tasked

to visit a very large number of goal locations.

This chapter presents a polynomial time approximation algorithm for assigning and

ordering N robots to visit M goals and is particularly relevant to the case where M � N .

The proposed algorithm produces solutions that have maximum completion time no more
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than 5 times the cost of the optimal solution. While the algorithm presented does not

explicitly consider collision avoidance, some simple modifications ensure the solution in-

corporates collision avoidance. Handling collision in this way does not guarantee bounded

time-optimal solutions, but does preserve the min-max distance property. Fortunately,

due to its construction, the collision free approach tends to yield solutions with limited

robot-robot interactions and will often preserve the time-optimal bound.

This problem of allocating robots to visit spatially distributed tasks is common in the

operations research and multi-robot planning communities. There are numerous exact

and approximation algorithms with a wide range of assumptions made about the solu-

tions. The most basic problems are the Multiple Traveling Salesman Problem (MTSP) [7]

and the Vehicle Routing Problem (VRP) [18]. Typically, solutions to the VRP seek to

minimize the total distance traveled by all robots. With this cost function, it is possible

that most robots travel a relatively short distance and a few agents must travel much fur-

ther to ensure all locations are visited, unacceptable for time critical missions. Instead,

minimizing the maximum distance traveled by an agent reduces completion time and is

referred to as the Minimum Maximum Vehicle Routing Problem [72]. Another variant

when robots are not necessarily beginning at a common starting location is defined as the

Multiple Depot Vehicle Routing Problem [60]. In the MDVRP, agents can operate out of

up to N unique starting locations with each agent returning to its original depot. This

makes the MDVRP more suitable than the basic VRP for robotics since in applications

in unstructured environments, robots typically do not work out of a common centralized

facility. Allowing the robots to work out of unique locations also allows the system to

replan based on updated goal information without requiring robots to return to the depot.
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Therefore, the variation of the VRP that most closely resembles the work in this chapter

is the Minimum Maximum Multiple Depot Vehicle Routing Problem (MMMDVRP) [9].

Another related problem is the orienteering problem, also known as the selective travel-

ling salesperson problem, the maximum collection problem, and the bank robber problem.

This is defined as follows: given time T , navigate to as many of M specified points as

possible. [92]. Similarly, the Team Orienteering Problem (TOP) uses N agents to visit as

many of the waypoints as possible in the allotted time.

An important result utilized in this chapter is an approximation algorithm for the

min-max N path problem. This problem seeks to find at most N paths through all goal

locations and [3] proposes an algorithm with a suboptimality bound of 4. However, this

problem simply finds paths through goal points and does not include planning for robots

at multiple starting locations. To bridge this gap, this chapter solves the assignment of

robots to sequences which minimizes the maximum cost.

After preliminaries in Sect. 6.1, this chapter states the Multi-Robot Routing problem

definition in Sect. 6.2. Section 6.3 presents Algorithm 4 that is shown to be a complete,

polynomial time approximation algorithm to the MMMDVRP. Some refinement strategies

are presented in Sect. 6.4 that often improve the solution quality. Next, Sect. 6.5 details

how to avoid collisions between robots. Finally, Sect. 6.6 presents simulation results.

6.1 Preliminaries

In this work, N robots are tasked to visit M goal states γ = {g1,g2, . . . ,gM} where

typically M � N . The initial state of robot i is xi, where σ = {x1,x2, . . . ,xN}.

Much like in Chapter 5, an underlying graph GV = (V,E) is constructed to be used for
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planning robot actions to reach goal locations. This graph can be constructed in either a

stochastic or deterministic manner, but in this chapter, GV is required to be undirected.

The cost C(v1, v2) is the cost, or travel time, of navigating from v1 to v2. In this chapter,

robots are assumed to move at constant velocity such that the cost is equivalent to the

navigation distance between vertices and therefore the function C respects the triangle

inequality. Then, define Gγ as the graph that contains all goal vertices γ and up to
(
M
2

)
edges have corresponding feasible or safe (ignoring robot-robot collisions) finite length

paths connecting the goal states.

Sequence Si is the list of goal vertices in the order they will be visited by a robot i.

Since all goal locations must be visited by a robot, the elements in each sequence form

disjoint sets with union equal to the set of all goal locations:

{v ∈ S1} ∪ {v ∈ S2} ∪ . . . ∪ {v ∈ SN} = γ

{v ∈ Si} ∩ {v ∈ Sj} = ∅ ∀i 6= j

With slight abuse of notation, define the cost of traversing all edges in an ordered list

of vertices Si as C(Si). For example, if S1 = {v1, v4, v3}, and the cost of sequence 1 is

defined as C(Si) = C(v1, v4)+C(v4, v3). Each element in a sequence can be referenced by

position in the sequence using superscripts such that in the previous example, S
(1)
1 = v1.

A Hamiltonian path is defined as a path that visits each vertex in a set and in this

case will be represented by a sequence. Define Ĥ(vi, vj , . . .) as an approximation to the

minimum cost Hamiltonian path to visit a set of vertices. Ĥ can be computed by doubling

the Minimum Spanning Tree (MST) of all points in the set to visit, shortcutting, and

removing an edge.This can be alternatively be computed using Algorithm 6 for higher

quality solutions. However, this methods adds a substantial computation cost.
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As in previous chapters, define the set of Z integers as IZ ≡ {1, 2, . . . , Z}. It is assumed

that robots have perfect actuation and have equal constant speeds. It is assumed that

all robots are kinematic, constant velocity robots with noiseless sensing and actuation

navigating in a known map.

6.2 Problem Statement

The cost of the optimal assignment of goals to robots and the sequencing of these goals

is defined as:

J? = minimize
S1,S2,...,SN

max
i∈IN

C(si, S
(1)
i ) + C(Si) (6.2.1)

This optimal solution produces a result that has the minimum maximum cost solution to

reach a sequence and navigate the sequence. Since the costs are assumed to be navigation

time, this will produce a minimum time solution, also known as a minimum makespan

solution.

The optimal assignment problem could be solved using brute force, however this would

require an exponential number of operations. This is a result of the NM possible assign-

ments of goals to robots and for each of those assignments, the minimum cost Hamiltonian

path needs to be found which has up to M ! permutations of the goals assigned. Instead

of attempting to solve the NP-Hard routing problem, this chapter provides a polynomial

time heuristic approach in Algorithm 4 that generates a solution with the maximum travel

time of any robot no more than 5 times the optimal completion time J?.
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(a) (b) (c) (d)

Figure 6.1: Figure 6.1(a) displays a set of 9 goal locations as green stars and 4 start locations
as red circles. The MSF is constructed in Fig. 6.1(b). It happens in this example, that the MSF
is also the result of doubling the MSF, removing an edge and shortcutting. Then in Fig. 6.1(c),
this Hamiltonian path is split into N sequences. Finally in 6.1(d), the robots are each assigned to
a sequences. Since this was successful, the next iteration in Algorithm 5 will have a smaller value
of Ĵ .

6.3 Approximation Algorithm

This section presents Algorithm 4, an approximation algorithm to the optimization in

6.2.1. Algorithm 4 provides an approximation ratio of 5, meaning that the solution

produced will not have cost more than 5 times the optimal solution.

The basic flow of the method is as follows. For a given guess Ĵ , Algorithm 5 attempts

to return a solution with cost no more than 5Ĵ . If Algorithm 5 cannot find a solution, it

will be shown that no solution exists with cost smaller than Ĵ . This implies that Ĵ < J?

and Ĵ must be increased to find a solution. Line 4 in Algorithm 4 performs a bisection

search over Ĵ to find the smallest value of Ĵ that returns a solution. Lines 1-3 in 4 can be

moved into 5, however the current placement yields improved computational performance

through caching. A summary graphic of Algorithm 5 for a given guess Ĵ is displayed in

Fig. 6.1. Now, each step in these algorithms will be discussed in greater detail.

Line 1 computes and caches the cost of a robot navigating from every start location

to every goal state as well as the cost of navigating from every goal to every other goal
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state. Since the graph is undirected, Dijkstra’s algorithm [15] can be used to plan from a

single goal to every other vertex in the graph with complexity of O(|E|+ |V |log|V |) [23].

This step is repeated for each goal state.

Line 2 constructs a Minimum Spanning Forest (MSF) of Gγ and line 3 sorts these

edges into list F by the cost of a robot navigating the edge. These two steps can be done

in one step using Kruskal’s algorithm [40] for constructing MSFs with complexity bound

O(M2logM). Note that F has at most M − 1 edges.

Line 4 finds the minimum guess Ĵ that returns a solution to Algorithm 5. This can

be performed using bisection search with upper and lower limits of 0 and the sum of all

edge costs in the MSF plus the maximum distance each robot travels, respectively.

Algorithm 4 MultiRobotRouting

1: Compute paths to every goal state from every start and goal state, cache costs
2: Compute the Minimum Spanning Forest of Gγ
3: F ← list of edges in MSF(Gγ), sorted by cost
4: Find the minimum value Ĵ which returns a valid solution in Algorithm 5
5: if A valid solution was found then
6: return Valid solution with minimum value Ĵ
7: else
8: return No valid solution exists

Algorithm 5 begins by initializing U , the empty set of unordered sequences in line

1. Then, in lines 2-3 remove all edges longer than Ĵ from MSF(Gγ) and construct the

MSF of the remaining graph. This is equivalent to the MSF of the original graph Gγ

after removing all edges longer than Ĵ . Computing the MSF has a total complexity of

O (M log(M)) since there are fewer than M edges in F .

Next, in lines 5-9, sequences to visit every vertex in the goal set are found, each of which

has cost no larger than 4Ĵ . Line 6 computes the approximate minimum cost Hamiltonian
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path visiting all vertices in the tree Ti as outlined in Sect. 6.1 where an Eulerian path

through the graph can be found in linear time using Hierholzer’s algorithm [28]. Line 7

computes k, the number of sequences required to visit every vertex in tree Ti such that

each sequence has cost no more than 4Ĵ . Note that if C(Ĥi) is zero, this means that

only one vertex is in the tree. A robot is still required to visit the vertex and therefore

k = 1 in this case. The approximate Hamiltonian path is then split up into k sequences,

each of which has cost no more than 4Ĵ and then each of these sequences is added to the

total list of sequences to visit U . Every input tree Ti is already a MST and each vertex

is present only in one tree. Therefore lines 5-9 have total complexity bound of Θ(M).

Line 11 checks to see if there are a feasible number of sequences to visit. If there

are more sequences than robots, the algorithm returns J? > Ĵ . If, however, there are

sufficient robots to visit the goals, then the algorithm finds the optimal assignment of

robots to sequences.

Line 12 adds empty sequences to U to ensure it has N elements. Line 13 computes

the cost matrix for assignment of robots to goals. Empty sequences have a cost of 0 as

the robot does not need to move to visit every vertex in the sequence. Since the cost

of navigating every robot to every sequence must be compared, this step has complexity

bound of Θ(N2).

Next in line 14, the bottleneck optimization problem is soved for the assignment of

robots to sequences. This has complexity bound ofO(N3), but this can be slightly reduced

in practice by removing edges in A larger than Ĵ and using the methods in [4].

Line 15 compares the maximum cost of reaching any sequence to the guess Ĵ . If

the maximum cost is greater than Ĵ , then the algorithm returns J? > Ĵ . Otherwise,
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the algorithm returns the ordered list of sequences S, by rearranging the sequences in U

according to the optimal bottleneck assignment. Finally, the algorithm returns this list

of assigned sequences.

Algorithm 5 MinMax Cost Assigned Sequences(Ĵ)

1: U ← ∅
2: Define graph GĴ as all goal vertices and edges in the MSF(Gγ) with cost less than Ĵ
3: Compute MSF(GĴ)
4:

5: for Tree Ti in MSF(GĴ) do

6: Compute approximate minimum cost Hamiltonian path Ĥi ← Ĥ(v ∈ Ti)
7: ki ≡ max

(⌈
C(Ĥi)

4Ĵ

⌉
, 1
)

8: Split Ĥi into k sequences, each of which has cost no larger than 4Ĵ
9: Add these ki sequences to set U

10:

11: if |U | ≤ N then
12: Add (N − |U |) empty sequences to U

13: Aij ← C(si, U
(1)
j ), cost to navigate robot i to the first vertex in sequence j

14: Find bottleneck assignment of A
15: if max cost of assignment ≤ Ĵ then
16: Reorder U into S using optimal assignment of robots to sequences
17: return S
18:

19: return FAILURE (this implies J? > Ĵ)

6.3.1 Optimality Bound

By construction, any path returned has cost no more than 5Ĵ . This is a result of the

fact that each sequence added to U has cost no more than 4 times Ĵ and the assignment

ensures getting to the first vertex in a solution has cost no greater than Ĵ .

Lemma 6.3.1. Algorithm 5 never returns FAILURE unless J? > Ĵ .

Proof. There are two conditions which would result in the algorithm returning FAILURE.

Case 1 occurs when there are more sequences in U than there are robots to visit sequences.
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Case 2 arises when the cost of assigning any robot to a sequence is greater than Ĵ . In

each of these cases, it will be shown that the algorithm will never return FAILURE unless

J? > Ĵ .

Case 1. |U | > N . This proof of correctness is a direct result of Lemma 17 presented

in [3], but will be outlined here. Assume the opposite that |U | > N and J? ≤ Ĵ . By

construction, each tree in the MSF is separated from every other tree by a distance of

at least Ĵ since any larger value is removed from the MSF. In this case, J? ≤ Ĵ and

therefore, each tree can be considered individually since any edges connecting trees will

by definition be larger than Ĵ and therefore larger than J?.

The optimal solution for tree i has connected k?i paths. These optimal paths for tree

i can be connected into a spanning tree with edges each having cost no more than Ĵ .

The total cost of the connecting edges is no greater than (ki − 1)Ĵ and by extension has

cost less than kiJ
?. Therefore this spanning tree has cost no greater than 2kiJ

?. Each

edge of this tree can be doubled and every vertex can be visited with cost no greater than

4kiJ
?. Since this is the maximum cost of any path by construction, there is no possible

way that |U | > N while simultaneously J? ≤ Ĵ , leading to a contradiction. Therefore,

the algorithm will never incorrectly return FAILURE due to |U | > N .

Case 2. maxiC(si, S
(1)
i ) > Ĵ

It is not possible for the algorithm find maxiC(si, S
(1)
i ) > Ĵ when in truth J? ≤ Ĵ .

Each vertex must be visited in the optimal solution and it is clear that every vertex in

γ can be visited by some robot with cost no greater than Ĵ . The bottleneck assignment

used explicitly minimizes the maximum cost of this assignment.
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Theorem 6.3.2. Algorithm 4 either correctly returns that there is no solution to the robot

routing problem or a solution that has cost of no more than 5J?.

Proof. For any sequences returned, C(Si) ≤ 4Ĵ is clear from construction. Similarly, the

cost of navigating robot i to sequence Si returned by Algorithm 5 is less than Ĵ .

By performing binary search over Ĵ and utilizing the correctness property in Lemma

6.3.1, any returned solution from Algorithm 4 has the property that Ĵ ≤ J?. Therefore,

if a solution is returned, the maximum cost of any robot reaching the assigned sequence

plus the maximum sequence cost is no more than 5J? since the maximum cost to reach

any sequence is no more than J? and the maximum cost of any sequence is 4J?. Therefore

this algorithm has an approximation ratio of 5.

6.3.2 Completeness

Assuming the underlying graph GV is dense enough, Algorithm 4 will find a solution if a

solution exists. This is due to the fact that Ĵ will continue to increase until reaching the

sum of all edges in the graph plus the maximum cost to reach any vertex. At that point,

the minimum spanning forest connects all goal vertices that can be visited by one robot.

If each tree is able to be visited, regardless of cost, it will have a successful assignment.

6.3.3 Computational Complexity

This section will analyze the computational complexity for the approximation algorithm

in Algorithm 4.

Lines 1-3 in Algorithm 4 have complexity O
(
M (|E|+ |V | log|V |) +M2logM

)
as dis-
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cussed previously.

The search to find the minimum feasible value of Ĵ can be reformulated to be strongly

polynomial by replacing the bisection search with binary search over all possible breaking

points for Ĵ . Finding minimum maximum sequences constitute
(
M
2

)
possible breaking

points (see [3] for further detail) and the costs to navigate every robot to each goal

introduce an additional NM breaking points. Therefore, Line 4 in Algorithm 4 calls

Algorithm 5 a maximum of O(logM) times.

Algorithm 5 is dominated by computing the O(N3) bottleneck assignment [4] and

computing the MSF with fewer than M edges. The overall complexity of Algorithm 5 is

O(N3 +M logM).

To conclude, the overall complexity of Algorithm 4 is: O(M(|E|+ |V | log|V |) + (N3 +

M2)logM).

6.4 Refinement

This section discusses a number of modifications that typically result in higher quality

solutions. However, these do not reduce the optimality bound and may add additional

computational cost.

The first improvement will be discussed in detail in 6.4.1. After final assignment of

robot to goal set, it is advantageous to replan Ĥ using Algorithm 6 to incorporate the

initial conditions into the planning.

A second improvement can be made when performing the bottleneck assignment. It is

reasonable to not only search over the minimum maximum value of the cost of assignment,

but rather the minimum maximum value of cost of assignment plus the cost of the segment.
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The success condition must also be changed such that the total cost of a robot getting to

and visiting all goals in the assigned sequence is less then 5Ĵ . This does not not change

the proof for correctness in Theorem 6.3.2.

Finally, in line 13 of Algorithm 5, the cost can be chosen as the minimum cost to

navigate to either the first or last vertex. If the last vertex is closer to a robot, the

sequence ordering can be reversed due to the undirected graph assumption.

6.4.1 Sequence Refinement

With slight abuse of notation, let H?(si, Si) be the minimum cost sequence beginning

at si and visiting every vertex in Si. While finding minimum cost Hamiltonian paths is

known to be NP-Hard, Algorithm 6 finds a suboptimal sequence Ĥ(si, Si) and is based on

the Christofides Algorithm [11], which finds a bounded suboptimal solution to the TSP

that has cost no more than 3/2 times the optimal cost of the TSP. Lemma 6.4.1 proves

that the suboptimality of this algorithm is bounded by a constant factor of 3/2 and this

reordering of vertices will tend to improve performance over doubling each edge in the

MST. For ease of reference, the subscripts for si and Si are omitted in the algorithm and

for the remainder of this section.

Algorithm 6 begins in line 1 by generating the graph GS where vertices in GS are

those in S. Since one robot has been assigned to every goal in the sequence S, the graph

is connected. Adding the fact that the original graph is undirected, this graph must be

complete.

The graph GO is constructed of all vertices in the MST with odd connectivity in line

2. It can be shown that the number of vertices in GO is even (see [11]). The starting
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location s is then added to the graph GO with edge costs equal to the cost of visiting each

of vertex in the graph. Dummy vertex d is added in lines 4-5, preserving an even number

of vertices in GO. The dummy vertex is selected to have infinite cost to the start vertex

and zero cost to every other vertex. This ensures the starting robot will be matched to

exactly one non-dummy vertex.

A minimum cost perfect matching [12] is found for the vertices in GO in line 6. The

dummy vertex will each be matched with a vertex other than the start vertex. The

Eulerian path Ĥ is constructed in line 7 such that each edge in both the MST and in the

perfect matching are visited once. The dummy vertex and duplicate vertices are removed

in line 8. The computational cost of this algorithm is dominated by the cost for finding

the minimum perfect matching, which has bounded complexity of O(|S|3) for complete

graphs [44].

Algorithm 6 SequenceRefinement Ĥ(s, S)

1: Generate complete graph GS from the set of all vertices in S
2: GO ← the set of goal vertices with odd connectivity in MST(GS)
3: Add robot start s to GO
4: d← dummy vertex with zero cost to goal vertices, infinite cost to s
5: Add d to GO
6: M? ← minimum perfect matching for GO

7: Ĥ ← Eulerian path that begins at s, then traverses every edge in MST(GS) ∪M?

8: Remove d and duplicate vertices from Ĥ
9: return Ĥ

Lemma 6.4.1. Algorithm 6 has approximation ratio 3/2: C(Ĥ(s, S)) ≤ 3
2C(H?(s, S))

Proof. This proof follows directly from [11] but adds a dummy vertex and only connects

to the start vertex once.

It is clear that the sum of the cost of the edges in the minimum spanning tree is not
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greater than the optimal path C(MST(GS)) ≤ C(H?). Additionally, C(M?) ≤ 1
2H

? using

the same logic as in [11]. After removing dummy vertices, but before removing duplicate

vertices, the heuristic path Ĥ traverses each edge in M? and MST(GS) once resulting

in C(Ĥ) = C(MST(GS)) + C(M?) ≤ 3
2C(H?). Since the graph respects the triangle

equality, removing duplicate vertices will only reduce the cost of C(Ĥ).

6.5 Collision Avoidance

This section presents a method to ensure collision avoidance between robots for a orthog-

onally connected regular grid with grid size greater than robot diameter 2R. Additionally,

assume each robot moves one grid cell per unit time. It should be noted that the results in

this section do not have time-optimal solutions, but do preserve the minimum-maximum

distance optimality bound. In sufficiently open spaces, the minimum-maximum distance

solution will tend to be close to the time-optimal solution.

First, predict the desired motion of each robot for one time step in the future. Between

the current time step and the prediction, determine if two robots are attempting to swap

goal states. In the event of such a crossing, robot exchange their sets of remaining goals.

This strategy will decrease the distance traveled by either robot by at least 1 grid cell

length.

Next, in the prediction step, check for multiple robots occupying the same cell. In this

case, examine each robots’ list of remaining goals to visit. If there is a robot occupying

the cell at the current time, it exchanges sequences with the robot that has the highest

remaining cost sequence. If there is a robot currently in the cell, it is guaranteed to move

out of the cell. The robot attempting to enter the cell with highest remaining cost is
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(a) N = 1, M = 50, Ĵ = 10.03 (b) N = 3, M = 50, Ĵ = 3.35 (c) N = 5, M = 50, Ĵ = 2.03

Figure 6.2: Simulated trials with randomly generated consistent goal positions and varying N .
Red circles are robot start locations and green stars are goal locations. The listed Ĵ value is the
smallest value of Ĵ to return a solution for the problem. Notice how different the solutions are
with different numbers of robots. This is a result of the refinement in Sect. 6.4.

allowed to enter and all other robots remain stationary. Using this rule, the maximum

distance traveled by any robot does not increase.

These simple rules ensure the maximum distance traveled by a robot will not increase

and collisions will be avoided. Additionally, these rules ensure progress is always being

made by at least one robot and the system will eventually complete successfully.

6.6 Simulation Results

This section presents some simulation results using Algorithm 4. Figure 6.2 shows some

basic results for small scale randomly generated problems.

Figure 6.4 presents the computation time trends as a function of M for a large number

of trials with 10 robots. This figure nicely demonstrates the trends in computational time

match the predictions from Sect. 6.3.3. In both the figure and prediction, computing the

MSF has the largest growth with respect to increasing M . One deviation from expectation

is the fact that refinement is expected to grow cubically in M . However, the simulations
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use Blossom 5 [38], a state of the art minimum weight perfect matching solver and this

cubic growth is only evident when thousands of goals are used. Note that simulations for

10 robots visiting 200 goals reliably takes less than 5 seconds total computation time.
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Figure 6.3: 100 simulation trials for each value of M with N = 10 to demonstrate computational
growth. Note that both the planning (red) and refinement (pink) grow roughly linearly in the
number of robots. The binary search of Algorithm 4 grows superlinear in M , but sub-quadratic
as expected. Computing the MSF has expected complexity O(M2 logM) and begins to dominate
computation time above M = 200.

Figure 6.5 demonstrates that the collision avoidance modification is sufficient to ensure

collision avoidance for all robots.

6.7 Chapter Summary

This chapter presents a centralized method for generating sequences of goals to visit

such that all goal locations are visited by point robots in no more time than a constant

factor times the optimal. The computational complexity is shown to be polynomial in
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Figure 6.4: 100 simulation trials for each value of N with M = 100 to demonstrate computational
growth. In this example, all steps have about constant computation time with respect to N . The
O(N3) expected growth for the binary search is not visible at such small values of N .

the number of robots and the number of goals. Then, a collision avoidance scheme was

designed to ensure all robots safely reach their goal location for a simplified robot. Finally,

a set of simulation results are presented to demonstrate the efficiency of the method.
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Figure 6.5: Figure 6.5(a) shows an a set of initial conditions to visit. Despite the high degree of
interaction, it can be seen in 6.5(b) that no two robots ever have negative clearance and therefore
avoid collisions.
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Chapter 7: Conclusion

7.1 Contributions

This dissertation presents a number of novel solutions for multi-robot planning and con-

trol. First, the decentralized formation control approach presented in Chapter 3 generates

a dynamically feasible safe trajectory for every robot in the team and is robust to indi-

vidual robot failure. Then, robot interchangeability is utilized in Chapter 4 to safely

plan trajectories for teams of robots in obstacle-free environments and scales well com-

putationally as the number of robots increases. Next, an extension of these methods in

Chapter 5 allows the robots to generate safe trajectories without collision while preserving

completeness and optimality for dozens in a few seconds on a standard laptop computer.

Finally, Chapter 6 further extends these methods to allow a team of robots to visit a very

large number of goal locations with bounded suboptimality. Simulation and experimental

results are presented throughout the dissertation to validate the theory.

Specifically, this dissertation quantifies the benefits of interchangeability of robots in a

team if the mission allows it. The safety of the robots and nearby humans depends on the

collision avoidance of teams. By utilizing the interchangeability of individual robots, this

work demonstrates that a safe, complete planner can be developed that is computationally

tractable and complete. These strong guarantees of completeness, collision avoidance,

and polynomial complexity while providing optimality bonds is a necessity before teams
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of robots will be utilized to the fullest extent.

Interchangeability of robots is acceptable for tasks where each robot is gathering

information such as in search and rescue or exploration missions. A natural platform

to use in these missions are aerial robots since these robots can quickly fly over any

terrain and reach areas to inspect quickly. Application of these planning algorithms to a

team of aerial robots operating outdoors requires a large degree of integration of sensing,

perception, localization, mapping, and communication. This integration has begun in [58]

by applying the methods developed in this dissertation to a team of quadrotor robots

outdoors navigating using a combination of GPS and vision to quickly gather information.

7.2 Future Work

The approaches detailed in Chapters 4-6 of this dissertation do not incorporate sensing or

robot noise and assume robots can precisely follow the plans generated for them. It might

be beneficial to model the noise of the robots such that more informed planning algorithms

and control laws can be used. For example, it is challenging for robots to localize well in

long corridors using laser scanners since the world looks identical regardless of the location

of the robot. If instead, the robots were to account for this difficulty in localization in the

environment and plan an alterante route to avoid the hallway, individual robots should

have higher quality position estimates. There are a number of existing approaches to

incorporate state dependent noise including such as planning in belief space [71] that

could be incorporated into the work in this dissertation.

The formation control approach presented in Chapter 3 is able to reject noise in

actuation and sensing through the closed loop control policy. However, it does not use
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the information quality in determining which robots have more useful information in their

trajectories being communicated. It would be particularly interesting to investigate how

to change dependency coefficients D in Chapter 3 as a function of robot errors.

This work in Chapters 4-6 only permit teams of fully interchangeable robots and a

related topic that might be useful when this assumption is not valid is the relaxation of

this total interchangeability. This idea has been studied as the k-Color Problem in [79]

where the robots and goals fall into a number of classes ranging from fully labeled to

fully interchangeable. Thers is no algorithm that is able to incorporate multiple classes

of robots while allowing for resolution completeness, trajectory refinement, or bounded

optimality solution. The algorithm presented in Chapter 5 uses a decoupled algorithm

and it can be shown relatively easily that a fully decoupled algorithm is not sufficient

to if the interchangeable assumption is removed. Instead, another approach must be

investigated to incorporate a number of classes of robots while retaining their optimality

bounds, completeness, and polynomial time complexity.

The work in Chapter 6 requires robots to remain stationary at goal locations for the

planning to be successful. This is a result of only admitting one goal state in the graph

for each goal location specified and this state is required to have zero velocity to ensure

the completeness property. It may be possible to relax the zero velocity constraint at each

goal location.

Finally, another interesting research avenue would be the investigation of additional

refinement steps in Chapter 6. Currently, the segments are divided using a simple process

of attempting to minimize the largest segment. It may be possible to incorporate the

locations of robots and the assignment of robot to goals when dividing segments. This
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would provide a better solution in practice, however would still not improve the bound

on suboptimality.
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Appendix A: Quadrotor Basics and Control

Figure A.1: A team of four Ascending Technologies [5] commercial hummingbird quadrotors
used in experimentation.

Quadrotors are mechanically simple flying robots with the ability to take off and

land vertically, carry small to medium payloads, hover in place, and perform complex

aerobatic maneuvers. The ability to fly means that these robots can simply travel above

difficult terrain that would halt a ground based platform. While any flying platform has

the means to bypass rough ground in this manner, fixed wing robots require a minimum

forward velocity and therefore have substantial difficult functioning in tight spaces and

specifically are extremely tough to use indoors. While helicopters can also fly with similar

functionality to multi-rotor craft, they have complex and expensive swash plates and

linkages. Multi-rotor craft have a very simple design with the only moving parts being

their propellers directly connected to motors without any gear train. A multi-rotor craft

with fixed rotors requires at least four rotors if the frame is stationary and therefore, a

quadrotor is one of the simplest, yet most versatile robots ever envisioned.

This substantial feature list of the quadrotor robots is not without its draw backs.
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Figure A.2: A quadrotor with world and body frames shown. The position and orientation of
the robot in the global frame are denoted by x and R, respectively. The quadrotor uses the thrust
generated by each propeller (along the body-fixed z-axis, b3) to generate forces and moments for
control.

Notably, controlling the robots can be challenging and has only been practical in recent

years due to the rapid increase in small, lightweight sensing and computing. In addition,

current battery technology limitations mean that quadrotors are limited by their short

flight times of generally under 30 minutes on a single battery charge.

This chapter presents a dynamic model of a quadrotor and a controller which allows

a single robot to track specified 3-D trajectory. This control is utilized throughout the

remainder of this dissertation to control each robot individually.

It is well-known that the quadrotor is underactuated and differentially flat [61]. By

using nonlinear controllers with no reliance on linearized models of the quadrotor’s dy-

namics, these robots are able to follow trajectories that require large roll and pitch angles

that produce high accelerations in the horizontal plane. Figure A.2 depicts the reference

frames used by the control laws presented in this chapter.

The four rotor inputs allow us to specify the force along the body-fixed z-axis and the

three moments in the body-fixed frame. Accordingly, the four output variables chosen are
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the three spatial components and the world yaw angle to specify the desired trajectory in

the time interval [t0, tf ]:

xd(t) : [t0, tf ]→ R3 × SO(2) (A.0.1)

The controllers achieve attitude stabilization in SO(3) with a basin of attraction that

covers almost all of the rotation group [45, 46]. The specification of the trajectory re-

stricted to the subgroup R3 × SO(2) allows each robot to choose its roll and pitch angle

to track the specified trajectory. This specification is also practical from the standpoint

of commanding the robot as it is quite natural to specify the desired position trajectory

and the heading (yaw) along the robot trajectory.

As the control input to the quadrotor first shows up in controlling the fourth derivative

of the spatial outputs, the quadrotor is a fourth order system. This means that any

trajectory that the quadrotor can track is at least C3 smooth (with the notable exception

of yaw, which must be C1 smooth). As snap is the fourth derivative of position, it is

logical to plan trajectories which minimize snap [53]. For this reason, piecewise-smooth

polynomial functions of order p are used to represent trajectories:

xd(t) =

p∑
k=0

βktk (A.0.2)

These trajectories must also satisfy constraints on state and input variables such as

bounded rotor speed.

Consider a quadrotor with mass m and rotational inertia J ∈ R3. Define the position

and rotation of the vehicle in the inertial frame as x ∈ R3 and R ∈ SO(3), respectively.

The angular velocity of the vehicle, Ω ∈ R3, is given as:

Ṙ = RΩ̂
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where the operator ·̂ is defined such that x̂y = x× y for all x, y ∈ R3. Given that the ith

propeller generates the thrust output fi as a function of propeller rotational speed, the

dynamic model of the vehicle follows:

mẍ = (fR−mg)e3

JΩ̇ +Ω × JΩ = M

with e3 = [0, 0, 1] T, M = [M1, M2, M3] T, and
f
M1

M2

M3

 =


1 1 1 1
d 0 −d 0
0 d 0 −d
−c c −c c



f1

f2

f3

f4


where d is the distance from the robot center of mass to the rotor and c is an aerodynamic

drag term that relates differences in propeller speed to yawing moment about the body

z-axis.

Following the attitude stabilization approach proposed in [46], we design the force and

moment inputs, f and Mi, based on the desired input xd(t):

f = (−kxex − kẋeẋ +mge3 +mẍd) ·Re3

M = −kReR − kΩeΩ +Ω × JΩ (A.0.3)

with the error terms defined as follows:

ex = x− xd

eẋ = ẋ− ẋd

eR =
1

2
√

1 + tr
[
RT
dR
] (RT

dR−RTRd

)∨
eΩ = Ω −RTRdΩd

and dropping the dependence on time for clarity of presentation. The operator (·)∨ is the

inverse of the ·̂ operator such that (·)∨ : so(3) → R3. The gains kx, kẋ, kR, and kΩ are
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selected to ensure stable performance. See [45, 46] for further explanation of the derivation

of these error terms and proofs of stability and convergence of the control system to the

desired inputs.

The above attitude stabilization approach operates in SO(3) (as compared to the tra-

ditional Euler-angle parameterization approach [56]) and benefits from a stability basin

of attraction that includes the full space of rotation matrices (excluding an exact inver-

sion). Note that it is assumed the trajectory generation scheme plans trajectories with

the constraint f > 0 and thus define Rd with respect to ψd such that Rd = [r1, r2, r3]

and

r1 = r2 × r3

r2 =
r3 × [cosψd, sinψd, 0]

‖r3 × [cosψd, sinψd, 0] ‖

r3 =
−kxex − kẋeẋ +mge3 +mẍd

‖ − kxex − kẋeẋ +mge3 +mẍd‖

Additionally, the moment stabilization proposed in [46] includes higher-order inertial can-

celation terms that are neglected due to their insignificant impact.

To find smooth trajectories that minimize an integral cost function consisting of time

derivatives up to the lth derivative of the trajectory, piecewise-smooth polynomial func-

tions of order p are used over a series of time intervals. For simplicity of notation, this

work will often replace the series by the use of a single polynomial function of order p.

To find the trajectory that minimizes the cost functional derived from the lthr deriva-

tive of position and lthψ derivative of the yaw angle, consider the following optimization
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program:

minimize

∫ tf

t0

[
µR3

∣∣∣∣∣∣∣∣dlrxdtlr

∣∣∣∣∣∣∣∣2 + µψ

(
dlψψ

dtlψ

)2
]
dt

subject to x(t) =

p∑
k=0

βktk

dgx

dtg

∣∣∣∣
t=0

= 0 g = 1, . . . , lr

dgx

dtg

∣∣∣∣
t=tf

= 0 g = 1, . . . , lr

dgψ

dtg

∣∣∣∣
t=0

= 0 g = 1, . . . , lψ

dgψ

dtg

∣∣∣∣
t=tf

= 0 g = 1, . . . , lψ

(A.0.4)

where µR3 and µψ are constants that make the integrand non-dimensional. Due to the

dynamics of the quadrotor noted previously, consider different derivatives of interest for

each of the desired inputs (in particular lr = 4 for position components and lψ = 2 for yaw

components). State and input constraints such as limits on angular rates and propellor

thrusts can be expressed as algebraic functions of x and its derivatives, and therefore can

be incorporated in this formulation as additional constraints. The above optimization is

formulated as a quadratic program (QP) with initial conditions and derivative constraints

defined as equality and inequality constraints as required. Further details of the method-

ology including the approach to determining the non-dimensional constants and using

piecewise smooth polynomials are available in [53]. Note that the trajectory resulting

from (A.0.4) is parameterized in terms of the coefficients βk, and only these are required

to fully specify a trajectory.

Aerodynamic interactions of the quadrotors require additional considerations for the

safety of the team. A robot flying below another robot is adversely affected by the
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downwash from the higher robot and will be unable to track trajectories satisfactorily.

For this reason, an ellipsoidal model of the quadrotor is used to ensure that the separation

in the vertical direction is larger than the separation in the horizontal direction:√(
xi(t)− xj(t)

1

)2

+

(
yi(t)− yj(t)

1

)2

+

(
zi(t)− zj(t)

4

)2

> 2R ∀ i, j, t

This condition means that for a robot to fly directly above another robot, the separation

in the vertical direction must be at least 8R.

Throughout this work, state estimation is not considered and therefore perfect state

knowledge is assumed. The pose of the quadrotor is observed using a Vicon motion

capture system at 100 Hz [93]. The pose is numerically differentiated to compute the

linear and angular velocities of the robot. Desired attitude commands are interpreted by

the onboard attitude and body-fixed thrust controllers (A.0.3) operating on each robot’s

programmable embedded microprocessor and applied at an update rate of 1 kHz.
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