700 research outputs found

    On multiobjective optimization from the nonsmooth perspective

    Get PDF
    Practical applications usually have multiobjective nature rather than having only one objective to optimize. A multiobjective problem cannot be solved with a single-objective solver as such. On the other hand, optimization of only one objective may lead to an arbitrary bad solutions with respect to other objectives. Therefore, special techniques for multiobjective optimization are vital. In addition to multiobjective nature, many real-life problems have nonsmooth (i.e. not continuously differentiable) structure. Unfortunately, many smooth (i.e. continuously differentiable) methods adopt gradient-based information which cannot be used for nonsmooth problems. Since both of these characteristics are relevant for applications, we focus here on nonsmooth multiobjective optimization. As a research topic, nonsmooth multiobjective optimization has gained only limited attraction while the fields of nonsmooth single-objective and smooth multiobjective optimization distinctively have attained greater interest. This dissertation covers parts of nonsmooth multiobjective optimization in terms of theory, methodology and application. Bundle methods are widely considered as effective and reliable solvers for single-objective nonsmooth optimization. Therefore, we investigate the use of the bundle idea in the multiobjective framework with three different methods. The first one generalizes the single-objective proximal bundle method for the nonconvex multiobjective constrained problem. The second method adopts the ideas from the classical steepest descent method into the convex unconstrained multiobjective case. The third method is designed for multiobjective problems with constraints where both the objectives and constraints can be represented as a difference of convex (DC) functions. Beside the bundle idea, all three methods are descent, meaning that they produce better values for each objective at each iteration. Furthermore, all of them utilize the improvement function either directly or indirectly. A notable fact is that none of these methods use scalarization in the traditional sense. With the scalarization we refer to the techniques transforming a multiobjective problem into the single-objective one. As the scalarization plays an important role in multiobjective optimization, we present one special family of achievement scalarizing functions as a representative of this category. In general, the achievement scalarizing functions suit well in the interactive framework. Thus, we propose the interactive method using our special family of achievement scalarizing functions. In addition, this method utilizes the above mentioned descent methods as tools to illustrate the range of optimal solutions. Finally, this interactive method is used to solve the practical case studies of the scheduling the final disposal of the spent nuclear fuel in Finland.Käytännön optimointisovellukset ovat usein luonteeltaan ennemmin moni- kuin yksitavoitteisia. Erityisesti monitavoitteisille tehtäville suunnitellut menetelmät ovat tarpeen, sillä monitavoitteista optimointitehtävää ei sellaisenaan pysty ratkaisemaan yksitavoitteisilla menetelmillä eikä vain yhden tavoitteen optimointi välttämättä tuota mielekästä ratkaisua muiden tavoitteiden suhteen. Monitavoitteisuuden lisäksi useat käytännön tehtävät ovat myös epäsileitä siten, etteivät niissä esiintyvät kohde- ja rajoitefunktiot välttämättä ole kaikkialla jatkuvasti differentioituvia. Kuitenkin monet optimointimenetelmät hyödyntävät gradienttiin pohjautuvaa tietoa, jota ei epäsileille funktioille ole saatavissa. Näiden molempien ominaisuuksien ollessa keskeisiä sovelluksia ajatellen, keskitytään tässä työssä epäsileään monitavoiteoptimointiin. Tutkimusalana epäsileä monitavoiteoptimointi on saanut vain vähän huomiota osakseen, vaikka sekä sileä monitavoiteoptimointi että yksitavoitteinen epäsileä optimointi erikseen ovat aktiivisia tutkimusaloja. Tässä työssä epäsileää monitavoiteoptimointia on käsitelty niin teorian, menetelmien kuin käytännön sovelluksien kannalta. Kimppumenetelmiä pidetään yleisesti tehokkaina ja luotettavina menetelminä epäsileän optimointitehtävän ratkaisemiseen ja siksi tätä ajatusta hyödynnetään myös tässä väitöskirjassa kolmessa eri menetelmässä. Ensimmäinen näistä yleistää yksitavoitteisen proksimaalisen kimppumenetelmän epäkonveksille monitavoitteiselle rajoitteiselle tehtävälle sopivaksi. Toinen menetelmä hyödyntää klassisen nopeimman laskeutumisen menetelmän ideaa konveksille rajoitteettomalle tehtävälle. Kolmas menetelmä on suunniteltu erityisesti monitavoitteisille rajoitteisille tehtäville, joiden kohde- ja rajoitefunktiot voidaan ilmaista kahden konveksin funktion erotuksena. Kimppuajatuksen lisäksi kaikki kolme menetelmää ovat laskevia eli ne tuottavat joka kierroksella paremman arvon jokaiselle tavoitteelle. Yhteistä on myös se, että nämä kaikki hyödyntävät parannusfunktiota joko suoraan sellaisenaan tai epäsuorasti. Huomattavaa on, ettei yksikään näistä menetelmistä hyödynnä skalarisointia perinteisessä merkityksessään. Skalarisoinnilla viitataan menetelmiin, joissa usean tavoitteen tehtävä on muutettu sopivaksi yksitavoitteiseksi tehtäväksi. Monitavoiteoptimointimenetelmien joukossa skalarisoinnilla on vankka jalansija. Esimerkkinä skalarisoinnista tässä työssä esitellään yksi saavuttavien skalarisointifunktioiden perhe. Yleisesti saavuttavat skalarisointifunktiot soveltuvat hyvin interaktiivisten menetelmien rakennuspalikoiksi. Täten kuvaillaan myös esiteltyä skalarisointifunktioiden perhettä hyödyntävä interaktiivinen menetelmä, joka lisäksi hyödyntää laskevia menetelmiä optimaalisten ratkaisujen havainnollistamisen apuna. Lopuksi tätä interaktiivista menetelmää käytetään aikatauluttamaan käytetyn ydinpolttoaineen loppusijoitusta Suomessa

    System and Decision Sciences at IIASA 1973-1980

    Get PDF
    This report contains a brief history of the past achievements of the System and Decision Sciences Area at IIASA, and a summary of its current and future research directions. There is a comprehensive list of the scientific staff of the Area since 1973, together with a list of their publications; abstracts of the most recent reports and biographies of the scholars working in the Area in 1980 are also included

    Parallel software tool for decomposing and meshing of 3d structures

    Get PDF
    An algorithm for automatic parallel generation of three-dimensional unstructured computational meshes based on geometrical domain decomposition is proposed in this paper. Software package build upon proposed algorithm is described. Several practical examples of mesh generation on multiprocessor computational systems are given. It is shown that developed parallel algorithm enables us to reduce mesh generation time significantly (dozens of times). Moreover, it easily produces meshes with number of elements of order 5 · 107, construction of those on a single CPU is problematic. Questions of time consumption, efficiency of computations and quality of generated meshes are also considered

    Qualitative Characteristics and Quantitative Measures of Solution's Reliability in Discrete Optimization: Traditional Analytical Approaches, Innovative Computational Methods and Applicability

    Get PDF
    The purpose of this thesis is twofold. The first and major part is devoted to sensitivity analysis of various discrete optimization problems while the second part addresses methods applied for calculating measures of solution stability and solving multicriteria discrete optimization problems. Despite numerous approaches to stability analysis of discrete optimization problems two major directions can be single out: quantitative and qualitative. Qualitative sensitivity analysis is conducted for multicriteria discrete optimization problems with minisum, minimax and minimin partial criteria. The main results obtained here are necessary and sufficient conditions for different stability types of optimal solutions (or a set of optimal solutions) of the considered problems. Within the framework of quantitative direction various measures of solution stability are investigated. A formula for a quantitative characteristic called stability radius is obtained for the generalized equilibrium situation invariant to changes of game parameters in the case of the H¨older metric. Quality of the problem solution can also be described in terms of robustness analysis. In this work the concepts of accuracy and robustness tolerances are presented for a strategic game with a finite number of players where initial coefficients (costs) of linear payoff functions are subject to perturbations. Investigation of stability radius also aims to devise methods for its calculation. A new metaheuristic approach is derived for calculation of stability radius of an optimal solution to the shortest path problem. The main advantage of the developed method is that it can be potentially applicable for calculating stability radii of NP-hard problems. The last chapter of the thesis focuses on deriving innovative methods based on interactive optimization approach for solving multicriteria combinatorial optimization problems. The key idea of the proposed approach is to utilize a parameterized achievement scalarizing function for solution calculation and to direct interactive procedure by changing weighting coefficients of this function. In order to illustrate the introduced ideas a decision making process is simulated for three objective median location problem. The concepts, models, and ideas collected and analyzed in this thesis create a good and relevant grounds for developing more complicated and integrated models of postoptimal analysis and solving the most computationally challenging problems related to it.Siirretty Doriast

    Structure and pressure drop of real and virtual metal wire meshes

    Get PDF
    An efficient mathematical model to virtually generate woven metal wire meshes is presented. The accuracy of this model is verified by the comparison of virtual structures with three-dimensional images of real meshes, which are produced via computer tomography. Virtual structures are generated for three types of metal wire meshes using only easy to measure parameters. For these geometries the velocity-dependent pressure drop is simulated and compared with measurements performed by the GKD - Gebr. Kufferath AG. The simulation results lie within the tolerances of the measurements. The generation of the structures and the numerical simulations were done at GKD using the Fraunhofer GeoDict software

    Fuzzy Bilevel Optimization

    Get PDF
    In the dissertation the solution approaches for different fuzzy optimization problems are presented. The single-level optimization problem with fuzzy objective is solved by its reformulation into a biobjective optimization problem. A special attention is given to the computation of the membership function of the fuzzy solution of the fuzzy optimization problem in the linear case. Necessary and sufficient optimality conditions of the the convex nonlinear fuzzy optimization problem are derived in differentiable and nondifferentiable cases. A fuzzy optimization problem with both fuzzy objectives and constraints is also investigated in the thesis in the linear case. These solution approaches are applied to fuzzy bilevel optimization problems. In the case of bilevel optimization problem with fuzzy objective functions, two algorithms are presented and compared using an illustrative example. For the case of fuzzy linear bilevel optimization problem with both fuzzy objectives and constraints k-th best algorithm is adopted.:1 Introduction 1 1.1 Why optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Fuzziness as a concept . . . . . . . . . . . . . . . . . . . . .. . . . . . . 2 1.3 Bilevel problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Preliminaries 11 2.1 Fuzzy sets and fuzzy numbers . . . . . . . . . . . . . . . . . . . . . 11 2.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Fuzzy order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Fuzzy functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 3 Optimization problem with fuzzy objective 19 3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Solution method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Local optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Existence of an optimal solution . . . . . . . . . . . . . . . . . . . . 25 4 Linear optimization with fuzzy objective 27 4.1 Main approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.4 Membership function value . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4.1 Special case of triangular fuzzy numbers . . . . . . . . . . . . 36 4.4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 5 Optimality conditions 47 5.1 Differentiable fuzzy optimization problem . . . . . . . . . . .. . . . 48 5.1.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.1.2 Necessary optimality conditions . . . . . . . . . . . . . . . . . . .. 49 5.1.3 Suffcient optimality conditions . . . . . . . . . . . . . . . . . . . . . . 49 5.2 Nondifferentiable fuzzy optimization problem . . . . . . . . . . . . 51 5.2.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2.2 Necessary optimality conditions . . . . . . . . . . . . . . . . . . . 52 5.2.3 Suffcient optimality conditions . . . . . . . . . . . . . . . . . . . . . . 54 5.2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6 Fuzzy linear optimization problem over fuzzy polytope 59 6.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2 The fuzzy polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 6.3 Formulation and solution method . . . . . . . . . . . . . . . . . . .. . 65 6.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7 Bilevel optimization with fuzzy objectives 73 7.1 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.2 Solution approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 7.3 Yager index approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.4 Algorithm I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.5 Membership function approach . . . . . . . . . . . . . . . . . . . . . . .78 7.6 Algorithm II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 7.7 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 8 Linear fuzzy bilevel optimization (with fuzzy objectives and constraints) 87 8.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 8.2 Solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 8.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 8.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 9 Conclusions 95 Bibliography 9

    Multiobjective Optimization for Complex Systems

    Get PDF
    Complex systems are becoming more and more apparent in a variety of disciplines, making solution methods for these systems valuable tools. The solution of complex systems requires two significant skills. The first challenge of developing mathematical models for these systems is followed by the difficulty of solving these models to produce preferred solutions for the overall systems. Both issues are addressed by this research. This study of complex systems focuses on two distinct aspects. First, models of complex systems with multiobjective formulations and a variety of structures are proposed. Using multiobjective optimization theory, relationships between the efficient solutions of the overall system and the efficient solutions of its subproblems are derived. A system with a particular structure is then selected and further analysis is performed regarding the connection between the original system and its decomposable counterpart. The analysis is based on Kuhn-Tucker efficiency conditions. The other aspect of this thesis pertains to the study of a class of complex systems with a structure that is amenable for use with analytic target cascading (ATC), a decomposition and coordination approach of special interest to engineering design. Two types of algorithms are investigated. Modifications to a subgradient optimization algorithm are proposed and shown to improve the speed of the algorithm. A new family of biobjective algorithms showing considerable promise for ATC-decomposable problems is introduced for two-level systems, and convergence results for a specified algorithm are given. Numerical examples showing the effectiveness of all algorithms are included

    Classification of the Existing Knowledge Base of OR/MS Research and Practice (1990-2019) using a Proposed Classification Scheme

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordOperations Research/Management Science (OR/MS) has traditionally been defined as the discipline that applies advanced analytical methods to help make better and more informed decisions. The purpose of this paper is to present an analysis of the existing knowledge base of OR/MS research and practice using a proposed keywords-based approach. A conceptual structure is necessary in order to place in context the findings of our keyword analysis. Towards this we first present a classification scheme that relies on keywords that appeared in articles published in important OR/MS journals from 1990-2019 (over 82,000 articles). Our classification scheme applies a methodological approach towards keyword selection and its systematic classification, wherein approximately 1300 most frequently used keywords (in terms of cumulative percentage, these keywords and their derivations account for more than 45% of the approx. 290,000 keyword occurrences used by the authors to represent the content of their articles) were selected and organised in a classification scheme with seven top-level categories and multiple levels of sub-categories. The scheme identified the most commonly used keywords relating to OR/MS problems, modeling techniques and applications. Next, we use this proposed scheme to present an analysis of the last 30 years, in three distinct time periods, to show the changes in OR/MS literature. The contribution of the paper is thus twofold, (a) the development of a proposed discipline-based classification of keywords (like the ACM Computer Classification System and the AMS Mathematics Subject Classification), and (b) an analysis of OR/MS research and practice using the proposed classification
    corecore