1,322 research outputs found

    Complexity, rate, and scale in sliding friction dynamics between a finger and textured surface.

    Get PDF
    Sliding friction between the skin and a touched surface is highly complex, but lies at the heart of our ability to discriminate surface texture through touch. Prior research has elucidated neural mechanisms of tactile texture perception, but our understanding of the nonlinear dynamics of frictional sliding between the finger and textured surfaces, with which the neural signals that encode texture originate, is incomplete. To address this, we compared measurements from human fingertips sliding against textured counter surfaces with predictions of numerical simulations of a model finger that resembled a real finger, with similar geometry, tissue heterogeneity, hyperelasticity, and interfacial adhesion. Modeled and measured forces exhibited similar complex, nonlinear sliding friction dynamics, force fluctuations, and prominent regularities related to the surface geometry. We comparatively analysed measured and simulated forces patterns in matched conditions using linear and nonlinear methods, including recurrence analysis. The model had greatest predictive power for faster sliding and for surface textures with length scales greater than about one millimeter. This could be attributed to the the tendency of sliding at slower speeds, or on finer surfaces, to complexly engage fine features of skin or surface, such as fingerprints or surface asperities. The results elucidate the dynamical forces felt during tactile exploration and highlight the challenges involved in the biological perception of surface texture via touch

    An investigation of cell responses to mechanical environment

    Get PDF
    With the development of in vitro systems for tissue engineering, various substrates and mechanical stimuli have been utilized to modulate the cell behavior. It’s known that various micropatterns have been fabricated and applied to regulate cell adhesion, morphology and function. Micropatterns created by standard photolithography process are usually rectangular channels with sharp corners (microgrooves) which provide limited control over cells and are not favorable for cell-cell interaction and communication. We propose a new micropattern with smooth wavy surfaces (micro-waves) to control the position and orientation of cells. Results showed that cells adhered to the wavy surface displayed both improved alignment and adhesion strength compared to those on the flat surface. Shear flow was further applied to examine the cell adhesion response to the flow. In recent years, nanoparticles (NPs) have gained increasing interest due to its potential use as drug delivery, imaging and diagnostic agents in pharmaceutical and biomedical applications. While lots of cells in vivo are under mechanical forces, little is known about the correlation of the mechanical stimulation and the internalization of NPs into cells. We investigate the effects of applied cyclic strain on NPs uptake by bovine aortic endothelial cells (BAECs). The cyclic strain results in a significant enhancement in NP uptake which increases almost linearly with strain level. In my study, micro-patterned substrates, shear flow and cyclic strain have been applied to investigate the cell behavior including cell alignment, cell spreading, cell adhesion and cellular uptake of NPs. Studies of cells response to these mechanical stress promote our current understanding of how cells sense and response to their mechanical environment

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    Contact geometry and mechanics predict friction forces during tactile surface exploration

    Get PDF
    International audienceWhen we touch an object, complex frictional forces are produced, aiding us in perceiving surface features that help to identify the object at hand, and also facilitating grasping and manipulation. However, even during controlled tactile exploration, sliding friction forces fluctuate greatly, and it is unclear how they relate to the surface topography or mechanics of contact with the finger. We investigated the sliding contact between the finger and different relief surfaces, using high-speed video and force measurements. Informed by these experiments, we developed a friction force model that accounts for surface shape and contact mechanical effects, and is able to predict sliding friction forces for different surfaces and exploration speeds. We also observed that local regions of disconnection between the finger and surface develop near high relief features, due to the stiffness of the finger tissues. Every tested surface had regions that were never contacted by the finger; we refer to these as " tactile blind spots ". The results elucidate friction force production during tactile exploration, may aid efforts to connect sensory and motor function of the hand to properties of touched objects, and provide crucial knowledge to inform the rendering of realistic experiences of touch contact in virtual reality

    Investigation of metallurgical coatings for automotive applications

    Get PDF
    Metallurgical coatings have been widely used in the automotive industry from component machining, engine daily running to body decoration due to their high hardness, wear resistance, corrosion resistance and low friction coefficient. With high demands in energy saving, weight reduction and limiting environmental impact, the use of new materials such as light Aluminum/magnesium alloys with high strength-weight ratio for engine block and advanced high-strength steel (AHSS) with better performance in crash energy management for die stamping, are increasing. However, challenges are emerging when these new materials are applied such as the wear of the relative soft light alloys and machining tools for hard AHSS. The protective metallurgical coatings are the best option to profit from these new materials\u27 advantages without altering largely in mass production equipments, machinery, tools and human labor. In this dissertation, a plasma electrolytic oxidation (PEO) coating processing on aluminum alloys was introduced in engine cylinder bores to resist wear and corrosion. The tribological behavior of the PEO coatings under boundary and starve lubrication conditions was studied experimentally and numerically for the first time. Experimental results of the PEO coating demonstrated prominent wear resistance and low friction, taking into account the extreme working conditions. The numerical elastohydrodynamic lubrication (EHL) and asperity contact based tribological study also showed a promising approach on designing low friction and high wear resistant PEO coatings. Other than the fabrication of the new coatings, a novel coating evaluation methodology, namely, inclined impact sliding tester was presented in the second part of this dissertation. This methodology has been developed and applied in testing and analyzing physical vapor deposition (PVD)/ chemical vapor deposition (CVD)/PEO coatings. Failure mechanisms of these common metallurgical hard coatings were systematically studied and summarized via the new testing methodology. Field tests based on the new coating characterization technique proved that this methodology is reliable, effective and economical

    Development of a Highly Flexible and Stretchable Tubular Shape Tactile Sensor Array

    Get PDF
    University of Minnesota M.S.E.E. thesis. August 2016. Major: Electrical Engineering. Advisors: Jing Bai, Debao Zhou. 1 computer file (PDF); viii, 68 pages.Highly flexible skin-like sensors, such as electrical skin (e-skin) sensor for pressure measurement, have the potential to provide quantitative physical contact assessments, when equipped on household and medical devices to benefit human society. One of the promising applications is to monitor the contact pressure of a colonoscope to the colonic wall during a colonoscopy to reduce the possibility of perforation and hemorrhaging.Colon, as the largest intestine, is a long winding tube at end of human's digestive tract. Many disorders affect the colon's ability to work properly, thus the American Cancer Society suggests that citizens over 50 years old should be subject to a colon screen test. However, risks do exist during colonoscopy. A rate of 0.19% perforation occurs in the diagnostic colonoscopy. Many attempts have been made to fabricate highly stretchable electronic devices, but no effort has been made to design or investigate the mechanical behaviors of a tubular-shaped e-skin that meet the need for controlling the risks during colonoscopy. In this project, a high performance three-layer tactile sensor array was designed and fabricated, and a pressure detection system was set up as well. The operating mode was thoroughly investigated and the pressure detection on curved surface, such as a tube was realized. A detailed study about false positive error was performed to improve the sensor’s reliability and accuracy. Based on a tubular-shaped, highly flexible skin-like sensor array we developed, we conducted both modeling and experimental studies on the change of the maximum pressure distribution of a tubular e-skin sensor under various bending conditions with and without external compressive forces. These studies revealed the value of the maximum stress on a tubular shaped e-skin sensor array when bent. The measuring errors due to bending in pressure detection during colonoscopy can be quantified for compensation. Thus, high accuracy diagnose can be achieved. Based on all these work, the pressure detection in the colon-simulator was successfully realized. The results could also be used to address strategies on optimizing the design of tactile sensors for other medical application

    A review of experiments on stationary bluff-body wakes

    Get PDF
    Experimental studies dealing with the wake of isolated stationary bluff-bodies are reviewed. After briefly recalling the pioneering works in this domain, the paper focuses on recent research conducted with the latest experimental methods and techniques. The review encompasses a range of topics, including, the effects of bluff-body geometry (non-circular cross sections and nonuniformity in spanwise direction), steady and unsteady (periodic and non-periodic) inflow conditions; surface proximity (rigid wall, confinement and water free surface) and non-Newtonian fluids. Focus is brought to the flow physics of the wakes, including especially the complex threedimensional and oscillatory behaviours induced by the periodic vortex shedding phenomenon. The paper aims to offer a critical and systematic review of new knowledge and findings on the subject area, as well as emerging? and the most frequently adopted experimental techniques. The review also helps identifying knowledge gaps in the literature that need to be addressed in future investigations

    Small-Scale Energy Harvesting from Environment by Triboelectric Nanogenerators

    Get PDF
    The increasing needs to power trillions of sensors and devices for the Internet of Things require effective technology to harvest small-scale energy from renewable natural resources. As a new energy technology, triboelectric nanogenerators (TENGs) can harvest ambient mechanical energy and convert it into electricity for powering small electronic devices continuously. In this chapter, the fundamental working mechanism and fundamental modes of a TENG will be presented. It can harvest all kinds of mechanical energy, especially at low frequencies, such as human motion, walking, vibration, mechanical triggering, rotating tire, wind, moving automobile, flowing water, rain drops, ocean waves, and so on. Such variety of energy harvesting methods promises TENG as a new approach for small-scale energy harvesting

    Assessment of the effects of clay diagenesis on some petrophysical properties of lower cretaceous sandstones, block 3a, offshore orange basin South Africa

    Get PDF
    >Magister Scientiae - MScClay diagenesis phenomenon and their effects on some petrophysical properties of lower cretaceous silliciclastic sandstones, offshore Orange basin have been established. Previous studies on Orange basin revealed that chlorite and quartz cements have significantly compromised the reservoir quality in this basin but it is expected that the reservoirs shows better improvement basinward, an analogy of this is displayed by tertiary sandstones deposit, offshore Angola. The main goal of this thesis is to perform reservoir quality evaluation by intergrating geological, geochemical and geophysical tools to substantiate the effects of clay minerals distribution and its subsequent diagenesis on the intrinsic properties (porosity, permeability and saturation) of reservoir intervals encountered within three wells in block 3A (deeper waters), offshore Orange basin. Five lithofacies were identified based on detailed core description from wells KF-1, KH-1 and AU-1 in this block. The facies were grouped based on colour and grain sizes, they are named : A1 (shale), A2 (sandstone), A3 (siltstone), A4 (dark coloured sandstone) and A5 (conglomerates).Depositional environment is predominantly marine, specifically, marine delta front detached bars and deepwater turbiditic sandstone deposit. Geophysical wire line logs of gamma ray, resistivity logs combo and porosity logs were interpreted, parameters and properties such as VCL, porosity, permeability and saturation were estimated from these logs and the values obtained were compared with values from conventional core analysis data, the values agreed well with each other. Detailed petrographic studies (SEM, XRD and thinsection) plus geochemical studies (CEC, EDS, pH, Ec) were carried out on twenty two core samples to establish if these clay minerals and other cements have pervasive effects on the reservoir quality or otherwise
    • …
    corecore