14,677 research outputs found

    Image mining: issues, frameworks and techniques

    Get PDF
    [Abstract]: Advances in image acquisition and storage technology have led to tremendous growth in significantly large and detailed image databases. These images, if analyzed, can reveal useful information to the human users. Image mining deals with the extraction of implicit knowledge, image data relationship, or other patterns not explicitly stored in the images. Image mining is more than just an extension of data mining to image domain. It is an interdisciplinary endeavor that draws upon expertise in computer vision, image processing, image retrieval, data mining, machine learning, database, and artificial intelligence. Despite the development of many applications and algorithms in the individual research fields cited above, research in image mining is still in its infancy. In this paper, we will examine the research issues in image mining, current developments in image mining, particularly, image mining frameworks, state-of-the-art techniques and systems. We will also identify some future research directions for image mining at the end of this paper

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    Image mining: trends and developments

    Get PDF
    [Abstract]: Advances in image acquisition and storage technology have led to tremendous growth in very large and detailed image databases. These images, if analyzed, can reveal useful information to the human users. Image mining deals with the extraction of implicit knowledge, image data relationship, or other patterns not explicitly stored in the images. Image mining is more than just an extension of data mining to image domain. It is an interdisciplinary endeavor that draws upon expertise in computer vision, image processing, image retrieval, data mining, machine learning, database, and artificial intelligence. In this paper, we will examine the research issues in image mining, current developments in image mining, particularly, image mining frameworks, state-of-the-art techniques and systems. We will also identify some future research directions for image mining

    Reducing the Burden of Aerial Image Labelling Through Human-in-the-Loop Machine Learning Methods

    Get PDF
    This dissertation presents an introduction to human-in-the-loop deep learning methods for remote sensing applications. It is motivated by the need to decrease the time spent by volunteers on semantic segmentation of remote sensing imagery. We look at two human-in-the-loop approaches of speeding up the labelling of the remote sensing data: interactive segmentation and active learning. We develop these methods specifically in response to the needs of the disaster relief organisations who require accurately labelled maps of disaster-stricken regions quickly, in order to respond to the needs of the affected communities. To begin, we survey the current approaches used within the field. We analyse the shortcomings of these models which include outputs ill-suited for uploading to mapping databases, and an inability to label new regions well, when the new regions differ from the regions trained on. The methods developed then look at addressing these shortcomings. We first develop an interactive segmentation algorithm. Interactive segmentation aims to segment objects with a supervisory signal from a user to assist the model. Work within interactive segmentation has focused largely on segmenting one or few objects within an image. We make a few adaptions to allow an existing method to scale to remote sensing applications where there are tens of objects within a single image that needs to be segmented. We show a quantitative improvements of up to 18% in mean intersection over union, as well as qualitative improvements. The algorithm works well when labelling new regions, and the qualitative improvements show outputs more suitable for uploading to mapping databases. We then investigate active learning in the context of remote sensing. Active learning looks at reducing the number of labelled samples required by a model to achieve an acceptable performance level. Within the context of deep learning, the utility of the various active learning strategies developed is uncertain, with conflicting results within the literature. We evaluate and compare a variety of sample acquisition strategies on the semantic segmentation tasks in scenarios relevant to disaster relief mapping. Our results show that all active learning strategies evaluated provide minimal performance increases over a simple random sample acquisition strategy. However, we present analysis of the results illustrating how the various strategies work and intuition of when certain active learning strategies might be preferred. This analysis could be used to inform future research. We conclude by providing examples of the synergies of these two approaches, and indicate how this work, on reducing the burden of aerial image labelling for the disaster relief mapping community, can be further extended

    TCANet for Domain Adaptation of Hyperspectral Images

    Get PDF
    The use of Convolutional Neural Networks (CNNs) to solve Domain Adaptation (DA) image classification problems in the context of remote sensing has proven to provide good results but at high computational cost. To avoid this problem, a deep learning network for DA in remote sensing hyperspectral images called TCANet is proposed. As a standard CNN, TCANet consists of several stages built based on convolutional filters that operate on patches of the hyperspectral image. Unlike the former, the coefficients of the filter are obtained through Transfer Component Analysis (TCA). This approach has two advantages: firstly, TCANet does not require training based on backpropagation, since TCA is itself a learning method that obtains the filter coefficients directly from the input data. Second, DA is performed on the fly since TCA, in addition to performing dimensional reduction, obtains components that minimize the difference in distributions of data in the different domains corresponding to the source and target images. To build an operating scheme, TCANet includes an initial stage that exploits the spatial information by providing patches around each sample as input data to the network. An output stage performing feature extraction that introduces sufficient invariance and robustness in the final features is also included. Since TCA is sensitive to normalization, to reduce the difference between source and target domains, a previous unsupervised domain shift minimization algorithm consisting of applying conditional correlation alignment (CCA) is conditionally applied. The results of a classification scheme based on CCA and TCANet show that the DA technique proposed outperforms other more complex DA techniquesThis work was supported in part by Consellería de Educación, Universidade e Formación Profesional [grant numbers GRC2014/008, ED431C 2018/19, and ED431G/08] and Ministerio de Economía y Empresa, GovernmentofSpain[grantnumberTIN2016-76373-P].Allareco–fundedbytheEuropeanRegionalDevelopment Fund (ERDF). This work received financial support from the Xunta de Galicia and the European Union (European Social Fund - ESF)S
    corecore