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Abstract: The use of Convolutional Neural Networks (CNNs) to solve Domain Adaptation (DA)
image classification problems in the context of remote sensing has proven to provide good results
but at high computational cost. To avoid this problem, a deep learning network for DA in remote
sensing hyperspectral images called TCANet is proposed. As a standard CNN, TCANet consists
of several stages built based on convolutional filters that operate on patches of the hyperspectral
image. Unlike the former, the coefficients of the filter are obtained through Transfer Component
Analysis (TCA). This approach has two advantages: firstly, TCANet does not require training based
on backpropagation, since TCA is itself a learning method that obtains the filter coefficients directly
from the input data. Second, DA is performed on the fly since TCA, in addition to performing
dimensional reduction, obtains components that minimize the difference in distributions of data
in the different domains corresponding to the source and target images. To build an operating
scheme, TCANet includes an initial stage that exploits the spatial information by providing patches
around each sample as input data to the network. An output stage performing feature extraction that
introduces sufficient invariance and robustness in the final features is also included. Since TCA is
sensitive to normalization, to reduce the difference between source and target domains, a previous
unsupervised domain shift minimization algorithm consisting of applying conditional correlation
alignment (CCA) is conditionally applied. The results of a classification scheme based on CCA and
TCANet show that the DA technique proposed outperforms other more complex DA techniques.

Keywords: domain adaptation; TCA; hyperspectral; correlation alignment; classification

1. Introduction

Technological advances in the devices used for hyperspectral data acquisition in remote sensing
such as large airborne and space-borne platforms led to an increase on the demand for geoinformation
by goverment agencies, research institutes and private sectors [1].The proliferation of small unmanned
airborne platforms with sensors that are capable of capturing hundreds of spectral bands [2] also
contributes to the wide availability of this type of information. As a result, the amount of data to be
analyzed is continuously increasing. This makes hyperspectral image processing and, in particular,
the classification of images, a challenge [3]. The classification problem to be solved is more complex
when a set of images that belong to different spatial areas or have been taken by different sensors or at
different time frames need to be classified by the same classifier. In all these cases, the spectral shift
between the different images, produced during in-flight data acquisitions could worsen the accuracy
of a joint classifier [4,5]. This shift can be due to, for example, instrumental pressure, temperature
or vibrations, as well as to atmospheric effects or geometric distortions. Furthermore, as the scarcity
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of available reference information affects the success of the classification task, and since the manual
labeling process is very time consuming [6], the need to develop new algorithms that take advantage
of labeled images to classify new ones gains particular relevance.

1.1. Transfer Learning and Domain Adaptation

Transfer Learning (TL) focuses on applying the knowledge previously acquired for one or more
source tasks for a source domain to a similar or different but related target task over a target domain.
In our case the task is hyperspectral image classification and the TL problem to be solved is Domain
Adaptation (DA). The TL approach analyzed in this paper is called transductive [7] as it uses the
labeled data from an image belonging to one source domain to classify an unlabeled image from a
target domain. Therefore, labeled data coming from the target domain is not required.

The adaptation of the model trained on one image to another one can be performed in different
ways [8]. A first approach would consist on the selection of invariant features between the domains in
order to train the classifier [9,10]. A second approach could be to use a subset of unlabeled samples
of the target domain to adapt a classifier model trained with samples of the source domain [11–13].
The last approach would be the adaptation of the data distributions of both domains [14,15] and it is
usually called representation learning or Feature Extraction (FE) [8].

In this paper, the last approach, i.e., FE, is adopted.The main objective of the proposed technique is
to find a mapping function that translates the input data belonging to both domains (source and target)
from its original representation space to a new space that achieves better classification results [16].
In our case the differences between the images (different domains) can be the result of the spectral
shift and intensity change produced during in-flight data acquisitions, due to calibration errors in the
sensors, as well as to atmospheric effects or geometric distortions.

1.2. Related Work

As examples of DA techniques related with FE, we can mention modern Neural Network
(NN) approaches as denoising autoencoders (DAEs) [17,18] or domain-adversarial neural networks
(DANN) [19–21]. They are used to build a mapping function that leads to the new representation of
the input data. The most simple DAE consists of an input layer and an output layer of the same size,
separated by a smaller hidden one. The hidden layer is responsible for mapping the input data to a
new representation by compressing it.

As the training process required by FE techniques based on NN implies a computational expensive
learning process based on training information, computational techniques for FE were proposed.
In [22], the authors suggest a wavelet scattering network (ScatNet) that replaces the convolutional
filters with simple wavelet operators. [23] presents an example of application of ScatNet to classify
hyperspectral images. Another NN scheme that uses fixed weights is proposed in [24], where the
author proposes PCANet. It is a linear network for classification consisting of two stages where the
weights are fixed and computed using PCA filters, which considerably reduces the computational
cost. In [25], and based on the basic structure of PCANet, the authors apply DA for speech emotion
recognition using three parallel networks with a different input for each one: source, target and
a mixture of source and target. Once the three networks computed their own weights, the ones
belonging to both the source and mixture networks are readjusted using the weights computed over
the target network.

The use of PCA allows finding linear principal components to represent the data in a lower
dimension but sometimes we need non linear principal components because the data is not
linearly separable. Therefore, other schemes as in [26] use kernel PCA (KPCA) to extract features.
The application of kernels allows mapping the input data into a high dimensional feature space using
the kernel trick, to later find principal components in this new space. Although PCA can be effectively
used for dimensionality reduction, it cannot guarantee that the distributions between different domain
data are similar in the PCA transformed space [27]. This fact makes that the computation of PCA-based
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fixed filters is not the most effective for DA problems. For this reason we propose to build filters by
using Transfer Component Analysis (TCA) instead.

TCA was proposed [28] as an alternative to PCA and KPCA in terms of dimensionality reduction.
TCA is a kernel-based FE technique especially designed for DA because it proposes a common feature
space to both domains (source and target) minimizing the difference between them. In [29] the authors
apply two TCA approaches over two different datasets. The first approach applies a simple version of
TCA, whereas the second uses an extension called Semisupervised TCA (SSTCA). Both versions try to
reduce the distance between the domains, but SSTCA also includes a manifold regularization term to
preserve the local geometry and a label dependence term to maximize the alignment of the projections.
Different alternative approaches to TCA were proposed. In particular, we highlight Joint Distribution
Adaptation (JDA) [30], which is a method that jointly adapts both the marginal distribution and the
conditional distribution between source and target domains, being TCA a particular case. Transfer
Joint Matching (TJM) [31] combines feature matching and instance re-weighting, and, finally, [32] uses
TCA to distinguish features in dynamic multi-objective optimization problems, that is, optimization
objectives that change over time.

In this paper, a scheme for unsupervised DA applied for hyperspectral remote sensing
classification, based on TCA and called TCA Network (TCANet) is proposed. It simulates the
behaviour of a Convolutional Neural Network (CNN) with the particularity that the weights are
fixed and computed based on TCA instead of being computed through a back-propagation algorithm,
thus reducing the amount of time required for the computation of the weights. The scheme profits from
the spatial information of the datasets by considering a patch around each pixel of the image as input.
Then, TCA is applied to calculate the weights of the network. TCA tries to learn a transformation
matrix across domains by minimizing the distribution distance measure. Since TCA is sensitive to
normalization, to reduce the difference between source and target domains, a previous unsupervised
domain shift minimization algorithm is conditionally applied. It aligns the second-order statistics of
the source and target distributions. Finally, the output of the last layer is processed to extract the new
modified features.

The paper is organized as follows: Section 2 presents some preliminary knowledge of DA and
TCA and the data used in the experiments. Section 3 presents a detailed description of the proposed
method. Section 4 presents the results obtained by the proposed scheme for the classification of
hyperspectral images using DA. The discussion is performed in Section 5. Finally, Section 6 presents
the conclusions.

2. Data and Techniques

In this section, the fundamentals required to understand the proposed scheme are presented.
First, the DA problem in the terms studied in this paper is defined. Then, the TCA method for feature
extraction is introduced as it is the base for the joint representation of the source and target images.
Finally, the datasets used in the experiments are also detailed.

2.1. Domain Adaptation

As mentioned in Section 1, the proposed scheme makes an adaptation of the data distribution
to reduce the data shift between the distributions of both source and target domains before the
classification. To better identify the cases for which this solution can be used, we first describe the
application context.

We consider a setting where all the labeled samples belong to the source domain and are used as
training data. The test data is not labeled and belongs to the target domain. Thus, we can define the
source domain as DS = {(XS, Y)} = {(xS1, y1), . . . , (xSns, yns)} where xSi ∈ XS is an input pixel and
yi ∈ Y denotes the corresponding output label, which is common to both source and target domains.
Similarly, we define the target domain as DT = {XT} = {(xT1), . . . , (xTnt)} where xTi ∈ XT is the
input data. Let P(XS) and P(XT) be the marginal probability distributions of XS and XT , respectively.
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In a typical domain adaptation context we assume that [33]:

1. The input feature spaces are the same for both domains, XS = XT = X , and also the label space Y .
2. P(XS) 6= P(XT), but P(Y|XS) = P(Y|XT).

The first condition means that both domains have the same representation (in our case, the same
number of bands in the images and the same number of classes in the reference data, for example).
The second condition is equivalent to assume that both domains are correlated (the classes have
distributions in the source and the target domains that can be related). Following this approach, in the
scheme proposed in this work the only labeled samples that will be used belong to the source domain.

2.2. TCA for Feature Extraction

TCA [28] is a kernel-based feature extraction technique especially designed for DA. It tries to
learn several transfer components across domains in a Reproducing Kernel Hilbert Space (RKHS),
using Maximum Mean Discrepancy (MMD) [34] to minimize the distance between the distributions.

In contrast to other techniques, such as the Kullback–Leibler divergence, MMD is a non-parametric
and computationally simpler kernel-based measure (involving the inner product between the difference
in means of two groups’ features distributions [35]). The empirical estimate of the distance between
two distributions, with data XS (source) corresponding to the first distribution and data XT (target)
corresponding to the other one, such as being defined by MMD, is as follows:

dist(XS, XT) =

∥∥∥∥∥ 1
ns

ns

∑
i=1

φ(xSi )−
1
nt

nt

∑
i=1

φ(xTi )

∥∥∥∥∥
2

H
, (1)

whereH is a universal RKHS [36], and φ : X → H is a nonlinear mapping function that can be found
minimizing the distance as defined by (1). Instead of this, [27] proposed to transform this problem
into a kernel learning problem by using the kernel trick, (i.e., K(xi, xj) = φ(xi)

′φ(xj)). Then, (1) can be
rewritten as:

dist(XS, XT) = trace(KL), (2)

where

K =

[
KS,S KS,T
KT,S KT,T

]
∈ R(ns+nt)×(ns+nt) (3)

is a kernel matrix, KS,S and KT,T are the kernel matrices defined by K() on the source domain and target
domain respectively, KS,T and KT,S are also kernel matrices defined by K() but on the cross-domain,
and L = [Lij] ≥ 0 with

Lij =


1

n2
s

if xi, xj ∈ XS,
1

n2
t

if xi, xj ∈ XT ,

− 1
nsnt

otherwise.

(4)

The main objective of TCA is to find the nonlinear mapping function φ based on kernel
feature extraction. Ref. [28] proposes a unified kernel learning method using an explicit low-rank
representation. Then, the kernel learning problem solved by TCA can be summarized as:

minw trace(WTW) + µtrace(WTKLKW)

s.t. WTKHKW = I,
(5)

where µ is a trade-off parameter, the second trace is the distance between mapped samples dist(X′S, X′T)
such that X′S = {x′Si

} = {φ(xSi )}, X′T = {x′Ti
} = {φ(xTi )}, I is an identity matrix of size m×m, and

H is a centering matrix. The first trace in Equation (5) corresponds to a regularization term needed
to control the complexity of the projection matrix W ∈ R(ns+nt)×m, m � ns + nt. This projection
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matrix is necessary to transform the corresponding feature vectors to the new m-dimensional space.
The restriction WTKHKW = I is added to avoid the trivial solution (W = 0).

The optimization problem (5) can be reformulated as a trace maximization problem where the
solution of the projection matrix W comes through the eigendecomposition of

E = (I + µKLK)−1KHK, (6)

giving the m eigenvectors corresponding to the m principal eigenvalues of E.
Once the fundamentals of TCA have been explained, we continue with the description of the

datasets used in the experiments and the proposed TCANet scheme.

2.3. Data

The proposed scheme was evaluated over two remote sensing images acquired by two different
sensors, ROSIS-03 and AVIRIS. The main specifications of these sensors are detailed in Table 1 [37–42].

Table 1. Main characteristics for both ROSIS-03 and AVIRIS sensors.

Characteristic ROSIS-03 AVIRIS

Angular field of view (FOV) 16◦ 30◦

Instantaneous field of view (IFOV) 0.56 mrad 0.95 mrad

Number of pixels per line 512 614

Scan principle Pushbroom Whiskbroom

Ground resolution 1 m–6 m 20 m

Radiometric resolution 14 bits 10 bits

Spectral range 430 nm–800 nm 400 nm–2450 nm

Spectral sampling 4 nm 9.6 nm–10.0 nm

Inflight calibration 0.2 nm 0.5 nm

2.3.1. Pavia City Dataset

This image was acquired by the ROSIS-03 hyperspectral sensor covering the spectrum between
430 and 860 nm in 115 spectral bands over the city of Pavia. It has a spatial size of 512× 1400 pixels
with a resolution of 1.3 m, and covers about 1 km2. After removing noisy bands, the final spectral
resolution of the image is 102 bands. Following the specifications of [21] two disjoint regions were used
as source and target as can be seen in Figure 1 where the four different classes are specified. The source
region has a size of 124× 173 pixels where its upper-left corner corresponds to the coordinates (907,
266) in the Pavia City image and its corresponding latitude and longitude are 45◦10′54.95′ ′N and
9◦09′21.09′ ′E, respectively. The target region has a spatial size of 350× 350 pixels where its upper-left
corner corresponds to the coordinates (0, 0) in the original image and its corresponding latitude and
longitude are 45◦11′23.66′ ′N and 09◦08′57.06′ ′E, respectively.
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TARGET

SOURCE

TARGET

SOURCE

Roads Vegetation Shadows Buildings

N

0 150 m

Figure 1. False color composite image, reference data and label meaning for the Pavia City dataset.
Please note that the target and source domains are parts of the same image.

2.3.2. Indiana Dataset

This image was acquired by the AVIRIS hyperspectral sensor over the city of Indiana [43] on
12 June 1992. It has a spatial dimension of 2678× 614 pixels with a spatial resolution of 20 m and covers
about 657 km2. The spectral resolution is of 220 bands ranging 400–2500 nm. Two disjoint regions
were used as source and target as shown in Figure 2 that was rotated 90 degrees to the left. On the
one hand, the source region has a size of 301× 329 pixels where its upper-left corner corresponds
to the coordinates (0, 2340) in the Indiana image and its corresponding latitude and longitude are
40◦24′02.00′ ′N and 87◦00′04.38′ ′O, respectively. On the other hand, the target region has a spatial
resolution of 700× 614 pixels where its upper-left corner corresponds to the coordinates (0, 1576) in
the original image and its corresponding latitude and longitude are 40◦31′08.58′ ′N and 86◦56′51.82′ ′O,
respectively. The five classes shown in the figure were considered for this image in the experiments.
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SOURCE

TARGET

SOURCE
TARGET

Buildings Corn Pasture River Woods

N

0 1 km

Figure 2. False color composite image, reference data and label meaning for the Indiana dataset.

3. TCANet: The Proposed Classification Scheme Based on DA

This section describes TCANet, the TCA-based classification scheme proposed in this paper.
Its main goal is to achieve an adaptation of the domains of the source and target images in order
to produce high classification accuracy. To achieve this goal, TCANet simulates the behaviour of a
CNN. The network follows a similar philosophy as [24] in the sense that the convolutional filters are
replaced by fixed filters. In the case of TCANet, the filters are computed using TCA, which is a method
specifically designed for DA that minimizes the distance between the data distributions. Both source
and target domains are used to compute the filters in order to find a new common representation.

Figure 3 shows a block diagram of the proposed scheme. After a first step where a set of patches
are extracted from samples of the different images, two sequential cascade stages composed by a
filtering process, a factorization of patches into blocks, and the computation of filter coefficients
are applied to perform the DA task. In each cascade stage, TCA is applied to compute the transfer
components needed to build the TCA filters that are used to perform the convolutional operation over
all the previously extracted patches. The TCA filters are computed for each stage based on the output
of the previous stage. Finally, a feature extraction step is carried out. This stage is responsible for
producing the new features generated by the network. As a result a new representation of the samples
is obtained. Once the images belong to the same domain, a classification process using Support Vector
Machine (SVM) is performed. The different steps involved in the proposed scheme are explained along
the next sections.
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Figure 3. Block diagram of the classification scheme based on TCANet.

3.1. Patch Extraction

Suppose we are provided with two different remote sensing images IS and IT , corresponding to
the source and target domains respectively. Both images have the same number of bands (B) but not
necessarily the same spatial size.

The first step in the process is to generate the input dataset containing samples selected from the
source and target domains. Firstly, we select nS and nT random samples from IS and IT , respectively.
Then, in order to take advantage of spatial information, a patch of size D× D× B around each sample
is extracted being D the spatial width and height of the window and B the number of bands of each
one of the images, that is {si}

nS
i=1, si ∈ RD×D×B for the source, and {ti}nT

i=1, ti ∈ RD×D×B for the
target. Then, each patch is reshaped from 3D (D× D× B) to 2D (D2 × B). Therefore, the input for
the next step is carried out by stacking nS patches from the source and nT patches from the target
{xi}n1

i=1, xi ∈ RD2×B, n1 = nS + nT . A detailed example of the patch extraction process applied for
one patch of the source and one patch of the target is shown in Figure 4 for 100-band source and target
images (B = 100).

S
o
u
rc
e

Ta
rg
e
t

3X3X100

3X3X100

9X100

Figure 4. Patch extraction example for a case of D× D× B patches, being D = 3 and B = 100.

3.2. Cascade TCA

TCANet requires, as a standard CNN, different layers. In this paper two layers are considered.
Each one of these layers is called a cascade TCA stage as it is shown in Figure 3. Each stage calculates
the coefficients corresponding to the TCA filters from the patches provided by the previous stage.
A general scheme of the cascade TCA stage 1 is shown in Figure 5. Three steps, each one marked
with its corresponding execution position, can be identified: factorization of the patches into blocks,
calculation of the filter coefficients, and filtering process. An identical structure is used for the cascade
TCA stage 2 where the input data is the output of the cascade TCA stage 1. Any new stage would have
the same structure.
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Figure 5. Details of the cascade TCA stage 1.

3.2.1. Factorization of the Patches into Blocks

Unlike in [24] where overlapping blocks are extracted from each patch, TCANet extracts only
non overlapping ones. This optimization highly reduces the amount of memory required and the
computational cost. For each patch xi that was obtained in the feature extraction process, b blocks
of size k1 × k2 are extracted. Once all the blocks of xi have been extracted, the block mean of this
patch is subtracted from all of them obtaining P̄i = [p̄i,1, p̄i,2, . . . , p̄i,b], where p̄i,j is a mean-removed
block. Figure 6 gives a graphical overview of the process. After applying the same process to all the xi
original patches we get

P = [P̄1, P̄2, . . . , P̄n1 ] ∈ Rk1k2×n1b. (7)

As soon as the blocks are obtained, the next step is to calculate the coefficients of the filters by
using TCA.
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Figure 6. Detailed patch factorization scheme.

3.2.2. Calculation of the Filter Coefficients

The filter coefficients are computed by applying the TCA algorithm presented in Section 2.2 to the
extracted blocks. These are obtained by applying the next equation:

Wl = matk1,k2(θl(K(pa, pb))) ∈ Rk1×k2 , l = 1, 2, ..., f1, (8)

where matk1,k2(z) is a function that maps z ∈ Rk1k2 to a matrix W ∈ Rk1×k2 , K(pa, pb) is a kernel
function, pa, pb ∈ P are column vectors, θl(·) denotes the lth feature extracted using TCA, and f1 is the
number of filters of the first stage.

3.2.3. Filtering Process

Once the filter coefficients have been obtained, the next step is the filtering processing
(convolution) of the xi patches with the coefficients of each f1 filter. The outputs for this first stage are:

Ol
i = xi ∗W1

l , i = 1, 2, . . . , n1, l = 1, 2, . . . , f1, (9)

where ∗ denotes the 2D convolution. The total number of outputs generated in this first stage of the
cascade TCA is n2 = n1 × f1.

As soon as the output of the cascade TCA stage 1 is obtained, the same steps (factorization of
the patches into blocks, calculation of the filter coefficients and filtering process) are performed to
complete the cascade TCA stage 2. As input for this stage, the output of the previous cascade TCA
stage is used.

3.3. Feature Extraction

Once the two cascade TCA stages are processed, the next stage is the extraction of the new features
for the input samples. This stage consists of the steps explained below. An example of this process is
shown in Figure 7 for an input patch with D = 3 and B = 1, where D is the spatial width and height
of the window and B is the number of bands of the images. Please note that the patch size used in the
real experiments is higher, as it will be described in the results section.

The number of outputs for each initial input patch xi produced by the last cascade TCA stage is
f1 × f2 (first column in Figure 7). Once all the outputs of the last stage have been computed, they are
binarized using the Heaviside functionH(·). This function returns 0 when the value is less or equal
than 0 and 1 otherwise. After that, the outputs containing only binary values are grouped into sets of
f2 elements. Finally, these elements are reduced by adding all the values component by component
(denoted as addition of matrices in the figure), considering all the nt patches in the images the result of
the reduction will be:

Tc =
f2

∑
v=1

(H(Ov
c )), c = 1, 2, . . . , nt × f1. (10)
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The final feature for each initial input patch xi (last column in Figure 7) is defined as:

fi = [S(T(((i−1)× f1)+1)), . . . ,S(T(i× f1)
)]T , (11)

where S(·) is a binary function that returns zero if the input value is less than the smallest integer that
is greater than or equal to f2/2 and one otherwise. Thus, the size of each fi is D2 × B× f1.
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Figure 7. Example of feature extraction scheme considering input patches of 3× 3 pixels.

3.4. Conditional Correlation Alignment (CCA)

Since TCA is sensitive to normalization, [44] proposed a variant called TCA+ which automatically
selects a suitable normalization for the source and target data before applying TCA. This normalization
is based on the means and standard deviations of the overall Euclidean distance of all pairs of
instances of the datasets. In our case, we propose a simple method, see Figure 8, for unsupervised
domain adaptation similar to the technique called CORrelation ALignment (CORAL) [14]. Based on
the covariance alignment of both source and target distributions, the domain shift is minimized by
applying a linear transformation. We propose a conditional application of the correlation alignment
called CCA over the original datasets. It applies correlation alignment only if the distance between
the two distributions of the source and target domains (DS and DT) decreases after applying the
correlation alignment. The metric used is the mean Mahalanobis distance (MD) calculated between all
pixel pairs.

CCA

Source

Target

Adjusted Source

Target

Figure 8. Conditional Correlation Alignment (CCA) scheme.
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4. Results

This section presents the experimental results obtained by applying TCANet for DA over the two
datasets described in Section 2.3. Each dataset consists of two images, source and target. As the task
performed is classification, the results are shown in terms of classification accuracy.

The proposed scheme was evaluated on a PC with a quad-core Intel i5-6600 at 3.3GHz and 32 GB
of RAM. The codes were implemented using MATLAB version 2015B, TensorFlow 1.3.0 and Pytorch
0.4.0. Regarding the GPU implementation, TensorFlow codes run on a Pascal NVIDIA GeForce GTX
1070 with 15 Streaming Multiprocessors (SMs) and 128 CUDA cores each. The CUDA version used
is 8.0.61.

When applying the proposed TCANet, a first preprocessing step consisting of a conditional
correlation alignment is applied, as explained in Section 3.4. To decide whether CCA is applied,
the Mahalanobis distance between the input image and the target image, after and before the correlation
alignment, are calculated. Table 2 shows the results. MD′ denotes the distance calculated for the
adjusted source data and MD the distance for the original source data as defined in Algorithm 1.
In the case of the Indiana dataset, it is clear that applying correlation alignment increases the distance
value, so in this case this correlation alignment is not applied. The situation is the opposite for the
other dataset.

Table 2. Mahalanobis distance between samples from source and target.

Datasets
Distance

MD′ MD

Pavia City 136.58 139.88

Indiana 22,348.85 364.22

Algorithm 1 CCA algorithm

Input: Source Data DS, Target Data DT

Output: Adjusted Source Data D′S
CS = cov(DS) + I

CT = cov(DT) + I

ES = DSC
−1
2

S

D′S = ESC
1
2
T

if MD(DS, DT) <= MD(D′S, DT) then

D′S = DS

end if

For the proposed TCANet scheme two cascade TCA stages are used. The input patches are of a
spatial size of 3× 3 and 100 bands in the case of Pavia, and 3× 3 and 220 bands in the case of Indiana.
As a result a patch size of 3× 3× 100 and 3× 3× 220, for Pavia and Indiana, respectively, are produced.
The block sizes are 9× 50 for Pavia and 9× 55 for Indiana. The filter sizes for the f1 and f2 filters are
2 and 16, respectively. Regarding the feature extraction stage, each input patch of size D× D× B is
represented by a final feature vector of size D× D× B× f1, being f1 the number of filters in the first
cascade TCA stage. As a result, for the Pavia dataset the size of the output features is 1800, while the
size is 3960 for Indiana.

The evaluation of the TCANet proposed scheme is carried out by using a final SVM classification
stage. As usual in remote sensing [45], the classification accuracy results are presented in terms
of overall accuracy (OA), which is the percentage of correctly classified pixels compared to the
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reference data information available, average accuracy (AA), which is the mean of the percentage of
correctly classified pixels for each class, and kappa coefficient (K) which is the percentage of agreement
(correctly classified pixels) corrected by the number of agreements that would be expected purely by
chance [46,47]. Furthermore, for the proposed scheme, a F1-score [48] values corresponding to the
macro-average F1-score values computed as the arithmetic mean of the per-class F1-score have been
included. The results are the average of 10 independent executions.

To analyse the performance of the different schemes and compare to the state of the art, similar
settings to [21] were used. The number of available samples from both source and target domains
for the two images (Pavia City and Indiana) are displayed in Tables 3 and 4. A maximum number
of 200 labeled samples per class were selected for training from the source image. In those classes in
which the number of samples were less than 200, all available samples were selected. Similar to [21],
only 50% of the target samples were used for test.

Table 3. Samples available in the Pavia City dataset.

Classes
Source Target

Samples % Samples %

Roads 326 7.96 2549 9.07

Vegetation 1793 43.75 6406 22.80

Shadows 514 12.54 1638 5.83

Buildings 1465 35.75 17,501 62.29

Total 4098 28,094

Table 4. Samples available in the Indiana dataset.

Classes
Source Target

Samples % Samples %

Buildings 432 4.33 15,003 17.64

Corn 3062 30.69 11,116 13.07

Pasture 1742 17.47 4154 4.88

River 197 1.97 540 0.63

Woods 4543 45.54 54,230 63.77

Total 9976 85,043

The DA method proposed in this paper as well as the other methods presented for comparison
consist of two steps. The first one builds a mapping function Θ based on representation learning
algorithms where the original features are transformed into others that can increase the separability of
the different classes. The second step creates a model based on SVM using the transformed training set
to train the model and performing the final classification over the transformed test set.

Table 5 shows the origin of the samples used for the representation learning and the classification
steps for all the methods analyzed. Subscripts S and T denote the source and target domains,
respectively. In all the methods where samples belonging the target set were used to build the
mapping function these samples were not used in the classification step. The only methods for which
no representation learning is applied are the SVM-Src and the SVM-Tgt methods. Thus, the inputs for
the classifier in these cases are the original features.
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Table 5. Sample selection.

Method Rep. Learning Samples
Classification

Train Set Test Set

SVM-Src - XS XT

SVM-Tgt - XT XT

1DOM XS Θ(XS) Θ(XT)

2DOM XS ∪ XT Θ(XS) Θ(XT)

DANN XS ∪ XT Θ(XS) Θ(XT)

TCANet XS ∪ XT Θ(XS) Θ(XT)

The methods where only samples from the source domain are used to obtain the mapping
function are labeled as “1DOM”. The methods that use some unlabeled samples from the target
domain, in addition to the samples of the source domain to generate the mapping function are labeled
as “2DOM”. By definition, both DANN and TCANet methods fit a “2DOM” setting since both of
them use a small set of unlabeled samples from the target domain. For the classification step, a SVM
with a radial basis function (RBF) kernel is used. Five-fold cross-validation [49] to find the values of
parameters C and γ that optimise the OA value obtained by SVM was used . For C the range of values
used goes from −1 to 15 and for γ the range goes from −10 to 10. In both cases the step size was 1.

Tables 6 and 7 show the results of the different methods applied over the Pavia City and Indiana
datasets, respectively. SVM-Src uses samples from the source for training and samples from the target
for test. In the case of SVM-Tgt, non-overlapping sets of samples from the target are used for both
training and test. The number of samples from the target, used in the training step, for the SVM-Tgt
method is 200 per class. For those classes for which the number of samples is less than 200, all the
samples were selected.

The methods denoted as PCA-1DOM and PCA-2DOM, extract features from the inputs by
computing PCA previously to the classification by SVM. The number of principal components selected
for the experiments was obtained as the value in the range going from 2 to the number of bands of
each image with a step size 2, that produced the best OA value.

For the DAE methods, an simple hidden layer of 200 and 400 neurons for the Pavia City
and Indiana datasets, respectively, was used. Regarding all other parameters, the two images
used the same values, which are learning_rate = 0.1, momentum = 0.00005 and a Gaussian noise
with standard_deviation = 0.1. The DANN method is the only one that does not need the SVM
classifier. The method itself integrates both the representation and the classification steps. For the
representation step, a network with three hidden layers of size 50 was used for the two images.
A similar configuration was applied to the classification step. The other parameters used for this
method are number_o f _epochs = 250, batch_size = 32, momentum = 0.9 and learning_rate = 0.001.

Table 6. Results for the Pavia City dataset.

Method OA (%) AA (%) K (%) F1-Score (%)

SVM-Src [21] 91.80 85.70 84.50 -

SVM-Tgt [21] 92.00 95.20 86.00 -

PCA-1DOM [21] 87.60 76.20 77.00 -

PCA-2DOM [21] 90.50 82.40 82.10 -

DAE-1DOM [21] 92.40 93.20 86.80 -

DAE-2DOM [21] 92.10 93.70 86.30 -

DANN [21] 92.60 85.40 86.80 -

TCANet 93.82 92.01 88.77 89.62
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Table 7. Results for the Indiana dataset.

Method OA(%) AA(%) K(%) F1-Score(%)

SVM-Src 50.84 56.42 28.54 -

SVM-Tgt 79.69 84.54 64.87 -

PCA-1DOM 55.86 63.26 34.02 -

PCA-2DOM 53.68 58.80 31.21 -

DAE-1DOM 53.95 59.90 32.21 -

DAE-2DOM 78.99 83.97 63.88 -

DANN 50.30 63.50 30.36 -

TCANet 78.22 71.15 58.80 68.97

5. Discussion

The results in Table 6 show that our method outperforms the other alternatives for the Pavia
dataset while in Table 7 the proposed method is among the best results for Indiana. In this case
the results are slightly below those obtained by the DAE-2DOM method, but with a better standard
deviation, 1.01 for our method compared to 1.50 obtained by DAE-2DOM.

The use of networks such as TCANet, with a CNN-like structure but simpler filter calculation,
allows reducing the computational cost of training the network by replacing the repetitive training
process to compute the weights of the network by methods that use fixed weights computed directly.
Inputs coming from the source and the target domains are used for computing the fixed filters, so the
filter learning in TCANet does not involve regularized parameters and does not require numerical
optimization solvers. In summary, the method includes only a cascaded linear map, followed by a
nonlinear output stage. The proposal offers simplicity and effectiveness. As a possible limitation
we could mention the high memory requirements of the TCA computation. The reason is that it
requires the computation of several matrix multiplications with a size of the matrix involved in the
operations depending on the number of samples selected for training from both the source and the
target. To reduce the computational cost, other TCA algorithms could be tried.

As future work, from the implementation point of view we will focus on optimizing the
computational cost of TCANet in order to make a fair comparison to the cost of a standard CNN.
The present version of TCANet includes non-optimized functions, as for example, those computed
using MATLAB. These functions should be rewritten in CUDA, for example, thus exploiting the
computational capabilities of Nvidia GPUs and allow a fair comparison with the CNN implementations
usually used as reference for computational cost and execution time measurement. From the DA
perspective, the proposed scheme based on the computation of fixed filters could be adapted to
use other TL algorithms to obtain the filters. In particular, other methods derived from TCA that
offer better results for some datasets could be applied. A detailed study considering a tradeoff
between computational cost and accuracy in the TL process is required for the selection of the best
network structure.

6. Conclusions

In this paper, a network scheme for Domain Adaptation (DA) of hyperspectral images based
on Transform Component Analysis (TCA) is proposed. The scheme, called TCANet, has a structure
similar to a Convolutional Neural Network (CNN), but differs from the latter in that coefficients of the
convolutional filters are computed using the TCA algorithm. That is, the filter coefficients are obtained
directly on the input data, from both the source and the target domains, requiring no backpropagation
learning. TCA shares some characteristics with Principal Component Analysis (PCA), but while PCA
is a generic method of dimensionality reduction, TCA is a method especially designed for DA that
minimize the difference in distributions of data in different domains. Additionally to the convolutional
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filter stages, TCANet includes a stage of patch extraction, a conditional correlation alignment using
the second-order statistic to reduce the domain shift between the source and the target domains, and a
final stage based on Heaviside functions to perform feature extraction. The scheme takes into account
both spatial and spectral information.

In summary, the scheme simulates the behaviour of a CNN specifically adapted to DA, requiring
no backpropagation algorithm, and therefore reducing the computational cost. The classification
accuracy obtained by SVM using the proposed network for DA was evaluated using two standard
datasets (Pavia City and Indiana) obtaining competitive results with respect to other deep learning
methods. On the other hand, the network scheme is quite general in the sense that TCA could be
replaced by other DA algorithms that perform representation learning or feature extraction.
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