8 research outputs found

    Surface Reconstruction from Constructive Solid Geometry for Interactive Visualization

    Get PDF
    A method is presented for constructing a set of triangles that closely approximates the surface of a constructive solid geometry model. The method subdivides an initial triangulation of the model’s primitives into triangles that can be classified accurately as either on or off of the surface of the whole model, and then recombines these small triangles into larger ones that are still either entirely on or entirely off the surface. Subdivision and recombination can be done in a preprocessing step, allowing later rendering of the triangles on the surface (i.e., the triangles visible from outside the model) to proceed at interactive rates. Performance measurements confirm that this method achieves interactive rendering speeds. This approach has been used with good results in an interactive scientific visualization program

    An improved z-buffer CSG rendering algorithm

    Full text link

    Subdivision Surface based One-Piece Representation

    Get PDF
    Subdivision surfaces are capable of modeling and representing complex shapes of arbi-trary topology. However, methods on how to build the control mesh of a complex surfaceare not studied much. Currently, most meshes of complicated objects come from trian-gulation and simplification of raster scanned data points, like the Stanford 3D ScanningRepository. This approach is costly and leads to very dense meshes.Subdivision surface based one-piece representation means to represent the final objectin a design process with only one subdivision surface, no matter how complicated theobject\u27s topology or shape. Hence the number of parts in the final representation isalways one.In this dissertation we present necessary mathematical theories and geometric algo-rithms to support subdivision surface based one-piece representation. First, an explicitparametrization method is presented for exact evaluation of Catmull-Clark subdivisionsurfaces. Based on it, two approaches are proposed for constructing the one-piece rep-resentation of a given object with arbitrary topology. One approach is to construct theone-piece representation by using the interpolation technique. Interpolation is a naturalway to build models, but the fairness of the interpolating surface is a big concern inprevious methods. With similarity based interpolation technique, we can obtain bet-ter modeling results with less undesired artifacts and undulations. Another approachis through performing Boolean operations. Up to this point, accurate Boolean oper-ations over subdivision surfaces are not approached yet in the literature. We presenta robust and error controllable Boolean operation method which results in a one-piecerepresentation. Because one-piece representations resulting from the above two methodsare usually dense, error controllable simplification of one-piece representations is needed.Two methods are presented for this purpose: adaptive tessellation and multiresolutionanalysis. Both methods can significantly reduce the complexity of a one-piece represen-tation and while having accurate error estimation.A system that performs subdivision surface based one-piece representation was im-plemented and a lot of examples have been tested. All the examples show that our ap-proaches can obtain very good subdivision based one-piece representation results. Eventhough our methods are based on Catmull-Clark subdivision scheme, we believe they canbe adapted to other subdivision schemes as well with small modifications

    Towards Real-Time Novel View Synthesis Using Visual Hulls

    Get PDF
    This thesis discusses fast novel view synthesis from multiple images taken from different viewpoints. We propose several new algorithms that take advantage of modern graphics hardware to create novel views. Although different approaches are explored, one geometry representation, the visual hull, is employed throughout our work. First the visual hull plays an auxiliary role and assists in reconstruction of depth maps that are utilized for novel view synthesis. Then we treat the visual hull as the principal geometry representation of scene objects. A hardwareaccelerated approach is presented to reconstruct and render visual hulls directly from a set of silhouette images. The reconstruction is embedded in the rendering process and accomplished with an alpha map trimming technique. We go on by combining this technique with hardware-accelerated CSG reconstruction to improve the rendering quality of visual hulls. Finally, photometric information is exploited to overcome an inherent limitation of the visual hull. All algorithms are implemented on a distributed system. Novel views are generated at interactive or real-time frame rates.In dieser Dissertation werden mehrere Verfahren vorgestellt, mit deren Hilfe neue Ansichten einer Szene aus mehreren Bildströmen errechnet werden können. Die Bildströme werden hierzu aus unterschiedlichen Blickwinkeln auf die Szene aufgezeichnet. Wir schlagen mehrere Algorithmen vor, welche die Funktionen moderner Grafikhardware ausnutzen, um die neuen Ansichten zu errechnen. Obwohl die Verfahren sich methodisch unterscheiden, basieren sie auf der gleichen Geometriedarstellung, der Visual Hull. In der ersten Methode spielt die Visual Hull eine unterstützende Rolle bei der Rekonstruktion von Tiefenbildern, die zur Erzeugung neuer Ansichten verwendet werden. In den nachfolgend vorgestellten Verfahren dient die Visual Hull primär der Repräsentation von Objekten in einer Szene. Eine hardwarebeschleunigte Methode, um Visual Hulls direkt aus mehreren Silhouettenbildern zu rekonstruieren und zu rendern, wird vorgestellt. Das Rekonstruktionsverfahren ist hierbei Bestandteil der Renderingmethode und basiert auf einer Alpha Map Trimming Technik. Ein weiterer Algorithmus verbessert die Qualitaet der gerenderten Visual Hulls, indem das Alpha-Map-basierte Verfahren mit einer hardware-beschleunigten CSG Rekonstruktiontechnik kombiniert wird. Eine vierte Methode nutzt zusaetzlich photometrische Information aus, um eine grundlegende Beschraenkung des Visual-Hull-Ansatzes zu umgehen. Alle Verfahren ermoeglichen die interaktive oder Echtzeit- Erzeugung neuer Ansichten

    An image-space algorithm for hardware-based rendering of constructive solid geometry

    Get PDF
    A new approach to image-space hardware-based rendering of Constructive Solid Geometry (CSG) models is presented. The work is motivated by the evolving functionality and performance of computer graphics hardware. This work is also motivated by a specific industrial application --- interactive verification of five axis grinding machine tool programs. The goal is to minimise the amount of time required to render each frame in an animation or interactive application involving boolean combinations of three dimensional shapes. The Sequenced Convex Subtraction (SCS) algorithm utilises sequenced subtraction of convex objects for the purpose of interactive CSG rendering. Concave shapes must be decomposed into convex shapes for the purpose of rendering. The length of Permutation Embedding Sequences (PESs) used as subtraction sequences are shown to have a quadratic lower bound. In ma ny situations shorter sequences can be used, in the best case linear. Approaches to subtraction sequence encoding are presented including the use of object-space overlap information. The implementation of the algorithm is experimentally shown to perform better on modern commodity graphics hardware than previously reported methods. This work also examines performance aspects of the SCS algorithm itself. Overall performance depends on hardware characteristics, the number and spatial arrangement of primitives, and the structure and boolean operators of the CSG tree

    Dreidimensionale virtuelle Organismen

    Get PDF
    Die vorliegende Arbeit befasst sich mit der Generierung virtueller Organismen respektive mit der dreidimensionalen Nachbildung anatomischer Strukturen von Pflanzen, Tieren, Menschen und imaginärer Wesen per Computer. Berücksichtigt werden dabei sowohl die verschiedenen Aspekte der Visualisierung, der Modellierung, der Animation sowie der Wachstums-, Deformations- und Bewegungssimulation. Dazu wird zuerst eine umfassende State-of-the-Art-Analyse konventioneller Methoden zur Organismengenerierung durchgeführt. Im Laufe dieser Analyse werden die Defizite herkömmlicher Verfahren aufgezeigt und damit eine gezielte Anforderungsanalyse für neue Verfahren erstellt. Mit Hilfe dieser Anforderungsanalyse wurde nach neuen Lösungsansätzen gesucht. Besonders hilfreich hat sich in diesem Zusammenhang die Frankfurter Organismus- und Evolutionstheorie erwiesen. Gemäß dieser Theorie stellen Organismen aus biomechanischer Sicht komplexe hydropneumatische Konstruktionen dar. Ihre Körperformen und Bewegungen werden weitgehend durch stabilisierende, kräfteerzeugende und kräfteübertragende Strukturen generiert, die den Gesetzen der klassischen Hydropneumatik folgen. So entstand die Idee, Organismen auf der anatomischen Ebene als eine komplexe Hierarchie unterschiedlicher hydropneumatischer Einheiten anzusehen, welche mechanisch miteinander interagieren. Diese Sichtweise liefert die Grundlage für ein neues biologisches Simulationsmodell. Es erlaubt der Computergraphik, sowohl die Form eines Organismus zu beschreiben als auch sein Verhalten bezüglich seiner Bewegungsabläufe, seiner evolutionären Formveränderungen, seiner Wachstumsprozesse und seiner Reaktion auf externe mechanische Krafteinwirkungen numerisch zu simulieren. Aufbauend auf diesem biologischen Simulationsmodell wurde ein neues Verfahren (Quaoaring) entwickelt und implementiert, das es erlaubt, beliebige organische Einheiten interaktiv in Echtzeit zu modellieren. Gleichzeitig ermöglicht dieses Verfahren die Animation von Bewegungen, Wachstumsprozessen und sogar evolutionären Entwicklungen. Die Animation verhält sich dabei im Wesentlichen biologisch stringent, z.B. wird das interne Volumen während komplexer Bewegungsabläufe konstant gehalten. Die größte Stärke der neuen Modellierungs- und Animationstechnik ist die holistische Verschmelzung des biologischen Simulationsmodells mit einem computergraphischen Geometriemodell. Dieses erlaubt dem Modellierer, biologische Konzepte für die Beschreibung der Form und anderer Attribute einer organischen Einheit zu verwenden. Darüber hinaus ermöglicht es die Animation des geometrischen Modells durch einfache Parameterspezifikation auf einer hohen Abstraktionsebene. Dazu wird ein utorenprozess beschrieben, wie Quaoaring für Modellierungs- und Animationszwecke verwendet werden kann. Es werden Aspekte der prototypischen Implementierung der Quaoaringtechnologie behandelt und über die Ergebnisse berichtet, die bei der Implementierung und der Anwendung dieses Softwareframeworks gewonnen wurden. Schließlich wird die Quaoaringtechnologie in ihrem technologischen Kontext beleuchtet, um ihr Zukunftspotential einzuschätzen

    Interactive Rendering of CSG Models

    No full text
    corecore