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ABSTRACT OF DISSERTATION

Subdivision Surface based One-Piece Representation

Subdivision surfaces are capable of modeling and representing complex shapes of arbi-

trary topology. However, methods on how to build the control mesh of a complex surface

are not studied much. Currently, most meshes of complicated objects come from trian-

gulation and simplification of raster scanned data points, like the Stanford 3D Scanning

Repository. This approach is costly and leads to very dense meshes.

Subdivision surface based one-piece representation means to represent the final object

in a design process with only one subdivision surface, no matter how complicated the

object’s topology or shape. Hence the number of parts in the final representation is

always one.

In this dissertation we present necessary mathematical theories and geometric algo-

rithms to support subdivision surface based one-piece representation. First, an explicit

parametrization method is presented for exact evaluation of Catmull-Clark subdivision

surfaces. Based on it, two approaches are proposed for constructing the one-piece rep-

resentation of a given object with arbitrary topology. One approach is to construct the

one-piece representation by using the interpolation technique. Interpolation is a natural

way to build models, but the fairness of the interpolating surface is a big concern in

previous methods. With similarity based interpolation technique, we can obtain bet-

ter modeling results with less undesired artifacts and undulations. Another approach

is through performing Boolean operations. Up to this point, accurate Boolean oper-



ations over subdivision surfaces are not approached yet in the literature. We present

a robust and error controllable Boolean operation method which results in a one-piece

representation. Because one-piece representations resulting from the above two methods

are usually dense, error controllable simplification of one-piece representations is needed.

Two methods are presented for this purpose: adaptive tessellation and multiresolution

analysis. Both methods can significantly reduce the complexity of a one-piece represen-

tation and while having accurate error estimation.

A system that performs subdivision surface based one-piece representation was im-

plemented and a lot of examples have been tested. All the examples show that our ap-

proaches can obtain very good subdivision based one-piece representation results. Even

though our methods are based on Catmull-Clark subdivision scheme, we believe they can

be adapted to other subdivision schemes as well with small modifications.

KEYWORDS: Solid Modeling, Subdivision Surface, One-Piece Representation, Inter-

polation, Boolean Operation.
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Chapter 1

Introduction

1.1 Motivation

Subdivision surfaces [1, 2, 3, 4, 7, 9, 11, 12, 17, 22] have become popular recently in

graphical modeling and animation because of their capability in modeling and represent-

ing complex shapes of arbitrary topology , their relatively high visual quality, and their

stability and efficiency in numerical computation. Subdivision surfaces can model and

represent complex shapes of arbitrary topology because there is no limit on the shape

and topology of the control mesh of a subdivision surface [1, 2, 3]. Actually, subdivi-

sion surfaces have already been used as primitives in several commercial systems such as

Alias|Wavefronts’s Maya, Pixar’s Renderman, Nichimen’s Mirai, and Newtek’s Lightwave

3D.

Basically, subdivision is a method for generating smooth surfaces, which first appeared

as an extension of splines to arbitrary topology control meshes [1, 2, 3]. Subdivision

schemes can be considered as an algorithmic generalization of classical spline techniques

enabling control meshes with arbitrary topology. They provide easy access to globally

smooth surfaces of arbitrary shape by iteratively applying simple refinement rules to the

given control mesh. A sequence of meshes generated by this process quickly converges to

a smooth limit surface. For most practical applications, the refined meshes are already

sufficiently close to the smooth limit after only a few refinement steps. Complex smooth

surfaces can be derived in a reasonably predictable way from relatively simple meshes.

There are many subdivision schemes that have been proposed in the past thirty years

[1, 2, 3, 4, 13, 15, 23, 24, 25, 48]. The Catmull-Clark subdivision scheme [1], the Doo-

Sabin subdivision scheme [2] and the Loop subdivision scheme [3] are the most well-

known, and are used in many high-end modeling and animation packages. There are
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quite a few other schemes. The Butterfly scheme [25] and a closely related scheme

known as Modified Butterfly [24] also use triangle meshes. Others include the Kobbelt’s

Interpolation Quadrilateral scheme [23], the Local Surface Fitting scheme [48], and many

variations on the above schemes. The rules given for the above schemes are usually only

suitable for closed surfaces. Surfaces with boundaries need special case rules to handle

the boundary without unpleasant artifacts.

With the parametrization technique for subdivision surfaces becoming available [8,

17, 18, 58] and with the fact that non-uniform B-spline and NURBS surfaces are special

cases of subdivision surfaces becoming known [15], we now know that subdivision surfaces

cover both parametric forms and discrete forms. Parametric forms are good for design

and representation, and discrete forms are good for machining and tessellation (including

Finite Element mesh generation). Hence, we have a representation scheme that is good

for all graphics and CAD/CAM applications.

Research work for subdivision surfaces has been done in several important areas, such

as surface texture mapping [60, 116], surface interpolation [11, 23, 24, 25, 26, 55], exact

surface evaluation [8, 16, 17, 18, 20], surface trimming [12], Boolean operations [7, 64, 92],

deformation [117], mesh editing [21, 110, 111], and computer animation [9, 19] etc.

Although subdivision surfaces are capable of modeling and representing complex

shapes of arbitrary topology and are well studied in many applications, methods on

how to build the control mesh of a complex surface are not studied much. Currently,

most meshes of complicated objects come from triangulation and simplification of raster

scanned data points, like the Stanford 3D Scanning Repository. This approach is costly

and leads to very dense meshes.

The objective of this research work is to develop necessary mathematical theories

and geometric algorithms to support subdivision surface based one-piece representation.

Subdivision surface based one-piece representation means to represent the final object in

a design process with only one subdivision surface (i.e. a sparse control mesh), no matter

how complicated the object’s topology or shape. No decomposition of the object into
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simpler components is necessary. Hence the number of parts in the final representation

is always the minimum: one. Another goal of this work is to build a system that can

represent any complicated 3D object and their Boolean operation results with only one

sparse mesh structure. Once every given object can be represented with one simple mesh,

it would be very convenient and efficient to render, manipulate, store and transmit any

virtual environment.

1.2 Subdivision Surfaces

We consider primarily stationary subdivision schemes in this research work, which means

that the choices of the refinement rules do not depend on the subdivision level. Once a

mesh is refined, the old mesh will not be used in computing the next level of vertices. The

positions of vertices for the next subdivision step only rely on the topology and position

of the current mesh. This requirement makes the implementation highly efficient and

also makes the analysis of subdivision surfaces much simpler.

Many different schemes exist for the actual subdivision process [1, 2, 3, 4, 13, 15, 23,

24, 25, 48]. The first two were developed in 1978 by two different pairs of people. The

Doo-Sabin scheme [2] and the Catmull-Clark scheme [1] are the most well-known, and

are used in many high-end modeling and animation packages. A third popular scheme

developed relatively recently, the Loop scheme [3], works only on triangle meshes. There

are also other subdivision schemes, like
√

3 scheme [4] etc. Most subdivision methods are

approximating. But there are also some interpolating subdivision schemes whose limit

surface interpolates the given initial control points. Such scheme includes the Butterfly

scheme [25] and the Kobbelt interpolating scheme [23] etc.

Given an initial mesh, subdivision computes a sequence of refined meshes converging

to a limit surface. The refined meshes are obtained by adding new vertices to the mesh

and connecting them with old vertices. The positions of new vertices are computed as

functions of positions of the old vertices. The positions of old vertices in the refined mesh

can be modified as well. To specify a subdivision scheme, two rules need to be established:

3



a topological rule for obtaining the graph of the refined mesh from the graph of the initial

mesh and a rule for computing the positions of the new vertices and modifying positions

of the old vertices. As an example, the Catmull-Clark subdivision scheme [1] is shown

below.
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Figure 1.1: Basic Concept of the Catmull-Clark Scheme.

Given a control mesh, a Catmull-Clark subdivision surface (CCSS) is generated by

iteratively refining the control mesh [1]. The limit surface is called a subdivision surface

because the mesh refining process is a generalization of the uniform B-spline surface

subdivision technique. Therefore, CCSSs include uniform B-spline surfaces and piecewise

Bézier surfaces as special cases. It is now known that CCSSs include non-uniform B-

spline surfaces and NURBS surfaces as special cases as well [15]. The valence of a mesh

vertex is the number of mesh edges adjacent to the vertex. A mesh vertex is called

an extraordinary vertex if its valence is different from four. Vertex V in Figure 1.1 is

an extraordinary vertex of valence five. A mesh face with an extraordinary vertex is

called an extraordinary face. The valance of an extraordinary face is the valence of its

extraordinary vertex. In the following, for the sake of simplicity, a mesh face and the

corresponding surface patch will be denoted by the same notation.

In the Catmull-Clark subdivision scheme[1], each mesh refining step involves the

construction of three new types of points: face points, edge points and vertex points, see

Figure 1.1. New points are connected to form a new control mesh. These control meshes
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converge to a limit surface. A face point is created for each old polygon, defined as the

average of every point in the polygon, i.e., the centroid of each face:

Fk+1
i =

Vk + Ek
i + Fk

i + Ek
i+1

4

where k is the subdivision level. An edge point is created for each old edge, defined as

the average of the midpoint of the original edge and the midpoint of the two new face

points for the polygons that adjoin the original edge:

Ek+1
i =

Vk + Ek
i + Fk+1

i−1 + Fk+1
i

4

And finally, new vertex points are defined as follows.

Vk+1 =
n− 2

n
Vk +

1

n2

n∑
i=1

Ek
i +

1

n2

n∑
i=1

Fk
i

where n is the valance of vertex V and k is the subdivision depth. In this dissertation,

we consider general CCSSs. That is, the new vertex point Vk+1 is computed as follows:

Vk+1 = αnV
k +

βn

n

n∑
i=1

Ek
i +

γn

n

n∑
i=1

Fk
i (1.1)

where αn, βn and γn are positive numbers whose sum equals one.

The new points are then connected, see Figure 1.1. Each face point connects to an

edge point, which connects to a new vertex point, which connects to the edge point of

the adjoining edge, which returns to the face point. This is done for each quadruple,

forming new quadrilaterals around the faces. The scheme only produces quadrilaterals,

although they are not necessarily planar.

CCSSs can model/represent complex shapes of arbitrary topology because there is

no limit on the shape and topology of the control mesh of a CCSS [1]. See Figure 1.2(d)

for the representation of a ventilation control component with a single CCSS. The initial

control mesh of the surface, the control mesh after one refinement and two refinements

are shown in Figure 1.2(a), Figure 1.2(b) and Figure 1.2(c), respectively. The ventilation

control component is a solid with seventeen holes (handles). It can not be represented

by a single trimmed B-spline or NURBS surface.
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(a) Initial control mesh (b) Control mesh after one refinement

(c) After two refinements (d) Limit surface of a ventilation control
component

Figure 1.2: An example of Catmull-Clark Subdivision Surfaces.

1.3 Subdivision Surface based One Piece Represen-

tation

Subdivision surfaces have an important impact on several areas of geometric modeling:

• Representation: Subdivision surfaces provide a more general surface represen-

tation scheme to the design community because subdivision surfaces include tra-

ditional surface representation schemes as special cases. For instance, a NURBS

surface can be generated as a subdivision surface through knot insertion. Subdivi-

sion surfaces also provide a different way to generate traditional surfaces.

• Modeling Capability: Subdivision surfaces provide more flexibility in shape

modeling than traditional surface representation schemes. It is possible to rep-

resent any complex shape with only one subdivision surface. It is even possible to

represent the result of a Boolean operation of two surfaces by a single subdivision

surface. This is due to the fact that the control mesh of a subdivision surface can

be of any shape and of any topology.
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• Numerical Stability: The construction process of a subdivision surface is numer-

ically stable no matter how complicated the shape of the surface. This is because

the mesh refining process of a subdivision surface is a local process. It shares the

same kind of numerical stability as the deCasteljau algorithm and the De Boor

algorithm. Note that these algorithms represent some mesh refining processes as

well.

• Smoothness and Discretization: Subdivision surfaces can be represented both in

parametric form and discrete form. Therefore subdivision surfaces enjoy advantages

of both representation schemes. The polygonal mesh form of a subdivision surface is

extremely suitable for machining and tessellation (including FE mesh generation).

On the other hand, it is possible to generate smooth parametric subdivision surfaces

of any shape and any topology for any design purpose. These surfaces can be C1,

G1, C2 or G2 continuous everywhere except at a few extraordinary points where

smoothness of the surface is only one order lower than that at other points. Hence

we have a representation scheme that is good for all CAD/CAM applications.

However, geometric algorithms and modeling technologies required in subdivision sur-

face based modeling operations have not yet been studied thoroughly [118]. For instance,

even though it is known that one can use a subdivision surface to model/represent com-

plex shape of arbitrary topology, a methodology on how to build the control mesh of

such a surface has never been presented. The construction is basically a trial-and-error

process.

Hence we need approaches to construct one-piece represented control meshes for com-

plex shape with arbitrary topology. Subdivision surface based one-piece representation

means to represent the final object in a design process with only one subdivision surface

(i.e. a sparse control mesh), no matter how complicated the object’s topology or shape.

No decomposition of the object into simpler components is necessary. Hence the number

of parts in the final representation is always the minimum: one.
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(a) One-piece mesh (b) One-piece surface

(c) Multi-piece mesh (d) Multi-piece surface

Figure 1.3: Subdivision surface based one-piece and multi-piece Representations.

In this dissertation research, we study two possible approaches to build a one-piece

represented control mesh for a given model. One possibility is to use the subdivision

surface interpolation technique to approximate the surface of the given model. But this

approach would be difficult to build features such as cusps, creases and darts into the

resultant surface in such a process. Another approach is to construct a mesh through

Boolean operations and multiresolution analysis. Both approaches can achieve good

results and can have explicit error control.

A comparison of subdivision surface based one-piece and multi-piece representation

is given in Figure 1.3. Figure 1.3(a) is the control mesh of the one-piece representation

surface shown in Figure 1.3(b) and Figure 1.3(c) is the mesh of the multi-piece represen-

tation surface shown in Figure 1.3(d), where different colors denote different parts. We

can see from Figure 1.3 that with subdivision surface based one-piece representation, the

number of components in the representation is only one.
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1.4 Structure of the Subdivision based One Piece

Representation System

The objective of the subdivision based one piece representation system is to represent the

final object in a design process with only one subdivision surface (i.e. a sparse control

mesh), no matter how complicated the object’s topology or shape. No decomposition

of the object into simpler components is necessary. Hence the output of our system

is always a sparse control mesh whose Catmull-Clark subdivision surface approximates

the target model. The system provides two possible ways to construct a sparse control

mesh: interpolation and Boolean operations. Our system supports CSG (Constructive

Solid Geometry) operations as well as long as the CSG primitives are represented in

subdivision surfaces. The overall framework of the system is shown in Figure 1.4. The

main steps of the framework will be discussed in the later chapters.

1.5 Contributions

Our research work for the dissertation is focused on developing necessary mathematical

theories and geometric algorithms to support subdivision surface based one-piece repre-

sentation. In this section we summarize the contributions of the dissertation research

work as follows.

• Parametrization of CCSSs [58]:

Subdivision methods for evaluating surfaces rely on performing repeated subdivi-

sions until the control structure approximates the limit surface within some tol-

erance. It is then possible to push the control points to their limit positions and

bilinearly interpolate values across an inexact surface patch. One of the main

problems that may hinder the usage of subdivision surfaces in shape design is the

exponential growth rate of the number of vertices in the refined mesh with respect

to the subdivision depth. This would make both the real time rendering and the

necessary accuracy difficult to achieve for complicated objects. Hence an explicit
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Figure 1.4: Structure of the Subdivision surface based One Piece Representation System

10



and exact evaluation and parametrization method for subdivision surfaces is indis-

pensable.

However, powerful evaluation and analysis techniques for subdivision surfaces have

not been fully developed yet. Parametrization methods that have been developed

so far are suitable for evaluation purposes only, not for analysis purposes, because

these methods either do not have an explicit expression, or are too complicated for

each part to be explicit. For instance, in [17], eigen functions are pre-computed

numerically and stored in a file. Therefore, they can be used for evaluation purpose

only.

(a) Control mesh (b) Limit surface

Figure 1.5: Direct and exact evaluation of Catmull-Clark subdivision surfaces.

We proposed a new parametrization technique for general Catmull-Clark subdivi-

sion surfaces. The new technique extends J. Stam’s work [17] by redefining all the

eigen basis functions in the parametric representation for general Catmull-Clark

subdivision surfaces and giving each of them an explicit form. The entire eigen
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structure of the subdivision matrix and its inverse are computed exactly and ex-

plicitly with no need to precompute anything. Therefore, the new representation

can be used not only for evaluation purposes, but for analysis purposes as well [58].

Our new approach is based on an Ω-partition of the parameter space and a de-

toured subdivision path. This results in a block diagonal matrix with constant size

diagonal blocks (7 × 7) for the corresponding subdivision process. Consequently,

eigen decomposition of the matrix is always possible and is simpler and more effi-

cient. Furthermore, since the number of eigen basis functions required in the new

approach is only one half of the previous approach [17], our new parametrization is

also more efficient for evaluation purposes. The camel model shown in Figure 1.5 is

rendered using our parametrization techniques with all the positions and normals

computed exactly, not approximated. Hence, the quality of the image is better

than those generated through the subdivision process.

• Interpolation of meshes of arbitrary topology [55]:

Interpolation is a direct approach for building a sparse mesh structure of a given

model in our subdivision based one-piece representation system. Although there

are some interpolation methods using subdivision surfaces [11, 25, 26, 52], most

of them cannot handle open meshes and the resultant surface exhibits undesired

artifacts and undulations. We proposed a new method for constructing a sparse

mesh whose smooth Catmull-Clark subdivision surface (CCSS) interpolates the

vertices of a mesh with arbitrary topology. The new method handles both open and

closed meshes. Normals or derivatives specified at any vertices of the mesh (which

can actually be anywhere) can also be interpolated. The construction process is

based on the assumption that, in addition to interpolating the vertices of the given

mesh, the interpolating surface is also similar to the limit surface of the given mesh.

Therefore, construction of the interpolating surface can use information from the

given mesh as well as its limit surface. This approach, called similarity based

interpolation [55], gives us more control of the smoothness of the interpolating
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(a) Given model (b) Sampled mesh of
model (a)

(c) Limit surface of
sample mesh (b)

(d) Mesh of one-piece
representation of (a)

Figure 1.6: Subdivision surface based one-piece representation using interpolation tech-
niques.

surface. Consequently, it avoids the need of shape fairing in the construction of

the interpolating surface. The computation of the interpolating surface’s control

mesh follows a new approach, which does not require the resulting global linear

system to be solvable. An approximate solution provided by any fast iterative

linear system solver is sufficient. Nevertheless, interpolation of the given mesh is

guaranteed. This is an important improvement over previous methods because

with these features, the new method can handle meshes with a large number of

vertices efficiently. Although the new method is presented for CCSSs, the concept

of similarity based interpolation can be used for other subdivision surfaces as well.

Figure 1.6 gives us an example of subdivision surface based one-piece representation

using interpolation techniques. Figure 1.6(a) is a given model for which we need to

construct a spars control mesh. Figure 1.6(b) is a mesh whose control points are

directly sampled from the model shown in Figure 1.6(a). By using our interpolation

technique, we can construct a sparse control mesh shown in Figure 1.6(d), whose

limit surface interpolates the sampled mesh shown in Figure 1.6(b) and would also

be almost the same as the given model shown in Figure 1.6(a). Figure 1.6(c)

is the limit surface of the mesh shown in Figure 1.6(b), which can be used as a

reference surface in the process of constructing the mesh shown in Figure 1.6(d).
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(a) Given mesh (b) Limit surface of (a) (c) Voxelization of (b)
with resolution 128 ×
128× 128

(d) Voxelization of (b)
with resolution 512 ×
512× 512

Figure 1.7: Voxelization of free-form solids.

The mesh shown in Figure 1.6(d) is called the subdivision surface based one-piece

representation of the given model shown in Figure 1.6(a).

• Voxelization of free-form solids [57]:

A voxelization technique and its applications for objects with arbitrary topology

are presented. With parametrization techniques for subdivision surfaces becoming

available, it is now possible to model and represent any continuous but topologi-

cally complex object with an analytical representation. We proposed a method to

convert a free-form object from its continuous geometric representation into a set

of voxels that best approximates the geometry of the object. Unlike traditional

3D scan-conversion based methods, our voxelization method is performed by recur-

sively subdividing the 2D parameter space and sampling 3D points from selected

2D parameter space points. Because we can calculate every 3D point position ex-

plicitly and accurately, uniform sampling on surfaces with arbitrary topology is not

a problem any more.

Moreover, our discretization of 3D closed objects is guaranteed to be leak-free when

a 3D flooding operation is performed. This is ensured by proving that our vox-
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elization results satisfy the properties of separability, accuracy and minimality. In

addition, a 3D volume flooding algorithm using dynamic programming techniques

is proposed which significantly speeds up the volume flooding process. Hence our

method is suitable for visualization of complex scenes, measuring object volume,

mass, surface area, determining intersection curves of multiple surfaces and per-

forming accurate Boolean/CSG operations. These capabilities are demonstrated

by test examples shown in the dissertation. For example, Figure 1.7 gives two re-

sults of voxelization of the rocker arm model shown in Figure 1.7(b), whose mesh

is shown in Figure 1.7(a). The result shown in Figure 1.7(c) is obtained by vox-

elizing the rocker arm model using resolution 128× 128× 128, while Figure 1.7(d)

is obtained using resolution 512 × 512 × 512. It is easy to see, when resolution is

high enough, the voxelization result would be close enough to the original model.

• Boolean operations on free-form solids [64]:

A method for performing robust and error controllable Boolean operations on free-

form solids represented by Catmull-Clark subdivision surfaces (CCSSs) was devel-

oped. The given objects are voxelized to make Boolean operations more efficient.

However, different from previous voxelization based approaches, the final result of

the Boolean operations in our method is represented with a continuous geometric

representation ( i.e. a polygonal mesh). This is achieved by doing the Boolean

operations in the parameter spaces of the solids, instead of the object space. The

2D parameter space is recursively subdivided until a keep-or-discard decision can

be made for each resulting subpatch using results of the voxelization process. This

approach allows us to easily compute a continuous approximation of the intersec-

tion curve and, consequently, build a continuous geometric representation for the

Boolean operation result. To make the Boolean operation result more accurate, a

secondary local voxelization can be performed for intersecting subpatches. Because

the voxelization process itself is very fast and robust, the overall process is fast and

robust too. Most importantly, error of Boolean operation results can be estimated,
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so error control is possible. In addition, our method can handle any cases of Boolean

operations as long as the given solids are represented by CCSSs. Therefore there

are no special or degenerated cases to take care of. Although the new method is

presented for CCSSs, the concept actually works for any subdivision scheme whose

limit surfaces can be parameterized. See Figure 1.8 for an example of performing

Boolean operations between two solids represented by Catmull-Clark subdivision

surfaces. Figure 1.8(a) is the union of the cylinder and the bunny model, while

Figure 1.8(b) is the subtraction of one from the other.

(a) Union (b) Difference

Figure 1.8: Boolean operations on free-form solids.

• Adaptive tessellation of CCSSs [56, 59, 61]:

The Catmull-Clark subdivision scheme provides a powerful method for building

smooth and complex surfaces. But the number of faces in the uniformly refined

meshes increases exponentially with respect to subdivision depth. Adaptive tes-

sellation reduces the number of faces needed to yield a smooth approximation to

the limit surface and, consequently, makes the rendering process more efficient.

We have developed a new adaptive tessellation method for general Catmull-Clark

subdivision surfaces. Different from previous control mesh refinement based ap-

proaches, which generate approximate meshes that usually do not interpolate the
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limit surfaces, the new method is based on direct evaluation of the limit surface to

generate an inscribed polyhedron of the limit surface. With explicit evaluation of

general Catmull-Clark subdivision surfaces becoming available, the new adaptive

tessellation method can precisely measure error for every point of the limit surface.

Therefore, it has complete control of the accuracy of the tessellation result. Cracks

(a) Given model (b) Uniform tessellation (c) Adaptive tessellation

(d) Adaptive tessellation (e) Adaptive tessellation (f) Triangulated tessellation

Figure 1.9: Adaptive tessellation on surfaces with arbitrary topology.

are avoided by using a recursive color marking process to ensure that adjacent

patches or subpatches use the same limit surface points in the construction of the

shared boundary. The new method performs limit surface evaluation only at points

that are needed for the final rendering process. Therefore it is very fast and memory

efficient. The new method is presented for the general Catmull-Clark subdivision

scheme, but it can be used for any subdivision scheme that has an explicit evalua-

tion method for its limit surface. An example of adaptive tessellation is shown in
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Figure 1.9. Figure 1.9(a) is the given gargoyle model, which is a subdivision sur-

face. Figure 1.9(b) is a uniform tessellation of Figure 1.9(a), which is very dense.

Figures 1.9(c), 1.9(d) and 1.9(e) are three adaptive tessellations of the given model

with different error tolerances. From these figures we can see that sparse polygonal

approximation can be achieved through adaptive tessellation. Figure 1.9(f) is the

triangulated tessellation of Figure 1.9(e), which consists of only triangles in the

polygonal approximation.

Figure 1.10: A snapshot of the subdivision surface based one-piece representation system.

• A system that supports subdivision surface based one-piece representation has

been implemented and a lot of examples have been tested. All the examples show

that our approaches can obtain very good subdivision based one-piece representa-

tion results. Figure 1.10 is a snapshot of our subdivision surface based one-piece

representation system.
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• Other results:

We also achieved some other good results during the dissertation research. Al-

though they are not directly related to our subdivision surface based one-piece

representation system, they all are good applications of subdivision surfaces and

may have some impacts in future research work.

– Constrained Scaling of CCSSs [62]:

A method to scale a Catmull-Clark subdivision surface while holding the shape

and size of specific features (sub-structures) unchanged is presented. The ba-

sic idea of the method, fix-and-stretch, is similar to a previous approach for

trimmed NURBS surfaces, i.e., the new surface is formed by fixing selected

regions of the given subdivision surface that contain the features, scaling and

stretching the remaining part; the goal is to ensure that the resulting surface

reflects the shape and curvature distribution of the unconstrained scaled ver-

sion of the given surface. However, the stretching process, which is the core

of the entire process, is more complicated because of the complexity of a sub-

division surface’s topology. The major contributions of the new constrained

scaling technique include new strain energy computation techniques and en-

ergy optimization techniques for regions around extraordinary points. The

new method is more powerful than the previous method in that it can handle

more complicated shapes and, consequently, can be used for more challenging

applications. Test results on the rocker arm model that can not be represented

by trimmed NURBS surfaces are shown in Figure 1.11. The left-hand model

in Figures 1.11(a) and 1.11(b) is the given model. The blue parts in these

figures are the specified feature which will not be changed in the constrained

scaling process. The right-hand model of Figure 1.11(a) is constrained scaling

with scale factors Sx = 1.3, Sy = 1.2 and Sz = 1.1. The right-hand model of

Figure 1.11(b) is obtained in the constrained scaling process with scale factor

Sx = 0.8, Sy = 0.95 and Sz = 0.9.
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(a) Constrained scaling (bigger) (b) Constrained scaling (smaller)

Figure 1.11: Constrained scaling of Catmull-Clark subdivision surfaces.

– Texture mapping on surfaces of arbitrary topology [60]:

A very simple and yet highly efficient, high quality texture mapping method for

surfaces of arbitrary topology has been presented. The new method projects

the given surface from the 3D object space into the 2D texture space to iden-

tify the 2D texture structure that will be used to texture the surface. The

object space to texture space projection is optimized to ensure minimum dis-

tortion of the texture mapping process. The optimization is achieved through

a commonly used norm preserving minimization process on edges of the sur-

face. The main difference here is, that by using an initial value approach,

the optimization problem can be set up as a quadratic programming problem

and, consequently, solved by a linear least squares method. Three methods

to choose a good initial value are presented. Test cases show that the new

method works well on surfaces of arbitrary topology, with the exception of

surfaces with exceptionally abnormal curvature distribution. Other advan-

tages of the new method include uniformity and seamlessness of the texture

mapping process. The new method is suitable for applications that do not

require precise texture mapping results but demand highly efficient mapping
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(a) Uniform texture Mapping (b) Uniform texture
Mapping

(c) Patch based texture Mapping (d) Patch based tex-
ture Mapping

Figure 1.12: Texture Mapping on surfaces of arbitrary topology.

process such as computer animation or video games. Examples of texture

mapping on surfaces of arbitrary topology are shown in Figure 1.12. Figures

1.12(a) and 1.12(b) are obtained with a global norm preserving based opti-

mization, while Figures 1.12(c) and 1.12(d) are obtained through patch based

parametrization. It is easy to see that the global method can obtain uniform

texture mapping results, which are more realistic than non-uniform ones.

– Rendering live scenes by using view dependent textured splatting tech-

niques [63]:

We presented a novel approach for rendering low resolution point clouds with
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multiple high resolution textures, the type of data commonly generated by

real-time vision systems. The low precision, noisy, and sometimes incomplete

nature of such data sets is not suitable for existing point-based rendering tech-

niques that are designed to work with high precision and high density point

clouds. Our new algorithm, View-dependent Textured Splatting (VDTS),

combines traditional splatting with a view-dependent texturing strategy to

increase rendering quality of low resolution data sets with high resolution im-

ages. VDTS requires no pre-processing, addresses texture visibility and anti-

aliasing on the fly, and can be efficiently accelerated by commodity graphics

hardware. Therefore it is particularly well-suited for rendering dynamic scenes

in real time and online.

1.6 Notions

The following notational conventions are adopted in this dissertation. Space objects

such as points, lines and parametric functions are denoted by bold upper case Roman

characters, e.g., V. Linearly transformed items or Fourier points are denoted by bold

lower case Roman characters, e.g., v. All vectors are assumed to be columns. Vectors

of ordinary items (respectively linearly transformed items or Fourier points) are denoted

by upper (respectively lower) case italicized characters, e.g., V (respectively g). Matrices

are denoted by uppercase Roman characters, e.g., M. The transpose of a vector V

(respectively matrix M) is denoted by V T (respectively MT).

1.7 Overview

The organization of this dissertation is as follows:

• First, an explicit parametrization method is presented for exact evaluation of

Catmull-Clark subdivision surfaces in Chapter 2. With an explicit parametriza-

tion, subdivision is no longer a must in order to obtain the limit surface of a given

mesh, because direct and exact evaluation can now be directly applied.
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• In Chapter 3, an interpolation method for meshes of arbitrary topology is pre-

sented. Using interpolation, a subdivision surface based one-piece representation

for any model with arbitrary topology can be achieved.

• A voxelization technique and its applications for objects with arbitrary topology are

presented in Chapter 4. The new technique converts a free-form object from its

continuous geometric representation into a set of voxels that best approximates the

geometry of the object. The voxelization results can further be used for performing

robust and error controllable Boolean operations in our subdivision surface based

one-piece representation system.

• A technique for performing robust and error controllable Boolean operations on free-

form solids represented by Catmull-Clark subdivision surfaces (CCSSs) is presented

in Chapter 5. After the Boolean operations, a one-piece representation can be

achieved in this stage, although the resulting meshes could be dense.

• Because subdivision surface based one-piece representations obtained from interpo-

lation or Boolean operations are usually dense meshes, good mesh simplification or

reduction methods are needed. One method is adaptive tessellation, which reduces

the number of faces needed to yield a smooth approximation to the limit surface

and, therefore, makes the rendering process more efficient. In Chapter 6, we

present a new adaptive tessellation method for general Catmull-Clark subdivision

surfaces which can significantly reduce the number of polygons for representing a

CCSS with accurate error control.

• Multiresolution analysis is another good method for simplifying dense meshes with

arbitrary topology. In Chapter 7 multiresolution representation for subdivision

surface based one-piece representations is presented, which results in much sparser

control meshes and has explicit error estimation.
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• We conclude the dissertation in Chapter 8 and point out some directions for future

work.

Copyright c© Shuhua Lai 2006
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Chapter 2

Parametrization and Evaluation of
General Catmull-Clark Subdivision
Surfaces

In this chapter, a new parametrization technique and its applications for general Catmull-

Clark subdivision surfaces are presented. Our new technique [58] extends J. Stam’s

work [17] by redefining all the eigen basis functions in the parametric representation for

general Catmull-Clark subdivision surfaces and giving each of them an explicit form. The

entire eigen structure of the subdivision matrix and its inverse are computed exactly and

explicitly with no need to precompute anything. Therefore, the new representation can be

used not only for evaluation purpose, but for analysis purpose as well. The new approach

is based on an Ω-partition [17] of the parameter space and a detoured subdivision path.

This results in a block diagonal matrix with constant size diagonal blocks (7 × 7) for

the corresponding subdivision process. Consequently, eigen decomposition of the matrix

is always possible and is simpler and more efficient. Furthermore, since the number

of eigen basis functions required in the new approach is only one half of the previous

approach [17], the new parametrization is also more efficient for evaluation purpose.

This is demonstrated by several applications of the new techniques in texture mapping,

special feature generation, surface trimming, boolean operations and adaptive rendering.

The organization of this chapter is: A brief introduction is given in Section 1. Section

2 gives a brief review of the Catmull-Clark subdivision scheme and previous evaluation

techniques. Section 3 shows an intuitive but expensive approach in parameterizing an

extraordinary Catmull-Clark patch. Section 4 shows a more efficient approach in param-

eterizing a Catmull-Clark patch using an extended subdivision path. Section 5 shows
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how to compute the eigen structure of the subdivision matrix of the extended subdivi-

sion path. Section 6 shows the evaluation process of the new parametric representation

at an arbitrary point of a Catmull-Clark patch. Section 7 gives some examples of anal-

ysis with our explicit representation around an extraordinary vertex. Section 8 shows

application examples of the new scheme in texture mapping, special feature generation,

surface trimming, adaptive rendering, mesh interpolation and boolean operations. The

concluding remarks are given in Section 9.

2.1 Introduction

Subdivision surfaces have become popular recently in graphical modelling and animation

because of their capability in modeling/representing complex shape of arbitrary topology

[9], their relatively high visual quality, and their stability and efficiency in numerical com-

putation. Subdivision surfaces can model/represent complex shape of arbitrary topology

because there is no limit on the shape and topology of the control mesh of a subdivision

surface.

Subdivision methods for evaluating surfaces rely on performing repeated subdivisions

until the control structure approximates the limit surface within some tolerance. It is

then possible to push the control points to their limit positions and bilinearly interpolate

values across an inexact surface patch. But in some applications, the exact evaluation is

critical. Hence a good parametrization for subdivision surface is indispensable.

However, powerful evaluation and analysis techniques for subdivision surfaces have

not been fully developed yet. Parametrization methods that have been developed so far

are suitable for evaluation purpose only, not for analysis purpose, because these methods

either do not have an explicit expression, or are too complicated for each part to be

explicit. For instance, in [17], eigen functions are pre-computed numerically and stored

in a file. So they can be used for evaluation purpose only. Note that exact evaluation at

a point of a subdivision surface is possible only if there is an explicit parametrization of
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the surface. Hence, an explicit parametrization is not only critical for analysis purpose,

but for evaluation and rendering purpose as well.

In this chapter we will present an Ω-partition based approach to solve several im-

portant problems of subdivision surfaces: (1) computation of new control vertices at a

specified subdivision level, (2) explicit parametrization of an extraordinary patch, and

(3) surface evaluation at arbitrary parameter space point with eigen functions computed

on the fly.

The new approach is based on the observation that the subdivision process on the

control vertices can be broken into subdivision processes on smaller, same frequency

groups after a few linear transformations. Using a different ordering of the vertices and

the idea of enlarging the subdivision matrix, the subdivision matrix can be transformed

into a block matrix with each block being circulant [5, 22]. Hence it is natural to use the

Fourier matrices to transform them into diagonal matrix. Each such subdivision process

on points of the same frequency is independent of the valence of the extraordinary vertex.

The dimension of the corresponding subdivision matrix for each frequency group is 7×7.

Therefore, the process of using a large subdivision matrix to perform the subdivision

process on the control vertices can be replaced with a set of 7 × 7 matrices on the

same frequency groups. This not only makes computation of the eigen structures of the

subdivision matrices always possible, but also simpler and more efficient. Inverses of the

eigenvector matrices can also be explicitly computed.

2.2 Previous Work

2.2.1 Catmull-Clark Subdivision Surfaces

Given a control mesh, a Catmull-Clark subdivision surface (CCSS) is generated by it-

eratively refining the control mesh [1]. The limit surface is called a subdivision surface

because the mesh refining process is a generalization of the uniform B-spline surface sub-

division technique. The valence of a mesh vertex is the number of mesh edges adjacent

to the vertex. A mesh vertex is called an extraordinary vertex if its valence is different
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Figure 2.1: (a) Control vertices that influence an extraordinary patch. (b) New control
vertices (solid dots) generated after a Catmull-Clark subdivision.

from four. Vertex V in Figure 2.1(a) is an extraordinary vertex of valence five. A mesh

face with an extraordinary vertex is called an extraordinary face. The valance of an ex-

traordinary face is the valence of its extraordinary vertex. In the following, for the sake

of simplicity, a mesh face and the corresponding surface patch will be treated the same

and denoted by the same notation.

Given an extraordinary face S = S0,0. If the valence of its extraordinary vertex

is n, then the surface patch corresponding to this extraordinary face is influenced by

2n + 8 control vertices [1, 17]. The control vertices shown in Figure 2.1(a) are the ones

that influence the patch marked with an “S = Sm−1,0”. In general, if Sm−1,0 is the

extraordinary subpatch generated after m − 1 subdivision steps, then by performing a

Catmull-Clark subdivision step on the control vertices of Sm−1,0, one gets 2n + 17 new

control vertices. See Figure 2.1(b) for the new control vertices generated for the patch

Sm−1,0 shown in (a). These 2n + 17 new control vertices define four subpatches: Sm,b,

b = 0, 1, 2, 3 (Figure 2.1(b)). Sm,0 is again an extraordinary patch but Sm,1, Sm,2, and

Sm,3 are regular uniform bicubic B-spline patches. Iteratively repeat this process, one

gets a sequence of regular bicubic B-spline patches (Sm,b), m ≥ 1, b = 1, 2, 3, a sequence

of extraordinary patches (Sm,0), m ≥ 0, and a sequence of extraordinary vertices. The

extraordinary patches converge to the limit point of the extraordinary vertices [11]. The

regular bicubic B-spline patches (Sm,b), m ≥ 1, b = 1, 2, 3, and the limit point of the

extraordinary vertices form a partition of S.
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2.2.2 Previous Parametrization and Evaluation Methods

An algorithm for the evaluation of a subdivision surface at an arbitrary point was first

proposed by J. Stam in 1998 for Catmull-Clark subdivision surfaces [17] and then in 1999

for Loop subdivision surfaces [18]. Stam’s approach shows that an extraordinary surface

patch and its derivatives can be represented as a linear combination of the control points

with weights defined by a set of 2n + 8 eigenbasis functions where n is the valence of

the extraordinary patch. The representation satisfies simple scaling relations and can

be easily evaluated in constant time. However, even though analytical expressions for

the eigenbasis functions have been derived, some of them are too complicated to be

reported in the paper [17]. Besides, some of the eigenbasis functions are redundant. We

will show in this chapter that only n + 6 eigenbasis functions are actually needed and,

consequently, the evaluation process can be made more efficient. J. Stam’s approach [17]

is mainly developed for evaluation purpose. As we shall present, our parametrization

results [58] can be used not only for evaluation, but for analysis purpose as well.

Warrent and Weimer presented a method in [22] for computing all eigenvalues and

eigenvectors of the subdivision matrix by writing the subdivision matrix for the 2-ring

in block circulant form. Ball and Storry [5] also used the similar approach to compute

the eigen structure of the subdivision matrix. However, as far as we know, the inverse

of the matrix of the eigenvectors has never been computed explicitly, and the overall

explicit eigen structure has never been integrated into the parametrization formula. In

this paper, based on the eigen analysis results of [5], an explicit and exact evaluation

formula is derived.

Zorin extended the work of J. Stam by considering subdivision rules for piecewise

smooth surfaces with parameter-controlled boundaries [20]. The main contribution of

their work is the usage of a different set of basis vectors for the evaluation process which,

unlike eigenvectors, depend continuously on the coefficients of the subdivision rules. The

advantage of this algorithm is that it is possible to define evaluation for parametric
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families of rules without considering excessive number of special cases, while improving

numerical stability of calculation.

In addition to Stam’s approach, two different parameterizations of Catmull-Clark

subdivision surfaces have been proposed by Boier-Martin and Zorin [8]. The motivation

of their work is to provide parametrization techniques that are differentiable everywhere.

Although all the natural parameterizations of subdivision surfaces are not C1 around

extraordinary vertices of valence higher than four[8], the resulting surfaces are still C2

almost everywhere. Moreover, despite of the fact that the partial derivatives diverge

around an extraordinary vertex, in this paper, we will show that an standardized normal

vector can be calculated explicitly everywhere. As we know, precisely calculated normal

vector is indispensable for surface shading purposes.

Exact evaluation of piecewise smooth Catmull-Clark surfaces near sharp and semi-

sharp features is considered in [16]. Constant-time performance is achieved by employing

Jordan decomposition of the subdivision matrix. In this paper we will show that spe-

cial features can be generated using ordinary Catmull-Clark rules with constant-time

evaluation performance as well.

2.3 Parametrization of a Patch

The regular bicubic B-spline patches {Sm,b}, m ≥ 1, b = 1, 2, 3, induce a partition on the

unit square [0, 1]× [0, 1]. The partition is defined by : {Ωm,b}, m ≥ 1, b = 1, 2, 3, with

Ωm,1 = [ 1
2m , 1

2m−1 ]× [0, 1
2m ],

Ωm,2 = [ 1
2m , 1

2m−1 ]× [ 1
2m , 1

2m−1 ],

Ωm,3 = [0, 1
2m ]× [ 1

2m , 1
2m−1 ]

(see Figure 2.2 for an illustration of the partition [17]). For any (u, v) ∈ [0, 1]× [0, 1]

but (u, v) 6= (0, 0), there is an Ωm,b that contains (u, v). To find the value of S at

(u, v), first map Ωm,b to the unit square. If (u, v) is mapped to (ū, v̄) by this mapping,

then compute the value of Sm,b at (ū, v̄). The value of S at (0, 0) is the limit of the
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Figure 2.2: Ω-partition of the unit square [17].

extraordinary vertices. For convenience of subsequent reference, the above partition will

be called an Ω-partition of the unit square.

In the above process, m and b can be computed as follows:

m(u, v) = min{dlog 1
2
ue, dlog 1

2
ve} ,

b(u, v) =





1, if 2mu ≥ 1 and 2mv < 1
2, if 2mu ≥ 1 and 2mv ≥ 1
3, if 2mu < 1 and 2mv ≥ 1 .

The mapping from Ωm,b to the unit square is defined as:

(u, v) → (ū, v̄) = (φ(u), φ(v)),

where

φ(t) =

{
2mt, if 2mt ≤ 1
2mt− 1, if 2mt > 1 .

(2.1)

Since each Sm,b is a standard B-spline surface, it can be expressed as

S(u, v) = W T (ū, v̄)MGm,b

where Gm,b is the control point vector of Sm,b, W (u, v) is a vector containing the 16 power

basis functions:

W T (u, v) = [1, u, v, u2, uv, v2, u3, u2v, uv2, v3, u3v, u2v2, uv3, u3v2, u2v3, u3v3],

and M is the B-spline coefficient matrix. An important observation is, W T (ū, v̄) can be

expressed as the product of W T (u, v) and two matrices:

W T (ū, v̄) = W T (u, v)KmDb,
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where K is a diagonal matrix

K = Diag(1, 2, 2, 4, 4, 4, 8, 8, 8, 8, 16, 16, 16, 32, 32, 64)

and Db is an upper triangular matrix depending on b only. Db can be obtained by

replacing ū, v̄ in W (ū, v̄) with φ(u), φ(v) defined in Eq. (2.1). Therefore, we have

S(u, v) = W T (u, v)KmDbMGm,b.

The computation of the control vertices of Sm,b involves two matrices, A and Ā [17].

Ā is a (2n + 17)× (2n + 8) matrix, representing the subdivision process shown in Figure

2.1(b). A is a (2n + 8) × (2n + 8) submatrix of Ā, representing the process of mapping

the 2n+8 control vertices of the given extraordinary patch to the 2n+8 control vertices

of its extraordinary subpatch. Let

G = [V,E1, · · · ,En,F1, · · · ,Fn, I1, · · · , I7]

then G (See Figure 2.1(a) for its labelling) is the column vector representing the control

vertices of S. By applying A to G (m − 1) times we get the 2n + 8 control vertices of

the extraordinary subpatch Sm−1,0. Now by applying Ā to the control vertices of Sm−1,0

(represented as Gm−1), we get 2n+17 new control points which include the 2n+8 control

vertices of Sm,0. Let Ḡm be the column vector representation of these 2n + 17 vertices,

we have

Ḡm = ĀGm−1 = ĀAm−1G .

Then by multiplying Ḡm with an appropriate “picking” matrix Pb, we get the control

vertices of the subpatch Sm,b:

Gm,b = PbḠm = PbĀAm−1G .

Hence we have

S(u, v) = W T (u, v)KmDbMPbĀAm−1G. (2.2)

This is a parametrization of an extraordinary patch. However, this is a costly process to

use because it involves m− 1 multiplications of the (2n + 8)× (2n + 8) matrix A. In the

next section, we will present an efficient approach to calculate Gm,b for any b and m.
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ĝ

G
^

G
^ ĝ
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Figure 2.3: The extended subdivision diagram.

2.4 Calculate Control Vertices after m Subdivisions

The goal here is to show that instead of using the direct path from G to Gm−1 to

compute Gm−1 = Am−1G in the above equation, one should use the indirect, longer path

(G → g → gm−1 → Gm−1) in Figure 2.3 to do the job. The reason for doing so is: the

corresponding matrix T is a block diagonal matrix with each diagonal block of dimension

7 × 7 only. Therefore, the process of computing their eigen decompositions is not only

always possible, but also much simpler and more efficient.

Details of this new approach and definitions of related mappings are given below. We

consider a general CCSS here. That is, the new vertex point V′ after one subdivision is

computed as defined in Eq. 1.1. New face points and edge points are computed the same

way as in [1].

First, to prepare G for the major transformation, we extend G into a vector of seven

equal-length components, called Ĝ:

Ĝ = (V T , ET , F T , IT
1 , IT

2 , IT
3 , IT

4 )T ,
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where
V = (V,V, · · · ,V)T ,
E = (E1,E2, · · · ,En)T ,
F = (F1,F2, · · · ,Fn)T ,
Ik = (Ik, Ik+4,0, · · · ,0)T , k = 1, 2, 3
I4 = (I4,0,0, · · · ,0)T

with all of them having the same length of n. We can get Ĝ from G by a simple extension

matrix H1, i.e., Ĝ = H1G. Note that the matrix inducing Ĝi to Ĝi+1, i.e., H1AH−1
1 , is a

7n× 7n block matrix with each block (n× n) being circulant [5, 22]. Therefore, each of

these blocks can be diagonalized exactly using the discrete Fourier transform. Let ĝ be

the result of applying the discrete Fourier transform L to the components of Ĝ:

ĝ = (LV T , LET , LF T , LIT
1 , LIT

2 , LIT
3 , LIT

4 )T

= (vT , eT , fT , iT1 , iT2 , iT3 , iT4 )T .

Each component of ĝ has the same length n, but is indexed from 0 to n− 1. We can get

ĝ from Ĝ by combining all L’s into a single matrix H2, i.e., ĝ = H2Ĝ. It is easy to see

that H2 is a block diagonal matrix. If we re-arrange the elements of ĝ into a set of same

frequency groups:

g = (hT
0 , hT

1 , · · · , hT
n−1)

T ,

where hω = (vω, eω, fω, i1ω, i2ω, i3ω, i4ω)T , with 0 ≤ ω ≤ n − 1. We can get g from ĝ

through a 7n × 7n permutation matrix H3, i.e., g = H3ĝ. The above relationships hold

for gj, Gj, ĝj and Ĝj, j ≥ 1, as well (See Figure 2.3). Since H1, H2 and H3 are invertible,

we can easily calculate gj and Gj from each other.

For each j ≥ 1, the subdivision process performed on Gj−1 to get Gj can be reflected

on gj−1 and gj through H1, H2 and H3. The induced subdivision process [5] on gj−1 can

be represented by a 7n× 7n matrix T as:

gj = Tgj−1 = Tjg.

T is a block diagonal matrix with each diagonal block Tω (ω = 0, 1, 2, · · · , n−1), being a

7× 7 matrix. The expression of each Tω can be found in [5]. Therefore, for each m ≥ 1,

we have (See Figure 2.3):

Am−1 = H−1
1 H−1

2 H−1
3 Tm−1H3H2H1 .
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By combining the above expression with (2.2), we have

S(u, v) = W T KmDbMPbĀH−1
1 H−1

2 H−1
3 Tm−1H3H2H1G (2.3)

For a given (u, v), every matrix in (2.3) is known to us if valance n is known. Hence it

can be used to exactly and explicitly evaluate the position of S(u, v).

2.5 Eigen analysis of T

Equation (2.3) provides a formal parametrization of an extraordinary patch. This parametriza-

tion, however, is still costly to evaluate because it involves m − 1 multiplications of the

matrix T. The evaluation process can be considerably simplified if T is decomposed as

T = X−1ΛX, where Λ is a diagonal matrix of eigenvalues of T and X is an invertible

matrix whose columns are the corresponding eigenvectors. Therefore, the evaluation of

Tm−1 becomes the evaluation of X−1Λm−1X only.

Note that T is a block diagonal matrix. To find the eigen decomposition of T, we

first find the eigen decomposition of each diagonal block Tω of T:

Tω = X−1
ω ΛωXω, (ω = 0, 1, · · · , n− 1).

Since each diagonal block Tω is of size 7×7, its eigen decomposition can be calculated

explicitly. X, Λ and X−1 are then formed as block diagonal matrices with diagonal blocks

being Xω, Λω and X−1
ω , respectively. Consequently, S(u, v) can be expressed as:

S(u, v) = W T KmZbΛ
m−1ZG (2.4)

where Z = XH3H2H1 and Zb = DbMPbĀZ−1. For any given n, these matrices are

known explicitly.
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There are totally n + 6 different eigenvalues in Λ. These different eigenvalues of T

are:
λ0 = (4αn − 1 +

√
16α2

n − 8αn + 8βn − 3 )/8

λ1 = (4αn − 1−√
16α2

n − 8αn + 8βn − 3 )/8

λ2ω = (cω + 5 +
√

c2
ω + 10cω + 9 )/16

λ2ω+1 = (cω + 5−√
c2
ω + 10cω + 9 )/16

λn+1 = 1
λn+2 = 1/8
λn+3 = 1/16
λn+4 = 1/32
λn+5 = 1/64

where 1 ≤ ω ≤ n/2, cω = cos(2πω/n), and αn and βn are defined in (1.1). It is easy to

check that λ0 > λ1 and λ2 > λi for 3 ≤ i ≤ n.

2.6 Evaluation of a CCSS Patch

In this section we show how can Eq. (2.4) be used in the efficient evaluation of a CCSS

patch at a given (u, v). Eq. (2.4) can be used for both extraordinary and regular patches

because the derivation of Eq. (2.4) did not use the assumption that n 6= 4.

First note that S(u, v) defined in Eq. (2.4) can be written as a linear combination of

these different eigenvalues in Λ to the (m− 1)st power:

S(u, v) = W T Km

n+5∑
j=0

λm−1
j (ZbΘjZ)G,

where Θj is a 7n × 7n matrix with all the entries being zero except the ones corre-

sponding to λj in matrix Λ. Those entries of Θj are 1. Let Mb,j = ZbΘjZ. We get

S(u, v) = W T Km

n+5∑
j=0

λm−1
j Mb,j G. (2.5)

The exact expressions of Mb,j are shown in the end of this chapter. Eq. (2.5) is the

most important result of this dissertation [55, 56, 57, 58, 59, 60, 61, 62, 64]. This equation

can be used to evaluate a CCSS patch at any point (including (0, 0)), and it can also be

used to compute the derivative of a CCSS patch at any point (including (0, 0) as well).

The patch can be regular or extraordinary.
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Note that for any m ≥ 0, we have W T (u, v)Km = W T (2mu, 2mv). Define

Φb,j(u, v) = W T (2mu, 2mv)λm−1
j Mb,j,

Φb(u, v) =
∑n+5

j=0 Φb,j(u, v).

Φb,j(u, v) are called the jth eigen basis function of CCSSs. There are totally n + 6 eigen

basis functions and for any given (u, v), every eigen basis function can be exactly and

explicitly represented. It is esay to check that all the eigen basis functions satisfy the so

called scaling relation [17, 20]:

Φb,j(u/2, v/2) = λjΦb,j(u, v)

With the above definition, Eq. (2.5) can be represented as

S(u, v) = Φb(u, v) G,

which is used for fast rendering in our implementation.

One can compute the derivatives of S(u, v) to any order simply by differentiating

W (u, v) in Eq. (2.5) accordingly. For example,

∂

∂u
S(u, v) = (

∂W

∂u
)T Km

n+5∑
j=0

λm−1
j Mb,j G. (2.6)

2.7 Behavior Around an extraordinary Point

2.7.1 Limit Point of an extraordinary Vertex

Eq. (2.5) not only can be used for evaluation purpose, but analytic derivation as well. For

example, one gets the limit point of an extraordinary vertex simply by setting u = v = 0

and m →∞ in Eq. (2.5):

S(0, 0) = [1, 0, · · · , 0] ·M2,n+1 ·G
= 5V+(12βn+8γn)Ē+(2βn+8γn)F̄

5+14βn+16γn

(2.7)

where Ē = (
∑n

i=1 Ei)/n and F̄ = (
∑n

i=1 Fi)/n. This result generalizes Eq. (13) of [11].

2.7.2 Partial Derivatives Around an extraordinary Vertex

It is known the first partial derivatives of S(u, v) at (0, 0) diverge in a natural parametriza-

tion [8]. However, knowing the directions of them is sufficient in many applications. As
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pointed out by [5], when λ0 ≥ λ2, a general Catmull-Clark subdivision surface is not C1

continuous. Suppose λ0 < λ2, dividing both sides of Eq. (2.6) by 2mλm−1
2 , and by setting

u = v = 0 and m →∞, we get

Du(0, 0) = [0, 1, 0, 0, · · · , 0] ·M2,2 ·G
Dv(0, 0) = [0, 0, 1, 0, · · · , 0] ·M2,2 ·G

where Du and Dv are the direction vectors of ∂S(0,0)
∂u

and ∂S(0,0)
∂v

, respectively. The normal

vector at (0, 0) is the cross product of them. Similarly, when λ0 < λ2, it is easy to

calculate the second partial derivatives at (0, 0). These derivatives are listed as follows.

Duu(0, 0) = [0, 0, 0, 2, 0, · · · , 0] ·M2,2 ·G
Duv(0, 0) = [0, 0, 0, 0, 1, 0, · · · , 0] ·M2,2 ·G
Dvv(0, 0) = [0, 0, 0, 0, 0, 2, 0, · · · , 0] ·M2,2 ·G

where Duu, Duv and Dvv are the direction vectors of ∂2S(0,0)
∂u2 , ∂2S(0,0)

∂u∂v
and ∂2S(0,0)

∂v2 , respec-

tively. Since M2,2 is explicitly and exactly known, all these vectors can be calculated once

G is given.

2.7.3 Proof of tangent plane continuity

With the explicit expressions of partial derivatives of S(u, v) at (0, 0), some properties of

CCSS at an extraordinary point can be proved easily. For instance, one can prove that

when λ0 < λ2, there exists a common tangent plane at an extraordinary point.

The tangent plane continuity property has been proven by many people with different

approaches [5, 11, 13, 14]. Here a simple proof using our parametrization results is given

below.

Expand Du and Dv, we have

Du =
∑n

i=1 ēi · Ei +
∑n

i=1 f̄i · Fi

Dv =
∑n

i=1 êi · Ei +
∑n

i=1 f̂i · Fi

where
ēi =

∑5
t=1 xt1c(i−t+2), êi =

∑5
t=1 xt2c(i−t+2)

f̄i =
∑5

t=1 xt3c(i−t+2), f̂i =
∑5

t=1 xt4c(i−t+2))

where cω = cos(2πω/n). All scalars xij’s in the above definitions depend on valance

n only and can be derived from Mb,2 explicitly. To prove the existence of a common
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tangent plane at an extraordinary point, one needs to show that computation of the

normal vector is independent of k (the ID of a face adjacent to an extraordinary point

[5], which determines the order of the control points of a patch):

(
n∑

i=1

ēiEi+k +
n∑

i=1

f̄iFi+k)× (
n∑

i=1

êiEi+k +
n∑

i=1

f̂iFi+k).

To prove this, it is sufficient to show that
∑

ēiEi+k ×
∑

êiEi+k is independent of k.

The other parts can be proved similarly. Note

n∑
i=1

ēi−kEi ×
n∑

j=1

êj−kEj =
∑
i≤j

(ēi−kêj−k − ēj−kêi−k)Ei × Ej

To prove the above expression is independent of k, we only need to prove (ēi−kêj−k−
ēj−kêi−k) is independent of k:

ēi−kêj−k − ēj−kêi−k

=
∑

1≤s,t≤5 xs1xt2(ci−k−s+2
c

j−k−t+2
− c

j−k−s+2
c

i−k−t+2
)

=
∑

1≤s,t≤5 xs1xt2 (c
i−j−s+t

− c
j−i−s+t

)/2

which is independent of k. Hence all the patches sharing a common extraordinary point

have the same normal vector at the extraordinary point. Therefore, there exists a common

tangent plane at an extraordinary point.

When λ0 ≥ λ2, it can be proved similarly that the resulting surface does not have a

common tangent place [5]. In fact, Eq. (2.5) and Eq. (2.6) can be used for many other

analytic purposes as well. For example, the curvature property at an extraordinary point

can be explicitly analyzed using these two formulas [6].

Although most of these properties of CCSS around an extraordinary vertex are well

known, an explicit parametrization of CCSS nevertheless makes the analyzing process

much more simpler and intuitive. Moreover, our results possibly can be used for studying

other unknown properties of CCSS as well. For instance, it is possible to investigate the

integrability of a CCSS using the parametrization technique presented in this chapter.
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2.8 Applications

2.8.1 Fast, Exact and Explicit Rendering

Eq. (2.5) not only gives us an explicit method to evaluate S(u, v), but also a faster and

convenient way to render S(u, v). Note that Mb,j depend on the valence of the extraor-

dinary vertex only. They can be explicitly and analytically computed for every different

valence. For a given valence, we only need to perform such calculation once, no matter

how many patches in the mesh are with such a valence. Once the step sizes for u and v

are given, we can calculate all Φb(ui, vk) beforehand and store them in a look-up table.

Therefore, the evaluation of S(u, v) at each point (ui, vk) basically is just a multiplication

of Φb(ui, vk) and G only. An algorithm of the fast rendering process is shown below:

CCSS-Rendering(Mesh, ustep, vstep,βn,γn)

1. For each valance n involved in input Mesh

2. For u = 0 : 1 : ustep and For v = 0 : 1 : vstep

3. Calculate Φb(u, v)

4. For each patch whose valance is n in input Mesh

5. Find its 2n + 8 control points G

6. For u = 0 : 1 : ustep and For v = 0 : 1 : vstep

7. calculate each S(u, v) and its normal using Eq. (2.5)

8. Display all these S(u, v)’s

All the examples shown in this chapter are rendered using this algorithm. One can see

that it is essentially the same as the rendering process of a regular patch. An important

difference between this approach and the previous approach [17] is that nothing need

to be precomputed when our method is used, while the the Stam method [17] need to

precompute a huge number of eigen basis functions and stored them in a file. In addi-

tion, the previous approach [17] was developed for special αn and βn only. Therefore,

it cannot handle general eigen basis functions while we can calculate all the eigen basis
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Figure 2.4: Left: Control mesh of a horse model, Right: exactly evaluated Catmull-Clark
subdivision surface.

functions explicitly with only a small overhead. The horse shown in Figure 2.4 (right) is

rendered using this algorithm with all the positions and normals exactly computed, not

approximated. Hence, the quality of the image is better than those generated through

the subdivision process. Figure 2.4 (left) is the control mesh of the shape shown in Figure

2.4 (right).

2.8.2 Generating Special Features

Eq. (2.5) can be used to render subdivision surfaces with special features. As we know,

special features can be generated by properly arranging the control mesh. For instance,

tripling a line in the control mesh generates a ridge or edge-like feature; tripling a control

point generates a dart-like feature. One can get subdivision surfaces with complicated

features and, consequently, complicated shape through this process. However, no matter

how complicated the topology of the control mesh, as long as it is a two-manifold (to

satisfy the definition of a CCSS), Eq. (2.5) will always generate the correct result. An

example of a CCSS with sharp edges, corners and several genera is shown in Figure

2.5. The control mesh of the surface is shown in Figure 2.5(a). Since the features are

generated from parametrization of the control mesh directly, the result shown in Figure

2.5(b) is better than those generated by Boolean operations.

41



(a) Mesh with tripled edges (b) Surface with special features

Figure 2.5: Generating special features using Catmull Clark subdivision surfaces

2.8.3 Texture Mapping

Precise texture mapping on a CCSS is possible only if a proper parametric representation

is available for each extraordinary patch. Without a proper parametrization,texture

mapping on object of any topology is almost impossible. Now with Eq. (2.5), texture

mapping is doable on any object of any genus.

Figure 2.6: Regular division of the control mesh of a CCSS.

However, to implement texture mapping on a CCSS, one needs to divide the interior

faces of the control mesh into regions such that each region is of a rectangular structure
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first. Such a division will be called a regular division. The division is not unique.

(a) Rock Arm (b) Leopard (c) Space Station

Figure 2.7: Texture mapping on Catmull-Clark subdivision surfaces

Figure 2.6 shows a division of the interior faces of a CCSS into seven rectangular

regions. Once a regular division of the interior faces of the control mesh is available,

one simply performs texture mapping on each of these regions using standard approach.

Examples of texture mapping on three subdivision surface represented objects: a rocker

arm, a space station and a leopard are shown in Figure 2.7(a), 2.7(b), and 2.7(c), respec-

tively. The regular division usually is not unique. Different divisions of the interior faces

of the control mesh would lead to different texture outputs.

2.8.4 Surface Trimming

Surface trimming is another important application used in computer graphics, CAD and

CAM. The trimming loops are defined in the parameter space of the surface and iso-

parametric lines in the parameter space are clipped against the trimming loops to have

the trimmed regions removed. Hence, a global or local parametrization is necessary

for precise and efficient rendering of a trimmed CCSS. In Figure 2.8.4, trimmed CCSSs

surface are shown. In Figure 2.8(a), the trimmed regions are defined by the logo of

the 2006 International CAD Conference, and in Figure 2.8(b), the trimmed regions are

defined by the boundaries of the word ‘SIGGRAPH’.
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(a) (b)

Figure 2.8: Surface trimming on Catmull-Clark subdivision surfaces

The CCSS surface has four extraordinary vertices in the trimmed region, but parti-

tioning of the control mesh is not required here because the surface is rendered on the

basis of individual patches.

2.8.5 Adaptive Rendering

(a) Given Mesh (b) Adaptive Tessellation (c) Limit Surface

Figure 2.9: Adaptive tessellation of Catmull-Clark subdivision surfaces

Adaptive rendering is a technique for fast rendering of complicated objects. The

rendering process of a patch depends on its flatness. A flat patch will not be tessellated
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as densely as other patches. Adaptive rendering is not a problem with (2.5) because Eq.

(2.5) is capable of generating any point of the surface required in the tessellation process.

One thing we must keep in mind is that, in order to avoid crack, we must generate the

same number of points on the shared boundary of adjacent faces. But we can generate

any number of points, even zero, inside a patch. An example of adaptive rendering is

shown in Figure 2.8.5. Figure 2.9(c) is the given ventilation control component model

which is represented by a single CCSS. Its control mesh is shown in Figure 2.9(a). The

adaptive tessellation of the model is shown in Figure 2.9(b). The flatness of patches is

determined by the maximum norm of the second order forward differences of its control

points. More details about the adaptive tessellation technique is presented in Chapter

6.

2.8.6 Interpolation

(a) Given Mesh (b) Interpolation

Figure 2.10: Interpolation using Catmull-Clark subdivision surfaces

Performing exact interpolation on meshes with arbitrary topology has been done

by many people [24, 25, 23, 11, 26]. Given an control mesh the goal is to produce a

smooth and visually pleasing surface whose shape matches the original data points or
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given normals in the given mesh exactly. Usually many constrains on the interpolatory

surface need to be considered when optimization is used. For example, in [11], some

energy fairing constrains are taken into account in building a global system. Because

there was not an available explicit parametrization, the fairing process appeared to be

very complicated in [11]. However, with our explicit parametrization and evaluation, all

kinds of constrains can be integrated into the global system. For example, Figure 2.10(b)

is the interpolating result of the mesh given in Figure 2.10(a) using the first, second

and third derivatives as the constrains. More details about the interpolating meshes of

arbitrary topology are presented in Chapter 3.

2.8.7 Boolean Operations

(a) (b)

Figure 2.11: Performing Boolean operations on Catmull-Clark subdivision surfaces

In solid modelling, an object is formed by performing Boolean operations on simpler

objects or primitives. A CSG tree is used in recording the construction history of the

object and is also used in the ray-casting process of the object. Surface-surface intersec-

tion (including the in-on-out test) and ray-surface intersection are the core operations in

performing the Boolean operations and the ray-casting process. Each operation requires

a parametrization of the surface to do the work. This is especially important for the
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in-on-out test. None of these is a problem with Eq. (2.5). Examples of performing

Boolean operations on two and three cows are presented in Figure 2.11(a) and 2.11(b),

respectively. A difference operation is first performed to remove some portions from each

of these cows and a union operation is then performed to join them together. Performing

Boolean operations on subdivision surfaces has been studied by Biermann, Kristjansson,

and Zorin [7]. The emphasis of their work is different though - they focus on construction

of the approximating multiresolution surface for the result, instead of precise computa-

tion of the surface-surface intersection curves. More details about performing Boolean

operations on surfaces with arbitrary topology are presented in Chapter 5.

2.9 Summary

New parametrization and evaluation techniques for extraordinary patches of CCSSs are

presented in this paper. The parametrization is obtained by performing subdivision on a

group of same-frequency point sets after a few linear transformations, not on the control

vertices themselves directly. This results in a block diagonal matrix with constant size

diagonal blocks (7 × 7) for the corresponding subdivision process. Consequently, eigen

decomposition of the subdivision matrix is always possible and is simpler and more

efficient. Besides, the new approach works for the general CCSSs, not just a special

case. The evaluation process using this parametrization works for both extraordinary

and regular CCSS patches.

One thing has to be pointed out here. The exponent m in (2.5) can not be cancelled

out. This is because when λj is not a multiple of 1/2, m − 1 in Km−1 and λm−1
j Mb,j

does not cancel out. Hence, when n 6= 4, there does not exist a matrix M such that

S(u, v) = W T MG.

Copyright c© Shuhua Lai 2006
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Chapter 3

Similarity based Interpolation using
Catmull-Clark Subdivision Surfaces

As we discussed before, there are two possible approaches to build a one-piece repre-

sented control mesh for a given model. One is to use the subdivision surface interpolation

technique to approximate the surface of the given model. Another approach is to con-

struct a mesh structure through Boolean operations and multiresolution analysis. Both

approaches can achieve a one piece represented control mesh whose Catmull-Clark sub-

division surface results in the given model. In this chapter we discuss the interpolation

based one-piece representation method [55], i.e., to construct a one piece represented con-

trol mesh, whose Catmull-Clark subdivision surface (CCSS) interpolates the vertices of a

given mesh of arbitrary topology. The Boolean operation based one-piece representation

method [64] will be discussed in Chapter 5.

Our new interpolation method [55] handles both open and closed meshes. Normals

or derivatives specified at any vertices of the mesh (which can actually be anywhere)

can also be interpolated. The construction process is based on the assumption that, in

addition to interpolating the vertices of the given mesh, the interpolating surface is also

similar to the limit surface of the given mesh. Therefore, construction of the interpolat-

ing surface can use information from the given mesh as well as its limit surface. This

approach, called similarity based interpolation, gives us more control on the smoothness

of the interpolating surface and, consequently, avoids the need of shape fairing in the

construction of the interpolating surface. The computation of the interpolating surface’s

control mesh follows a new approach, which does not require the resulting global linear

system to be solvable. An approximate solution provided by any fast iterative linear sys-

tem solver is sufficient. Nevertheless, interpolation of the given mesh is guaranteed. This
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is an important improvement over previous methods [11] because with these features, the

new method can handle meshes with large number of vertices efficiently. Although the

new method is presented for CCSSs, the concept of similarity based interpolation can be

used for other subdivision surfaces as well [55].

This remaining part of this chapter is organized as follows: The Section 1 gives a

brief introduction to related and previous interpolation methods. Also a overview of

our our interpolation method is given in this section. In Section 2, the similarity based

interpolation technique for closed meshes is discussed detailedly. A technique that works

for open meshes is presented in Section 3. Implementation issues and test results are

presented in Section 4. A summary is given in Section 5.

3.1 Introduction

Given a 3D mesh, there exist infinitely many smooth surfaces that interpolate the mesh

vertices. Any of them can be used as a solution to the interpolation problem. But,

to a shape designer, usually only one of them is the surface he really wants. That

surface, called the designer’s concept surface, is a piece of important information for the

interpolation process. If that information is available to the interpolation system, then

by constructing an interpolating surface whose shape is most ‘similar’ to the designer’s

concept surface, we get the best result one can get for the interpolation process. We call

an interpolation process similarity based interpolation if the interpolation also depends on

establishing ‘similarity’ with a reference surface. In the above case, the reference surface

is the designer’s concept surface.

The result of a similarity based interpolation depends on the quality of the reference

surface. The closer the shape of the reference surface to the designer’s concept surface,

the better the result. The designer’s concept surface usually is not available to the in-

terpolation system. But it is reasonable to assume that the given mesh carries a shape

similar to the designer’s concept surface. After all, these are the vertices the user ex-

tracted from his concept surface. Consequently, limit surface of the given mesh, when
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viewed as the control mesh of a Catmull-Clark subdivision surface [1], would be similar to

the designer’s concept surface. Therefore, using the limit surface as the reference surface

in the interpolation process, i.e., constructing an interpolating surface of a given mesh

that is also similar to the limit surface of the given mesh, we should get an interpolating

surface that is relatively close to the designer’s concept surface. This interpolation con-

cept has not been studied with subdivision surfaces before, although interpolation using

subdivision surfaces has already been studied for a while [23, 25, 26, 42, 48].

3.1.1 Previous Work: A Brief Review

There are two major ways to interpolate a given mesh with a subdivision surface: in-

terpolating subdivision [23, 24, 25, 45, 48] or global optimization [26, 42, 55]. In the first

case, a subdivision scheme that interpolates the control vertices, such as the Butterfly

scheme[25], Zorin et al’s improved version [24] or Kobbelt’s scheme [23], is used to gen-

erate the interpolating surface. New vertices are defined as local affine combinations of

nearby vertices. This approach is simple and easy to implement. It can handle meshes

with large number of vertices. However, since no vertex is ever moved once it is computed,

any distortion in the early stage of the subdivision will persist. This makes interpolating

subdivision very sensitive to the irregularity in the given mesh. In addition, it is difficult

for this approach to interpolate normals or derivatives.

The second approach, global optimization, usually needs to build a global linear system

with some constraints [47]. The solution to the global linear system is an interpolating

mesh whose limit surface interpolates the control vertices in the given mesh. This ap-

proach usually requires some fairness constraints in the interpolation process, such as

the energy functions presented in [42], to avoid undesired undulations. Although this

approach seems more complicated, it results in a traditional subdivision surface. For ex-

ample, the method in [42] results in a Catmull-Clark subdivision surface (CCSS), which

is C2 continuous almost everywhere and whose properties are well studied and under-

stood. The problem with this approach is that a global linear system needs to be built

and solved. Hence it is difficult to handle meshes with large number of control vertices.
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There are also subdivision techniques that produce surfaces to interpolate given curves

or surfaces that near- (or quasi-)interpolate given meshes [46]. But those techniques are

either of different natures or of different concerns and, hence, will not be discussed here.

3.1.2 Overview

In this chapter, we address the one-piece representation problem by using similarity

based interpolation technique developed for CCSSs. Given a 3D mesh P with arbitrary

topology, our new method [55] calculates a control mesh Q whose CCSS interpolates the

vertices of P . The CCSS of Q is constructed with the additional assumption that its

shape is similar to a reference surface, the limit surface of P . A shape fairing process is

not required in the construction process of the interpolating surface. The computation

of the control mesh Q follows a new approach which does not require the resulting global

linear system to be solvable. An approximate solution provided by any fast iterative

linear system solver is sufficient. Hence, handling meshes with large number of vertices

is not a problem. Nevertheless, interpolation of the given mesh is guaranteed. The

new method can handle both closed and open meshes. The interpolating surface can

interpolate not only vertices of a given mesh, but also derivatives and normals anywhere

in the parameter space of the surface.

3.2 Similarity based Interpolation

3.2.1 Mathematical Setup

Given a 3D mesh with n vertices: P = {P1,P2, · · · ,Pn}, the goal here is to construct a

control mesh Q whose CCSS interpolates P (the vertices of P , for now). The construction

of Q follows the following path. First, we perform one or more levels of Catmull-Clark

subdivision on P to get a finer control mesh G. G satisfies the following property: each

face of G is a quadrilateral and each face of G has at most one extra-ordinary vertex.

The vertices of G are divided into two groups. A vertex of G is called a Type I vertex

if it corresponds to a vertex of P . Otherwise it is called a Type II vertex. Q is then

51



defined as a control mesh with the same number of vertices and the same topology as

G. We assume Q has m vertices Q = {Q1,Q2, · · · ,Qm}, m > n, and the first n vertices

correspond to the n Type I vertices of G (and, consequently, the n vertices of P ). These

n vertices of Q will also be called Type I vertices and the remaining m−n vertices Type

II vertices. This way of setting up Q is to ensure the parametric form developed for a

CCSS patch [17, 58] can be used for the limit surface of Q, denoted S(Q), and we have

enough degree of freedom in our subsequent work. Note that m is usually much bigger

than n. The remaining job then is to determine the position of each vertex of Q.

In previous methods [26, 42] the n Type I vertices of Q are set as independent vari-

ables, the m − n Type II vertices are represented as linear combinations of the Type I

vertices. Since m− n is bigger than n, this setting leads to an over-determined system.

Without any freedom in adjusting the solution of the system, one has no control on the

shape of the resulting interpolating surface S(Q) even if it carries undesirable undula-

tions. In our approach [55], instead, the m − n Type II vertices are set as independent

variables and the n Type I vertices are represented as linear combinations of the Type

II vertices. This approach provides us with enough degrees of freedom to adjust the

solution of the resulting linear system and, consequently, more control on the shape of

the interpolating surface S(Q).

3.2.2 Interpolation Requirements

Recall that Type I vertices of Q are those vertices that correspond to vertices of P .

Hence, each vertex of P is the limit point of a Type I vertex of Q. We assume the limit

point of Qi is Pi, 1 ≤ i ≤ n. Then for each Type I vertex Qi (1 ≤ i ≤ n), we have

Qi = Ci · Q̃ + cPi (3.1)

where Q̃ = {Qn+1,Qn+2, · · · ,Qm} is the vector of Type II vertices. Vector Ci and

constant c depend on the topology of P and the degree of vertex Pi. Ci and c can be

easily obtained using the formula for calculating the limit point of a CCSS [17, 42, 58].
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The conditions in Eq. (3.1) are called interpolation requirements, because they have to

be exactly satisfied.

Note that the interpolation requirements in Eq. (3.1) form a system of linear equa-

tions. By solving this system of linear equations, we solve the interpolation problem [26].

But in this case one tends to get undesired undulations on the resulting interpolating

surface [42].

3.2.3 Similarity Constraints

Two CCSSs are said to be similar if their control meshes have the same topology and

they have similar ith derivatives (1 ≤ i < ∞) everywhere. The first condition of this

definition is a sufficient condition for the second condition to be true, because it ensures

the considered CCSSs have the same parameter space. The CCSSs considered here, S(Q)

and S(G), satisfy the first condition. Hence, we have the sufficient condition to make the

assumption that S(Q) and S(G) are similar. In the following, we assume S(Q) and S(G)

are similar in the sense of the above definition.

With explicit parametrization of a CCSS available [17], it is possible for us to consider

derivatives of S(Q) and S(G) at any point of their parameter space. However, to avoid

costly integration of derivative expressions, we will only consider derivatives sampled at

the following parameter points [53]:

{(k1/2
i, k2/2

j) | 0 ≤ i, j ≤ ∞ , 0 ≤ k1 ≤ 2i, 0 ≤ k2 ≤ 2j} (3.2)

for each patch of S(Q) and S(G). In the above similarity definition, two derivatives

are said to be similar if they have the same direction. In the following, we use the

similarity condition to set up constraints in the construction process of S(Q).

Given two surfaces, let Du and Dv be the u and v derivatives of the first surface and

D̂u and D̂v the u and v derivatives of the second surface. These derivatives are similar

if the following condition holds:

Du × D̂u = 0 and Dv × D̂v = 0 (3.3)
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A different condition, shown below, is used in [26, 42].

Du · (D̂u × D̂v) = 0 and Dv · (D̂u × D̂v) = 0 (3.4)

These two conditions are not necessarily equivalent. Our test cases show that Eq. (3.3)

gives better interpolating surfaces. This is because Eq. (3.4) only requires the corre-

sponding derivatives to lie in the same tangent plane, no restrictions on their directions.

As a result, using Eq. (3.4) could result in unnecessary undulations. Note that Eq. (3.3)

requires directions of Du and Dv to be the same as that of D̂u and D̂v, respectively.

Conditions of the type shown in Eq. (3.3) are called similarity constraints. These

constraints do not have to be satisfied exactly, only to the extent possible. The interpo-

lation method used in [26] considers interpolation requirements only. The method in [42]

also includes fairness constraints to avoid undesired undulations and artifacts.

3.2.4 Global Linear System

If the derivatives of S(Q) and S(G) are sampled at a point in Eq. (3.2) then, according

to Eq. (3.3) and the derivative of the parametric form of a CCSS patch [17, 53], we would

have

(V T ·Q)× (V T ·G) = 0 (3.5)

where V is a constant vector of scalars whose values depend on the type of the derivative

and the point where the sampling is performed. This expression actually contains 3

equations, one for each component. Replace the Type I vertices Q1,Q2, · · · ,Qn in the

above expression with Eq. (3.1) and combine all the similarity constraints, we get a

system of linear equations which can be represented in matrix form as follows:

D ·X = C

where X is a vector of length 3(m− n), whose entries are the x, y and z components

of Q̃. D usually is not a square matrix. Hence we need to find an X such that (D ·X −
C)T · (D · X − C) is minimized. This is a quadratic programming problem and can be
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solved using a linear least squares method. It is basically a process of finding a solution

of the following linear system:

A ·X = B (3.6)

where A = DT D and B = DT C. A is a symmetric matrix. Hence only half of its

elements need to be calculated and stored. Once X is known, i.e., Q̃ is known, we can

find Q1,Q2, · · · ,Qn using Eq. (3.1).

The matrix D could be very big if many sample points or constrains are used. Fortu-

nately, we do not have to calculate and store the matrix D and the vector C. Note that

A and B can be written as

A =
∑

Di(Di)
T and B =

∑
Dici

where (Di)
T is the ith row of D and ci is the ith entry of C. Note that the number of

rows (constrains) of D can be as large as possible, but the number of its columns is fixed,

3(m − n). Suppose the ith constraint (See Eq. (3.5)), with Q1,Q2, · · · ,Qn replaced, is

written in vector form as UT ·X = u. Then UT is the ith row of matrix D and u is the

ith entry of C. Hence rows of matrix D and entries of C can be calculated independently

from Eq. (3.5) for each constraint of each sample point. Therefore, A and B can be

accumulatively calculated, constraint by constraint. No matter how many sample points

are used, and no matter how many constraints are considered for every sample point,

only a fixed amount memory is required for the entire process and the size of matrix A

is always the same, 3(m− n)× 3(m− n).

Note that the solution of Eq. (3.6) only determines the positions of Type II vertices

of Q. Type I vertices of Q are represented as linear combinations of Type II vertices in

the interpolation requirements defined in Eq. (3.1). Since interpolation of the vertices

of P is determined by the interpolation requirements (See Eq. (3.1)) only, this means

as long as we can find a solution for Eq. (3.6), the task of constructing an interpolating

surface that interpolates the vertices of P can always be fulfilled, even if the solution is

not precise. Hence, an exact solution to the linear system Eq. (3.6) is not a must for
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our method. An approximate solution provided by a fast iterative linear system solver is

sufficient. As a result, the new method can handle meshes with large number of vertices

efficiently. This is an important improvement over previous methods.

With the similarity assumption, the surface interpolation problem is basically a pro-

cess of using an iterative method to find an approximate solution for the global linear

system Eq. (3.6). An initial guess for the iterative process can be obtained directly from

G by scaling G properly, such that dimension of the scaled limit surface is the same as

the interpolating surface. The required scaling factors sx, sy and sz for such a task can be

determined by the condition that the bounding box of the scaled limit surface is the same

as the bounding box of the interpolating surface. This can easily be done by comparing

the maxima and minima of the vertices of the given mesh in all three directions with the

maxima and minima of their corresponding limit points. The scaled mesh called Ĝ, is a

good initial guess for the iterative process because Ĝ is actually very close to the control

mesh of the interpolating surface we want to obtain. In our implementation, the Gauss-

Seidel method is used for the iterative process. The iterative process would converge

to a good approximate solution very rapidly with this initial guess. However, it should

be pointed out that there is no need to carry out the iterative process to a very precise

level. According to our test cases, a residual tolerance of the size ε = 10−6 does not

produce much noticeable improvement on the quality of the interpolating surface than

a residual tolerance of the size ε = 10−3, while the former takes much more time than

the latter. Therefore a relatively large residual tolerance can be supplied to the iterative

linear system solver to prevent it from running too long on the iterative process, while

not improving the quality of the interpolating surface much. This is especially important

for processing meshes with large number of vertices.

3.2.5 Additional Interpolation Requirements

In addition to the interpolation requirements considered in Eq. (3.1), other interpolation

requirements can be included in the global linear system as well. One can also modify

or remove some of the interpolation requirements in Eq. (3.1). For example, if we wants
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the first u−derivative of the interpolating surface at Pi to be Du, we need to set up a

condition similar to Eq. (3.5) as follows:

(V T ·Q)×Du = 0

where V is a constant vector. The difference here is, this is not a similarity constraint, but

an interpolation requirement. However, if we want a particular normal to be interpolated,

we should set up interpolation requirements for the u derivative and the v derivative

whose cross product equals this normal, instead of setting up an interpolation requirement

for the normal directly, to avoid the involvement of non-linear equations in the system.

Then by combining all the new interpolation requirements with the original interpolation

requirements in Eq. (3.1), we get all the expressions for vertices that are not considered

independent variables in the linear system in Eq. (3.6). Note that including a new

interpolation requirement in the interpolation requirement pool requires us to change a

variable vertex in Eq. (3.6) to a non-variable vertex. Actually, interpolation requirements

can be specified for any points of the interpolating surface, not just for vertices of P . This

is possible because we have a parametric representation for each patch of a CCSS [17].

For example, if we want the position of a patch at parameter (1/2, 3/4) to be T, we can

set up an interpolation requirement of the form: V T ·Q = T where V is a constant vector

whose values depend on (1/2, 3/4). Therefore the interpolating surface can interpolate

positions, derivatives and normals anywhere in the parameter space.

3.2.6 Interpolation of Normal Vectors

The direction of normal vectors can be interpolated exactly by using additional interpo-

lation requirements. The key idea is to change some similarity constrains to interpolation

requirements, which means move some equations in Eq. (3.5) into the linear system in

Eq. (3.1). Actually the direction of partial derivatives can also be interpolated by using

such additional interpolation requirements. Additional interpolation requirements are

conditions like Eq. (3.1) that are guaranteed to be satisfied and hence, are not involved

in the solving of the global linear system in Eq. (3.6).
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However Eq. (3.5) is only good for exactly interpolating partial derivatives. For

exactly interpolating normal vectors, we need to interpolate the derivatives in u- and v-

directions respectively to avoid the involvement of non-linear systems. For example, for

a given normal vector V, whose direction is required to be interpolated at point P in the

interpolating surface. Assume the derivatives at point P in the resulting interpolating

surface in u- and v-directions are D1 and D2, respectively. Then we need to integrate

the following two equations into linear system Eq. (3.1):
{

D1 × V = 0
D2 × V = 0

(3.7)

Note that here D1 and D2 can be linearly represented using only the control points of

the corresponding surface patch [17] and these control points are unknowns in Eq. (3.1)

and Eq. (3.6). Because the above two equations in Eq. (3.7) now are in linear system Eq.

(3.1), which is required to be satisfied exactly, the exact interpolation of the direction of

normal vector V is guaranteed. For example, Figure 3.1(f) is interpolated not only at

vertex positions, but normal vectors at boundary vertices as well.

3.3 Handling Open Meshes

(a) (b) (c) (d) (e) (f)

Figure 3.1: Interpolating an open mesh: (a) given mesh; (b) limit surface of (a); (c)
extended version of (a); (d) limit surface of (c); (e) interpolating surface of (a) that uses
(d) as a reference surface; (f) interpolating surface of (a) with additional requirements.

The interpolation process developed in the previous section can not be used for open

meshes, such as the one shown in Figure 3.1(a), directly. This is because boundary
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vertices of an open mesh have no corresponding limit points, nor derivatives, therefore,

one can not set up interpolation requirements for these vertices, as required by the

new interpolation process. One way to overcome this problem is to add an additional

ring of vertices along the current boundary and connect the vertices of this ring with

corresponding vertices of the current boundary to form an additional ring of faces, such

as the example shown in Figure 3.1(c). The newly added vertices are called dummy

vertices. We then apply the interpolation method to the extended open mesh as to a

closed mesh except that there are no interpolation requirements for the dummy vertices.

This technique of extending the boundary of a given mesh is similar to a technique

proposed for uniform B-spline surface representation in [41].

Note that in this case, the interpolation process does not use the limit surface of the

given mesh, but rather the limit surface of the extended mesh as a reference surface.

Therefore, the shape of the interpolating surface depends on locations of the dummy

vertices as well. Determining the location of a dummy vertex, however, is a tricky issue,

and the user should not be burdened with such a tricky task. In our system, this is

done by using locations of the current boundary vertices of the given mesh as the initial

locations of the dummy vertices and then solving the global linear system in Eq. (3.6) to

determine their final locations. This approach of generating dummy vertices works fine

because dummy vertices only affect similarity constraints. Figure 3.1(e) is a surface that

interpolates the mesh given in Figure 3.1(a) and uses 3.1(d) as a reference surface.

The above setting of the dummy vertices usually is not enough to create an interpolat-

ing surface with the desired boundary shape. Additional requirements (not constraints)

are needed in the interpolation process. As explained in Section 3.2.5, a platform that

allows us to define additional requirements can be created by treating the dummy ver-

tices as non-variables in Eq. (3.6). We can then specify new derivative conditions or

normal conditions to be satisfied at the original boundary vertices. With the additional

interpolation requirements, a designer has more control on the shape of the interpolating

surface in areas along the boundary and, consequently, can generate an interpolating
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surface with the desired boundary shape. For example, Figure 3.1(f) is an interpolating

surface of the mesh given in Figure 3.1(a), but generated with additional interpolation

requirements. The interpolating surface obviously looks more like a real glass now.

3.4 Test Results

The proposed approach has been implemented in C++ using OpenGL as the supporting

graphics system on the Windows platform. Quite a few examples have been tested with

the method described here. All the examples have extra-ordinary vertices. Some of the

tested results are shown in Figures 3.1, 3.2 and 3.3. For all examples in Figures 3.1, 3.2

and 3.3, the limit surfaces of the given meshes and the interpolating surfaces are both

shown so that one can tell if these surfaces are indeed similar to each other in the least

squares sense. The one-piece meshes shown in Figures 3.2 and 3.3 are what we need to

construct if we sample points from given models and need mesh structures whose limit

surfaces approximate the given models. For example, if the model shown in Figure 3.2(c)

is the given object, and we need to construct a one-piece represented mesh structure

for it, the similarity based interpolation method could be used for this purpose. First

we sample some representative points on the given model and connect these sampled

points to form a mesh structure, which is shown in Figure 3.2(a). Once we have such a

mesh structure, our similarity based interpolation technique can be applied. As a result,

another mesh structure shown in Figure 3.2(d) is constructed, which can be regarded as

a one-piece representation of the given model shown in Figure 3.2(c), because the limit

surface of the resulting mesh structure (Figure 3.2(d)) is very close to the given model

(Figure 3.2(c)).

In our implementation, only one subdivision is performed on the given mesh for each

example and the first, second and third derivatives in u and v directions are used to

construct interpolation constraints and build the global linear system. These derivatives

are sampled at points with parameters (k1

2i ,
k2

2j ), i, j = 0, 1 or ∞, and 0 ≤ k1 ≤ 2i,

0 ≤ k2 ≤ 2j, for each patch. That is, 9 points are sampled for each patch, which is
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(a) Given (b) Limit (c) Interpolating (d) One-Piece Mesh

(e) Given Mesh (f) Limit (g) Interpolating (h) One-Piece Mesh

(i) Given Mesh (j) Limit Surface (k) Interpolating

Figure 3.2: Interpolating meshes with arbitrary topology.
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(a) One-Piece Mesh (b) Given Mesh (c) Limit Surface

(d) Interpolating Surface (e) One-Piece Mesh (f) Given Mesh

(g) Limit Surface (h) Interpolating Surface (i) One-Piece Mesh

Figure 3.3: Interpolating meshes with arbitrary topology (Continued).
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good enough for most cases. For bigger patches one can use more sample points because

patches do not have to be sampled uniformly.

The mesh shown in Figure 3.3(b) is an example of an open mesh with disconnected

boundaries. Figure 3.3(d) is the interpolating surface without using additional interpo-

lation requirements in the construction process.

As can be seen from Figure 3.2 and 3.3, all the resulting interpolating surface are

very smooth and visually pleasing, except the interpolating surface shown in Figure

3.3(h). The surface has some undulations around the neck, but we do not think they

are caused completely by our method. We believe this is more of a problem with the

general interpolation concept. Note that the input mesh, Figure 3.3(f), has some abrupt

changes of vertex positions and twists in the neck area. This is also reflected by some

visible undulations in the neck area of the limit surface, Figure 3.3(g), even though they

are not as clear as in the interpolating surface. An approximation curve/surface, like

a spline curve, can be regarded as a low pass filter [24], which makes the given control

polygon or mesh smoother. An interpolation curve/surface, on the other hand, can be

regarded as a high pass filter, which magnifies undulations or twists in the input mesh.

Since a limit surface is an approximation surface, it reduces the impact of abrupt vertex

location changes and twists in the input mesh while the interpolating surface enhances

it. This is why the undulations are more obvious in Figure 3.3(h) than in Figure 3.3(g).

The new interpolation method can handle meshes with large number of vertices in

a matter of seconds on an ordinary PC (3.2GHz CPU, 512MB of RAM). For example,

the meshes shown in Figures 3.3(f), 3.2(a) and 1.6(b) have 1022, 354 and 272 vertices,

respectively. It takes 51, 14 and 3 seconds, respectively, to interpolate these meshes. For

smaller meshes, like Figures 3.1(a), 3.2(i), 3.2(e) and 3.3(b), the interpolation process

is done almost in real time. Hence our interpolation method is suitable for interactive

shape design, where simple shapes with small or medium-sized control vertex sets are

constructed using design or interpolation methods, and then combined using CSG trees

to form complex objects.
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3.5 Summary

A new interpolation method for meshes with arbitrary topology using general CCSSs is

presented. This interpolation technique gives us a one-piece represented control mesh,

whose limit surface approximates the target model. The development of the interpolation

method is based on the assumption that the interpolating surface should be similar to

the limit surface of the given mesh. Our test results show that this approach leads to

good interpolation results even for complicated data sets.

The new method has several special properties. First, by using information from

the vertices of the given mesh as well as its limit surface, one has more control on the

smoothness of the interpolating surface. Hence, a surface fairing process is not needed

in the new method. Second, there is no system solvability problem for the new method.

The global linear system that the new method has to solve does not require an exact

solution, an approximate solution is sufficient. The approximate solution can be provided

by any fast iterative linear solver. Consequently the new method can process meshes with

large number of vertices efficiently. Third, the new method can handle both open and

closed meshes. It can interpolate not only vertices, but normals and derivatives as well.

These normals and derivative can be anywhere, not just at the vertices of the given mesh.

Therefore, the new interpolation method is general.

Copyright c© Shuhua Lai 2006
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Chapter 4

Voxelization of Free-form Solids
Represented by Catmull-Clark
Subdivision Surfaces

A voxelization technique [57] and its applications for objects with arbitrary topology

are presented in this chapter. The voxelization technique will be used for performing

accurate Boolean operations discussed in next chapter. By performing CSG or Boolean

operations [64], we can obtain one-piece representations for objects of arbitrary topology.

With parametrization techniques for subdivision surfaces becoming available [17, 58],

it is possible now to model and represent any continuous but topologically complex object

with an analytical representation. In this chapter we present a method to convert a free-

form object from its continuous geometric representation into a set of voxels that best

approximates the geometry of the object. Unlike traditional 3D scan-conversion based

methods [74, 75, 76, 91, 77], our voxelization method is performed by recursively subdi-

viding the 2D parameter space and sampling 3D points from selected 2D parameter space

points. Because we can calculate every 3D point position explicitly and accurately, uni-

form sampling on surfaces with arbitrary topology is not a problem any more. Moreover,

our discretization of 3D closed objects is guaranteed to be leak-free when a 3D flooding

operation is performed. This is ensured by proving that our voxelization results satisfy

the properties of separability, accuracy and minimality. In addition, a 3D volume flood-

ing algorithm using dynamic programming techniques is presented which significantly

speeds up the volume flooding process. Hence our method is suitable for visualization of

complex scenes, measuring object volume, mass, surface area, determining intersection

curves of multiple surfaces and performing accurate Boolean/CSG operations. These

capabilities are demonstrated by test examples shown in this chapter.
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The structure of this chapter is as follows: A brief introduction is given in Section 1.

Some background about 3D discrete space is introduced in Section 2. In Section 3, some

related work is discussed. The voxelization method is presented in Section 4. The proof of

the correctness of our voxelization method is given in Section 5. In Section 6, a dynamic

programming method based volume flooding algorithm is presented. Some applications

of the voxelization technique are discussed and some test examples are shown in Section

7. We draw some conclusions in Section 8.

4.1 Introduction

Volume graphics [69] represents a set of techniques aimed at modeling, manipulation

and rendering of geometric objects, which have proven to be, in many aspects, superior

to traditional computer graphics approaches. The main advantages of volume graphics

are: (1) decoupling of voxelization from rendering, (2) uniformity of representation, and

(3) support of Boolean, block and CSG operations. Two drawbacks of volume graphics

techniques are their high memory and processing time demands. However, with the

progress in both computers and specialized volume rendering hardware, these drawbacks

are gradually losing their significance.

To be represented by the voxel raster, a geometric object has to go through a process

called voxelization. This process is concerned with converting geometric objects from

their continuous geometric representation into a set of voxels that best approximates

the continuous object. Traditional voxelization methods (also referred to as 3D scan-

conversion) mimic the 2D scan-conversion process that pixelizes (rasterizes) 2D geometric

objects. Hence traditional voxelization methods only work well for polygon based 3D

objects. For surfaces with arbitrary topology, voxelization using 3D scan-conversion is

not efficient, nor accurate.

Subdivision surfaces have become popular recently in graphical modeling, visualiza-

tion and animation because of their capability in modeling/representing complex shape
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of arbitrary topology [1], their relatively high visual quality, and their stability and ef-

ficiency in numerical computation. Subdivision surfaces can model/represent complex

shape of arbitrary topology because there is no limit on the shape and topology of the

control mesh of a subdivision surface. With parametrization techniques for subdivision

surfaces becoming available [17, 58] and with the fact that non-uniform B-spline and

NURBS surfaces are special cases of subdivision surfaces becoming known [15], we now

know that subdivision surfaces cover both parametric forms and discrete forms. Paramet-

ric forms are good for design and representation, discrete forms are good for machining

and tessellation (including FE mesh generation). Hence, we have a representation scheme

that is good for all graphics and CAD/CAM applications.

In this chapter we propose a voxelization method for free-form solids represented by

Catmull-Clark subdivision surfaces. Instead of direct sampling of 3D points, the new

method is based on recursive sampling of 2D parameter space points of a surface patch.

Hence the new method is more efficient and less sensitive to numerical error.

Note that a voxelization process does not render the voxels but merely generates

a database of the discrete digitization of the continuous object [90]. Some previous

voxelization methods use quad-trees to store the voxelization result. This approach can

save memory space but might sacrifice in time when used for applications such as Boolean

operations or intersection curves determination. Nevertheless, with cheap and giga-byte

memory chips becoming available, storage requirement is no longer a major issue in the

design of an algorithm. People care more about the efficiency of the algorithm. The new

method stores the voxelization result directly in a Cubic Frame Buffer for fast operation

purpose.

4.2 Background: 3D Discrete Space

A 3D discrete space is a set of integral grid points in 3D Euclidean space defined by

their Cartesian coordinates (x, y, z), with x, y, z ∈ Z. A voxel is a unit cube centered

at the integral grid point. Usually a voxel is assigned a value of 0 or 1. The voxels
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assigned an ‘1’, called the ‘black’ voxels, represent opaque objects. Those assigned a ‘0’,

called the ‘white’ voxels, represent the transparent background. Outside the scope of

this paper is a non-binary approach where the voxel values are mapped onto the interval

[0,1] representing either partial coverage, variable densities, or graded opacities. Due to

its larger dynamic range of values, this approach can support higher quality rendering.

Two voxels are said to be 26-adjacent (See Figure 4.1(c)) if they share a vertex, an

edge, or a face. Every given voxel has 26 such adjacent voxels: eight share a vertex

(corner) with the given voxel, twelve share an edge, and six share a face. Accordingly,

face-sharing voxels are said to be 6-adjacent (See Figure 4.1(a)), and edge-sharing and

face-sharing voxels are said to be 18-adjacent (See Figure 4.1(b)).

(a) 6-adjacent (b) 18-adjacent (c) 26-adjacent

Figure 4.1: N -adjacent, N ∈ {6, 18, 26}.

The prefix N is used to define the adjacency relation, with N= 6, 18, or 26. A sequence

of voxels having the same value (e.g., ‘black’) is called an N -path if all consecutive pairs

are N -adjacent. A set of voxels are said to be N -connected if there is an N -path between

every pair of its voxels. It is easy to see that N -connectedness is an equivalent relation.

Given three disjoint sets of voxels A, B and C, A is said to N -separate B and C if any

N -path from a voxel of B to a voxel of C intersects A.

4.3 Previous Voxelization Techniques

Voxelization techniques can be classified into two major categories. The first category

consists of methods that extend the standard 2D scan-line algorithm and employ nu-

merical considerations to guarantee that no gaps appear in the resulting discretization.

68



As we know polygons are fundamental primitives in 3D surface graphics in that they

approximate arbitrary surfaces as a mesh of polygonal patches. Hence, early work on

voxelization focused on voxelizing 3D polygon meshes [74, 75, 76, 91, 77] by using 3D

scan-conversion algorithm. Although this type of methods can be extended to voxelize

parametric curves, surfaces and volumes [78], it is difficult to deal with free-from surfaces

of arbitrary topology.

The other widely used approach for voxelizing free-form solids is to use spatial enumer-

ation algorithms which employ point or cell classification methods in either an exhaus-

tive fashion or by recursive subdivision [84, 85, 86, 87]. However, 3D space subdivision

techniques for models decomposed into cubic subspaces are computationally expensive

and thus inappropriate for medium or high resolution grids. The voxelization technique

that we will be presenting uses recursive subdivision. The difference is the new method

performs recursive subdivision on 2D parameter space, not on the 3D object. Hence

expensive distance computation between 3D points is avoided.

Like 2D pixelization, voxelization is a powerful technique for representing and mod-

eling complex 3D objects. This is proved by many successful applications of volume

graphics techniques in recently reported research work. For example, voxelization can be

used for visualization of complex objects or scene [85]. It can also be used for measuring

integral properties of solids, such as mass, volume and surface area [87]. Most impor-

tantly, it can be used for intersection curve calculation and performing accurate Boolean

operations. For example, in [86, 88], a series of Boolean operations are performed on

objects represented by a CSG tree. Voxelization is such an important technique that

several hardware implementations of this technique have been reported recently [80, 81].
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4.4 Voxelization based on Recursive 2D Parameter

Space Subdivision

4.4.1 Basic Idea

Given a free-form object represented by a CCSS and a cubic frame buffer of resolution

M1×M2×M3, the goal is to convert the CCSS represented free-form object (i.e. contin-

uous geometric representation) into a set of voxels that best approximates the geometry

of the object. We assume each face of the control mesh is a quadrilateral and each face

has at most one extra-ordinary vertex (a vertex with a valence different from 4). If this

is not the case, simply perform Catmull-Clark subdivision on the control mesh of the

CCSS twice.

With parametrization techniques for subdivision surfaces becoming available, it is

possible now to model and represent any continuous but topologically complex object

with an analytical representation [17, 18, 20, 58]. Consequently, any point in the surface

can be explicitly calculated. On the other hand, for any given parameter space point

(u, v), a surface point S(u, v) corresponding to this parameter space point can be exactly

computed as well. Therefore, voxelization does not have to be performed in the 3D object

space, as the previous recursive voxelization methods did, one can do voxelization in 2D

space by performing recursive subdivision and testing on the 2D parameter space.

We first consider the voxelization process of a subpatch, which is a small portion of a

patch. Given a subpatch of S(u, v) defined on [u1, u2]× [v1, v2], we voxelize it by assuming

this given subpatch is small enough (hence, flat enough) so that all the voxels generated

from it are the same as the voxels generated using its four corners:

V1 = S(u1, v1), V2 = S(u2, v1), V3 = S(u2, v2), V4 = S(u1, v2). (4.1)

Usually this assumption does not hold. Hence a test must be performed before the

patch or subpatch is voxelized. It is easy to see that if the voxels generated using its

four corners are not N -adjacent (N ∈ {6, 18, 26}) to each other, then there exist holes

between them. In this case, the patch or subpatch is still not small enough. To make
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1 2

3 4

(b)(a)

Figure 4.2: Basic idea of parameter space based recursive voxelization.

it smaller, we perform a midpoint subdivision on the corresponding parameter space by

setting

u12 =
u1 + u2

2
and v12 =

v1 + v2

2

to get four smaller subpatches:

S([u1, u12]× [v1, v12]), S([u12, u2]× [v1, v12]),
S([u12, u2]× [v12, v2]), S([u1, u12]× [v12, v2]),

and repeat the testing process on each of the subpatches. The process is recursively

repeated until all the subpatches are small enough and can be voxelized using only their

four corners.

The vertices of the resulting subpatches after the recursive parameter space subdivi-

sion are then used as vertices for voxelization that approximates the limit surface. For

example, if the four rectangles in Figure 4.2(a) are the parameter spaces of four adjacent

subpatches of S(u, v), and if the rectangles shown in Figure 4.2(b) are the parameter

spaces of the resulting subpatches when the above recursive testing process stops, then

3D points will be evaluated at the 2D parameter space points marked with small solid

circles to form voxels that approximate the limit surface.

To make things simple, we first normalize the input mesh to be of dimension [0,M1−
1]× [0,M2−1]× [0,M3−1]. Then for any 2D parameter space point (u, v) generated from

the recursive testing process (See Figure 4.2), direct and exact evaluation is performed to
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get its 3D surface position and normal vector at S(u, v). To get the voxelized coordinates

(i, j, k) from S(u, v), simply set

i = bS(u, v).x + 0.5c, j = bS(u, v).y + 0.5c, k = bS(u, v).z + 0.5c. (4.2)

Once every single point marked in the recursive testing process is voxelized, the process

for voxelizing the given patch is finished. The proof of the correctness of our voxelization

results will be discussed in the next section.

Since the above process guarantees that shared boundary or vertex of patches or

subpatches will be voxelized to the same voxel, we can perform voxelization of free-form

objects represented by a CCSS patch by patch. One thing that should be pointed out is, to

avoid stack overflow, only small subpatches should be fed to the recursive subdivision and

testing process. This is especially true when a high resolution cubic frame buffer is given

or some polygons are very big in the given control mesh. Generating small subpatches

is not a problem for a CCSS once the parametrization techniques are available. For

example, in our implementation, the size of subpatches (in the parameter space) fed to

recursive testing is 1
8
× 1

8
, i.e. each patch is divided into 8 × 8 subpatches before the

voxelization process. In addition, feeding small size subpatches to the recursive testing

process ensures the assumption of our voxelization process to be satisfied, because the

smaller the parameter size of a subpatch, the flatter the subpatch.

4.4.2 Voxelization Algorithms

The above voxelization method, based on recursive subdivision of the parameter space,

is summarized into the following algorithms: Voxelization and VoxelizeSubPatch. The

parameters to these algorithms are explained as follows. S: control mesh of a CCSS

which represents the given object; N : an integer that specifies the N -adjacent relation-

ship between adjacent voxels; M1, M2, and M3: resolution of the Cubic Frame Buffer;

k: an integer that specifies the number of subpatches (k × k) that should be generated

before fed to the recursive voxelization process.
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Voxelization(Mesh S, int N , int M1, int M2, int M3, int k)

1. Normalize S so that S is bounded [0,M1 − 1]× [0, M2 − 1]× [0,M3 − 1]

2. for each patch pid in S

3. for u = 1
k

: 1, step size 1
k

4. for v = 1
k

: 1, step size 1
k

5. VoxelizeSubPatch(N , pid, u− 1
k
, u, v − 1

k
, v);

VoxelizeSubPatch(int N , int pid, float u1, float u2, float v1, float v2)

1. (i1, j1, k1) = Voxelize(S(pid, u1, v1));

2. (i2, j2, k2) = Voxelize(S(pid, u2, v1));

3. (i3, j3, k3) = Voxelize(S(pid, u2, v2));

4. (i4, j4, k4) = Voxelize(S(pid, u1, v2));

5. if(|u2 − u1| < 1/ max{M1,M2,M3}) return;

6. ∆i = max{|ia − ib|}, with a and b ∈ {1, 2, 3, 4};
7. ∆j = max{|ja − jb|}, with a and b ∈ {1, 2, 3, 4};
8. ∆k = max{|ka − kb|}, with a and b ∈ {1, 2, 3, 4};
9. if(N = 6 & ∆i + ∆j + ∆k ≤ 1) return;

10. if(N = 18 & ∆i ≤ 1 & ∆j ≤ 1 & ∆k ≤ 1 & ∆i + ∆j + ∆k ≤ 2) return;

11. if(N = 26 & ∆i ≤ 1 & ∆j ≤ 1 & ∆k ≤ 1) return;

12. u12 = (u1 + u2)/2; v12 = (v1 + v2)/2;

13. VoxelizeSubPatch(N, pid, u1, u12, v1, v12);

14. VoxelizeSubPatch(N, pid, u12, u2, v1, v12);

15. VoxelizeSubPatch(N, pid, u12, u2, v12, v2);

16. VoxelizeSubPatch(N, pid, u1, u12, v12, v2);

In algorithm ‘VoxelizeSubPatch’, corresponding surface points for the four corners are

evaluated using Eq. (2.5), where pid tells us which patch we are currently working on.

The routine ‘Voxelize’ voxelizes points by using Eq. (4.2). Lines 9, 10 and 11 are used
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to test if voxelizing the four corners of a subpatch is enough to generate a 6-, 18- and

26-adjacent voxelization, respectively. While Line 5 prevents the recursive process from

non-stop dead loop in case Lines 9, 10 and 11 are always not satisfied.

4.5 Separability, Accuracy and Minimality

Let S be a C1 continuous surface in R3. We denote by S̄ the discrete representation of S.

S̄ is a set of black voxels generated by some digitalization method. There are three major

requirements that S̄ should meet in the voxelization process. First, separability [90, 91],

which requires to preserve the analogy between continuous and discrete space and to

guarantee that S̄ is not penetrable since S is C1 continuous. Second, accuracy. This

requirement ensures that S̄ is the most accurate discrete representation of S according to

some appropriate error metric. Third, minimality [90, 91], which requires the voxelization

should not contain voxels that, if removed, make no difference in terms of separability

and accuracy. The mathematical definitions for these requirements can be found in [91],

which are based on [90].

First we can see that voxelization results generated using our recursive subdivision

method satisfy the requirement of minimality. The reason is that voxels are sampled

directly from the object surface. The termination condition of our recursive sampling

process (i.e., Line 8, 9, 10 in algorithm ‘VoxelizeSubPatch’) and the coordinates trans-

formation in Eq. (4.2) guarantee that every point in the surface has one and only one

image in the resulting voxelization. In other words,

∀ P ∈ S, ∃ Q ∈ S̄, such that P ∈ Q. (4.3)

Note that here P is a 3D point and Q is a voxel, which is a unit cube. On the other

hand, because all voxels are mapped directly from the object surface using Eq. (4.2), we

have

∀ Q ∈ S̄, ∃ P ∈ S, such that P ∈ Q. (4.4)

Hence no voxel can be removed from the resulting voxelization, i.e., the property of

minimality is satisfied. In addition, from Eq. (4.3) and Eq. (4.4) we can also conclude

74



that the resulting binary voxelization is the most accurate one with respect to the given

resolution. Hence the property of accuracy is satisfied as well.

To prove that our voxelization results satisfy the separability property, we only need

to show that there is no holes in the resulting voxelization. For simplicity, here we

only consider 6-separability, i.e., there does not exist a ray from a voxel inside the free-

form solid object to the outside of the free-form solid object in x, y or z direction that

can penetrate our resulting voxelization without intersecting any of the black voxels. We

prove the separability property by contradiction. As we know violating separability means

there exists at least a hole (voxel) Q in the resulting voxelization that is not included

int S̄ but is intersected by S and, there must also exist two 6-adjacent neighbors of Q

that are not included in S̄ either and are on opposite sides of S. Because S intersects

with Q, there exist at least one point P on the surface that intersects with Q. But the

image of P after voxelization is not Q because Q is a hole. However, the image of P after

voxelization must exist because of the termination condition of our recursive sampling

process (i.e., Line 8, 9, 10 in algorithm ‘VoxelizeSubPatch’). Moreover, according to our

voxelization method, P can only be voxelized into voxel Q because of Eq. (4.2). Hence

Q cannot be a hole, contradicting our assumption. Therefore, we conclude that S̄ is

6-separating.

4.6 Volume Flooding with Dynamic Programming

4.6.1 Seed Selection

A seed must be designated before a flooding algorithm can be applied. In 2D flooding, a

seed is usually given by the user interactively. However, in 3D flooding, for a closed 3D

object, it is impossible for a user to designate a voxel as a seed by mouse-clicking because

voxels inside a closed 3D object are invisible. Hence an automatic method is needed to

select an inside voxel as a seed for volume flooding. Once we can correctly choose an

inside voxel, the by applying a flooding operation, all inside voxels can be obtained. To

select a voxel as a seed for volume flooding, we need to tell if a voxel is inside or outside
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the 3D object. This is not a trivial problem. In the past In-Out test for voxels is not

efficient and not accurate [87], especially for topologically complicated 3D objects.

With the availability of parametrization techniques for subdivision surfaces, we now

can calculate derivatives and normals exactly and explicitly for each point located on the

3D object surface. Hence the normal for each voxel can also be exactly calculated in the

voxelization process. Because the direction of a normal is perpendicular to the surface

and points towards the outside of the surface, the closest voxel in its opposite direction

must be located either inside or on the surface (Assume the voxelization resolution is high

enough). For a given voxel (called start voxel), to choose the closest voxel in its normal’s

opposite direction, we just need to calculate the dot product of its normal and one of

the axis vectors. These vectors are: {1, 0, 0}, {−1, 0, 0}, {0, 1, 0}, {0,−1, 0}, {0, 0, 1},
{0, 0,−1} corresponding to x, −x, y, −y, z and −z direction, respectively. The direction

with biggest dot product is chosen for finding an inside voxel. If the closest voxel in this

chosen direction is also a black voxel (i.e., located on the 3D object surface), another

start voxel has to be selected and the above process is repeated until an inside voxel is

found. The found inside voxel can be designated as a seed for inside volume flooding.

Similarly, an outside voxel can also be found for outside volume flooding. In this case,

the seed voxel should not be chosen from the normal’s opposite direction, but along the

normal’s direction.

D

C

A

1P2P

3P

1N2N

3N
B

Figure 4.3: A voxel with multiple pieces of object surface in it.

However, if the voxelization resolution is not high enough, the closest voxel in the

normal’s opposite direction might be an outside voxel. For example, in Figure 4.3, ABCD
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denotes a voxel and part of the object surface passes through this voxel. Differently, there

are two pieces of surface that are not connected but are all inside this voxel. If we choose

P1 as the start point in Figure 4.3 to find an inside voxel using the above seed selection

method, an outside voxel will be wrongly chosen. Hence the above method is no longer

applicable in this case. To resolve the problem in this situation, higher voxelization

resolution could be used. However, no matter how high the voxelization resolution is, we

still cannot guarantee cases like the one shown in Figure 4.3 will not occur. Hence other

approach is needed.

Fortunately, voxels that have multiple pieces of surface passing through, like the one

shown in Figure 4.3, can be easily identified in the voxelization process. To identify

these voxels, we need to calculate normals for each voxel. For example, in Figure 4.3, if

surface point P1 is mapped to voxel ABCD, then the normal at P1 which is N1, is also

memorized as the normal of this voxel. Next time if another surface point, say P2, is also

mapped to voxel ABCD, then the normal at P2 which is N2, will be first compared with

the memorized normal of voxel ABCD by calculating their dot product. If N1 ·N2 > 0,

then nothing need to be done. Otherwise, say surface point P3, which is mapped to the

same voxel and its normal is N3, if N1 ·N3 ≤ 0, then this voxel is marked as a voxel that

has multiple piece passing through. Once every voxel that has multiple pieces of surface

passing through is marked, we can easily solve the problem simply by not choosing these

marked voxels as the start voxels.

4.6.2 3D Flooding using Dynamic Programming

Here we only present flooding algorithms using 6-separability, but the idea can be applied

to N -separability with N = 18 or 26, Although 6-separability is used in the flooding

process, the voxelization itself can be N -adjacent with N = 6, 18 or 26, Once a seed is

chosen, 3D flooding algorithms can be performed in order to fill all the voxels that are

6-connected with this seed voxel. The simplest flooding algorithm is recursive flooding,

which recursively search adjacent voxels in 6 directions for 6-connected voxels. This
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method sounds ideally reasonable but does not work in real world because even for a

very low resolution, it would still cause stack overflow.

Another method that can be used for flooding is called linear flooding, which searches

adjacent voxels that are 6-connected with the given the seed voxel, linearly from the first

voxel to the last voxel in the cubic frame buffer, and marks all the found voxels with

gray. The search process is repeated until no more white (‘0’) voxels is found that are

6-connected with one of the gray voxels. Linear flooding is simple and does not require

extra memory in the flooding process. However, it is very slow, especially when a high

resolution is used in the voxelization process.

In many applications, 3D flooding operations are required to be fast with low extra

memory consumption. To make a 3D flooding algorithm applicable and efficient, we

can combine the recursive flooding and the linear flooding methods using the so called

dynamic programming technique.

Dynamic programming usually breaks a problem into subproblems, and these sub-

problems are solved and the solutions are memorized, in case they need to be solved

again. This is the essentiality of dynamic programming. To use dynamic programming

in our 3D flooding algorithm, we use a sub-routine FloodingXYZ which marks inside

voxels having the same x, y or z coordinates as the given seed voxel, and all marked

voxels are memorized by pushing them into a stack called GRAYSTACK. Note here the

stack has a limited space, whose length is specified by the user. When the stack reaches

its maximal capacity, no gray voxels can be pushed into it. Hence it guarantees limited

memory consumption. The 3D flooding algorithm with dynamic programming can im-

prove the flooding speed significantly. For ordinary resolution, say, 512 × 512 × 512, a

flooding operation can be done almost in real time. The pseudo code for the 3D volume

flooding algorithm is given as follows and the parameters (si, sj, sk) are the coordinates

of the given seed voxel.
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VolumeFlooding(int si, int sj, int sk)

1. FloodingXYZ(si, sj, sk);

2. loop = 1;

3. while(loop)

4. while (GRAYSTACK is not empty)

5. (i, j, k) = GRAYSTACK.Pop();

6. FloodingXYZ(i, j, k)

7. loop = 0;

8. for(i = 0; i < M1; i++)

9. for(j = 0; j < M2; j++)

10. for(k = 0; k < M3; k++)

11. if ( Voxel (i, j, k) is white and is 6-adjacent with a gray voxel)

12. FloodingXYZ(i, j, k);

13. loop = 1;

4.7 Applications

4.7.1 Visualization of Complex Scenes

Ray tracing is a commonly used method in the field of visualization of volume graphics.

This is due to its ability to enhance spatial perception of the scene using techniques such

as transparency, mirroring and shadow casting. However, there is a main disadvantage for

ray tracing approach: large computational demands. Hence rending using this method

is very slow. Recently, surface splatting technique for point based rendering has become

popular [63, 89]. Surface splatting requires the position and normal of every point to be

known, but not their connectivity. With explicit position and exact normal information

for each voxel in our voxelization results, now it is much easier for us to render discrete

voxels using surface splatting techniques. The rendering is fast and high quality results

can be obtained. For example, Figure 4.4(f) is the given mesh, Figure 4.4(g) is the

corresponding limit surface. After the voxelization process, Figure 4.4(h) is generated
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only using basic point based rendering techniques with explicitly known normals to each

voxel. While Figure 4.4(i) is rendered using splatting based techniques. The size of cubic

frame buffer used for Figure 4.4(h) is 512× 512× 512. The voxelization resolution used

for Figure 4.4(i) is 256 × 256 × 256. Although the resolution is much lower, we can tell

from Figure 4.4, that the one using splatting techniques is smoother and closer to the

corresponding object surface given in Figure 4.4(g).

4.7.2 Integral Properties Measurement

Another application of voxelization is that it can be used to measure integral properties of

solid objects such as mass, volume and surface area. Without discretization, these integral

properties are very difficult to measure, especially for free-form solids with arbitrary

topology.

Volume can be measured simply by counting all the voxels inside or on the surface

boundary because each voxel is a unit cube. With efficient flooding algorithm, voxels

inside or on the boundary can be precisely counted. But the resulting measurement

may not be accurate because boundary voxels do not occupy all the corresponding unit

cubes. Hence for higher accuracy, higher voxelization resolution is needed. Once the

volume is known, it is easy to measure the mass simply by multiplying the volume

with density. Surface area can be measured similarly. But using this approach would

lead to big error because we do not know how surfaces pass through their corresponding

voxels. Fortunately, surface area can be measured much more precisely in the voxelization

process. As we know, during the recursive voxelization process, if the recursive process

stops, all the marked parameter points of a patch or subpatch (See Figure 4.2) are points

used for final voxelization. Hence all these quadrilaterals corresponding to these marked

parameter points can be used for measuring surface area after these marked parameter

space points are mapped to 3D space. The flatness of these quadrilaterals is required to

be tested if high accuracy is needed. The definition of patch flatness and the flatness

testing method can be found in [59].
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(a) Intersection Curve (b) Intersection Curve

(c) Difference (d) Difference (e) CSG

(f) Mesh (g) Surface (h) Point (i) Splat (j) Difference

(k) Union (l) Difference

Figure 4.4: Applications of Voxelization
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4.7.3 Performing Boolean and CSG Operations

The most important application of voxelization is to perform Boolean and CSG opera-

tions on free-form objects. In solid modeling, an object is formed by performing Boolean

operations on simpler objects or primitives. A CSG tree is used in recording the con-

struction history of the object and is also used in the ray-casting process of the object.

Surface-surface intersection (including the in-on-out test) and ray-surface intersection are

the core operations in performing the Boolean and CSG operations. With voxelization,

all of these problems become much easier set operations. For instance, Figure 4.4(d) is

generated by subtracting a cylinder from the Venus model. While Figure 4.4(k) and Fig-

ure 4.4(l) are the union and difference results of the cow model and the rocker arm model

shown in Figure 4.4(g). Note that all these union and difference pairs are positioned

the same way when Boolean operations are performed. Figure 4.4(j) is generated by

subtracting the the heart model shown in Figure 4.4(c), from rock arm model shown in

Figure 4.4(g). And Figure 4.4(c) is generated by subtracting the rock arm model shown

in Figure 4.4(g) from the heart model. A mechanical part is also generated in Figure

4.4(e) using CSG operations. Intersection curves can be similarly generated by searching

for common voxels of objects. The black curve shown in Figure 4.4(b) and Figure 4.4(a)

is the intersection curve generated from two different objects.

4.8 Summary

A method to convert a free-form object from its continuous geometric representation to

a set of voxels that best approximates the geometry of the object is presented. The new

voxelization method can be used furthermore in next chapter for our subdivision surface

based one-piece representation system when Boolean operation is used to construct one-

piece represented mesh structure. Unlike traditional 3D scan-conversion based methods,

the new method does the voxelization process by recursively subdividing the 2D parame-

ter space and sampling 3D surface points only at selected 2D parameter space positions.

Because of the capability to calculate every 3D point position explicitly and accurately,
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uniform sampling on surfaces with arbitrary topology is not a problem for the approach

at all. Moreover, the new method guarantees that discretization of 3D closed objects is

leak-free when a 3D flooding operation is performed. This is ensured by proving that

voxelization results of the new method satisfy the properties of separability, accuracy and

minimality. In addition, a 3D volume flooding algorithm using dynamic programming

techniques is presented which significantly speeds up the volume flooding process. Hence

the new method is suitable for visualization of complex scenes, measuring object volume,

mass, surface area, determining intersection curve of multiple surfaces and performing

accurate Boolean/CSG operations.

Copyright c© Shuhua Lai 2006
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Chapter 5

Robust and Error Controllable
Boolean Operations on Free-Form
Solids Represented by
Catmull-Clark Subdivision Surfaces

In this chapter, a method for performing robust and error controllable Boolean oper-

ations on free-form solids represented by Catmull-Clark subdivision surfaces (CCSSs)

is presented [64]. The given objects are voxelized [57] using the voxelization method

presented in chapter 4 to make Boolean operations more efficient. However, different

from previous voxelization-based approaches, the final results of the Boolean operations

in our method are represented with a continuous geometric representation, that is, our

results after Boolean operations are one-piece representations of solid objects. They are

represented with topologically correct mesh structure [64]. This is achieved by doing the

Boolean operations in the parameter spaces of the solids, instead of the object space.

The 2D parameter space is recursively subdivided until a keep-or-discard decision can be

made for each resulting subpatch using results of the voxelization process. This approach

allows us to easily compute a parametric approximation of the intersection curve and,

consequently, to build a continuous geometric representation for the Boolean operation

result. To make the Boolean operation result more accurate, a secondary local voxeliza-

tion can be performed for intersecting subpatches. Because the voxelization process itself

is very fast and robust, the overall process is fast and robust too. Most importantly, the

error of the Boolean operation results can be estimated, so error control is possible. In

addition, our method can handle any cases of Boolean operations as long as the given

solids are represented by CCSSs. Therefore there are no special or degenerated cases to
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take care of. Although the new method is presented for CCSSs, the concept actually

works for any subdivision scheme whose limit surfaces can be parameterized.

The remaining part of the chapter is arranged as follows. In section 1, a brief intro-

duction is given. Some background and previous works related to this one are given in

Section 2. The process of performing Boolean operations on solids represented by CCSSs

is discussed in Section 3. The local voxelization technique is presented in Section 4. Error

control is given in Section 5. Implementation issues and test cases are shown in Section

6. Concluding remarks are given in Section 7.

5.1 Introduction

Boolean operations are a natural way of constructing complex solid objects from simpler

primitives. For example, the Constructive Solid Geometry (CSG) representation scheme

allows users to define complex 3D solid objects by hierarchically combining simple ge-

ometric primitives using Boolean operations and affine transformations. However, for

many applications CSG is not the most efficient approach. Another major represen-

tation scheme used in solid modeling is boundary representation (B-rep). But because

higher order B-reps are needed for complicated objects, it is usually very difficult to find

the intersecting curve analytically. In addition, care always has to be taken to handle

special cases and degenerated cases [94]. Hence, accurate Boolean operations are usually

not fast, nor robust, although excellent results have been achieved by some commercial

solid modeling engines.

Voxelization of 3D objects has been studied and used for 3D object modeling and

rendering for a while. With voxelization, it is actually very simple to get all the result-

ing voxels after Boolean operations because now Boolean operations become simple set

operations. The difficult part is how to represent the resulting object properly and accu-

rately when voxelization is used in the Boolean operation process. Traditionally, results

of Boolean operations are represented as sets of voxels [104, 105] and special volumetric

rendering algorithms are developed for visualizing Boolean operation results [89, 107].

85



The main disadvantage of this approach is that there is no continuous geometric rep-

resentation for the resulting objects. Consequently, the results of Boolean operations

cannot be scaled seamlessly or smoothly because of the nature of discretization.

In this chapter, we present a method for performing robust and error-controllable

Boolean operations on free-form solids represented by Catmull-Clark subdivision sur-

faces (CCSSs). The given solids are voxelized so that Boolean operations can be per-

formed more efficiently and robustly. However, the final results of Boolean operations

in our method are still represented with a continuous geometric representation. This is

achieved by performing Boolean operations subpatch by subpatch in 2D parameter space.

Each subpatch is small enough to ensure the resulting voxels are either adjacent or over-

lapping. Consequently, connectivity of adjacent voxels can be easily constructed and the

intersection curve can be easily identified. Because Boolean operations are performed

subpatch by subpatch in 2D parameter space, our method can handle solids with arbi-

trary topology. There are no special cases or degenerated cases to take care of. Therefore

our method is robust. Most importantly, error control is possible in our method. To make

the Boolean results more accurate according to our error estimation formula, a secondary

local voxelization can be performed for each pair of intersecting subpatches.

5.2 Background & Related Work

5.2.1 Subdivision Surfaces

Given a control mesh, a subdivision surface is generated by iteratively refining (subdivid-

ing) the control mesh to form new and finer control meshes. The refined control meshes

converge to a limit surface called a subdivision surface. So a subdivision surface is deter-

mined by the given control mesh and the mesh refining (subdivision) process. Popular

subdivision surfaces include Catmull-Clark subdivision surfaces (CCSSs) [1], Doo-Sabin

subdivision surfaces [10] and Loop subdivision surfaces [3]. All these subdivision schemes

can be considered as an algorithmic generalization of classical spline techniques enabling

control meshes with arbitrary topology [1, 3, 10]. They provide easy access to globally
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smooth surfaces of arbitrary shape by iteratively applying simple refinement rules to the

given control mesh. A sequence of meshes generated by this process quickly converges to

a smooth limit surface. For most practical applications, the refined meshes are already

sufficiently close to the smooth limit after only a few refinement steps.

Subdivision surfaces are by far the most general surface representation scheme. They

include non-uniform B-spline and NURBS surfaces as special cases [15]. In this chapter we

only consider performing Boolean operations on free-form solids represented by CCSSs.

However, our approach can be used for any subdivision scheme whose parametrization is

available.

5.2.2 Voxelization

Like 2D pixelization, voxelization of surfaces [90, 91] is a powerful technique for represent-

ing and modeling complex 3D objects. This is proved by many successful applications of

volume graphics techniques in recently reported research work. For example, voxelization

can be used for visualization of complex objects or scenes [57, 89, 107]. It can also be

used for measuring integral properties of solids, such as mass, volume and surface area.

Most importantly, it can be used for intersection curve calculation and, consequently,

Boolean operations [57, 105]. For example, in [105], a series of Boolean operations are

performed on objects represented by a CSG tree.

A good voxelization should meet three requirements in the voxelization process: sep-

arability, accuracy, and minimality [90, 91]. The first requirement demands similarity

between the continuous space and the discrete space to be preserved and the resulting

voxelization to be impenetratable since the given solid is closed and continuous. The

second requirement ensures that the resulting voxelization is the most accurate discrete

representation of the given solid according to some appropriate error metric. The third

requirement requires that the voxelization does not contain voxels that, if removed, make

no difference in terms of separability and accuracy. The mathematical definitions of these

requirements can be found in [90, 91].
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Note that a voxelization process does not render the voxels but merely generates

a database of the discrete digitization of the continuous object [90]. Some previous

voxelization methods use quad-trees to store the voxelization result [106]. This approach

can save memory space but might take a long time when used for applications such as

Boolean operations or intersection curve determination. Nevertheless, with cheap giga-

byte memory chips becoming available, storage requirements are no longer a major issue

in the design of a voxelization algorithm. People care more about the efficiency of the

algorithm. Our new method stores the voxelization result directly in a Cubic Frame

Buffer [90] for the purpose of fast operation.

5.2.3 Boolean Operations on Free-Form Solids

Performing Boolean operations is a classic problem in geometric modeling. Many ap-

proaches have been reported in the literature, such as [7, 64, 92, 98, 102, 104, 105, 106],

to name a few. Currently, most solid modelers can support Boolean operations on solids

composed of polyhedral models or quadric surfaces (like spheres, cylinders etc.). Over the

last few years, modeling using free-form surfaces has become indispensable throughout

the commercial CAD/CAM industry. However, the major bottleneck is in performing

robust, efficient and accurate Boolean operations on free-form objects. The topology of

a surface patch becomes quite complicated when a number of Boolean operations are

performed and finding a convenient representation for these topologies has been a major

challenge. As a result, some solid modelers [92] use polyhedral approximation to these

surfaces and apply Boolean operations on these approximate polyhedral objects. Al-

though these approaches seem simple, there are always some special cases or degenerated

cases [94] that are difficult to take care of. Some modelers use point (or surfel) based

approaches [106] to perform Boolean operations and quite good results are obtained.

However, error control is difficult in such approaches. Zorin etc. proposed a method [7]

to perform approximate Boolean operations on free-form solids represented by subdivi-

sion surfaces. The main contribution of their method is the algorithms that are able to

generate a control mesh for a multiresolution surface approximating the Boolean results.
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Most of the recent work in the literature on Boolean operations of curved models are

focused on computing the surface intersection [93, 95, 97, 99, 101, 103]. However, the

algebraic degree of the resulting curve can typically be very high (up to 324 for a pair

of bicubic Bézier surfaces) [92] and the genus is also non-zero. Hence it is very difficult

to represent the intersection curve analytically and the current methods are aimed at

computing approximations to the intersection curve.

5.3 Performing Boolean Operations on 3D Free-Form

Solids

Because we perform Boolean Operations on Free-Form Solids by voxelizing these solids,

Boolean operations performed on three or more objects can be regarded as a series of

Boolean operations performed on two objects. Therefore, here we only need to consider

Boolean operations performed on two free-form solids A and B. As a result, only two

cubic frame buffers are needed in the whole process, one for each object. The results of

Boolean operations can share a cubic frame buffer with any of them. Once voxelization

is done (See Chapter 4), a volume flooding (see Chapter 4) must be performed to

mark the voxels located inside a given solid. After all these steps, there are three types

of voxels in each cubic frame buffer: (1) inside voxels, (2) boundary voxels and (3) outside

voxels.

Several possible Boolean operations may be specified by the users. However, the

essential process is almost the same. Here we illustrate the process by assuming that the

given Boolean operation is to find the intersection of two solid objects.

With voxelization, it is actually quite simple to get the resulting voxels for a Boolean

operation. For example, the voxels left after an intersection operation are those located

inside or on the boundary of both objects. The difficult part is how to represent the re-

sulting part properly and accurately. Traditionally the results of Boolean operations are

represented with just voxels. The main disadvantage of this method is that the results
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cannot be scaled seamlessly because of the nature of discretization. In the following sec-

tions, we present an approach that represents the final result with a continuous geometric

representation.

5.3.1 Boolean Operations based on Recursive 2D Parameter
Space Subdivision and Voxelization

For a subpatch of S(u, v) of solid A defined on [u1, u2]× [v1, v2], we voxelize it one more

time using the method discussed in Chapter 4. However, this time we do not write

the voxels into A’s cubic frame buffer, but look up the voxel values in both solid A and

solid B’s cubic frame buffers. Recall that we are performing an intersection operation

of A and B. If all the voxel values of the whole subpatch in both cubic frame buffers

are not outside, then this is a subpatch to keep. Subpatches of this type are called K-

subpatches (subpatches to be kept). If the voxel values of this subpatch are all outside

in both A and B’s cubic frame buffer, then this is a subpatch to discard. Subpatches

of this type are called D-subpatches (subpatches to be discarded). Otherwise, i.e., if

some of the voxel values are inside, boundary and some of the voxel values are outside,

then this is a patch with some parts to keep and other parts to discard. Subpatches

whose voxel values contain all of inside, boundary and outside are called I-subpatches

(intersecting subpatches). For example, the rectangles shown in Figure 5.1 (a) are the

parameter spaces of the resulting subpatches when the recursive voxelization process

stops and the dashed polyline is part of the intersection curve of the two given solids

in this patch’s 2D parameter space. We can see that subpatch A1A2A4A3 in Figure

5.1 (a) is an I-subpatch. Note here all the marked (dark circles) adjacent points, when

evaluated and voxelized, will be mapped to either the same voxel or adjacent voxels (see

Chapter 4). For example, no voxel exists between voxels corresponding to parameter

points A1 and A3. Therefore, even though the intersection curve does not pass through

A1 or A3, the voxel corresponding to the intersection point I1 will fall into the closest

voxel corresponding to parameter point A1 or A3. In this case, it falls into the voxel

corresponding to A1.
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Figure 5.1: Performing Boolean operations on 2D parameter space.

An intersecting voxel is a voxel whose voxel value is boundary in both cubic frame

buffers. Hence it is very easy to find all the intersecting voxels, which compose the

intersection curve (but at this moment we do not know how to connect these intersecting

voxels yet. This will be explained shortly). For example, in Figure 5.1(a), parameter

points A1 and B7 are intersecting voxels. Once all the intersecting voxels are identified,

a continuous geometric representation for the Boolean operation result can be generated

as follows.

K-subpatches and D-subpatches are easy to handle. They are either kept (for K-

subpatches) or discarded (for D-subpatches) totally. For example, in Figure 5.1(b),

A4A5A7A6 is a K-subpatch, hence A4A5A7A6 will be output wholly in the tessellation

or rendering process. For an I-subpatch, one can determine which part of the subpatch

to keep by traversing all the marked points attached to this subpatch. For example, for

the subpatch B0B1B2B3B7 in Figure 5.1(a), after a traverse of the marked vertices, it is

easy to see that the part to keep is the triangle B2B3B7. Hence B2B3B7 will be used in

the tessellation and rendering process and another region of the subpatch B0B1B2B3B7

in Figure 5.1(a) will be discarded. Note here the intersection point I2, after voxelization,

maps to the voxel B7. In Figure 5.1(b) the shaded part is the result after performing the

Boolean operation in the 2D parameter space. Once we have the result of the Boolean

operation in 2D parameter space, the 3D result can be easily obtained by directly evalu-

ating and tessellating these shaded polygons. Note here we obtain not only the polygons,
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but also their connectivity. Hence a mesh structure can be achieved in the above process.

It is the mesh structure that we can consider as a one-piece representation of the results

of Boolean operations. In this stage, we have a continuous geometric representation (the

mesh) as well as a discrete voxel-based representation (the cubic frame buffer) for our

resulting shape of Boolean operations. Because we now have both representations, a

connected intersection curve can be easily constructed as well by picking intersecting

voxels (from the discrete voxel-based representation) and traversing the mesh structure

(information of the continuous geometric representation). For example, in Figure 5.1,

the intersection curve (inside this patch) is A1A4A6B2B7B8.

The above voxelization process and Boolean operations guarantee that a shared

boundary or vertex of patches or subpatches will be chopped, kept or discarded in ex-

actly the same way, no matter which patch the operation is performed on. Therefore,

in our approach, Boolean operations of free-form objects represented by CCSSs can be

performed on the basis of individual patches.

5.3.2 Crack Prevention

Due to the fact that adjacent patches might be tessellated by quadrilaterals corresponding

to subpatches from different levels of the midpoint subdivision process mentioned in the

above section, cracks could occur between adjacent patches or subpatches. For instance,

in Figure 6.3, the left patch A1A2A5A6 is approximated by one quadrilateral but the

right patch is approximated by 7 quadrilaterals. Consider the boundary shared by the

left patch and the right patch. On the left side, that boundary is a line segment defined

by two vertices : A2 and A5. But on the right side, the boundary is a polyline defined

by four vertices : A2, C4, B4, and A5. They would not coincide unless C4 and B4 lie on

the line segment defined by A2 and A5. But that is usually not the case. Hence, cracks

would appear between the left patch and the right patch.

Fortunately, cracks can be eliminated simply by replacing each boundary of a patch

or subpatch with the one that contains all the evaluated points for that boundary. For
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example, in Figure 6.3, all the dotted lines should be replaced with the correspond-

ing polylines. In particular, boundary A2A5 of patch A1A2A5A6 should be replaced

with the polyline A2C4B4A5. As a result, polygon A1A2A5A6 is replaced with poly-

gon A1A2C4B4A5A6 in the tessellation process. For rendering purposes this is fine

because graphics systems like OpenGL can handle polygons with non-co-planar vertices

and polygons with any number of sides. However, it should be pointed out that through

a simple zigzag technique, triangulation of those polygons is actually a simple and very

fast process. More details about the crack prevention problem are presented in Chapter

6.

Cracks could also occur if solids A and B are not connected properly in the inter-

secting area. For example, in Figure 5.1 (a), if intersection point I1 after evaluation and

voxelization falls to the voxel corresponding to 2D parameter point A1 of solid A, and if

I1 falls to the voxel corresponding to 2D parameter point Ā1 of solid B, then after evalua-

tion, SA(A1) might not equal SB(Ā1) exactly. Therefore a crack occurs. To eliminate this

kind of crack, we cannot use the exact 3D positions evaluated from 2D parameter points

for intersection points. Instead we use the average of SA(A1) and SB(Ā1) as the intersec-

tion point. In this way, solids A and B will have exactly the same intersection positions

and intersection curve. As a result, solids A and B can be connected seamlessly. Note

that for K-subpatches, their vertices will be evaluated directly from parameter points.

Only intersection points of partially kept I-subpatches are approximated by the average

of SA(A1) and SB(Ā1).

5.4 Local Voxelization

The voxelization process presented in the above section is called a global voxelization,

because it is performed for the entire object space. After all of the Boolean operations

are performed, a fine scale voxelization, called a local voxelization, will also be performed.

The goal of the local voxelization is to improve the accuracy of the I-subpatches. For

example, in Figure 5.1(a), A1A2A4 is used to approximate the area of the I-subpatch
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A1A2A4A3 that should be kept. The accuracy of this approximation depends on the

resolution of the global cubic frame buffer, which is always not high enough because of

limited memory resources. However, we can do a secondary voxelization, which has lower

resolution, but is only applied to a very small portion of the object space. As a result,

high accuracy can still be achieved at the intersecting area.

The process and the approach used for a local voxelization are the same as for a

global voxelization. The only difference is that they are applied to a different size of

volumes in the object space. In order to perform local voxelization, information about

which subpatches of solid A intersecting with which subpatches of solid B must be known

first. This information is very difficult to obtain in previous voxelization-based methods.

Fortunately, in our method, it can be readily obtained when performing the Boolean

operations, as mentioned in Section 5.3.1. If we mark these intersecting subpatches of

solids A and B during the keep-or-discard test process, we would know exactly which

subpatches of solid A intersect with which subpatches of solid B. Once all intersecting

subpatches are known, local voxelization can be directly performed for each pair of inter-

secting subpatches. For example, if subpatch p1 of object A intersects with subpatches

q1 and q2 of object B, then a local voxelization is performed on these 3 subpatches

only. Their intersection curve is used to replace the intersection curve obtained using

the global voxelization process. The local voxelization process is applied to every pair of

intersecting subpatches of solids A and B. Consequently, a more accurate intersection

curve can be computed. For instance, in Figure 5.1(a), the intersection curve A4A1 will

be replaced with V1V2 · · ·Vk, k = 10, if Vi, i = 1 · · · 10 are the new intersecting voxels

in the corresponding local cubic frame buffers and polygon A1A2A4V1V2 · · ·Vk will be

used in the tessellation and rendering process. Similar to global voxelization, only two

local cubic frame buffers are needed for local voxelization. The local cubic frame buffers

can be reused for each new pair of intersecting subpatches. Hence local voxelization does

not require a lot of memory.
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5.5 Error Control

Given an ε, the purpose of error control is to make sure the error of the resulting solid

after performing Boolean operations using our method is less than ε to the one hundred

percent accurate result. There are two kinds of error that might occur when our method

is applied to perform Boolean operations among closed free-form solids represented by

Catmull-Clark subdivision surfaces. They are discussed as follows.

The first inaccuracy possibly occurring using our method is the approximation of

resulting solids with polygonal meshes. Because all obtained resulting solids are approx-

imated with polygonal meshes, even although the approximating meshes are dense and

are very close to the true surface, error inevitably occurs. However, the error caused

by approximation of polygonal meshes can be accurately measured [56, 64]. Therefore,

error control for this type of error is possible. The measurement of this kind of error is

discussed in Chapter 6.

Another source that could introduce error in the result of the Boolean operations is

the voxelization process. Both the global and the local voxelization can cause inaccuracy.

The kind of error caused by voxelization is easy to estimate if the resolutions of cubic

frame buffers are known. For example, if the cubic frame buffer resolution is R1×R2×R3

and the object space is of size X1 ×X2 ×X3, then we can see that each voxel is of size

X1

R1
× X2

R2
× X2

R3
. It is easy to see that the maximum error of voxelization is half the size of

a voxel. If we perform local voxelization for every pair of intersecting subpatches, then

global voxelization will not cause any error. Here we can also see why local voxelization

can improve the accuracy dramatically. In local voxelization, because the size of the

subpatches being voxelized is very small, even with a low resolution the voxel size is still

very small.

Therefore, the overall error caused by polygonalization and voxelization is the sum

of the errors caused by each of them. To make the error of the final Boolean operation
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results less than the given ε everywhere, the test condition in Eq. (6.5) has to be changed

to the following form:

{ √
d ( ū, v̄) +

√
d ( û, v̂) ≤ ε/2

size of each voxel ≤ ε
(5.1)

where (û, v̂) and (ū, v̄) are defined the same way as in Eq. (6.5). The first equation in

Eq. (5.1) ensures that the patch (or subpatch) and its approximating polygon are both

located inside two quadrilaterals that are ε/2 away. The second equation in Eq. (5.1)

ensures that the error caused by voxelization is not bigger than ε/2. Hence the total

error in the whole process is guaranteed to be less than ε.

5.6 Test Results

The proposed approach has been implemented in C++ using OpenGL as the supporting

graphics system on the Windows platform. Quite a few examples have been tested

with the method described here. All the examples have extra-ordinary vertices. Some

of the tested results are shown in Figure 5.2. The resolution of global voxelization is

512×512×512 for all the test examples, and the error for all of them is set to 10−3. The

size of each example is normalized to [0, 1] before voxelization and Boolean operations

are performed. Resolutions of the local voxelization process depend on error tolerance

and the given meshes. Hence resolution of local voxelization is different for each of the

examples shown in Figure 5.2. For example, resolution of local voxelization used for

Figures 5.2(k) and 5.2(l) is 8 × 8 × 8, while for Figures 5.2(g), 5.2(h), 5.2(i) and 5.2(j),

the resolution used for local voxelization is 32 × 32 × 32. Although resolutions used for

local voxelization are different, the overall error is the same in the final results. From Eq.

(5.1) we can see that this difference is because intersecting subpatches in Figures 5.2(g),

5.2(h), 5.2(i) and 5.2(j) are bigger than Figures 5.2(k) and 5.2(l).

In Figure 5.2, all of the Difference and Intersection operations are performed on

solids positioned exactly the same as in the Union operation so that we can easily tell

if the results of the Boolean operations are correct within the given error tolerance. For

example, Figures 5.2(j) and 5.2(g) are results of a Difference operation and a Union
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(a) Union (b) Difference (c) Union (d) Difference

(e) Union (f) Difference (g) Union

(h) Union (i) Intersection (j) Difference

(k) Union (l) Difference

Figure 5.2: Boolean Operations Performed on Solids Represented by CCSSs.
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operation, respectively, on solids placed in the same positions. Similarly, Figure 5.2(i)

corresponds to 5.2(h), 5.2(b) corresponds to 5.2(a), 5.2(d) corresponds to 5.2(c), 5.2(f)

corresponds to 5.2(e) and 5.2(l) corresponds to 5.2(k).

5.7 Summary

A new method for performing robust and error-controllable Boolean operations on free-

form solids represented with CCSSs is presented. The resulting solids after Boolean op-

erations are represented with a continuous geometric representation, that is, our results

after Boolean operations are one-piece representations of solid objects. They are repre-

sented with topologically correct mesh structure. Test results show that this approach

leads to good results even for complicated solids with arbitrary topology.

The new method has several special properties. First, Boolean operations can be

performed on 2D parameter spaces on the basis of individual patches. There is no need

to take care of special cases or degenerated cases. Hence the method is robust. Sec-

ond, although voxelization is performed to facilitate Boolean operations, the result of a

Boolean operation in our method is still represented with a continuous geometric repre-

sentation. Hence our Boolean operation results can be scaled seamlessly and smoothly.

Third, error of Boolean operation results can be precisely estimated. According to the

error estimation formula, a secondary local voxelization can be performed for intersecting

subpatches only. Therefore, higher accuracy can be achieved. Finally, although the new

method is presented for CCSSs, the concept actually works for any subdivision scheme

whose limit surfaces can be parameterized.

Copyright c© Shuhua Lai 2006
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Chapter 6

Adaptive Tessellation of General
Catmull-Clark Subdivision Surfaces
based on Inscribed Approximation

Catmull-Clark subdivision scheme provides a powerful method for building smooth and

complex surfaces. But the number of faces in the uniformly refined meshes increases ex-

ponentially with respect to subdivision depth. Adaptive tessellation reduces the number

of faces needed to yield a smooth approximation to the limit surface and, consequently,

makes the rendering process more efficient.

In this chapter, we present a new adaptive tessellation method for general Catmull-

Clark subdivision surfaces. The new adaptive tessellation method can be used to precisely

measure error caused by polygonal approximation. For example the error control in our

Boolean operation process presented in Chapter 5 employs this method. The new

adaptive tessellation method also can be used for significantly reducing face number of

dense meshes with accurate error estimation. As a result our one-piece representation

obtained from either interpolation (See Chapter 2) or performing Boolean operations

(See Chapter 5), can be substantially simplified using the new adaptive tessellation

method.

Different from previous control mesh refinement based approaches, which generate

approximate meshes that usually do not interpolate the limit surface, the new method

is based on direct evaluation of the limit surface to generate an inscribed polyhedron of

the limit surface. With explicit evaluation of general Catmull-Clark subdivision surfaces

becoming available, the new adaptive tessellation method can precisely measure error

for every point of the limit surface. Hence, it has complete control of the accuracy of

the tessellation result. Cracks are avoided by using a recursive color marking process
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to ensure that adjacent patches or subpatches use the same limit surface points in the

construction of the shared boundary. The new method performs limit surface evaluation

only at points that are needed for the final rendering process. Therefore it is very fast and

memory efficient. The new method is presented for the general Catmull-Clark subdivision

scheme. But it can be used for any subdivision scheme that has an explicit evaluation

method for its limit surface.

The structure of this chapter is arranged as follows: We give a brief introduction in

the Section 1. Some previous works related to this one is given in Section 2. A description

of the basic idea of our adaptive tessellation technique is given in Section 3. The issue of

crack elimination is discussed in Section 4. Two settings of patch flatness are discussed

in Section 5. Algorithms of our technique are presented in Section 6. Test results are

shown in Section 7. The concluding remarks are given in Section 8.

6.1 Introduction

Subdivision based evaluation process of a subdivision surface relies on performing re-

peated subdivision of the control mesh until the refined mesh is close enough to the limit

surface (within some given tolerance). It is then possible to push the control points

(mesh vertices) to their limit positions. But the number of faces in the uniformly refined

meshes increases exponentially with the recursive steps of subdivision. See Figure 1.9(b)

for an example where the control mesh of a Gargoyle is uniformly subdivided only twice

and yet the resulting mesh is already quite dense. Hence, a good method for reducing

the number of faces in the refined mesh while keeping the precision of the approxima-

tion is necessary. For instance, in Figure 1.9(c), 1.9(d), and 1.9(e), the same model is

adaptively subdivided 4, 3 and 2 times, respectively. The resulting meshes have a higher

or similar precision while the number of facets in the resulting meshes is much less than

the uniform case. Such a method is important for both rendering and finite-element

mesh generation. The criterion for rendering, however, is different from the criterion for

finite-element mesh generation. In the first case, the number of sides of the mesh faces
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could be different while, in the second case, the mesh faces are either all triangles or all

quadrilaterals. Figure 1.9(f) shows a triangulated result of Figure 1.9(e).

Research work for reducing the number of faces in a mesh has been done in several

directions. Mesh simplification [29] is the most popular one over the past decade. It aims

at removing some of the overly sampled vertices in a mesh and produces approximate

meshes with various levels of detail. Another main method for reducing the number

of faces in a mesh, called adaptive tessellation, is to apply adaptive or local refinement

schemes to areas specified by a user or determined by an application. The resulting mesh

should be crack-free and have the same limit surface as the uniformly refined mesh.

There are two possible approaches for adaptive tessellation of subdivision surfaces.

One is a mesh refinement based approach. It approximates the limit surface by adaptively

refining the control mesh of the surface. The resulting mesh usually does not interpolate

points of the limit surface. The other one is a surface evaluation based approach. This

approach approximates the limit surface by generating an inscribed polyhedron of the

limit surface, with vertices of the polyhedron taken (evaluated) adaptively from the limit

surface. The mesh refinement based approach needs a subdivision scheme, such as the

Catmull-Clark method or the Doo-Sabin method, to refine the input mesh. Most methods

proposed in the literature for adaptive tessellation of subdivision surfaces belong to this

category. The second approach needs a parametrization/evaluation method for the limit

surface. With the availability of direct evaluation methods of subdivision surfaces recently

[17, 18, 20, 58], the second approach could be more appealing for adaptive tessellation of

subdivision surface because of its simplicity in nature. Currently there is only one paper

published in this category [32]. This paper works for parametrization that reproduces

linear functions [39]. For more general parameterizations [17, 18, 20, 58], it does not

work well.

In this chapter we will present a surface evaluation based approach for adaptive

tessellation of subdivision surfaces. Our method is different from [32] in that our method

works with any parametrization method and has a precise error estimate. The new
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approach is presented for the general Catmull-Clark subdivision surfaces [1], but it can

be easily extended to work for any subdivision surface that has an exact evaluation

method for its limit surface.

6.2 Previous Work

A number of adaptive tessellation methods for subdivision surfaces have been proposed

[40, 30, 31, 32, 35, 36]. Most of them are mesh refinement based, i.e., approximating

the limit surface by adaptively refining the control mesh. This approach requires the as-

signment of a subdivision depth to each region of the surface first. In [40], a subdivision

depth is calculated for each patch of the given Catmull-Clark surface with respect to a

given error tolerance ε. In [30], a subdivision depth is estimated for each vertex of the

given Catmull-Clark surface by considering factors such as curvature, visibility, member-

ship to the silhouette, and projected size of the patch. The approach used in [40] is error

controllable. An error controllable approach for Loop surface is proposed in [32], which

calculates a subdivision depth for each patch of a Loop surface by estimating the distance

between two bounding linear functions for each component of the 3D representation.

Several other adaptive tessellation schemes have been presented as well [36, 35, 31].

In [31], two methods of adaptive tessellation for triangular meshes are proposed. The

adaptive tessellation process for each patch is based on angles between its normal and

normals of adjacent faces. A set of new error metrics tailored to the particular needs of

surfaces with sharp creases is introduced in [35].

In addition to various adaptive tessellation schemes, there are also applications of

these techniques. D. Rose et al. used adaptive tessellation method to render terrain [38]

and K. Müller et al. combined ray tracing with adaptive subdivision surfaces to generate

some realistic scenes [34]. Adaptive tessellation is such an important technique that an

API has been designed for its general usage [37]. Actually hardware implementation of

this technique has been reported recently as well [33].
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A problem with the mesh-refinement-based, adaptive tessellation techniques is the

so called gap-prevention requirement. Because the number of new vertices generated on

each boundary of the control mesh depends on the subdivision depth, gaps (or, cracks)

could occur between the control meshes of adjacent patches if these patches are assigned

different subdivision depths. Hence, each mesh-refinement-based adaptive tessellation

method needs some special mechanism to eliminate gaps. This is usually done by per-

forming additional subdivision or splitting steps on the patch with lower subdivision

depth. As a result, many unnecessary polygons are generated in the tessellation process.

In this paper, we will adaptively tessellate a subdivision surface by taking points from

the limit surface to form an inscribed polyhedron of the limit surface, instead of refining

the control mesh. Our method simplifies the process of gap detecting and elimination.

It does not need to perform extra or unnecessary evaluations either.

6.3 Basic Idea

(a) Circumscribed (b) Inscribed

Figure 6.1: Inscribed and Circumscribed Approximation.

6.3.1 Inscribed Approximation

One way to approximate a curve (surface) is to use its control polygon (mesh) as the

approximating polyline (polyhedron). For instance, in Figure 6.1(a), at the top are a

cubic Bézier curve and its control polygon. For a better approximation, we can refine the

control polygon using midpoint subdivision. The solid polyline at the bottom of Figure

6.1(a) is the approximating control polygon after one refinement. This method relies on

103



performing iterative refinement of the control polygon or control mesh to approximate the

limit curve or surface. Because this method approximates the limit shape from control

polygon or control mesh “outside” the limit shape, we call this method circumscribed

approximation.

Another possible method is inscribed approximation. Instead of approximating the

limit curve (surface) by performing subdivision on its control polygon (mesh), one can

approximate the limit curve (surface) by inscribed polygons (polyhedra) whose vertices

are taken from the limit curve (surface) directly. The easiest approach to get vertices of

the inscribed polygons (polyhedra) is to perform uniform midpoint subdivision on the

parameter space and use the evaluated vertices of the resulting subsegments (subpatches)

as vertices of the inscribed polylines (polyhedra). For instance, in Figure 6.1(b), at the

top are a cubic Bézier curve and its approximating polygon with vertices evaluated at

parameter points 0, 1/2 and 1. Similarly, the solid polygon at the bottom of Figure

6.1(b) is an approximating polygon with vertices evaluated at five parameter points.

Because inscribed approximation uses points directly located on the limit curve or

surface, in most cases, it has faster convergent rate than the circumscribed approximation.

As one can see clearly from Figure 6.1 that the inscribed polygon at the bottom of Figure

6.1(b) is closer to the limit curve than the circumscribed polygon shown at the bottom

of Figure 6.1(a) even though the inscribed polygon actually has less segments than the

circumscribed polygon.

Inscribed approximation requires explicit evaluation of a CCSS Patch. Several ap-

proaches [17, 18, 20, 58] have been presented for exact evaluation of an extraordinary

patch at any parameter point (u, v). In our implementation, we follow the parametriza-

tion technique presented in [58], because this method is numerically stable, employs less

eigen basis functions, and can be used for the evaluation of 3D position and normal vector

of any point in the limit surface exactly and explicitly. Some most related results of [58]

are presented in Chapter 2.

104



However, the problem with both Inscribed or circumscribed approximation approaches

is that, with uniform subdivision, no matter it is performed on the control mesh or the pa-

rameter space, one would get unnecessarily small and dense polygons for surface patches

that are already flat enough and, consequently, slow down the rendering process. To

speed up the rendering process, a flat surface patch should not be tessellated as densely

as a surface patch with big curvature. The adaptive tessellation process of a surface

patch should be performed based on the flatness of the patch. This leads to our adaptive

inscribed approximation.

6.3.2 Adaptive Inscribed Approximation

For a patch of S(u, v) defined on u1 ≤ u ≤ u2 and v1 ≤ v ≤ v2, we try to approximate

it with the quadrilateral formed by its four vertices V1 = S(u1, v1), V2 = S(u2, v1),

V3 = S(u2, v2) and V4 = S(u1, v2). If the distance (to be defined below) between the

patch and its corresponding quadrilateral is small enough (to be defined below), then the

patch is considered flat enough and will be (for now) replaced with the corresponding

quadrilateral in the tessellation process. Otherwise, we perform a midpoint subdivision

on the parameter space by setting

u12 =
u1 + u2

2
and v12 =

v1 + v2

2

to get four subpatches: [u1, u12] × [v1, v12], [u12, u2] × [v1, v12], [u12, u2] × [v12, v2],

[u1, u12]× [v12, v2], and repeat the flatness testing process on each of the subpatches. The

process is recursively repeated until the distance between all the subpatches and their

corresponding quadrilaterals are small enough. The vertices of the resulting subpatches

are then used as vertices of the inscribed polyhedron of the limit surface. For instance,

if the four rectangles in Figure 6.2(a) are the parameter spaces of four adjacent patches

of S(u, v), and if the rectangles shown in Figure 6.2(b) are the parameter spaces of the

resulting subpatches when the above flatness testing process stops, then the limit surface
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Figure 6.2: Basic idea of the construction of an inscribed polyhedron.

will be evaluated at the points marked with small solid circles to form vertices of the

inscribed polyhedron of the limit surface.

In the above flatness testing process, to measure the difference between a patch (or

subpatch) and its corresponding quadrilateral, we need to parameterize the quadrilateral

as well. The quadrilateral can be parameterized as follows:

Q(u, v) =
v2 − v

v2 − v1

(
u2 − u

u2 − u1

V1 +
u− u1

u2 − u1

V2) +
v − v1

v2 − v1

(
u2 − u

u2 − u1

V4 +
u− u1

u2 − u1

V3) (6.1)

where u1 ≤ u ≤ u2, v1 ≤ v ≤ v2. The difference between the patch (or subpatch) and

the corresponding quadrilateral at (u, v) is defined as

d(u, v) = ‖ Q(u, v)− S(u, v) ‖2 = (Q(u, v)− S(u, v)) · (Q(u, v)− S(u, v))T (6.2)

where ‖ · ‖ is the second norm and AT is the transpose of A. The distance between

the patch (or subpatch) and the corresponding quadrilateral is the maximum of all the

differences:

D = max{
√

d(u, v) | (u, v) ∈ [u1, u2]× [v1, v2] }.

To measure the distance between a patch (or subpatch) and the corresponding quadri-

lateral, we only need to measure the norms of all local minima and maxima of d(u, v).

Note that Q(u, v) and S(u, v) are both C1-continuous, and d(V1), d(V2), d(V3) and

d(V4) are equal to 0. Therefore, by Mean Value Theorem, the local minima and maxima

106



must lie either inside [u1, u2] × [v1, v2] or on the four boundary curves. In other words,

they must satisfy at least one of the following three conditions:





∂d(u,v)
∂u

= 0
v = v1 or v = v2

u1 ≤ u ≤ u2





∂d(u,v)
∂v

= 0
u = u1 or u = u2

v1 ≤ v ≤ v2





∂d(u,v)
∂u

= 0
∂d(u,v)

∂v
= 0

(u, v) ∈ (u1, u2)× (v1, v2)
(6.3)

For a patch (or subpatch) that is not adjacent to an extraordinary point (i.e., (u1, v1) 6=
(0, 0)), m is fixed and known (m(u, v) = min{dlog 1

2
ue, dlog 1

2
ve}). Hence Eq. (6.3) can be

solved explicitly. With the valid solutions, we can find the difference for each of them us-

ing Eq. (6.2). Suppose the one with the biggest difference is (û, v̂). Then (û, v̂) is also the

point with the biggest distance between the patch (or subpatch) and its corresponding

quadrilateral. We consider the patch (or subpatch) to be flat enough if

D =
√

d ( û, v̂) ≤ ε (6.4)

where ε is a given error tolerance. In such a case, the patch (or subpatch) is replaced

with the corresponding quadrilateral in the tessellation process. If a patch (or subpatch)

is not flat enough yet, i.e., if Eq. (6.4) does not hold, we perform a midpoint subdivision

on the patch (or subpatch) to get four new subpatches and repeat the flatness testing

process for each of the new subpatches. This process is recursively repeated until all the

subpatches satisfy Eq. (6.4).

For a patch (or subpatch) that is adjacent to an extraordinary point (i.e. (u1, v1) =

(0, 0) in Eq. (6.3)), m is not fixed and m tends to ∞ (see Figure 2.2). As a result, Eq.

(6.3) can not be solved explicitly. One way to resolve this problem is to use nonlinear

numerical method to solve these equations. But numerical approach cannot guarantee

the error is less than ε everywhere. For precise error control, a better choice is needed.

In the following, an alternative method is given for that purpose.

Eq. (2.7) shows that S(u, v) and Q(u, v) both converge to S(0, 0) when (u, v) →
(0, 0). Hence, for any given error tolerance ε, there exists an integer mε such that if

m ≥ mε, then the distance between S(u, v) and S(0, 0) is smaller than ε/2 for any (u, v) ∈
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[0, 1/2m] × [0, 1/2m], and so is the distance between Q(u, v) and S(0, 0). Consequently,

when (u, v) ∈ [0, 1/2m] × [0, 1/2m], the distance between S(u, v) and Q(u, v) is smaller

than ε. The value of mε, in most of the cases, is a relatively small number and can be

explicitly calculated. In next subsection, we will show how to calculate mε.

For other regions of the unit square with dlog 1
2
u2e ≤ m < mε (see Figure 2.2), Eq.

(6.3) can be used directly to find the difference between S(u, v) and Q(u, v) for any

fixed m ∈ (dlog 1
2
u2e,mε). Therefore, by combining all these differences, we have the

distance between the given extra-ordinary patch (or subpatch) and the corresponding

quadrilateral. If this distance is smaller than ε, we consider the given extra-ordinary

patch (or subpatch) to be flat, and use the distance quadrilateral to replace the extra-

ordinary patch (or subpatch) in the tessellation process. Otherwise, repeatedly subdivide

the patch (or subpatch) and perform flatness testing on the resulting subpatches until

all the subpatches satisfy Eq. (6.4).

6.3.3 Calculating mε

For a given ε > 0, an integer kε will first be computed so that if k is bigger than kε, then

the subpatch of S(u, v) with 0 ≤ u, v ≤ 1/2k is contained in a sphere with center S(0, 0)

and diameter ε (called an ε-sphere). A subpatch is contained in an ε-sphere if all points

of the subpatch are ε/2 away from S(0, 0).

To find such kε, we need a few properties from [58]. Recall that an extra-ordinary

patch S(u, v) can be expressed as

S(u, v) =
n+5∑
j=0

Φb,j(u, v) ·G

where Φb,j are eigen basis functions defined in [58] and G is the vector of control points

of S. The eigen basis functions satisfy the scaling relation [17, 58], i.e.,

Φb,j(u/2k, v/2k) = λk
j Φb,j(u, v)

for any positive integer k, where λj are eigen values of the Catmull-Clark subdivision
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matrix [58]. The eigen values are indexed so that

1 = λn+1 > λ2 ≥ λi > 0

where 0 ≤ i ≤ n + 5 and i 6= n + 1. Also recall that Φb,j(0, 0) = 0 when j 6= n + 1, and

Φb,n+1(u, v) is a constant vector, its value is independent of (u, v) [58]. Hence,

(Φb,n+1(u, v)− Φb,n+1(u
′, v′)) ·Gr = 0

for any (u, v) and (u′, v′) where r ∈ {x, y, z} and Gr is the x-, y- or z-component of G.

Hence for any 1/2 ≤ u ≤ 1 or 1/2 ≤ v ≤ 1, and for any k we have

|Sr(u/2k, v/2k)− Sr(0, 0)| = |∑n+5
j=0 (λk

j Φb,j(u, v)− Φb,j(0, 0)) ·Gr|

≤ ∑
j 6=n+1 λk

j |(Φb,j(u, v) ·Gr| < λk
2

∑
j 6=n+1 |(Φb,j(u, v) ·Gr|

Similarly, the three conditions in Eq. (6.3) can be used to find the maxima of |(Φb,j(u, v) ·
Gr| for any j. Note that because here (u, v) /∈ [0, 1/2] × [0, 1/2], the corresponding m

is equal to 1 (See figure 2.2). Hence we can easily find the maximum in its domain

{(u, v)|1/2 ≤ u ≤ 1 or 1/2 ≤ v ≤ 1}. Let the maximum of |(Φb,j(u, v) · Gr| be Frj and

Fr =
∑

j 6=n+1 Frj. Then, for any k > 0 we have

|Sr(u/2k, v/2k)− Sr(0, 0)| ≤ λk
2Fr.

Therefore if (λk
2Fx)

2 + (λk
2Fy)

2 + (λk
2Fz)

2 ≤ (ε/2)2, we have

‖ S(u/2k, v/2k)− S(0, 0) ‖≤ ε/2.

If we define kε as follows

kε = dlogλ2

ε

2
√

F 2
x + F 2

y + F 2
z

e

then it is easy to see that when k ≥ kε, the subpatch S(u, v) with (u, v) ∈ [0, 1/2k] ×
[0, 1/2k] is inside an ε-sphere whose center is S(0, 0).

In addition, S(0, 0) is a fixed point and has an explicit expression for any patch (see Eq.

2.7), and Q(u, v) also has an explicit parametrization (See Eq. (6.1)). Hence, similarly,

by using the method of Eq. (6.3), it is easy to find an integer k̃ε, such that for any given
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ε > 0, when k ≥ k̃ε, we have ‖ Q(u, v)−S(0, 0) ‖≤ ε/2, where (u, v) ∈ [0, 1/2k]× [0, 1/2k].

Once we have kε and k̃ε, simply set mε as the maximum of kε and k̃ε.

mε = max{kε, k̃ε}

With this mε, it is easy to see that when m ≥ mε, we have ‖ S(u, v) − Q(u, v) ‖≤ ε,

where (u, v) ∈ [0, 1/2m]× [0, 1/2m].

6.4 Crack Elimination

A 1

A 5

2C

B 2

A 3

B 4

C 1

A 6
B 3 A 4

B 1

B 5
C 3

4
C 5

A 2

C

Figure 6.3: Crack elimination.

Due to the fact that adjacent patches might be approximated by quadrilaterals

corresponding to subpatches from different levels of the midpoint subdivision process,

cracks could occur between adjacent patches. For instance, in Figure 6.3, the left patch

A1A2A5A6 is approximated by one quadrilateral but the right patch is approximated

by 7 quadrilaterals. Consider the boundary shared by the left patch and the right patch.

On the left side, that boundary is a line segment defined by two vertices : A2 and A5.

But on the right side, the boundary is a polyline defined by four vertices : A2, C4, B4,

and A5. They would not coincide unless C4 and B4 lie on the line segment defined by

A2 and A5. But that usually is not the case. Hence, cracks would appear between the

left patch and the right patch.

Fortunately Cracks can be eliminated simply by replacing each boundary of a patch

or subpatch with the one that contains all the evaluated points for that boundary. For
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example, in Figure 6.3, all the dashed lines should be replaced with the correspond-

ing polylines. In particular, boundary A2A5 of patch A1A2A5A6 should be replaced

with the polyline A2C4B4A5. As a result, polygon A1A2A5A6 is replaced with polygon

A1A2C4B4A5A6 in the tessellation process. For rendering purpose this is fine because

graphics systems like OpenGL can handle polygons with non-co-planar vertices and poly-

gons with any number of sides. However, it should be pointed out that through a simple

zigzag technique, triangulation of those polygons is actually a simple and very fast pro-

cess.

A potential problem with this process is the new polygons generated by the crack

elimination algorithm might not satisfy the flatness requirement. To ensure the flatness

requirement is satisfied everywhere when the above crack elimination method is used, we

need to change the test condition in Eq. (6.4) to the following one:

√
d ( ū, v̄) +

√
d ( û, v̂) ≤ ε (6.5)

where (û, v̂) and (ū, v̄) are solutions of Eq. (6.3) and they satisfy the following conditions:

• Among all the solutions of Eq. (6.3) that are located on one side of Q(u, v), i.e.

solutions that satisfy (Q−S) · ((V1−V3)× (V2−V4)) ≥ 0, d(û, v̂) is the biggest.

If there does not exist any solution such that this condition holds, then d(û, v̂) is

set to 0;

• Among all the solutions of Eq. (6.3) that are located on the other side of Q(u, v),

i.e. solutions that satisfy (Q − S) · ((V1 − V3) × (V2 − V4)) < 0, d(ū, v̄) is the

biggest. If there does not exist any solution such this condtion holds, then d(ū, v̄)

is set to 0.

From the definition of (û, v̂) and (ū, v̄), we can see that satisfying Eq. (6.5) means that

the patch being tested is located between two quadrilaterals that are ε away.

Note that all the evaluated points lie on the limit surface. Hence, for instance, in

Figure 6.3, points A2,C4,B4 and A5 of patch A2A3A4A5 are also points of patch
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A1A2A5A6. With the new test condition in Eq. (6.5), we know that a patch or subpatch

is flat enough if it is located between two quadrilaterals that are ε away. Because bound-

ary points A2,C4,B4 and A5 are on the limit surface, they must be located between

two quadrilaterals that are ε away. So is the polygon A1A2C4B4A5A6. Now the patch

(or subpatch) and its approximating polygon are both located inside two quadrilater-

als that are ε away. Hence the overall error between the patch (or subpatch) and its

approximating polygon is guaranteed to be smaller than ε.

In previous methods for adaptive tessellation of subdivision surfaces [40, 30, 31, 35],

the most difficult part is crack prevention. Yet in our method, this part becomes the

simplest part to handle and implement. The resulting surface is error controllable and

guaranteed to be crack free.

6.5 Degree of Flatness

Just like numerical errors have two different settings, the flatness of a patch, which can

be viewed as a numerical error from the approximation point of view, has two different

aspects as well, depending on if the flatness is considered in the absolute sense or relative

sense. The flatness of a patch is called the absolute flatness (AF) if the patch is not

transformed in any way. In that case, the value of ε in Eq. (6.4) and (6.5) is set to

whatever precision the flatness of the patch is supposed to meet. AF should be considered

for operations that work on physical size of an object such as machining or prototyping.

For operations that do not work on the physical size of an object, such as the rendering

process, we need a flatness that does not depends on the physical size of a patch. Such

a flatness must be Affine transformation invariant to be a constant for any transformed

version of the patch. Such a flatness is called the relative flatness of the patch. More

specifically, if Q is the corresponding quadrilateral of patch S, the relative flatness (RF)

of S with respect to Q is defined as follows:

RF =
d

max{D1, D2}
where d is the maximal distance from S to Q, and D1, D2 are lengths of the diagonal
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lines of Q. It is easy to see that RF defined this way is Affine transformation invariant.

Note that when D1 and D2 are fixed, smaller RE means smaller d. Hence, RE indeed

measures the flatness of a patch. The difference between RF and AF is that RF measures

the flatness of a patch in a global sense while AF measures flatness of a patch in a local

sense. Therefore, RF is more suitable for operations that have data sets of various sizes

but with a constant size display area such as the rendering process. Using RF is also

good for adaptive tessellation process because it has the advantage of keeping the number

of polygons low in the tessellation process.

6.6 Algorithms of Adaptive Tessellation

In this section, we discuss the important steps of the adaptive tessellation process and

present the corresponding algorithms.

6.6.1 Global Index ID

Currently, all the subdivision surface parametrization and evaluation techniques are patch

based [17, 20, 58]. Hence, no matter which method is used in the adaptive tessellation

process, a patch cannot see vertices evaluated by other patches from its own (local)

structure even though the vertices are on its own boundary. For example, in Figure 6.3,

vertices C4 and B4 are on the shared boundary of patches A1A2A5A6 and A2A3A4A5.

But patch A1A2A5A6 can not see these vertices from its own structure because these

vertices are not evaluated by this patch. To make adjacent patches visible to each other

and to make subsequent crack elimination work easier, one should assign a global index

ID to each evaluated vertex so that

• all the evaluated vertices with the same 3D position have the same index ID;

• the index ID’s are sorted in v and then in u, i.e., if (ui, vi) ≥ (uj, vj), then IDi ≥
IDj, unless IDi or IDj has been used in previous patch evaluation.

With a global index ID, it is easy to do crack prevention even with a patch based ap-

proach. Actually, subsequent processing can all be done with a patch based approach
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and still performed efficiently. For example, in Figure 6.3, patch A1A2A5A6 can see

both C4 and B4 even though they are not evaluated by this patch. In the subsequent

rendering process, the patch simply output all the marked vertices (to be defined be-

low) on its boundary that it can see to form a polygon for the rendering purpose, i.e.,

A1A2C4B4A5A6.

6.6.2 Adaptive Marking

The purpose of adaptive marking is to mark those points in uv space where the limit

surface should be evaluated. With the help of the global index ID, this step can be done

on an individual patch basis. Initially, all (u, v) points are marked white. If surface evalu-

ation should be performed at a point and the resulting vertex is needed in the tessellation

process, then that point is marked in black. This process can be easily implemented as

a recursive function. A pseudo code for this step is given below.

AdaptiveMarking(P, u1, u2, v1, v2)

1. Evaluate(P, u1, u2, v1, v2),

2. AssignGlobalID(P, u1, u2, v1, v2),

3. if (FlatEnough(P, u1, u2, v1, v2))

4. MarkBlack(P, u1, u2, v1, v2)

5. else

6. u12 = (u1 + u2)/2

7. v12 = (v1 + v2)/2

8. AdaptiveMarking(P, u1, u12, v1, v12)

9. AdaptiveMarking(P, u12, u2, v1, v12)

10. AdaptiveMarking(P, u12, u2, v12, v2)

11. AdaptiveMarking(P, u1, u12, v12, v2)

This routine adaptively marks points in the parameter space of patch P. Function

‘Evaluate’ evaluates limit surface at the four corners of patch or subpatch P defined on
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[u1, u2] × [v1, v2]. Function ‘FlatEnough’ uses the method given in section 6.3 and Eq.

(6.4) to tell if a patch or subpatch is flat enough. Function ‘MarkBlack’ marks the four

corners of patch or subpatch P defined on [u1, u2] × [v1, v2] in black. All the marked

corner points will be used in the tessellation process.

6.6.3 Adaptive Rendering a Single Patch

The purpose of this step is to render the limit surface with as few polygons as possible,

while preventing the occurrence of any cracks. Note that the limit surface will be evalu-

ated only at the points marked in black, and the resulting vertices are the only vertices

that will be used in the rendering process. To avoid cracks, each marked points must be

rendered properly. Hence special care must be taken on adjacent patches or subpatches.

With the help of adaptive marking, this process can easily be implemented as a recursive

function as well. A pseudo code for this step is given below.

AdaptiveRendering(P, u1, u2, v1, v2)

1. if (NoMarkedPointInside(P, u1, u2, v1, v2))

2. RenderPolygon(P, u1, u2, v1, v2)

3. else

4. u12 = (u1 + u2)/2

5. v12 = (v1 + v2)/2

6. AdaptiveRendering(P, u1, u12, v1, v12)

7. AdaptiveRendering(P, u12, u2, v1, v12)

8. AdaptiveRendering(P, u12, u2, v12, v2)

9. AdaptiveRendering(P, u1, u12, v12, v2)

This routine adaptively renders marked points in patch or subpatch P. Function

‘NoMarkedPointInside’ tests if none of the points inside [u1, u2] × [v1, v2], excluding the

boundary points, are marked. If all the interior points are in white (i.e. not marked), it
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returns TRUE. Function ‘RenderPolygon’ is defined as follows.

RenderPolygon(P, u1, u2, v1, v2)

1. glBegin(RenderModel)

2. Output all the marked points between

3. (u1, v1) → (u2, v1)

4. (u2, v1) → (u2, v2)

5. (u2, v2) → (u1, v2)

6. (u1, v2) → (u1, v1)

7. glEnd()

6.6.4 Adaptive Rendering a CCSS

The overall algorithm for rendering a general CCSS is given below. The algorithm takes

the control mesh of the surface as input.

CCSSAdaptiveRendering(Mesh M)

1. for each face P in M

2. AdaptiveMarking(P,0,1,0,1)

3. for each face P in M

4. AdaptiveRendering(P,0,1,0,1)

6.7 Implementation and Test Results

The proposed approach has been implemented in C++ using OpenGL as the supporting

graphics system on the Windows platform. Quite a few examples have been tested with

the method described here. Some of the tested results are shown in Figures 1.9, 6.4

and 6.5. We also summarize those tested results in Table 6.1. The column underneath
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Table 6.1: Experiment data of Figures 1.9, 6.4 and 6.5
Figure Object A|U|T polygons A/U Ratio Depth Error RF
Figure 1.9(b) Gargoyle U 16384 100.00% 2 0.0055 12%
Figure 1.9(c) Gargoyle A 14311 5.46% 4 0.0030 6%
Figure 1.9(d) Gargoyle A 5224 7.97% 3 0.0045 9%
Figure 1.9(e) Gargoyle A 2500 15.26% 2 0.0055 12%
Figure 1.9(f) Gargoyle T 6139 37.47% 2 0.0055 12%
Figure 6.4(a) Bunny U 65536 100.00% 3 0.0008 3%
Figure 6.4(b) Bunny A 32894 12.55% 4 0.0001 1%
Figure 6.4(c) Bunny A 9181 14.01% 3 0.0008 3%
Figure 6.4(d) Bunny A 3412 20.82% 2 0.0010 5%
Figure 6.4(e) Bunny T 7697 46.98% 2 0.0010 5%
Figure 6.4(f) Venus U 65536 100.00% 2 0.00095 8%
Figure 6.4(g) Venus A 29830 2.84% 4 0.00015 3%
Figure 6.4(h) Venus A 21841 2.08% 4 0.00035 4%
Figure 6.4(i) Venus A 9763 3.72% 3 0.00060 6%
Figure 6.4(j) Venus A 6178 9.43% 2 0.00095 8%
Figure 6.5(a) Rockerarm U 90624 100.00% 4 1.2 3%
Figure 6.5(b) Rockerarm A 36045 9.94% 5 0.85 1%
Figure 6.5(c) Rockerarm A 10950 3.02% 5 1.0 2%
Figure 6.5(d) Rockerarm A 5787 6.39% 4 1.2 3%
Figure 6.5(e) Rockerarm A 2901 12.80% 3 1.5 5%
Figure 6.5(f) Rockerarm T 6917 30.53% 3 1.5 5%
Figure 6.5(g) Beethoven U 65536 100.00% 2 0.041 10%
Figure 6.5(h) Beethoven A 20893 1.99% 4 0.006 4%
Figure 6.5(i) Beethoven A 15622 1.48% 4 0.026 6%
Figure 6.5(j) Beethoven A 7741 2.95% 3 0.035 8%
Figure 6.5(k) Beethoven A 5230 7.99% 2 0.041 10%

A|U|T in Table 6.1 indicates the type of tessellation technique (Adaptive, Uniform or

Triangulated after adaptive tessellation) used in the rendering process. For instance,

Figure 1.9(b) is generated using uniform subdivision, while Figures 1.9(c), 1.9(d), 1.9(e)

are tessellated with the adaptive technique presented in this paper, and Figure 1.9(f)

is the triangulated result of Figure 1.9(e). Also Figure 6.4(e) and Figure 6.5(f) are the

triangulated results of Figure 6.4(d) and Figure 6.5(e), respectively. The term A/U ratio

means the ratio of number of polygons in an adaptively tessellated CCSS to its counter

part in a uniformly tessellated CCSS with the same accuracy. The term Depth means

the number of iterative uniform subdivisions that have to be performed on the control
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mesh of a CCSS to satisfy the error requirement. From Table 6.1 we can see that all the

adaptively tessellated CCSS’s have relatively low A/U ratios. This shows the proposed

method can indeed significantly reduce the number of faces in the resulting mesh while

satisfying the given error requirement.

The ‘Error’ column in Table 6.1 represents absolute error. We can easily see that,

for the same model, the smaller the error, the lower the A/U ratio. For example, Figure

6.4(b) has lower A/U ratio than Figure 6.4(c) and Figure 6.4(d) because the former has

smaller error tolerance than the last two. However, for the same model, if the difference of

two error tolerances is not big enough, the resulting adaptive tessellation would have the

same subdivision depth (see information on Figures 6.4(g) and 6.4(h) or Figures 6.5(b)

and 6.5(c) in Table 6.1). As a result, the one with smaller error tolerance would have

higher A/U ratio, because the corresponding uniformly subdivided meshes are the same.

Another interesting fact is that Figure 6.5(a) uses much more polygons than Figure 6.5(b)

does, while the former is less accurate than the latter. This shows the presented adaptive

tessellation method is capable of providing a higher accuracy with less polygons.

From Table 6.1 we can easily see that for different models the absolute errors differ

very much. Therefore, for different models, comparing their absolute errors might not

make any practical sense because absolute error is not affine transformation invariant.

In the mean while, from Table 6.1, we can see that RF is a much better and more

understandable measurement for users to specify the error requirement in the adaptive

tessellation process.

From Table 6.1, we can also see that triangulated tessellations usually have higher

A/U ratio, because triangulation increases the number of polygons by at lease 2 times.

Hence triangulation will slow down the rendering process while it does not improve

accuracy. From the view point of rendering, triangulation is not really necessary. But for

some special applications, such as Finite Element Analysis, triangulation is indispensable.

As mentioned above, performing triangulation on the resulting mesh of our adaptive

tessellation process is straightforward and fast.
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(a) Uniform (b) Adaptive (c) Adaptive

(d) Adaptive (e) Triangulated (f) Uniform

(g) Adaptive (h) Adaptive (i) Adaptive (j) Adaptive

Figure 6.4: Adaptive rendering on surfaces with arbitrary topology.
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(a) Uniform (b) Adaptive (c) Adaptive (d) Adaptive

(e) Adaptive (f) Triangulated (g) Uniform (h) Adaptive

(i) Adaptive (j) Adaptive (k) Adaptive

Figure 6.5: Adaptive rendering on surfaces with arbitrary topology (Continued).
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The proposed adaptive tessellation method is good for models that have large flat or

nearly flat regions in its limit surface and would save significant amount of time in the

final rendering process, but may not have low A/U ratios when it is applied to surfaces

with extraordinary curvature distribution or surfaces with very dense control meshes.

One main disadvantage of all the current adaptive tessellation methods (including the

method proposed here) is that they only eliminate polygons inside a patch. They do not

take the whole surface into consideration. For instance, all the flat sides of the rocker

arm model in Figure 6.5 are already flat enough, yet a lot of polygons are still generated

there.

6.8 Summary

A surface-evaluation-based adaptive tessellation method for general Catmull-Clark sub-

division surfaces is presented. The new method only evaluates those limit surface points

that are needed in the final rendering process. On the other hand, while previous methods

use a significant amount of effort to prevent the occurrence of cracks between adjacent

patches, it takes almost no effort for the new method to eliminate cracks in the resulting

inscribed polyhedron of the limit surface. Hence the new method is both computation

efficient and memory efficient.

The new inscribed approximation based adaptive tessellation method can be used to

measure error caused by polygonal approximation. It also can be used for substantially

reducing face number of dense meshes with precise error estimation.

Copyright c© Shuhua Lai 2006
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Chapter 7

Multiresolution Representation

In this chapter we will use a multiresolution analysis method [110, 111] to simplify one-

piece representation based mesh structures obtained from either interpolation (See Chap-

ter 3) or performing Boolean operations (See Chapter 5). The resulting meshes after

multiresolution analysis are still topologically correct control meshes, whose Catmull-

Clark subdivision surfaces are approximations of the limit surfaces of the original dense

meshes obtained from either interpolation or performing Boolean operations. The new

subdivision surfaces obtained from simplified one-piece representation based mesh struc-

tures are very close to the original limit surfaces and the error between them can be

explicitly calculated. More importantly, we can reconstruct the original control mesh

from a sparse one-piece representation based mesh structure without losing any detail.

Hence multiresolution-based one-piece representations are good for mesh editing, level-

of-detail control and other applications.

The remaining part of the chapter is arranged as follows. In section 1, a brief intro-

duction is given. Some background about wavelet transform and multiresolution analysis

is given in Section 2. In section 3, we introduce how to use Lounsbery et al’s multires-

olution analysis method [110] and Eck et al’s mesh conversion method [111] to simplify

our one-piece representation based mesh structures. Some concluding remarks are given

in Section 4.

7.1 Introduction

Multiresolution analysis and wavelets have received considerable attention in recent years,

fueled largely by the diverse collection of problems that benefit from their use [19, 21,

110, 111, 112, 113, 114]. The basic idea behind multiresolution analysis is to decompose
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a complicated function into a “simpler” low resolution part, together with a collection

of perturbations, called wavelet coefficients, which are necessary to recover the original

function. For many of the functions encountered in practice, a large percentage of the

wavelet coefficients are small, meaning that good approximations can be obtained by

using only a few of the largest coefficients. Excellent compression rates for images have

been achieved using this type of approximation [115].

Multiresolution techniques and the use of hierarchy have a long history in computer

graphics. Most recently these approaches have received a significant boost and increased

interest through the introduction of the mathematical framework of wavelets. With their

roots in signal processing and harmonic analysis, wavelets have lead to a number of

efficient and easy-to-implement algorithms. Wavelets have already had a major impact

in several areas of computer graphics [19]:

• Image Compression and Processing: some of the most powerful compression

techniques for still and moving images are based on wavelet transforms;

• Global Illumination: wavelet radiosity and radiance algorithms are asymptoti-

cally faster than other finite element techniques;

• Hierarchical Modeling: using multiresolution representations for curves and sur-

faces accelerates and simplifies many common editing tasks [113];

• Animation: the large constrained optimization tasks which arise in physically

based modeling and animation that are subject to goal constraints can be solved

faster and more robustly with wavelets;

• Volume Rendering and Processing: wavelets can greatly facilitate dealing with

huge data sets since they can be used for compression as well as feature detection

and enhancement;

• Multiresolution Painting: By using multiresolution analysis, one can build high

enough resolution paint systems;
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• Image Query: using a small number of the largest wavelet coefficients of an image

results in a perceptually useful signature for fast search and retrieval.

In computer graphics and geometric modeling, shapes are often represented by polyg-

onal meshes. With the advent of laser scanning systems, meshes of extreme complexity

are rapidly becoming commonplace. Such meshes are notoriously expensive to store,

transmit, render, and are awkward to edit. Multiresolution analysis offers a simple, uni-

fied, and theoretically sound approach to dealing with these problems. In addition, geo-

metric modeling is traditionally based on piecewise polynomial surface representations.

However, while special polynomial basis functions are well suited for describing and mod-

ifying smooth triangular or quadrilateral patches, it turns out to be rather difficult to

smoothly join several pieces of a composite surface along common (possibly trimmed)

boundary curves. As flexible patch layout is crucial for the construction of non-trivial ge-

ometric shapes, spline-based modeling tools do spend much effort to maintain the global

smoothness of a surface.

In this chapter we show that by using techniques from subdivision surfaces, multires-

olution analysis can be extended to functions defined on domains of arbitrary topolog-

ical type [110, 111]. This generalization, which is termed as subdivision wavelets [114],

dramatically extends the class of applications to which multiresolution analysis can be

applied. Multiresolution mesh representations are particularly convenient for a number

of geometric modeling applications, including [110, 111]:

• Compression/simplification: A multiresolution mesh can be compressed by re-

moving small wavelet coefficients. Moreover, the threshold for removal can be

chosen such that the resulting approximation is guaranteed to be within a specified

error tolerance of the original mesh.

• Progressive display and transmission: An attractive method for displaying

a complex object is to begin with a low resolution version that can be quickly

rendered, and then progressively improve the display as more detail is obtained
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from disk or over a network. Using a multiresolution representation, this is sim-

ply achieved by first displaying the base mesh, and then progressively adding the

contributions of wavelet coefficients in order of decreasing magnitude.

• Level-of-detail control: High performance rendering systems often use a level-

of-detail hierarchy, that is, a sequence of approximations at various levels-of-detail.

The crudest approximations are used when the viewer is far from the object, while

higher detail versions are substituted as the viewer approaches. Multiresolution rep-

resentations naturally support this type of display by adding successively smaller

wavelet coefficients as the viewer approaches the object, and by removing them

as the viewer recedes. Moreover, the coefficients can be added smoothly, thereby

avoiding the visual discontinuities encountered when switching between approxi-

mations of different resolution.

• Multiresolution editing: Editing at various scales can proceed along the lines

developed by Finkelstein and Salesin [112] by ordering coefficients according to their

support, that is, by the spatial extent of their influence. Multiresolution editing

has been done by several people with different methods [21, 110, 112, 114].

7.2 Background

7.2.1 Wavelet Transform

The wavelet transform is a tool for carving up functions, operators, or data into compo-

nents of different frequency, allowing one to study each component separately. Wavelet

transform is capable of providing the time and frequency information simultaneously,

hence giving a time-frequency representation of a signal. The term wavelet was itself

created in 1982, according to Ingrid Daubechies. Wavelet analysis may be considered as

a generalization of analysis by Hilbert transform or short-time Fourier transform.

The continuous wavelet transform of a function x(t) is defined as follows [109].

Ψψ
x (τ, s) =

1√
(|s|)

∫
x(t)ψ∗(

t− τ

s
)dt
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where τ represents translation, s represents scale and ψ(t) is the mother wavelet. ψ∗(t) is

the complex conjugate of ψ(t). Here are two mother wavelets commonly used in wavelet

analysis. The Mexican Hat wavelet is defined as the second derivative of the Gaussian

function:

ψ(t) =
1√

2πσ3
(e

−t2

2σ2 . (
t2

σ2
− 1))

And the Morlet wavelet, named after Jean Morlet, originally formulated by Goupillaud,

Grossmann and Morlet in 1984, is defined as

ψ(t) = cσπ
− 1

4 e−
t2

2 (eiσt − kσ)

where σ is the scaling parameter that affects the width of the window, cσ = (1 + e−σ2 −
2e−

3σ2

4
)−1/2

is a modulation parameter, and kσ = e−
σ2

2 is defined by the admissibility

criterion.

The term wavelet means a small wave. The smallness refers to the condition that

this (window) function is of finite length (compactly supported). The wave refers to the

condition that this function is oscillatory. The term mother implies that the functions

with different regions of support that are used in the transformation process are derived

from the main mother wavelet. In other words, the mother wavelet is a prototype for

generating the other window functions. The translation parameter τ is used in the

same sense as it was used in the Short Time Fourier Transform (STFT); it is related

to the location of the window, as the window is shifted through the signal. This term,

obviously, corresponds to time information in the transform domain. However, there is

not a frequency parameter. Instead, a scale parameter is defined as 1/frequency. The

parameter scale s in the wavelet analysis is similar to the scale used in maps. As in the

case of maps, high scales correspond to a non-detailed global view (of the signal), and

low scales correspond to a detailed view. Similarly, in terms of frequency, low frequencies

(high scales) correspond to a global information of a signal (that usually spans the entire

signal), whereas high frequencies (low scales) correspond to a detailed information of a

hidden pattern in the signal (that usually lasts a relatively short time). Fortunately in

practical applications, low scales (high frequencies) do not last for the entire duration of
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the signal, but they usually appear from time to time as short bursts, or spikes. High

scales (low frequencies) usually last for the entire duration of the signal. Scaling, as a

mathematical operation, either dilates or compresses a signal. Larger scales correspond

to dilated (or stretched out) signals and small scales correspond to compressed signals.

7.2.2 Wavelet Synthesis

The continuous wavelet transform is a reversible transform [109], provided that Equation

(7.1) is satisfied. Fortunately, this is a very non-restrictive requirement. The continuous

wavelet transform is reversible if Equation (7.1) is satisfied, even though the basis func-

tions in general may not be orthonormal. The reconstruction is possible by using the

following reconstruction formula:

x(t) =
1

c2
ψ

∫

s

∫

t

Ψψ
x (τ, s)

1

s2
ψ(

t− τ

s
)dτds

where cψ is a constant that depends on the wavelet used. The success of the reconstruction

depends on this constant, called the admissibility constant, to satisfy the following

admissibility condition:

cψ =

√
2π

∫ ∞

−∞

|ψ̂(ξ)|2
|ξ| dξ < ∞ (7.1)

where ψ̂(ξ) is the Fourier transform of ψ(t). The above equation implies that ψ̂(0) = 0,

which is
∫

ψ(t)dt = 0.

As mentioned above, the above equation Eq. (7.1) is not a very restrictive requirement

since many mother wavelet functions can be found whose integral is zero. For the above

equation to be satisfied, the mother wavelet must be oscillatory.

7.2.3 Multiresolution Analysis

A multiresolution analysis [109] of the space L2(R) consists of a sequence of nested

subspaces

· · · ⊂ V0 ⊂ V1 ⊂ · · ·Vn ⊂ Vn+1 ⊂ · · · ⊂ L2(R)

that satisfies certain self-similarity relations in time/space and scale/frequency, as well

as completeness and regularity relations:
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• Self-similarity in time demands that each subspace Vk is invariant under shifts by

integer multiples of 2−k. That is, for each f ∈ Vk, m ∈ Z, there is a g ∈ Vk with

∀x ∈ R : f(x) = g(x + m2−k).

• Self-similarity in scale demands that all subspaces Vk ⊂ Vl, k < l, are time-scaled

versions of each other, with scaling dilation factor 2l−k, respectively. I.e., for each

f ∈ Vk there is a g ∈ Vl with

∀x ∈ R : g(x) = f(2l−kx).

If f has limited support, then as the support of g gets smaller, the resolution of

the l-th subspace is higher than the resolution of the k-th subspace.

• Regularity demands that the model subspace V0 be generated as the linear hull

(algebraically or even topologically closed) of the integer shifts of one or a finite

number of generating functions ψ. Those integer shifts should at least form a

frame for the subspace V0 ⊂ L2(R), which imposes certain conditions on the de-

cay at infinity. The generating functions are also known as scaling functions or

father wavelets. In most cases those functions need to be piecewise continuous with

compact support.

• Completeness demands that those nested subspaces fill the whole space, i.e., their

union should be dense in L2(R), and that they are not too redundant, i.e., their

intersection should only contain the zero element.

Because of V0 ⊂ V1, a finite sequence of coefficients ak = 2〈ψ(x), ψ(2x − k)〉, for

|k| ≤ N and ak = 0 for |k| > N , such that

ψ(x) =
N∑

k=−N

akψ(2x− k).

Defining another function, known as mother wavelet or just wavelet

ψ(x) :=
N∑

k=−N

(−1)ka1−kψ(2x− k),
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one can see that the space W0 ⊂ V1, which is defined as the linear hull of its integer shifts,

is the orthogonal complement to W0 inside V1. Or put differently, V1 is the orthogonal sum

of W0 and V0. By self-similarity, there are scaled versions Wk of W0 and by completeness

one has

L2(R) =
⋃

k∈Z
Wk,

thus the set

{ψk,n(x) = 2k/2ψ(2kx− n) : k, n ∈ Z}

is a countable complete orthonormal wavelet basis in L2(R).

7.3 Multiresolution Analysis for 3D Surfaces with

One-Piece Representation

7.3.1 Multiresolution Mesh Representation

As mentioned in the above section, a main idea behind multiresolution analysis is the

decomposition of a function (in this case a polyhedron expressed as a parametric function

on the sphere) into a low resolution part and a “detail” part [110]. Figure 7.1(middle) is a

low resolution version of the polyhedron shown in Figure 7.1(left). The vertices in Figure

7.1(middle) are obtained by applying linear transforms on the vertices in Figure 7.1(left).

These linear transforms essentially implement a low pass filter denoted as A. The detail

part consists of a set of abstract coefficients, called wavelet coefficients, that are computed

as weighted differences of the vertices in Figure 7.1(left). These differencing weights form

a high-pass filter B. The decomposition process, technically called analysis [110], can be

used to further transform Figure 7.1(middle) into an even lower resolution version and

corresponding wavelet coefficients. This cascade of analysis processes, referred to as a

filter bank algorithm [110], repeats with an even much coarser level representation shown

in Figure 7.1(right), together with wavelet coefficients at each level.

The analysis filters A and B are constructed so that the original polyhedron can be

recovered exactly from the low-resolution version and the wavelet coefficients. Recovery,

technically called synthesis [110], can be used to reconstruct Figure 7.1(left) from Figure
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Figure 7.1: Illustration of Multiresolution Analysis.

7.1(middle) together with the finest-level wavelet coefficients. Synthesis refines each

patch of Figure 7.1(middle) into more subpatches by introducing new vertices around

the patch, and then by perturbing the resulting set of vertices according to the wavelet

coefficients. The refining and perturbing steps can be described by two different filters P

(the refining filter) and Q (the perturbing filter), collectively called synthesis filters [110].

The task is to develop the four analysis and synthesis filters so that [110]:

• the low-resolution versions are good approximations of the original object (in a

least-squares sense);

• the magnitude of a wavelet coefficient reflects a coefficient’s importance by mea-

suring the error introduced when the coefficient is set to zero; and

• analysis and synthesis filter banks should have time complexity that is linear in the

number of vertices.

7.3.2 Lounsbery et al’s Multiresolution Analysis Method

Multiresolution analysis was first formalized by Mallat [108] for functions defined on Rn.

Lounsbery et al. [110] have recently extended the notion of multiresolution analysis to

functions defined on base complexes of arbitrary topological type, so that multiresolution

mesh representation can be calculated robustly and efficiently. However, their results

can only be used to construct multiresolution representations of meshes with subdivision
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connectivity. The purpose of this subsection is to summarize their basic results and

algorithms at a high level.

As we know, the two basic ingredients of multiresolution analysis are a sequence of

nested linear function spaces and an inner product. Lounsbery et al. use a sequence of

spaces V0, V1, · · · associated with meshes of arbitrary topology. To describe meshes, the

approximation spaces Vj consist of piecewise linear functions that can also be regarded as

the space of continuous piecewise linear functions over a partition Kj of K0, created by

performing j times of recursive subdivision to the faces of K0. As j increases, the mesh

Kj becomes more and more dense. As a result, the functions in Vj can better represent

arbitrary continuous functions on K0. The inner product used by Lounsbery et al. is the

standard inner product defined as

< f, g >:=

∫

x∈K0

f(x)g(x)dx

where dx is the differential area of K0 embedded in Rm, so that all faces have unit area.

The above inner product can be used to define the following orthogonal complement

spaces that is also called wavelet spaces,

Wj := {f ∈ Vj+1| < f, g >= 0,∀g ∈ Vj}

Basically, Wj describes the detail that is discarded when a function in Vj+1 is approxi-

mated by a function in Vj.

Basis functions for Vj are also called scaling functions. It is easy to see that a wavelet

ψk
i (x) is a basis function for one of the wavelet spaces Wk. Lounsbery et al. [110] give

constructions for wavelet bases on arbitrary mesh K0. Lounsbery et al. shows that a

wavelet basis for Vj consists of a basis for V0 together with bases for the wavelet spaces

W0, · · · ,Wj−1.

In [110], the parametrization ρJ ∈ VJ for Vj is expanded in the hat function basis as

ρJ(x) =
∑

i

vJ
i ψJ

i , x ∈ K0
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where vJ
i denotes the vertex positions of MJ . A multiresolution representation of ρJ is

the expansion in a wavelet basis:

ρJ(x) =
∑

i

v0ψ
0
i (x) +

J−1∑
j=0

∑
i

wj
i ψ

j
i (x), x ∈ K0,

where wj
i denotes the wavelet coefficients. The full detail model, described by ρJ(x) can be

successively decomposed into lower resolution approximations together with collections of

coefficients. The results are coarser meshes together with wavelet coefficients at various

levels of detail. The analysis process itself involves operations of sparse matrices which

initially were calculated and distributed by Lounsbery et al. [110].

7.3.3 Subdivision Connectivity Requirement

An important assumption in Lounsbery et al’s multiresolution analysis method is that

the geometric connectivity of the input mesh must be of the form of a mesh M j that

results from subdividing a simple mesh M0 j times. This requirement is called subdi-

vision connectivity [111]. Therefore Lounsbery et al’s multiresolution analysis method

[110] can only be applied to a restricted class of meshes with subdivision connectivity.

Unfortunately, meshes used in practice usually do not meet this requirement. For ex-

ample, the one-piece representation meshes we obtain by using the Boolean operation

method presented in Chapter 5 do not satisfy this requirement. The one-piece repre-

sentation meshes obtained by the interpolation technique presented in Chapter 3 do not

satisfy this requirement either. Hence, in order to represent these complex meshes which

do not satisfy the subdivision connectivity requirement in multiresolution meshes, we

need to first convert them into meshes that satisfy the subdivision connectivity require-

ment. In this section we introduce a method presented by Eck et al [111] to overcome

the subdivision connectivity restriction. In other words, with Eck et al’s method, com-

pletely arbitrary meshes can be converted to multiresolution representation. The method

is based on the approximation of an arbitrarily given mesh M by a mesh M j that has

subdivision connectivity and is guaranteed to be very close to M (within a given error

tolerance ε).
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The key part [111] of the conversion procedure is the construction of a parametrization

of M over a base complex K0 possessing a small number of faces. The parametrization is

then sampled to produce the remesh. Considerable care is taken to create a parametriza-

tion and a sampling pattern so that the resulting remesh can be well approximated with

relatively few wavelet coefficients.

The basic idea of remeshing [111] is to construct a parametrization of M over a

suitably determined domain mesh K0. This parametrization is then resampled to produce

a mesh MJ that has subdivision connectivity and is of the same topological type as M .

The remeshing algorithm presented by Eck et al. [111] consists of three steps:

• Partitioning: Partition M into a number of triangular regions T1, · · · , Tr. We

want the number r of regions to be small, because the lowest complexity approxi-

mation we can construct has r faces. Basic tools used in partitioning are harmonic

maps, which are maps that preserve as much of the metric structure (lengths, an-

gles, etc.) of M as possible. Harmonic maps are described in [111]. A detailed

description of the partitioning algorithm is given in [111]. Let m be the number

of vertices or nodes of the triangulation T1, · · · , Tr. This triangulation determines

the structure of a simple mesh K0, called the base complex [111], with a face cor-

responding to each of the r triangular regions. This mesh serves as the domain of

the parametrization constructed in the next step.

• Parametrization: For each region Ti of M construct a (local) parametrization

ρi : Fi → Ti over the corresponding face Fi of the base complex K0. The local

parameterizations are made to fit together continuously, meaning that collectively

they define a globally continuous parametrization ρ : K0 → M . The coordinate

functions of the parametrization are required to vary as little as possible since such

functions have multiresolution approximations with few significant wavelet coeffi-

cients, leading to high compression ratios. Harmonic maps in a sense minimize

distortion and therefore are particularly well suited for this purpose. The descrip-

tion of the parametrization step is presented in [111].
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• Resampling: Perform J recursive 4-to-1 splits on each of the faces of K0. This

results in a triangulation KJ of K0 with subdivision connectivity. The remesh MJ

is obtained by mapping the vertices of KJ into R3 using the parametrization ρ, and

constructing an interpolating mesh in the obvious way; MJ therefore has vertices

lying on M , and has subdivision connectivity. The resampling step is described

more fully in [111], and it is shown that J can be determined so that MJ and M

differ by no more than a specified remeshing tolerance ε.

7.3.4 One-Piece Representation using Multiresolution

With the availability of converting meshes of arbitrary topology to meshes satisfying the

subdivision connectivity requirement [111], now multiresolution analysis of an arbitrary

mesh M thus proceeds in two steps:

• First use the method of Eck et al. [111] to convert M to a mesh MJ which satisfies

the subdivision connectivity requirement, and

• Then use the method of Lounsbery et al. [110] to convert MJ to a multiresolution

mesh representation.

Because multiresolution analysis can now be applied to meshes with arbitrary topol-

ogy and arbitrary connectivity, we certainly can use multiresolution analysis to simplify

our one-piece results obtained from Boolean operations described in Chapter 5 or one-

piece represented meshes obtained from the interpolation method presented in Chapter

3. As depicted in Chapter 5, we have a dense (depends on accuracy requirement) one

piece represented polygonal surface obtained through performing one or more Boolean

operations. The polygons of the one piece surface can be regarded as the control mesh

of the surface because the mesh itself is very dense. The limit surface of the dense mesh

would be almost the same as the target surface. Hence by applying multiresolution anal-

ysis to the dense mesh, we can obtain a sparser mesh together with some small wavelet

coefficients (see Figure 7.1). The limit surface of the resulting sparser mesh is somewhat
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different from the original surface, because some details are lost in the wavelet coeffi-

cients, but their limit surface would be very similar because the lost information is small.

Furthermore, the error between the limit surface from the sparser mesh and the limit

surface of the original mesh can be exactly measured [110]. Hence it gives users more

flexibility in modeling. For example, in the design process, a relatively low resolution

mesh (i.e. sparser mesh) is desired for fast modeling/rendering purposes, because at a

low resolution level, it is easier to control (for example, directly edit) the mesh. Also

in the final stage of the design process, we can use the inverted multiresolution analysis

process, i.e. filterbank synthesis process to synthesize a sparser mesh and wavelet coeffi-

cients back to a finer and denser mesh, whose limit surface is closer to the final modeling

result.

(a) (b) (c) (d) (e)

Figure 7.2: Multiresolution of surfaces after Boolean operations: (a) two given objects;
(b) one-piece representation after a difference operation; (c) mesh of (b); (d) low resolu-
tion representation of (c); (e) lower resolution representation of (c)

The above Figure 7.2 is an example of multiresolution mesh representation of one piece

represented objects after performing Boolean operations. Figure 7.2(a) is two objects

positioned for Boolean operations. Figure 7.2(b) is the resulting object after a difference

operation between the two given objects. Figure 7.2(c) is the mesh structure of the

one-piece represented object shown in Figure 7.2(b). This mesh is obtained using the

method presented in Chapter 5. Figure 7.2(d) and Figure 7.2(e) are two lower resolution
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representations of the mesh shown in Figure 7.2(c). As we can see, the meshes are much

sparser than the original one, but lose only some small details in the resulting objects.

Together with wavelet coefficients, the mesh shown in Figure 7.2(e) can be synthesized

back to the mesh shown in Figure 7.2(d) exactly, and furthermore, the mesh shown

in Figure 7.2(d) can be synthesized back to the mesh shown in Figure 7.2(c) exactly

too. Hence, in a design process, users can conveniently choose a resolution level for

the representation. Even if the error tolerance is changed in the future, the modeling

results do not need to be redesigned because a different resolution level of the one-piece

multiresolution representation can be obtained from each other as long as the list of

wavelet coefficients exists as well.

7.4 Summary

The multiresolution analysis method is introduced in this chapter for the purpose of

simplifying dense one-piece representation based mesh structures. The Multiresolution

analysis process is based on the method of Lounsbery et al’s multiresolution analysis

method [110] and Eck et al’s mesh conversion method [111]. There are a list of versions

of resulting meshes after multiresolution analysis is applied. All of them have different

resolutions with different details. However, each of them can be regarded as a control

mesh, whose limit surface is an approximation of the original limit surface. The error

between them is explicitly known. Hence for a given error tolerance ε, we can find the

sparsest one-piece representation based mesh structure that satisfies the error control

condition. Furthermore, even though error requirements are changed later, we do not

need to remodel the resulting solids because we can reconstruct the original control mesh

from a sparse one-piece representation based mesh structure, without losing any detail.

Copyright c© Shuhua Lai 2006
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

This dissertation presents our research work in subdivision surface based one-piece rep-

resentation. Our research work related to the dissertation is summarized as follows.

• In Chapter 2 we develop a foundation for subdivision surface based one-piece rep-

resentation. Our new parametrization technique for general Catmull-Clark subdivi-

sion surfaces extends J. Stam’s work [17] by redefining all the eigen basis functions

in the parametric representation for general Catmull-Clark subdivision surfaces and

giving each of them an explicit form. The entire eigen structure of the subdivision

matrix and its inverse are computed exactly and explicitly with no need to pre-

compute anything. Therefore, the new representation can be used not only for

evaluation purposes, but for analysis purposes as well [58]. Furthermore, since the

number of eigen basis functions required in the new approach is only one half of the

previous approach [17], our new parametrization is also more efficient for evaluation

purposes.

With our parametrization technique available, we could then develop necessary

mathematical theories and geometric algorithms in the other chapters to support

subdivision surface based one-piece representation.

• We propose two ways for constructing subdivision surface based one-piece repre-

sentation in our dissertation research. Chapter 3 introduces one of them. We

establish explicit conditions for building a sparse mesh structure of a given model

using an interpolation technique. Although some interpolation methods using sub-

division surfaces [11, 25, 26, 52] exist, most of them cannot handle open meshes
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and the resultant surface exhibits undesired artifacts and undulations. We develop

a new method for constructing a sparse mesh whose smooth Catmull-Clark subdi-

vision surface (CCSS) interpolates the vertices of a mesh with arbitrary topology.

The new method handles both open and closed meshes. Normals or derivatives

specified at any vertices of the mesh (which can actually be anywhere) can also

be interpolated. The construction of the interpolating surface uses information

from the given mesh as well as its limit surface, hence it gives us more control on

the smoothness of the interpolating surface and, consequently, avoids the need of

the shape fairing process in the construction of the interpolating surface. Most

importantly, the computation of the interpolating surface’s control mesh follows a

new approach, which does not require the resulting global linear system to be solv-

able. An approximate solution provided by any fast iterative linear system solver

is sufficient. Nevertheless, interpolation of the given mesh is guaranteed. This is

an important improvement over previous methods because with these features, the

new method can handle meshes with a large number of vertices efficiently.

• In Chapter 4 we establish necessary and sufficient conditions for accurately con-

verting a subdivision surface into a set of voxels. Our discretization of 3D closed

objects is guaranteed to be leak-free when a 3D flooding operation is performed.

This is ensured by proving that our voxelization results satisfy the properties of

separability, accuracy and minimality.

Based on the voxelization technique, a method for performing robust and error con-

trollable Boolean operations on free-form solids represented by Catmull-Clark sub-

division surfaces is developed in Chapter 5. Different from previous voxelization-

based approaches, the final result of the Boolean operations in our method is rep-

resented with a continuous geometric representation ( i.e. a polygonal mesh). This

is achieved by doing the Boolean operations in the parameter spaces of the solids,

instead of the object space. This approach allows us to easily compute a continu-

ous approximation of the intersection curve and, consequently, to build a one-piece
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representation for the whole Boolean operation result.

• The one-piece representation resulting from either performing Boolean operations

or interpolation could be dense. In Chapter 6 we develop a method called adap-

tive tessellation, for simplifying the control meshes. All the simplified meshes have

accurate error measurement. Hence error control is no problem. Adaptive tessel-

lation reduces the number of faces needed to yield a smooth approximation to the

limit surface and, consequently, makes the rendering process more efficient. The

main advantages of our method are that it handles crack problems easily and has

explicit error estimation.

• Another mesh reduction approach for simplifying one-piece represented control

meshes is introduced in Chapter 7. By using the multiresolution analysis method

[110, 111] we can significantly simplify one-piece representation based mesh struc-

tures obtained from either interpolation or performing Boolean operations. The

resulting meshes after multiresolution analysis are still topologically correct con-

trol meshes, and are good approximations to the original mesh with explicit error

calculation. More importantly, from a sparse one-piece representation based mesh

structure obtained from a multiresolution analysis process, we can reconstruct the

original control mesh without losing any detail. Hence multiresolution based one-

piece representations are very good for simplification of our subdivision surface

based one-piece representation.

• We have built a system that supports subdivision surface based one-piece repre-

sentation. The system can perform all the functions necessary for constructing a

subdivision surface based one-piece representation. A lot of examples have been

tested within the system. All the examples shown in this dissertation are generated

by this system.
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8.2 Future Work

We have done some fundamental research related to representations of topologically com-

plex 3D objects and obtained some good results. More work needs to be done to make

the subdivision surface based one-piece representation system a mature and useful tool

for designing and modeling. The following are a number of problems inspired by my dis-

sertation research, and are theoretically significant and practically valuable. They will

constitute my main research directions in the near future.

• More Convenient and Accurate Representations of Topologically Com-

plex 3D Objects:

Convenient representations should be easily understood by users, easily constructed

by modelers and easily manipulated by programmers. One-piece representation is

one type of convenient representation. But there are still a lot of things that need

to be improved. For example, for solid objects obtained from a sequence of Boolean

operations, their subdivision surface based one-piece representation would be irreg-

ular and redundant because we did not take the regularity of the original solids into

account while performing Boolean operations. Hence such one-piece representation

can still be improved in future work.

Accurate representations of complex 3D objects are also of great importance in

many disciplines ranging from engineering and manufacturing to medicine and bi-

ology. With the wide availability of powerful computational resources and ever

better acquisition technologies such as 3D laser scanning and volumetric MRI or

CAT imaging, the geometries used in applications are becoming increasingly com-

plex. Traditional representations of geometry are inefficient and even ineffective

in representing such complex topologies. Increasing complexity of geometric data

calls for new efficient and accurate representations. The goal of my future research

is to study more flexible, effective and accurate representations of complex 3D ob-

jects. The representations to be studied in my future research would result in more
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efficient ways of manipulating and processing topologically complex 3D objects.

• Algorithms for Construction, Manipulation, Processing, Transmission,

Rendering and Storage of Topologically Complex 3D Objects:

Topologically complex 3D objects have become increasingly common in applica-

tions arising in diverse areas. Plastic surgeons use computer models to plan and

perform operations. Mechanical engineers virtually assemble and test cars and

planes. Animators create complex characters and effects indistinguishable from re-

ality. Now it is even feasible to create 3D computer models of sculptures capturing

the most subtle details using geometric design. Increasing complexity of geometric

data requires more efficient algorithms for construction, rendering, manipulation,

processing, transmission, compression and storage of such a large amount of com-

plex data.

Therefore part of our immediate future work is to design efficient algorithms for 3D

modeling to improve the quality of the resulting objects without sacrificing much

performance. Both theoretical properties of the object representations (regular-

ity, convergence rates, fairness, stability) and their practical applications need to

be studied. The algorithms to be developed will have immediate applications in

many fields, such as computer-aided design, medical visualization and computer

animation.

• Interdisciplinary Research and Applications:

My research area is inherently interdisciplinary, assimilating ideas from computer

graphics, computer vision, image processing, geometric modeling, applied mathe-

matics, bio-informatics and computer engineering to develop 3D models for design

and visualization. I will continue my efforts of exploring the theoretical foundation

and practical algorithms of accurate representation and efficient manipulation of

3D objects and pursue their applications in interdisciplinary areas. For example,

our research results could be applied to virtual surgery because human bodies,

141



blood vessels, organs or even complex brains can be accurately represented. As a

matter of fact, modeling of macro- and microscopic biological structures is becom-

ing increasingly important for medical research, training, and treatment support.

However, because such body structures often have extremely complex shapes and

topology (e.g., the blood vessel system, facial muscles, folded protein molecules),

it is still a challenging research work. Hence putting our research results into such

applications is another immediate part of future work for us.

Copyright c© Shuhua Lai 2006
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Appendix A

Eigen Basis Matrices Mb,j

We introduce two notations first:

Mb,j[k] and Mb,j = [Y1, Y2, · · · , Y2n+8].

The first notation, Mb,j[k], represents the kth row of the matrix Mb,j. The second notation

means that Mb,j is a matrix of 2n + 8 columns and the ith column of Mb,j is Yi. Recall

that cω = cos(2πω/n). Also, we define

f(k, ω, x1, x2, x3, x4, x5) =
5∑

i=1

xic(k−i+2)ω.

The matrices Mb,j, b = 1, 2, 3, j = 0, 1, ..., n + 5, are shown below in eight groups.

1. Mb,0 and Mb,1 (corresponding to eigenvalues λ0 and λ1): let

h = (r − 1)(8r − 1)(32r − 1)(64r − 1)(r − s);
Y T

b = 1
h
Qb · [1, r, r2, r3, r4, r5, r6];

Ŷb = −8s
n
Yb;

Ȳb = 8s−1
n

Yb

where r = λ0, s = λ1, and Qb (see Appendix B) is a constant matrix of dimension

16× 7. Then

Mb,0 = [Yb, Ŷb, · · · , Ŷb, Ȳb, · · · , Ȳb,0,0,0,0,0,0,0]

where 0 is a zero vector of dimension 16. Mb,1 is obtained by switching r and s in the

above items.

2. Mb,2ω and Mb,2ω+1 (corresponding to eigenvalues λ2ω and λ2ω+1), 1 ≤ ω < n/2: let

h = (64r − 1)(32r − 1)(16r − 1)(r − s)/2;
V T

k = [c(k+1)ω, ckω, c(k−1)ω, c(k−2)ω, c(k−3)ω];

BT
k = [V T

k , rV T
k , r2V T

k , r3V T
k , r4V T

k , r5V T
k ];

Ŷk = 1
nh

Qb1Bk;
Ȳk = 4s−1

nh(1+cω)
Qb2Bk
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where 1 ≤ k ≤ n, r = λ2ω, s = λ2ω+1 and Qb1 and Qb2 (see Appendix B) are constant

matrices of dimension 16× 30. Then

Mb,2ω = [0, Ŷ1, · · · , Ŷn, Ȳ1, · · · , Ȳn,0,0,0,0,0,0,0].

Mb,2ω+1 is obtained by switching r and s in the above items. Note that if n is odd, the

last two matrices in this group are Mb,n−1 and Mb,n. Otherwise, the last two matrices are

Mb,n−2 and Mb,n−1.

3. Mb,n when n is even (corresponding to eigenvalue λn): set

Ŷ T = [1, − 1, 1, − 1, · · · , (−1)n+1]/(4n),
Ȳ T = [0, 0, 0, 0, · · · , 0]

where Ŷ and Ȳ are of length n. Then for b = 1, 2 and 3, we have

Mb,n[4] = [0, Ŷ T , Ȳ T , 0, 0, 0, 0, 0, 0, 0];

Mb,n[5] = [0, Ȳ T , Ŷ T , 0, 0, 0, 0, 0, 0, 0];

Mb,n[6] = [0, − Ŷ T , Ȳ T , 0, 0, 0, 0, 0, 0, 0]

and all the other rows are zero.

4. Mb,n+1 (corresponding to eigenvalue= 1): set

t = 5 + 14βn + 16γn;

ĥk = 4(3βn + 2γn)/(nt);
h̄k = 2(βn + 4γn)/(nt),

1 ≤ k ≤ n. Then for b = 1, 2 and 3, we have

Mb,n+1[1] = [5/t, ĥ1, ...ĥn, h̄1, ..., h̄n, 0, 0, 0, 0, 0, 0, 0]

and all the other rows are zero.

5. Mb,n+2 (corresponding to eigenvalue= 1/8): set

ŷk =

{ −11(n−1)
144n

, k = 1
11

144n
, 1 < k ≤ n

ȳk =

{
5(n−2)
288n

, k = 1 or k = n
−5

144n
, 1 < k < n

t = 48(8γn − 1);

ĥ = (11− 24βn + 8γn)/(3tn);
h̄ = (−5 + 24βn − 32γn)/(3tn).
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Then for b = 1, 2 and 3 we have

Mb,n+2[7] = [−1/t, ĥ + ŷ1, ĥ + ŷ2, · · · , ĥ + ŷn, h̄ + ȳ1,
h̄ + ȳ2, · · · , h̄ + ȳn, 1

288
, 1

72
, 1

288
, 0, 0, 0, 0];

Mb,n+2[10] = [−1/t, ĥ + ŷn, ĥ + ŷ1, · · · , ĥ + ŷn−1, h̄ + ȳn,
h̄ + ȳ1, · · · , h̄ + ȳn−1, 0, 0, 0, 0,

1
288

, 1
72

, 1
288

]

and all the other rows are zero.

6. Mb,n+3 (corresponding to eigenvalue= 1/16): set

ŷk =
∑n

ω=0
7·f(k,ω,0,1,0,−1,0)

64n(2cω−7)
;

ȳk =
∑n

ω=0
f(k,ω,−5,−23,23,5,0)

192n(2cω−7)
,

where 1 ≤ k ≤ n. Then for b = 1, 2 and 3 we have

Mb,n+3[11] = [0, ŷ1, ŷ2, · · · , ŷn, ȳ1, ȳ2, · · · , ȳn,− 1
192

, 0, 1
192

, 0, 0, 0, 0];
Mb,n+3[13] = [0,−ŷn,−ŷ1, · · · ,−ŷn−1,−ȳn,−ȳ1, · · · ,−ȳn−1, 0, 0, 0, 0,

1
192

, 0,− 1
192

],

and all the other rows are zero.

7. Mb,n+4 (corresponding to eigenvalue= 1/32): set

ŷk =
∑n

ω=0
−f(k,ω,0,41,180,41,0)

384n(4cω−45)
,

ȳk =
∑n

ω=0
f(k,ω,10,100,100,10,0)

384n(4cω−45)
,

t = 32(−41 + 96βn − 32γn);

ĥ = (−131 + 192βn + 160γn)/(6tn);
h̄ = (55− 96βn − 80γn)/(3tn),

1 ≤ k ≤ n. Then for b = 1, 2 and 3, we have

Mb,n+4[14] = [7/(2t), ĥ + ŷ1, ĥ + ŷ2, · · · , ĥ + ŷn, h̄ + ȳ1,
h̄ + ȳ2, · · · , h̄ + ȳn, 1

384
, −1

192
, 1

384
, 0, 0, 0, 0];

Mb,n+4[15] = [7/(2t), ĥ + ŷn, ĥ + ŷ1, · · · , ĥ + ŷn−1, h̄ + ȳn,
h̄ + ȳ1, · · · , h̄ + ȳn−1, 0, 0, 0, 0,

1
384

, −1
192

, 1
384

]

and all the other rows are zero.

8. Mb,n+5 (corresponding to eigenvalue= 1/64): set

ŷk =
∑n

ω=0
f(k,ω,0,27,461,461,27)

768n(8cω−217)
;

ȳk =
∑n

ω=0
−f(k,ω,10,229,888,229,10)

1152n(8cω−217)
;

t = −209 + 448βn − 64γn;

ĥ = (61− 92βn − 64γn)/(48tn);
h̄ = (−683 + 1216βn + 752γn)/(576tn),
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1 ≤ k ≤ n. Then for b = 1, 2 and 3, we have

Mb,n+5[16] = [−45
256t

, ĥ + ŷ1, · · · , ĥ + ŷn, h̄ + ȳ1, · · · ,
h̄ + ȳn, −1

2304
, 1

768
, −1

768
, 1

2304
, −1

768
, 1

768
, −1

2304
]

and all the other rows are zero.
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Appendix B

Matrices Qb, Qb1 and Qb2

The matrices Qb, Qb1 and Qb2, (b = 1, 2, 3) are listed as follows. Matrices Qb are of

size 16 × 7 and Matrices Qb1 and Qb2 are of size 16 × 30. In order to put each of them

into a page, all matrices Qb1 and Qb2 are divided into two parts: Qb1[1 : 15], Qb1[16 : 30],

Qb2[1 : 15] and Qb2[16 : 30]. Qb1[1 : 15] are the submatrices of Qb1 by taking the first 15

columns of Qb1 and Qb1[16 : 30] are the submatrices of Qb1 by taking the last 15 columns

of Qb1. Similarly Qb2[1 : 15] and Qb2[16 : 30] are submatrices of Qb2.

Q1 =




1
144 − 7

8
217
6 −620 13888

3 −14336 131072
9

−1/48 125
48 − 1271

12
5270

3 − 36704
3

97280
3 − 65536

3

0 0 0 0 0 0 0

1/48 − 41
16

807
8 −1565 9488 −18944 32768

3

0 0 0 0 0 0 0

− 1
96

43
32 −58 1070 −8864 29696 − 65536

3

− 1
144

119
144 − 2191

72
7429
18 − 17528

9
30464

9 − 16384
9

0 0 0 0 0 0 0

1/32 − 125
32

1271
8 −2635 18352 −48640 32768

1
192 − 133

192
1505
48 −612 15568

3 − 46592
3

32768
3

0 0 0 0 0 0 0

−1/32 117
32 − 1053

8 1800 −10632 25344 −16384

− 1
64

125
64 − 1271

16
2635

2 −9176 24320 −16384

1
96 − 101

96
713
24 − 1054

3
5704

3 − 12928
3

8192
3

1
64 − 109

64
899
16 − 1581

2 4960 −12416 8192

− 1
192

77
192 − 539

48
865
6 − 2576

3
6272

3 − 4096
3




Q2 =




1/48 − 47
18

961
9 − 16120

9
115072

9 − 323584
9

262144
9

−1/24 125
24 − 1271

6
10540

3 − 73408
3

194560
3 − 131072

3

−1/24 125
24 − 1271

6
10540

3 − 73408
3

194560
3 − 131072

3

1/32 − 371
96

923
6 − 7330

3
46816

3 − 105472
3

65536
3

1/16 − 125
16

1271
4 −5270 36704 −97280 65536

1/32 − 371
96

923
6 − 7330

3
46816

3 − 105472
3

65536
3

− 5
576

601
576 − 5653

144
5032

9 − 26704
9

54784
9 − 32768

9

−1/32 125
32 − 1271

8 2635 −18352 48640 −32768

−1/32 125
32 − 1271

8 2635 −18352 48640 −32768

− 5
576

601
576 − 5653

144
5032

9 − 26704
9

54784
9 − 32768

9

1
192 − 125

192
1271
48 − 2635

6
9176

3 − 24320
3

16384
3

0 −1/4 109
4 −835 7720 −23296 16384

1
192 − 125

192
1271
48 − 2635

6
9176

3 − 24320
3

16384
3

1
192 − 77

192
155
48

527
6 − 3472

3
11392

3 − 8192
3

1
192 − 77

192
155
48

527
6 − 3472

3
11392

3 − 8192
3

− 1
288

53
288 − 173

72 − 20
9

1448
9 − 5504

9
4096

9



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Q3 =




1
144 − 7

8
217
6 −620 13888

3 −14336 131072
9

0 0 0 0 0 0 0

−1/48 125
48 − 1271

12
5270

3 − 36704
3

97280
3 − 65536

3

− 1
96

43
32 −58 1070 −8864 29696 − 65536

3

0 0 0 0 0 0 0

1/48 − 41
16

807
8 −1565 9488 −18944 32768

3

1
192 − 133

192
1505
48 −612 15568

3 − 46592
3

32768
3

1/32 − 125
32

1271
8 −2635 18352 −48640 32768

0 0 0 0 0 0 0

− 1
144

119
144 − 2191

72
7429
18 − 17528

9
30464

9 − 16384
9

− 1
64

125
64 − 1271

16
2635

2 −9176 24320 −16384

−1/32 117
32 − 1053

8 1800 −10632 25344 −16384

0 0 0 0 0 0 0

1
64 − 109

64
899
16 − 1581

2 4960 −12416 8192

1
96 − 101

96
713
24 − 1054

3
5704

3 − 12928
3

8192
3

− 1
192

77
192 − 539

48
865
6 − 2576

3
6272

3 − 4096
3




Q11[1 : 15] =




0 −1
72

25
144

−1
72 0 0 215

144
−1357

72
215
144 0 0 −136

3
5149

9
−136

3 0

0 1/24 −25
48 1/24 0 0 −71

16
453
8

−71
16 0 0 131 −5179

3 131 0

0 1/48 0 −1/48 0 0 −31
12 0 31

12 0 0 310
3 0 −310

3 0

0 −1/24 25
48 −1/24 0 0 209

48
−1357

24
209
48 0 0 −243

2
5149

3
−243

2 0

0 −1/16 0 1/16 0 0 61
8 0 −61

8 0 0 −295 0 295 0

0 −1
96

−25
96

−1
96 0 0 157

96
1357
48

157
96 0 0 −87 −5149

6 −87 0

0 1
72

−25
144

1
72 0 0 −67

48
443
24

−67
48 0 0 209

6
−4792

9
209
6 0

0 1/16 0 −1/16 0 0 −59
8 0 59

8 0 0 533
2 0 −533

2 0

0 1/32 25
32 1/32 0 0 −153

32
−1365

16
−153
32 0 0 246 5263

2 246 0

0 1
576

25
192

29
576 0 0 −223

576
−1357

96
−3527
576 0 0 473

18
5149
12

2102
9 0

0 −1/48 0 1/48 0 0 55
24 0 −55

24 0 0 −431
6 0 431

6 0

0 −1/32 −25
32 −1/32 0 0 145

32
1357
16

145
32 0 0 −435

2
−5149

2
−435

2 0

0 −1
192

−25
64

−29
192 0 0 215

192
1373
32

3295
192 0 0 −443

6
−5361

4
−1730

3 0

0 1
96

25
96

1
96 0 0 −43

32
−415
16

−43
32 0 0 111

2
4057

6
111
2 0

0 1
192

25
64

29
192 0 0 −199

192
−1357

32
−2831
192 0 0 193

3
5149

4
2311

6 0

0 −1
576

−25
192

−29
576 0 0 167

576
1133
96

1903
576 0 0 −142

9
−1287

4
−1369

18 0



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Q11[16 : 30] =




0 480 −46496
9 480 0 0 −31744

9
139264

9
−31744

9 0 0 65536
9

−131072
9

65536
9 0

0 −3760
3 15872 −3760

3 0 0 24064
3

−154624
3

24064
3 0 0 −32768

3 65536 −32768
3 0

0 −4960
3 0 4960

3 0 0 31744
3 0 −31744

3 0 0 −65536
3 0 65536

3 0

0 936 −46496
3 936 0 0 −14080

3
139264

3
−14080

3 0 0 16384
3

−131072
3

16384
3 0

0 4400 0 −4400 0 0 −24064 0 24064 0 0 32768 0 −32768 0

0 1760 23248
3 1760 0 0 −31744

3
−69632

3
−31744

3 0 0 65536
3

65536
3

65536
3 0

0 −1492
9

12428
3

−1492
9 0 0 7552

9
−93568

9
7552

9 0 0 −8192
9 8192 −8192

9 0

0 −3448 0 3448 0 0 14080 0 −14080 0 0 −16384 0 16384 0

0 −4720 −25152 −4720 0 0 24064 89600 24064 0 0 −32768 −98304 −32768 0

0 −5440
9

−11624
3

−29576
9 0 0 31744

9
34816

3
130304

9 0 0 −65536
9

−32768
3

−180224
9 0

0 2132
3 0 −2132

3 0 0 −7552
3 0 7552

3 0 0 8192
3 0 −8192

3 0

0 3768 23248 3768 0 0 −14080 −69632 −14080 0 0 16384 65536 16384 0

0 4880
3 13136 19804

3 0 0 −24064
3 −45824 −76928

3 0 0 32768
3 49152 90112

3 0

0 −2452
3 −5528 −2452

3 0 0 7552
3

44096
3

7552
3 0 0 −8192

3 −12288 −8192
3 0

0 −3928
3 −11624 −12188

3 0 0 14080
3 34816 41408

3 0 0 −16384
3 −32768 −45056

3 0

0 2612
9

8096
3

6952
9 0 0 −7552

9
−21824

3
−21440

9 0 0 8192
9 6144 22528

9 0




Q12[1 : 15] =




1
144

−23
288

−23
288

1
144 0 −215

288
833
96

833
96

−215
288 0 68

3
−4741

18
−4741

18
68
3 0

−1/48 23
96

23
96 −1/48 0 71

32
−835
32

−835
32

71
32 0 −131

2
2393

3
2393

3
−131

2 0

−1
96

−1
96

1
96

1
96 0 31

24
31
24

−31
24

−31
24 0 −155

3
−155

3
155
3

155
3 0

1/48 −23
96

−23
96 1/48 0 −209

96
835
32

835
32

−209
96 0 243

4
−9569

12
−9569

12
243
4 0

1/32 1/32 −1/32 −1/32 0 −61
16

−61
16

61
16

61
16 0 295

2
295
2

−295
2

−295
2 0

1
192

13
96

13
96

1
192 0 −157

192
−957
64

−957
64

−157
192 0 87

2
5671
12

5671
12

87
2 0

−1
144

23
288

23
288

−1
144 0 67

96
−273
32

−273
32

67
96 0 −209

12
8957
36

8957
36

−209
12 0

−1/32 −1/32 1/32 1/32 0 59
16

59
16

−59
16

−59
16 0 −533

4
−533

4
533
4

533
4 0

−1
64

−13
32

−13
32

−1
64 0 153

64
2883
64

2883
64

153
64 0 −123 −5755

4
−5755

4 −123 0

−1
1152

−19
288

−13
144

−29
1152 0 223

1152
8365
1152

11669
1152

3527
1152 0 −473

36
−16393

72
−23855

72
−1051

9 0

1
96

1
96

−1
96

−1
96 0 −55

48
−55
48

55
48

55
48 0 431

12
431
12

−431
12

−431
12 0

1
64

13
32

13
32

1
64 0 −145

64
−2859

64
−2859

64
−145
64 0 435

4 1396 1396 435
4 0

1
384

19
96

13
48

29
384 0 −215

384
−8453
384

−11533
384

−3295
384 0 443

12
16969

24
23003

24
865
3 0

−1
192

−13
96

−13
96

−1
192 0 43

64
873
64

873
64

43
64 0 −111

4
−2195

6
−2195

6
−111

4 0

−1
384

−19
96

−13
48

−29
384 0 199

384
8341
384

10973
384

2831
384 0 −193

6
−16219

24
−20069

24
−2311

12 0

1
1152

19
288

13
144

29
1152 0 −167

1152
−6965
1152

−8701
1152

−1903
1152 0 71

9
12151

72
14321

72
1369
36 0



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Q12[16 : 30] =




−240 21088
9

21088
9 −240 0 15872

9
17920
−3

17920
−3

15872
9 0 32768

−9
32768

9
32768

9
32768
−9 0

1880
3

21928
−3

21928
−3

1880
3 0 12032

−3 21760 21760 12032
−3 0 16384

3
81920
−3

81920
−3

16384
3 0

2480
3

2480
3

2480
−3

2480
−3 0 15872

−3
15872
−3

15872
3

15872
3 0 32768

3
32768

3
32768
−3

32768
−3 0

−468 21844
3

21844
3 −468 0 7040

3 −20864 −20864 7040
3 0 8192

−3
57344

3
57344

3
8192
−3 0

−2200 −2200 2200 2200 0 12032 12032 −12032 −12032 0 −16384 −16384 16384 16384 0

−880 14264
−3

14264
−3 −880 0 15872

3 16896 16896 15872
3 0 32768

−3
65536
−3

65536
−3

32768
−3 0

746
9

17896
−9

17896
−9

746
9 0 3776

−9
14336

3
14336

3
3776
−9 0 4096

9
32768
−9

32768
−9

4096
9 0

1724 1724 −1724 −1724 0 −7040 −7040 7040 7040 0 8192 8192 −8192 −8192 0

2360 14936 14936 2360 0 −12032 −56832 −56832 −12032 0 16384 65536 65536 16384 0

2720
9

20156
9

32224
9

14788
9 0 15872

−9
68096
−9

117376
−9

65152
−9 0 32768

9
81920

9
139264

9
90112

9 0

1066
−3

1066
−3

1066
3

1066
3 0 3776

3
3776

3
3776
−3

3776
−3 0 4096

−3
4096
−3

4096
3

4096
3 0

−1884 −13508 −13508 −1884 0 7040 41856 41856 7040 0 −8192 −40960 −40960 −8192 0

2440
−3

22144
−3

29606
−3

9902
−3 0 12032

3
80768

3
107200

3
38464

3 0 16384
−3

90112
−3

118784
−3

45056
−3 0

1226
3

9518
3

9518
3

1226
3 0 3776

−3 −8608 −8608 3776
−3 0 4096

3
22528

3
22528

3
4096

3 0

1964
3

19400
3

23530
3

6094
3 0 7040

−3
59264
−3

72928
−3

20704
−3 0 8192

3
57344

3
71680

3
22528

3 0

1306
−9

13450
−9

15620
−9

3476
−9 0 3776

9
36512

9
43456

9
10720

9 0 4096
−9

31744
−9

38912
−9

11264
−9 0




Q21[1 : 15] =




0 −1
72 1/3 1/3 −1

72 0 91
72

−2623
72

−2623
72

91
72 0 −196

9
10102

9
10102

9
−196

9

0 1/24 −17
16

−23
48 1/48 0 −91

24
5585
48

211
4

−91
48 0 196

3
−10820

3 −1651 98
3

0 1/48 −23
48

−17
16 1/24 0 −91

48
211
4

5585
48

−91
24 0 98

3 −1651 −10820
3

196
3

0 −1/24 33
32

7
32

−1
96 0 91

24
−10765

96
−1175

48
91
96 0 −196

3
10249

3
4757

6
−49
3

0 −1/16 13
8

13
8 −1/16 0 91

16
−2867

16
−2867

16
91
16 0 −98 5641 5641 −98

0 −1
96

7
32

33
32 −1/24 0 91

96
−1175

48
−10765

96
91
24 0 −49

3
4757

6
10249

3
−196

3

0 1
72

−19
64

−17
576

1
576 0 −91

72
18317
576

331
96

−91
576 0 196

9
−8408

9
−485

4
49
18

0 1/16 −49
32

−27
32 1/32 0 −91

16
5337
32

751
8

−91
32 0 98 −5100 −6019

2 49

0 1/32 −27
32

−49
32 1/16 0 −91

32
751
8

5337
32

−91
16 0 49 −6019

2 −5100 98

0 1
576

−17
576

−19
64

1
72 0 −91

576
331
96

18317
576

−91
72 0 49

18
−485

4
−8408

9
196
9

0 −1/48 71
192

29
192

−1
192 0 91

48
−7685
192

−1615
96

91
192 0 −98

3
3616

3
6481
12

−49
6

0 −1/32 3/4 3/4 −1/32 0 91
32

−2623
32

−2623
32

91
32 0 −49 5051

2
5051

2 −49

0 −1
192

29
192

71
192 −1/48 0 91

192
−1615

96
−7685
192

91
48 0 −49

6
6481
12

3616
3

−98
3

0 1
96

−7
64

−23
192

1
192 0 −91

96
2705
192

211
16

−91
192 0 49

3
−3175

6
−1651

4
49
6

0 1
192

−23
192

−7
64

1
96 0 −91

192
211
16

2705
192

−91
96 0 49

6
−1651

4
−3175

6
49
3

0 −1
576

−1
144

−1
144

−1
576 0 91

576
−887
576

−887
576

91
576 0 −49

18
2881
36

2881
36

−49
18



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Q21[16 : 30] =




0 −1280
9

−31424
3

−31424
3

−1280
9 0 0 278528

9
278528

9 0 0 0 −262144
9

−262144
9 0

0 1280
3

103552
3

47776
3

640
3 0 0 −342016

3
−139264

3 0 0 0 131072 131072
3 0

0 640
3

47776
3

103552
3

1280
3 0 0 −139264

3
−342016

3 0 0 0 131072
3 131072 0

0 −1280
3 −31104 −8176 −320

3 0 0 278528
3

69632
3 0 0 0 −262144

3
−65536

3 0

0 −640 −55936 −55936 −640 0 0 187392 187392 0 0 0 −196608 −196608 0

0 −320
3 −8176 −31104 −1280

3 0 0 69632
3

278528
3 0 0 0 −65536

3
−262144

3 0

0 1280
9

69016
9

12904
9

160
9 0 0 −179968

9
−34816

9 0 0 0 16384 32768
9 0

0 640 46816 30784 320 0 0 −139264 −97792 0 0 0 131072 98304 0

0 320 30784 46816 640 0 0 −97792 −139264 0 0 0 98304 131072 0

0 160
9

12904
9

69016
9

1280
9 0 0 −34816

9
−179968

9 0 0 0 32768
9 16384 0

0 −640
3

−31732
3

−16528
3

−160
3 0 0 28800 16640 0 0 0 −24576 −16384 0

0 −320 −23568 −23568 −320 0 0 69632 69632 0 0 0 −65536 −65536 0

0 −160
3

−16528
3

−31732
3

−640
3 0 0 16640 28800 0 0 0 −16384 −24576 0

0 320
3

15148
3

11944
3

160
3 0 0 −42304

3
−34816

3 0 0 0 12288 32768
3 0

0 160
3

11944
3

15148
3

320
3 0 0 −34816

3
−42304

3 0 0 0 32768
3 12288 0

0 −160
9

−7444
9

−7444
9

−160
9 0 0 6976

3
6976

3 0 0 0 −2048 −2048 0




Q22[1 : 15] =




1
144

−23
144 −1/3 −23

144
1

144
−91
144

211
12

2623
72

211
12

−91
144

98
9

−1651
3

−10102
9

−1651
3

98
9

−1/48 49
96

37
48

11
48

−1
96

91
48

−1801
32

−8117
96

−2441
96

91
96

−98
3

5312
3

15773
6

4855
6

−49
3

−1
96

11
48

37
48

49
96 −1/48 91

96
−2441

96
−8117

96
−1801

32
91
48

−49
3

4855
6

15773
6

5312
3

−98
3

1/48 −95
192 −5/8 −5

48
1

192
−91
48

3467
64

13115
192

753
64

−91
192

98
3

−3351
2

−25255
12

−1553
4

49
6

1/32 −25
32

−13
8

−25
32 1/32 −91

32
347
4

2867
16

347
4

−91
32 49 −5543

2 −5641 −5543
2 49

1
192

−5
48 −5/8 −95

192 1/48 −91
192

753
64

13115
192

3467
64

−91
48

49
6

−1553
4

−25255
12

−3351
2

98
3

−1
144

163
1152

47
288

1
72

−1
1152

91
144

−5863
384

−20303
1152

−1895
1152

91
1152

−98
9

4106
9

37997
72

4267
72

−49
36

−1/32 47
64

19
16

13
32

−1
64

91
32

−5155
64

−8341
64

−2913
64

91
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