
AN IMAGE-SPACE ALGORITHM FOR
HARDWARE-BASED RENDERING OF
CONSTRUCTIVE SOLID GEOMETRY

Nigel Timothy Stewart

Bachelor of Applied Science in Computer Science

Submitted in fulfillment of the requirements of
the degree of Doctor of Philosophy

May 2008

School of Aerospace, Mechanical and Manufacturing Engineering
Science, Engineering and Technology Portfolio

RMIT University

c© Copyright 2008
Nigel Timothy Stewart

CANDIDATE DECLARATION

This work is that of the author, except where due acknowledgement has been made. This
work has not been submitted previously, in whole or in part, to qualify for any other
academic award. The content of this thesis is the result of work carried out in the course
of an approved research program since the official commencement date. Paid and unpaid
editorial work carried out by third parties has been acknowledged.

Nigel T. Stewart Date

iii

Table of Contents

Candidate Declaration iii

Table of Contents v

List of Figures viii

List of Tables xi

List of Algorithms xii

Glossary xiv

Summary 1

Acknowledgements 3

1 Introduction 5
1.1 Motivation . 6
1.2 Contribution . 7
1.3 Publications . 8
1.4 Methodology . 8
1.5 Thesis Overview . 9

2 Constructive Solid Geometry (CSG) 11
2.1 Introduction . 12

2.1.1 Primitives . 12
2.1.2 Operators . 14
2.1.3 Tree . 15
2.1.4 Tree Traversal . 16
2.1.5 Algorithms . 16

2.2 Tree Transformation . 17
2.2.1 Sum-of-Products Form . 18
2.2.2 Positive Form . 22
2.2.3 Left/Right Heavy . 23

2.3 Tree Simplification . 24
2.3.1 Algebraic Tree Pruning . 24
2.3.2 Bounding Volume Tree Pruning . 25
2.3.3 Null Object Detection . 27
2.3.4 Active Zones . 29
2.3.5 S-bounds . 31

2.4 Discussion . 33

3 Hardware-Based CSG Rendering 35
3.1 Introduction . 36
3.2 Hardware . 36

3.2.1 Performance Trends . 36
3.2.2 PC Architecture . 38

v

3.3 OpenGL Graphics API . 39
3.3.1 OpenGL Graphics Pipeline . 39
3.3.2 OpenGL Depth Buffer . 41
3.3.3 OpenGL Stencil Buffer . 42
3.3.4 OpenGL Face Culling . 43
3.3.5 OpenGL Pixel Transfer . 44

3.4 Frame Buffer Operations . 45
3.4.1 Depth Complexity . 45
3.4.2 Layer Extraction . 46
3.4.3 Layer Peeling . 47
3.4.4 Parity Clipping . 49

3.5 Graphics Hardware CSG Rendering . 50
3.5.1 Goldfeather CSG Rendering . 51
3.5.2 Layered Goldfeather Algorithm . 53
3.5.3 Improved Layered Goldfeather Algorithm 55
3.5.4 Trickle Algorithm . 56

3.6 Discussion . 59

4 Sequenced Convex Subtraction 61
4.1 Introduction . 62

4.1.1 Previous Algorithms . 62
4.1.2 Hardware Considerations . 63
4.1.3 Presentation of the SCS Algorithm 64

4.2 Frame Buffer Operations . 65
4.2.1 Convex Intersection . 65
4.2.2 Convex Subtraction . 67
4.2.3 Z-Buffer Clipping . 68
4.2.4 Z-Buffer Merging . 69
4.2.5 Z-Buffer Shading and Lighting . 70

4.3 Subtraction Sequences . 71
4.3.1 View Independent Sequences . 71
4.3.2 View Dependent Sequences . 72

4.4 SCS Algorithm . 75
4.4.1 Complete Algorithm . 75
4.4.2 Example . 76
4.4.3 Discussion . 77

5 Permutation Embedding Sequences 79
5.1 Introduction . 80

5.1.1 Formulation . 81
5.1.2 Properties of L(n) . 81
5.1.3 Shortest Length PES Examples . 82

5.2 Related Mathematical Problems . 82
5.2.1 de Bruijn Sequences . 82
5.2.2 Ouroborean Rings . 83
5.2.3 Baltimore Hilton Inn Problem . 84
5.2.4 Ouroborean Ring PESs . 84

5.3 PES Generation . 85
5.3.1 PESs of Length n2 . 85
5.3.2 PESs of Length n2 − n+ 1 . 85

vi

5.3.3 Adleman Sequence of Length n2 − 2n+ 4 86
5.3.4 Galbiati Sequence of Length n2 − 2n+ 4 87
5.3.5 Savage Sequence of Length kn− 2k + 4 89

5.4 Shortest Length PES . 90
5.4.1 Brute Force Search . 90
5.4.2 Normalised No Repeat (NNR) Sequences 91
5.4.3 NNR Generation . 92
5.4.4 NNR Size . 95
5.4.5 NNR Partitions . 97
5.4.6 Partition Based NNR Sequences . 100
5.4.7 A Lower Bound of Ω(n2) for Shortest Length PESs 101
5.4.8 Known Shortest Length PESs . 102

5.5 Discussion . 104
5.5.1 Further Work . 105

6 Overlap Graph 107
6.1 Introduction . 108

6.1.1 Graph Theory Background . 108
6.1.2 Overlap Graph Implementation . 109

6.2 Overlap Properties . 110
6.2.1 Intersected Objects . 110
6.2.2 External Subtracted Objects . 111
6.2.3 Leaf Node Trimming . 112
6.2.4 Ring Graphs . 114
6.2.5 Shortest Length Ring Graph Sequences 116
6.2.6 Disconnected Graphs . 117
6.2.7 Cyclic Graphs . 118

6.3 Overlap Graph Subtraction Sequences . 118
6.3.1 Sequence Encoding Algorithm . 118
6.3.2 Example . 120
6.3.3 Discussion . 121

7 Experimental Results 123
7.1 Introduction . 124
7.2 OpenGL Buffer Copying . 125
7.3 CSG Rendering Performance . 128

7.3.1 Widget . 129
7.3.2 Grid . 130
7.3.3 Pipe . 131
7.3.4 Intersected Cylinders . 132
7.3.5 Swiss Cheese . 133
7.3.6 Tool . 134
7.3.7 Step Tool . 135

7.4 SCS Performance . 136
7.4.1 SCS Intersection . 137
7.4.2 Intersection versus Subtraction . 138
7.4.3 Overlap Graph Subtraction Sequences 140
7.4.4 Overlap Graph Rendering Time . 145
7.4.5 Convex versus Concave Shapes . 150

7.5 Discussion . 152

vii

8 Conclusion 153
8.1 Conclusion . 154
8.2 Further Work . 156
8.3 Citations and Subsequent Work . 157

A Software Documentation 159
A.1 CsgDemo . 160

A.1.1 Introduction . 160
A.1.2 System Requirements . 160
A.1.3 Mouse and Keyboard . 161
A.1.4 Menu . 161
A.1.5 Command Line Options . 163
A.1.6 File Format . 164

A.2 CSG Tools . 165
A.2.1 Three Axis Milling . 165
A.2.2 Swiss Cheese . 166
A.2.3 Cylinders . 167
A.2.4 Helix . 168

A.3 OpenGL Diagnostic Tools . 169
A.3.1 OpenGL Buffer Copying Benchmark 169
A.3.2 OpenGL Depth Buffer Copying Diagnostic 170

B Source Code 173
B.1 Goldfeather CSG Rendering . 174

B.1.1 Goldfeather CSG Rendering Algorithm 174
B.1.2 Parity Testing . 177
B.1.3 Depth Buffer Parity Clipping . 178
B.1.4 Z-Buffer Shade and Light . 179

B.2 Goldfeather CSG Rendering Variants . 180
B.2.1 Layered Goldfeather CSG Rendering Algorithm 180
B.2.2 Improved Layered Goldfeather CSG

Rendering Algorithm . 182
B.2.3 Depth Complexity Sampling . 187

B.3 SCS CSG Rendering . 188
B.3.1 Convex Intersection . 188
B.3.2 Convex Subtraction . 190
B.3.3 Z-Buffer Clip . 192

B.4 Subtraction Sequence Generation . 193
B.4.1 Adleman Subtraction Sequence . 193
B.4.2 Galbiati Subtraction Sequence . 194
B.4.3 Savage Subtraction Sequence . 195
B.4.4 Combined Subtraction Sequence Generation 196

B.5 Shortest Length Subtraction Sequences . 198
B.5.1 NNR Size . 198
B.5.2 NNR Partitions . 199
B.5.3 NNR Partition Size . 199
B.5.4 NNR Partition Sequence . 200

References 201

viii

List of Figures

1.1 Numerically Controlled Manufacturing of Cutting Tools 6

2.1 Primitives Supported by the BRL-CAD Modelling System [11]. 13
2.2 CSG Operators . 14
2.3 Example CSG Tree . 15
2.4 CSG Heatsink Model. 16
2.5 Set Equivalences 1–4 for CSG Tree Normalisation 20
2.6 Set Equivalences 5–8 for CSG Tree Normalisation 21
2.7 CSG Tree as Left and Right Heavy . 23
2.8 Algebraic CSG Tree Pruning . 24
2.9 Bounding Volume CSG Tree Pruning . 26
2.10 ∅-redundancy and Ω-redundancy for NOD [80] 28
2.11 NOD CSG Tree Localisation x ∩ T = x ∩ T ′ [94] 28
2.12 Active Zone i-nodes and u-nodes . 29
2.13 S-bounds for CSG Tree Pruning . 32

3.1 Intel CPU and Nvidia GPU Performance Trends 37
3.2 PC Architecture . 38
3.3 OpenGL Graphics Pipeline . 40
3.4 Depth Complexity from Different Viewing Directions 45
3.5 Layer Extraction of Sphere Front Faces . 46
3.6 Goldfeather CSG Rendering Algorithm . 52
3.7 Layered Goldfeather CSG rendering algorithm 54
3.8 The Trickle CSG Rendering Algorithm . 56
3.9 Depth Buffer Convex Subtraction . 57

4.1 Depth Buffer Convex Intersection . 65
4.2 Depth Buffer Convex Subtraction . 67
4.3 Z-Buffer Clipping Step of the SCS Algorithm 68
4.4 Z-Buffer Lighting and Shading . 70
4.5 Subtraction Sequence for Two Objects . 71
4.6 Depth Complexity of CSG Cheese Model with 50 Holes 73
4.7 Depth Complexity of Milling Model from Different Viewing Directions . . . 74
4.8 CSG Machine Tool Example . 76
4.9 Operation of the SCS CSG Rendering Algorithm 77

5.1 Ouroborean Ring Permutation Embedding Sequences 85

6.1 Graph Theory Notation . 109
6.2 Non-overlapping Intersection . 110
6.3 External Subtracted Object . 111
6.4 Leaf Nodes . 112
6.5 Acyclic Overlap Graph Example . 113
6.6 Ring Graph . 114
6.7 Ring Overlap Graph Example . 115
6.8 Disconnected Graphs . 117
6.9 Cyclic Graph . 118

ix

6.10 Overlap Graph Sequence Encoding Example 120

7.1 CSG Widget Model . 129
7.2 CSG Grid Model . 130
7.3 CSG Pipe Model . 131
7.4 CSG Intersected Cylinders Model . 132
7.5 CSG Swiss Cheese Model . 133
7.6 CSG Tool Model . 134
7.7 CSG Step Tool Model . 135
7.8 CSG Intersected Cylinders . 137
7.9 Cylinder Intersection Performance . 137
7.10 Swiss Cheese Model . 138
7.11 Swiss Cheese With and Without Intersection. 139
7.12 Procedural Swiss Cheese . 140
7.13 Swiss Cheese Subtraction Sequences . 141
7.14 Swiss Cheese Overlap Graph for n = 25 . 142
7.15 Swiss Cheese Overlap Graph for n = 50 . 143
7.16 Swiss Cheese Overlap Graph for n = 100 144
7.17 Simulated Three Axis Drilling . 145
7.18 Three Axis Rendering Time . 146
7.19 Three Axis Overlap Graph for n = 25 . 147
7.20 Three Axis Overlap Graph for n = 50 . 148
7.21 Three Axis Overlap Graph for n = 100 . 149
7.22 Convex and Concave Helical Volume Representation 150

A.1 CSG Models Included with CsgDemo . 160
A.2 CsgDemo Display Modes . 161
A.3 Sample CsgDemo Input File . 164
A.4 Three Axis Milling Examples . 165
A.5 Swiss Cheese Examples . 166
A.6 Cylinders Examples . 167
A.7 Helix Examples . 168
A.8 Output of glzcopy Diagnostic for Nvidia GeForce4 MX 170
A.9 glzcopy Results for Various Platforms . 171

x

List of Tables

2.1 Set Equivalences for Tree Normalisation [37] 18
2.2 DeMorgan’s Laws [59] . 22
2.3 Node Transformations into Positive Form [80] 22
2.4 Algebraic Tree Pruning . 24
2.5 Parent Node Bounding Volume . 25
2.6 I-zones, U -zones and Active Zones for CSG Tree Pruning 30

3.1 OpenGL Depth Testing Settings . 42
3.2 OpenGL Stencil Testing Settings . 43
3.3 OpenGL Face Culling Settings . 43
3.4 OpenGL Pixel Transfer . 44

5.1 de Bruijn Sequences . 83
5.2 Ouroborean Rings . 84
5.3 Example NNR Sequences . 94
5.4 NNR Size |Ω| . 96
5.5 Example NNR Partitions for n = 4 and n = 5 98
5.6 NNR Partitions |Γ| . 99
5.7 Known Shortest Length PESs in NNR Form 103
5.8 Known Shortest Length kPESs in NNR Form 104

6.1 Shortest Length Ring Sequences . 116
6.2 Shortest Known Ring Sequences . 116

7.1 OpenGL Colour Buffer Copying Performance 126
7.2 OpenGL Stencil Buffer Copying Performance 126
7.3 OpenGL Depth Buffer Copying Performance 127
7.4 CSG Widget Rendering Performance . 129
7.5 CSG Grid Rendering Performance . 130
7.6 CSG Pipe Rendering Performance . 131
7.7 CSG Intersected Cylinders Rendering Performance 132
7.8 CSG Swiss Cheese Rendering Performance 133
7.9 CSG Tool Rendering Performance . 134
7.10 CSG Step Tool Rendering Performance . 135
7.11 Swiss Cheese With and Without Intersection. 139
7.12 Swiss Cheese Sequence Length . 140
7.13 Three Axis Rendering Time (s/frame) . 145
7.14 Helix Overlap Matrix . 151
7.15 Convex and Concave CSG Rendering Performance 151

A.1 CsgDemo Mouse and Keyboard Bindings 161
A.2 CsgDemo Menu Items . 162
A.3 OpenGL Buffer Copying Performance . 169

xi

List of Algorithms

2.1 CSG Tree Normalisation . 19

3.1 Depth Complexity Sampling . 45
3.2 Layer Extraction . 47
3.3 Front to Back Layer Peeling . 48
3.4 Parity Clipping . 49
3.5 Goldfeather CSG Rendering . 51
3.6 Layered Goldfeather CSG Rendering . 53
3.7 Improved Layered Goldfeather CSG Rendering 55
3.8 Trickle CSG Rendering . 58

4.1 SCS Convex Intersection Rendering . 66
4.2 SCS Convex Subtraction Rendering . 67
4.3 SCS Z-Buffer Clipping . 69
4.4 SCS Z-Buffer Merging . 69
4.5 SCS Z-Buffer Shading and Lighting . 70
4.6 SCS CSG Rendering . 75

5.1 NNR Generation . 92
5.2 NNR Size |Ω| . 96
5.3 NNR Partition Sequence . 101

6.1 Intersected Objects Check . 110
6.2 External Subtracted Objects . 111
6.3 Leaf Node Trimming . 112
6.4 Ring Graph . 115
6.5 Overlap Graph Subtraction Sequence Encoding 119

xii

Glossary

− Set Difference notation

∩ Set Intersection notation

∪ Set Union notation

Acyclic Graph A graph containing no cycles

An The unordered set of n elements {a, b, · · · , n}
API Application Programming Interface

CNC Computer Numerically Controlled (machinery)

CPU Central Processing Unit

CSG Constructive Solid Geometry

CSG Tree Primitive shapes and CSG operators such as union, intersection
and difference arranged in a tree

Cyclic Graph A graph containing one or more cycles

Depth Buffer Per-pixel storage of depth in the frame buffer

Depth Test Testing of rasterised fragment depth with respect to depth buffer

Difference Also known as Subtraction

Disconnected Graph A graph consisting of separate connected graphs

Empty Intersection The intersection of volumes that do not overlap is empty.

Fragment Pixel sized geometry fragment produced by rasterisation, denoted
F

Frame Buffer Graphics hardware per-pixel memory including colour, stencil and
depth

Goldfeather CSG rendering algorithm [36, 37]

GPU Graphics Processing Unit

Intersection Volumetric boolean intersection of volumes, denoted ∩
k-permutation Sequence of k unique elements selected from n

kPES k-Permutation Embedding Sequence

k-tuple Sequence of k elements

Leaf Node A graph node connected to only one other

Leaf Trimming The process of removing leaf nodes from a graph

xiii

Lm A permutation embedding sequence of length m

L(n) The set of permutation embedding sequences of An

NNR Normalised No-Repeat sequence

NNR-size The number of unique NNR sequences of a particular length

Normalised PES A permutation embedding sequence in normalised form

OpenGL 2D and 3D real-time graphics API (Application Programming In-
terface)

Overlap Graph An undirected graph of spatial overlap between shapes

Permutation Sequence of n unique elements

PES Permutation Embedding Sequence

Primitive 3D shape used in CSG modelling

Rasterisation Conversion of geometry to fragments

Ring Graph A cyclic graph consisting of a ring

SCS CSG rendering algorithm [88, 89, 90]

Sequence Encoding The process of forming a permutation embedding sequence (PES)

Shortest Length PES A permutation embedding sequence of minimal length

Sn The the set of permutations of An

Stencil Buffer Integer per-pixel storage in the frame buffer.

Stencil Test Testing of a rasterised fragment with respect to stencil buffer.

Subtraction Volumetric boolean subtraction of volumes, denoted −
Trickle CSG rendering algorithm [28]

Union Volumetric boolean union of volumes, denoted ∪
Z-Buffer Also known as Depth Buffer

z-less In graphics hardware depth-testing, test that incoming fragments
are closer (less than) the depth stored in the z-buffer

zfar Far clip plane depth value

znear Near clip plane depth value

zF Fragment depth value

xiv

Summary

This work investigates computer graphics techniques for image-space hardware-based ren-
dering of objects composed of boolean combinations of three dimensional objects. In the
field of computer graphics this is called Constructive Solid Geometry (CSG) Rendering.

This work is motivated by the evolving functionality and performance of computer
graphics hardware. These platforms are optimised for interactive computer graphics ren-
dering rather than being intended as general purpose processors such as CPUs. The
dramatic increase in the computational capacity of graphics hardware creates the op-
portunity for graphics hardware image-space approaches to problems previously solved
using CPU object-space approaches. One attraction of the image-space approach is that
the stream processing architecture of graphics hardware facilitates parallelisation in a
transparent and scalable manner.

The functionality and design of graphics hardware supports a variety of approaches to
CSG rendering as reported in the literature. New techniques have also been developed in
the course of this work. The overall goal is to minimise the amount of time required to ren-
der each frame in an animation or interactive application involving boolean combinations
of shapes.

This work is also motivated by a specific industrial application — interactive verifi-
cation of five axis grinding machine tool programs. The movement of a workpiece and
abrasive wheel result in a complex cutting tool that is intended to achieve industrial
requirements such as shape, sharpness, strength, durability and aesthetics.

CSG rendering techniques provide a means of previewing the final shape of a tool
with computer graphics as an alternative to using the actual manufacturing process.
Visual simulation can provide functionality that would be difficult in the real world. The
movement of the abrasive wheel can be animated and interactively inspected without the
obstruction of liquid coolant that is needed to dissipate heat. The speed of an animation
can be adjusted or paused independent of mechanical limitations. Distances and angles
which can be difficult to measure, particularly during manufacturing, can be measured.
Simulation is also substantially cheaper than operation of the machinery.

The CSG rendering algorithm developed in this work takes the approach of optimising
performance for combinations of convex shapes. Concave shapes must be decomposed into
convex shapes for the purpose of rendering. This results in an algorithm better suited
to modern graphics hardware with improved interactivity. Our rationale is analogous to
polygon rasterisation — graphics hardware tends to be limited to convex planar polygons
or triangles, relying on CPU-based conversion from concave or non-planar polygons.

This new approach to CSG rendering also raises new questions, issues and challenges
related to CSG rendering. We introduce the concept of CSG subtraction sequences,
related to the mathematical concept of a Permutation Embedding Sequence (PES). We
show these sequences to be O(n2) in length.

Our work also introduces the concept of overlap graph based subtraction sequence
encoding. This approach results in O(n) to O(n2) sequences, depending on the spatial
arrangement of subtracted objects.

Our new algorithm called Sequenced Convex Subtraction (SCS) has been implemented
and verified on current computer systems. Our work has also examined the performance of
SCS relative to previous algorithms, as well of performance aspects of the SCS algorithm
itself.

1

Acknowledgements

This work was supported in part by the Co-operative Research Center for Intelligent
Manufacturing Systems & Technologies (CRC for IMST). This research arose from the
C-5 collaborative research project involving ANCA Pty. Ltd., RMIT University and the
CRC for IMST.

Early work towards the SCS CSG rendering algorithm was in the commercial setting
of ANCA Pty Ltd, an Australian manufacturer of five axis tool and cutter grinding
machines. I am grateful to Glenn Brien and Mike Simakov for the opportunity to be
part of the Cimulator3D project team, and ANCA for pioneering the NC verification
technology niche for five axis machining. I would also like to thank my co-workers at
ANCA for their friendship and professionalism.

Collaboration with Robert Erra of ESIEA Paris, and Nik Lygeros of Université Claude
Bernard Lyon 1 resulted from our mutual interest in permutation embedding sequences.
I was pleased to be able to apply this to CSG rendering having grappled with the math-
ematical concepts and formulation.

This work would not have been possible without the advice, encouragement, support
and input of my academic supervisors at RMIT University: Dr Sabu John of the School
of Aerospace, Mechanical and Manufacturing Engineering; Geoff Leach of the School of
Computer Science and Information Technology.

I would like to thank my examiners for sparing the time and energy to review this
work so closely and the thoughtfulness of their valuable feedback.

Over the course of my postgraduate studies my wife Fiona Smith has been a supporter,
nutrition and health consultant and coach, proof-reader, travel and life companion, moti-
vator, and always a reference point beyond the commercial and academic technical realm.
Spanning three countries, many years, and the birth of our daughter Talia the course of my
studies and career has been more interesting and wonderful than I could have imagined.

Many freely available software packages were used in the course of this research. These
include D.E. Knuth’s LATEX (and associated tools) for typesetting, the GNU GCC C/C++
compiler and command line tools by the Free Software Foundation, Shawn Yarbrough’s
Purenum arbitrary precision integer library, Graphviz graph drawing software by AT&T
Research, the GAlib genetic algorithm library by Massachusetts Institute of Technology,
the GIMP image processing application, the XEmacs and Kate text editors, the POV-
Ray raytracing rendering application, the Linux operating system, the KDE desktop
environment, and many others.

I have found Wikipedia to be a remarkably complete and upto date secondary source
of information, competing with google as my Firefox start page.

Austin, Texas, USA
Nigel Timothy Stewart May 21st, 2008

3

Chapter 1

Introduction

What we call ’Progress’ is the exchange of one nuisance for another nuisance.

— Havelock Ellis

5

1.1 Motivation

Five axis Computer Numerically Controlled (CNC) grinding machines are used for the

manufacture of drills, mills and other cutting tools, as illustrated in Figure 1.1. An

abrasive grinding wheel with five degrees of freedom is moved through space resulting

in material being removed from a solid workpiece. The final shape is determined by the

volumes swept by the wheel over time. The motivation for this project is the simulation

of the tool grinding manufacturing process to improve tool design and development.

Computer based simulation of tool manufacturing involves the use of algorithms for

volumetric subtraction. Image-based approaches are considered appropriate for visual-

isation and design purposes due to their relative interactivity, flexibility and potential

performance. Previous image-space algorithms [28, 37, 97] for Constructive Solid Ge-

ometry (CSG) were investigated, but found to be ill-suited to five-axis CNC tool path

verification on graphics hardware available at that time1.

(a) Tool grinding machine (b) Manufacturing process

(c) Machine tools (d) Computer generated image of a Step Tool

Figure 1.1: Numerically Controlled Manufacturing of Cutting Tools

1SGI Indy and PC 3Demon graphics hardware in 1996.

6

Since the introduction of the first commodity graphics accelerators there has been

dramatic improvement in price, performance and functionality. This work is motivated

in part by the prospect of utilising 3D hardware for image-space CSG rendering — a

generalisation of the visible surface problem. We believe that the feasibility of real-time

interactive CSG rendering depends on further improvements to performance, functionality

and programmability at the hardware level, as well as improved algorithms. The focus of

this work is CSG rendering algorithms suited to the OpenGL 1 fixed pipeline architecture

and the corresponding generation of graphics hardware.

This research originated in the context of an industry-based research program involving

ANCA Pty Ltd, an Australian tool grinding machine company. ANCA’s five-axis tool

grinding simulation package Cimulator3D [69] was initially released in late 1997 and was

the first of its kind in the tool grinding industry. The work in this thesis using an image-

space approach represents a divergence from the implementation of Cimulator3D which

uses an object-space approach. Both approaches aim to solve the same technical challenge

— fast and accurate subtraction of complicated swept volumes.

1.2 Contribution

In this work an alternative approach to image-space CSG rendering is formulated, based

on sequenced subtraction of convex objects. A new algorithm is described for CSG render-

ing that we call Sequenced Convex Subtraction (SCS). The algorithm minimises graphics

hardware buffer copying by focusing on subtraction of only convex objects. Subtraction

is repeated for individual objects until the complete subtracted result is formed in the

depth buffer. Other approaches to CSG rendering have relied on either sorting subtracted

geometry or merging simpler subtracted results.

This work also examines the interesting and challenging problem of forming shortest

length subtraction sequences. Several practical2 subtraction sequence encoding methods

are used in our implementation of the SCS CSG rendering algorithm. Shortest length

subtraction sequences can also be utilised in some cases, but can not yet be determined

in general.

The main contribution of this work is the Sequenced Convex Subtraction algorithm

for CSG Rendering. The most advantageous aspect of this algorithm is the efficient

subtraction of large numbers of relatively dispersed convex objects.

2The sequence encoding methods are practical in the sense that they are quickly and easily computed,
but result in sequences that may be longer than absolutely necessary.

7

1.3 Publications

Peer-reviewed publications relating to this work:

• N. Stewart, G. Leach, S. John, An Improved Z-Buffer CSG Rendering Algorithm,

1998 Eurographics/Siggraph Workshop on Graphics Hardware, pp. 25-30

• N. Stewart, G. Leach, S. John, A CSG Rendering Algorithm for Convex Objects, The

8th International Conference in Central Europe on Computer Graphics, Visualisation

and Interactive Digital Media 2000 — WSCG 2000, Volume II, pp. 369-372

• R. Erra, N. Lygeros, N. Stewart, On Minimal Strings Containing the Elements of Sn

by Decimation, Discrete Mathematics & Theoretical Computer Science, Proceedings

vol. AA (2001), pp. 165-176

• N. Stewart, G. Leach, S. John, Linear-time CSG Rendering of Intersected Con-

vex Objects, The 10th International Conference in Central Europe on Computer

Graphics, Visualization and Computer Vision 2002 — WSCG 2002, Volume II, pp.

437-444

• N. Stewart, G. Leach, S. John, Improved CSG Rendering using Overlap Graph

Subtraction Sequences, Graphite 2003 — International Conference on Computer

Graphics and Interactive Techniques in Australasia and South East Asia, pp. 47-53

1.4 Methodology

The techniques developed in this work have followed an iterative process of gathering

requirements, researching and implementing known approaches, conception and imple-

mentation of performance improvements, and publication of the results. Over time, a

significant codebase of supporting functionality was designed, developed and adapted to

new ideas and requirements.

The approach, publications and implementation discussed here diverged from the com-

mercial context early in the project, although it was structured to be suitable for reinte-

gration and deployment. In this manner ANCA’s commercial codebase and intellectual

property were quarantined from academic disclosure. This also provided flexibility in

developing and deploying the algorithms on platforms and hardware outside of ANCA

Pty Ltd.

8

Our work also involved testing performance and accuracy of the algorithm in a variety

of situations. This information was in turn used as a basis for further development and

improvement of the algorithm. The specific requirements for CNC verification of tool

grinding were held as the guiding priority, although our efforts included abstracting and

generalising the results as much as possible.

Core portions of the final code base appear in Appendix B, and also online [8].

1.5 Thesis Overview

Various aspects of the SCS CSG rendering algorithm have been divided into the following

six chapters of this thesis. In this work algorithms are formulated in terms of OpenGL

functionality and terminology.

Chapter 2 reviews the CSG approach to geometric modelling including tree traversal,

transformation and pruning algorithms.

Chapter 3 introduces the pixel processing capabilities of the OpenGL Application

Programming Interface (API) relevant to this work including z-buffer and stencil test-

ing. Previous CSG rendering techniques are surveyed, including underlying concepts and

previous approaches such as the Trickle [28] and Goldfeather [37, 97] algorithms.

Chapter 4 presents our new Sequenced Convex Subtraction (SCS) CSG rendering al-

gorithm. The algorithm is based on the intersection and subtraction of convex objects.

Subtracted objects are encoded into a subtraction sequence that ensures the correctly

rendered result. Simple practical subtraction sequence encoding algorithms are described.

Chapter 5 abstractly formulates a subtraction sequence as a Permutation Embedding

Sequence (PES). Related problems in mathematics and cryptography are discussed. A

list of known shortest length PESs is presented. Techniques for efficiently searching for

shortest length PESs are also described. A proof of O(n2) PES length is given.

Chapter 6 examines subtraction sequences making use of overlap graph information.

The length of subtraction sequences varies between O(n) and O(n2) depending on the

spatial arrangement of objects and the viewing direction. The object-space information

is suitable for per-frame encoding of efficient (but not necessarily optimal) subtraction

sequences.

9

Chapter 7 presents experimental results for a variety of CSG models using our imple-

mentation of the SCS CSG rendering algorithm, as well as Goldfeather [36, 37], Layered

Goldfeather [87], Improved Layered Goldfeather [29] algorithms. The performance and

capabilities of these algorithms are characterised, demonstrating the advantages and dis-

advantages of the SCS approach in particular circumstances.

Concluding remarks follow in Chapter 8, including discussion of some areas for poten-

tial further work.

Additional information is included as appendices — software user documentation in

Appendix A and C++ source code for key algorithms in Appendix B.

10

Chapter 2

Constructive Solid Geometry (CSG)

Truth is ever to be found in simplicity, and not in the multiplicity and confusion

of things.

— Isaac Newton

11

2.1 Introduction

Constructive Solid Geometry [74] (CSG) is a geometric modelling approach that forms

complicated shapes from simpler geometric primitives. In contrast to surface modelling

approaches both the surface and volume are represented in CSG models.

This chapter introduces the formulation of CSG models in terms of primitives, opera-

tors and trees. The traversal and processing of CSG models is described. In the context

of hardware-based CSG rendering, tree transformation and simplification are preprocess-

ing steps for CSG rendering algorithms such as our new algorithm Sequenced Convex

Subtraction (SCS).

This chapter provides a background for the the chapters that follow. Chapter 3 surveys

previously reported hardware-based CSG rendering techniques. The SCS algorithm is

introduced in Chapter 4.

2.1.1 Primitives

The geometric shapes used in CSG modelling are referred to as primitives. Primitives

enclose a volume, dividing space into regions inside or outside. A primitive’s surface is at

the boundary of the inside and outside regions of volume.

The primitives available in a CSG modelling system typically include various shapes

including spheres, ellipsoids, boxes, tetrahedrons, cylinders and cones. For example, the

primitives supported by the BRL-CAD modelling system are illustrated in Figure 2.1.

Polygonised shapes are supported by some systems — providing they divide space into

inside and outside regions unambiguously. Volumes meshed or tessellated into primitives

such as tetrahedrons and boxes are suitable for CSG modelling but can result in very

large CSG trees for curved surfaces.

Primitives are either bounded or unbounded — occupying a finite or infinite volume.

Unbounded primitives such as planes and infinite cylinders are supported in some CSG

modelling systems.

Computer graphics is often concerned primarily with surfaces of primitives since they

typically form the rendered image. In CSG modelling and rendering volumes are also

of central importance. CSG operators combine primitives into more complicated shapes

based on primitive volumes, as described in the following section.

12

Figure 2.1: Primitives Supported by the BRL-CAD Modelling System [11].

13

2.1.2 Operators

Boolean algebra was developed in the 1830s by British mathematician and philosopher

George Boole. As a graduate student Claude Elwood Shannon applied boolean algebra

to digital circuit design[84] — and was awarded the 1940 Alfred Noble prize.

CSG primitives are volumetrically combined into more complicated shapes by the

operators of boolean algebra. The operators are union, intersection and difference. This

work uses the set logic notation of ∪, ∩ and − for union, intersection and difference.

Given primitives a and b:

• The union, denoted a ∪ b is the volume inside of a or inside of b and the surface of

both a and b.

• The intersection, denoted a∩ b is the volume inside of a and inside of b, the surface

of a inside of b and the surface of b inside of a.

• The difference, denoted a− b is the volume inside of a and outside of b, the surface

of a outside of b and the surface of b inside of a.

Boolean union, intersection and difference are illustrated in Figure 2.2 (a), (b) and (c)

respectively. Additional CSG operators are also sometimes used:

• The clip is the difference a− b without the surface of b.

• The merge is the union a ∪ b without the surface of a inside b or the surface of b

inside a.

• The negation is the volume not inside a and the surface of a.

Clip and merge are illustrated in Figure 2.2 (d) and (e) respectively.

(a)
Union
a ∪ b

(b)
Intersection

a ∩ b

(c)
Difference
a− b

(d)
Clip

(e)
Merge

Figure 2.2: CSG Operators

14

Figure 2.3: Example CSG Tree

2.1.3 Tree

Hierarchical data modelling refers to the organisation of information in a tree structure.

Object-oriented modelling extends the tree structure to include functionality in addition

to information. Hierarchical structuring of geometric models is known as hierarchical

geometric modelling.

A CSG tree is a hierarchical geometric model consisting of primitive leaf nodes and

boolean operator parent nodes. Children of parent nodes are either primitive or operator

nodes. The root of the tree (the node with no parents) corresponds to the object modelled

by the overall tree. Figure 2.3 illustrates a CSG model composed of a sphere, box and

two cylinders: (((a∩ b)− c)− d). In this example a, b, c and d are primitive (leaf) nodes

and the other nodes are parents.

Hierarchical geometric models generally associate a transformation matrix with each

tree node. This allows for positioning, orienting and scaling of primitives and sub-trees.

By convention the transformation is relative to the parent resulting in a local coordinate

system for each CSG tree node. Local coordinate systems are often desirable features for

interactive editing and animation purposes.

CSG trees are typically formulated as binary trees — each parent node having two

children.

15

Figure 2.4: CSG Heatsink Model.
CSG model by Jonathon Haas.

Figure 2.4 is a CSG heatsink model using only box and cylinder primitives.

2.1.4 Tree Traversal

CSG algorithms generally involve CSG tree traversal — visiting each parent and leaf node

of the tree. Traversal begins at the tree root and proceeds towards the leaves recursively:

• Preorder traversal visits the node before visiting the left and right trees.

• Inorder traversal visits the left tree, then the node, then the right tree.

• Postorder traversal visits the left and right trees before visiting the node.

An inorder traversal can be utilised to output the CSG expression for a given tree,

from left to right. For the CSG tree in Figure 2.3 the expression is: (((a ∩ b)− c)− d)

2.1.5 Algorithms

The focus of the work in this thesis is the specific problem of hardware-based rendering of

CSG models. The CSG approach is also suitable for a variety of other solid and surface

modelling computations. Some of the more common computations are mentioned in this

section.

The point classification problem is concerned with classifying points as either inside or

outside of the CSG model. Beginning at the tree root a recursive postorder tree traversal

first classifies the point with respect to the children. The result at each parent node is

determined by applying the boolean operator to the child classifications. The volume of a

union node is the points inside any of the children. The volume of an intersection node is

the points inside all of the children, and so on. In this manner point classification can be

16

implemented for quite complicated shapes based on simple point classification methods

for primitives.

Line classification divides a line into segments inside and outside of the volume, and

points on the surface. It can be implemented in a similar manner to point classification

by classifying lines with respect to simple primitives and applying the boolean logic of

the parent node operators in a recursive postorder traversal.

Ray casting determines the first object surface intersection point in a given direction

from a particular point. This query is more specific than general line classification, but

can be implemented in terms of line classification.

Ray tracing is a general purpose rendering algorithm that uses ray casting extensively.

For each pixel a ray is cast into the world to determine the closest point along the line on

the surface of an object, if any. For detecting shadows, rays are cast from object surfaces

towards light sources. Additional ray casting is also used for rendering reflection and

refraction by casting rays from object surfaces further into the world.

Visibility between two points can also be implemented using ray casting.

The shadow volume is the infinite region of shadow cast by an object with respect

to a light source. Shadow testing can be implemented by casting rays towards the light

source. Another approach is shadow volume point classification [26, 31].

Collision detection is concerned with detecting the contact or overlap of multiple

objects. The intersection of CSG models can be expressed and evaluated in terms of an

intersection node combining a pair of CSG trees.

Boundary evaluation extracts the surface of a solid CSG model for the purpose of

surface area computation, other analysis or rendering. A tessellated polygonal boundary

representation is commonly used for interactive display purposes.

CSG solid models can be converted [58] to spatial data structures such as voxels,

octrees, BSP trees and so on. Spatial data structures are efficient for spatial queries such

as point classification and ray casting.

2.2 Tree Transformation

The arrangement of CSG trees can be changed while preserving the same volume and sur-

face. Systematic tree transformation is often a necessary preparatory step for subsequent

processing such as rendering. This section details tree transformation algorithms useful

for hardware-based CSG rendering: sum-of-products, positive form and left/right heavy.

17

2.2.1 Sum-of-Products Form

CSG tree normalisation converts a general CSG tree to a form suitable for certain CSG

algorithms. Following Hioyuki et al. [82], a normalisation method for converting a CSG

tree to sum-of-products form was proposed by Goldfeather et al. [36, 37].

Normalisation flattens an arbitrarily arranged tree into a sum-of-products form that

is amenable to hardware-oriented CSG rendering algorithms. Recursive traversal is gen-

erally utilised by tree related algorithms requiring memory proportional to the deepest

level of recursion. Tree flattening facilitates non-recursive traversal using a fixed amount

of graphics hardware storage. However, CSG tree normalisation can result in a larger

overall tree [37]. Normalisation is used by CSG rendering algorithms including Trickle,

Goldfeather and our new Sequenced Convex Subtraction (SCS) algorithm.

A collection of primitives related by boolean union is called a sum, whilst a collection

related by boolean intersection or difference is called a product. CSG rendering algorithms

tend to process products in an inner loop and the sum-of-products in an outer loop. A CSG

tree in sum-of-products form is said to be normalised and has the following characteristics:

• The union nodes, if any, are at the top of the tree.

• No parent node is to the right of an intersection or difference node.

• No union node is to the left of an intersection or difference node.

E1 : x− (y ∪ z) = (x− y)− z
E2 : x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z)
E3 : x− (y ∩ z) = (x− y) ∪ (x− z)
E4 : x ∩ (y ∪ z) = (x ∩ y) ∩ z
E5 : x− (y − z) = (x− y) ∪ (x ∩ z)
E6 : x ∩ (y − z) = (x ∩ y)− z
E7 : (x ∪ y)− z = (x− z) ∪ (y − z)
E8 : (x ∪ y) ∩ z = (x ∩ z) ∪ (y ∩ z)

Table 2.1: Set Equivalences for Tree Normalisation [37]

18

Algorithm 2.1 CSG Tree Normalisation

Require: N is the current tree node
Require: Nleft and Nright are the left and right subtrees of N
Require: E1, E2, · · · , E8 are the set equivalences for normalisation

if N is a parent node then
loop

[Using E1–E6 before E7 or E8.]

while N = Eileft do
N ← Eiright

normalise(Nleft)

if N = ∪ then
break

if Nright 6= parent and Nleft 6= ∪ then
break

normalise(Nright)

In the tree normalisation algorithm given in Algorithm 2.1 [37] the equivalence substi-

tutions in Table 2.1 are applied recursively from the top to the bottom of the tree. The

substitutions handle all possible configurations at a node of an unnormalised tree. The

process may increase the overall size of the tree due to substitutions E2, E3, E5, E7 or

E8. The set equivalences in Table 2.1 are illustrated in Figure 2.5 and Figure 2.6.

Although there are other ways to normalise a CSG tree, this approach has the following

characteristics [37]:

• It terminates given any CSG tree as input.

• The tree is normalised upon completion.

• Each restructuring step requires only local information.

19

E1 :

x− (y ∪ z)

x y ∪ z�� @@

=
(x− y)− z

x− y z�� @@

E2 :

x ∩ (y ∪ z)

x y ∪ z�� @@

=
(x ∩ y) ∪ (x ∩ z)

x ∩ y x ∩ z�� @@

E3 :

x− (y ∩ z)

x y ∩ z�� @@

=
(x− y) ∪ (x− z)

x− y x− z�� @@

E4 :

x ∩ (y ∩ z)

x y ∩ z�� @@

=
(x ∩ y) ∩ z

x ∩ y z�� @@

Figure 2.5: Set Equivalences 1–4 for CSG Tree Normalisation

20

E5 :

x− (y − z)

x y − z�� @@

=
(x− y) ∪ (x ∩ z)

x− y x ∩ z�� @@

E6 :

x ∩ (y − z)

x y − z�� @@

=
(x ∩ y)− z

x ∩ y z�� @@

E7 :

(x ∪ y)− z

x ∪ y z
�� @@

=

(x− z) ∪ (y − z)

x− z y − z
�� @@

E8 :

(x ∪ y) ∩ z

x ∪ y z�� @@

=
(x ∩ z) ∪ (y ∩ z)

x ∩ z y ∩ z�� @@

Figure 2.6: Set Equivalences 5–8 for CSG Tree Normalisation

21

2.2.2 Positive Form

A CSG tree can be represented in positive form using ∪ and ∩ operators and negation of

leaf nodes. The conversion of CSG trees to positive form discussed in this section follows

Rossignac and Voelcker [80].

The relationships in Table 2.2 are known as De Morgan’s laws or De Morgan’s theorem.

Named after the 19th century logician Augustus De Morgan, they originate from classical

propositional logic. Casually phrased they are (1) When neither x or y are true, both x

and y are false, and (2) When x and y together are false, either x is false or y is false.

(1) x ∪ y = x ∩ y
(2) x ∩ y = x ∪ y

Table 2.2: DeMorgan’s Laws [59]

The transformations listed in Table 2.3 are based on De Morgan’s laws. The left

and right side of each transformation and can be shown to be logically equivalent. The

transformations are applied in a preorder traversal of the CSG tree — visiting the parent

node, applying the relevant transformation (or none at all), then visiting the left and right

children recursively.

This positive reformulation of CSG trees has been utilised for a variety of CSG algo-

rithms [80, 77, 23, 78, 43, 46, 76] including rendering. Advantages of the positive formu-

lation with respect to sum-of-products include notational clarity, structural similarity to

general CSG tree, and avoiding sum-of-products potential exponential tree growth [77].

Positive reformulation is a critical initial step of the BList [78] and CST [46] CSG rendering

algorithms.

Positive form also facilitates the right heavy tree formulation described in the next

section.

x− y → x ∩ y
x ∪ y → x ∩ y
x ∩ y → x ∪ y

x → x

Table 2.3: Node Transformations into Positive Form [80]

22

2.2.3 Left/Right Heavy

A positive form CSG tree can be reordered at each ∪ or ∩ parent node due to both

∪ and ∩ operators being commutative. That is, the order of the children of ∪ and ∩
does not affect the surface or solid represented by the CSG tree: (a ∪ b) = (b ∪ a) and

(a ∩ b) = (b ∩ a), while (a− b) 6= (b− a) since the − operator is not commutative.

A CSG tree is said to be left heavy if the furthest descendant is via the left child of

each parent node. Any positive form tree can be made left heavy by swapping children

of parent nodes as necessary. Similarly, a positive form tree can be made right heavy by

swapping children of each parent node so that the furthest descendant is via the right

child of each parent node.

The height of a node in a CSG tree is the maximum of the heights of the child nodes,

plus one. Leaf nodes have a height of one. In a postorder traversal of the CSG tree the

height of each child of each parent node is determined recursively, then the children are

swapped to make the subtree left or right heavy, as necessary. The traversal time is O(n)

with respect to the number of nodes in the CSG tree, with each node being visited once.

The CSG tree ((a∩ b)− c)− d (from Figure 2.3) is illustrated in Figure 2.7 in (b) left

heavy positive form, and (c) right heavy positive form.

−

−

∩

d

c

a b

∩

∩

∩

d̄

c̄

a b

∩

∩

∩

d̄

c̄

a b

(a) (b) (c)

CSG Tree Left Heavy Right Heavy

((a ∩ b)− c)− d ((a ∩ b) ∩ c̄) ∩ d̄ d̄ ∩ (c̄ ∩ (a ∩ b))

Figure 2.7: CSG Tree as Left and Right Heavy

23

2.3 Tree Simplification

2.3.1 Algebraic Tree Pruning

CSG trees can often be simplified by pruning subtrees that do not contribute to the overall

geometric shape. This section describes an algebraic approach to CSG tree pruning, the

next section considers geometric information for the purpose of tree pruning

Boolean algebra can be utilised to prune CSG trees independently of the geometric

model. Table 2.4 lists transformations corresponding to possible parent node configura-

tions with x representing any geometry or CSG tree. In a postorder traversal of the tree

nodes matching the left side of the transformation are substituted with the right side.

x ∩ x → x
x ∩ x → ∅
x− x → ∅
x ∪ x → x

x ∩ ∅ → ∅
x− ∅ → x
x ∪ ∅ → x

Table 2.4: Algebraic Tree Pruning

In practice, thoroughly applying algebraic node pruning involves evaluating the equiv-

alence of two CSG subtrees that may be structurally different. Figure 2.8 illustrates

the simplification of a CSG tree by recognising the commutativity of the ∩ operator:

(a ∩ b) = (b ∩ a). The tree could be pruned further in the case that a is known to be

geometrically the same as b: x ∩ x→ x

∪

∩ ∩

a b b a

∩

a b

(a) Tree ((a ∩ b) ∪ (b ∩ a)) in the form (b) Equivalent pruned CSG tree with the
x ∪ x from Table 2.4 substitution x ∪ x→ x applied.

Figure 2.8: Algebraic CSG Tree Pruning

24

2.3.2 Bounding Volume Tree Pruning

Bounding volumes and bounding volume hierarchies are important techniques for render-

ing [24, 81, 96] and other problems such as collision detection. They can also be applied

to CSG trees for the purpose of pruning.

Bounding volumes completely enclose geometry along with additional space called the

“void area” [81]. Geometric queries such as point classification and intersection can be

implemented more efficiently for geometrically simple bounding volumes than the com-

plex geometry they enclose. Well known bounding volumes include Axis-Aligned Bound-

ing Boxes (AABBs) [81], Oriented Bounding Boxes (OBBs), spheres [24], cylinders and

convex hulls [91]. In practice the accuracy, performance and ease of implementation of

bounding volume schemes vary. While bounding spheres are simple to implement they can

result in large void areas for long and thin geometry. The convex hull of a complicated

tessellated geometry generally minimises void area while being relatively complex and

computationally intensive. The suitability of a bounding volume scheme can depend on

the specific application. In practice AABBs and spheres are commonly used. The use of

AABBs for CSG tree pruning has been reported previously [20, 37, 97]. For the purpose

of this discussion no particular bounding volume scheme is assumed.

For CSG tree pruning a bounding volume is determined for each leaf and parent node

in the tree, in a postorder traversal. Leaf node bounding volumes are derived directly from

the geometry. Parent node bounding volumes are derived from the children according to

the rules in Table 2.5.

Bound(x ∩ y) = Bound(Bound(x) ∩ Bound(y))
Bound(x− y) = Bound(Bound(x)− Bound(y))
Bound(x ∪ y) = Bound(Bound(x) ∪ Bound(y))

Table 2.5: Parent Node Bounding Volume

CSG tree pruning is incorporated into the postorder traversal of the tree. Leaf nodes

with an empty bounding volume are pruned. Intersection and subtraction parent nodes

are pruned if (and only if) the intersection of the bounding volumes of the children is

empty.

Parent node bounding volumes (as given in Table 2.5) can result in additional void

area. Bounding volume schemes generally can not represent the intersection, union and

subtraction of the volumes without introducing additional void area. For example the

25

(a) Bounding spheres of a and b (b) Intersection bounding sphere

(a) Union bounding sphere (b) Subtraction bounding sphere

Figure 2.9: Bounding Volume CSG Tree Pruning

intersection of two spheres is not generally spherical and would be bounded by a sphere

that encloses the intersection. Nodes that could be pruned might not be pruned due to

having a non-empty bounding volume that corresponds to void area introduced by the

bounding volume scheme itself.

The use of sphere bounding volumes is illustrated in Figure 2.9 for (a) two geometries

and their bounding spheres and the bounding spheres of (b) intersection, (c) union and

(d) subtraction. Even though the geometries a and b do not overlap, the intersection and

subtraction bounding volumes are non-empty due to the overlap of the bounding volume

void areas. Also the union bounding volume is large in comparison to the volumes of a

and b.

Other issues also arise with bounding volumes. The cumulative void area of parent

nodes can is sensitive to the particular structure of the tree. In fact, void area can

generally be reduced by converting the tree to sum-of-products form [62]. Unbounded

geometry such as planes can not be represented by bounded volume representations such

as boxes and spheres. Despite these issues and limitations bounding volumes have been

applied to CSG tree pruning successfully [37, 97].

26

Bounding volume CSG tree pruning is analogous in principle to view frustum culling

in the conventional graphics pipeline — eliminating geometry that will not form part of

the final image as early as possible in the pipeline. The performance advantage stems

from simple processing of bounding volumes being faster than (repeated) rasterisation of

(possibly complicated) geometry.

As formulated here bounding volume pruning is a generic pre-processing step for any

CSG rendering algorithm, including our new SCS algorithm. The overlap-graph subtrac-

tion sequences described in Chapter 6 incorporate bounding volume pruning without the

disadvantage of cumulative volume approximation at each parent node.

2.3.3 Null Object Detection

The Null-Object Detection (NOD) and Same-Object Detection (SOD) problems are of

interest in the fields of geometric modelling, CAD/CAM, robotics, computer graphics and

computer vision. In the CSG context NOD determines if a tree or node is equivalent to an

empty (or null) volume. SOD determines if two trees or nodes correspond to equivalent

volumes. NOD and SOD take both the leaf node geometry and overall structure of the

tree into consideration.

NOD is important in applications such as detecting collision between a robot arm and

the environment — the intersection of the robot arm and the environment should always

be empty. SOD arises in NC program verification — checking whether a manufactured

object matches the original specification. The NOD and SOD problems are considered

equivalent since SOD can be defined in terms NOD as follows: SOD(a, b) iff both NOD(a−
b) and NOD(b− a).

For algebraic tree pruning (Section 2.3.1) SOD provides the means of evaluating the

equivalence of two CSG trees. The subsequent section (Section 2.3.2) mentioned that

one of the problems with bounding volume tree pruning is that empty trees might not

always be detected due to the void area. Pruning CSG trees with NOD is potentially

more aggressive than the bounding volume approach.

The approach to NOD reported by Tilove [94] is described here briefly.

A leaf or parent node x can be redundant in the context of a particular CSG tree T

in two ways. Iff substituting x with the empty set ∅ in T results in the same volume as

T then x is ∅-redundant. Iff substituting x with the universal set1 Ω in T results in the

same volume as T then x is Ω-redundant. Some examples of ∅ and Ω redundancy are

1The universal set Ω is either 2D or 3D Euclidean space: E2 or E3

27

(a) (b) (c) (d)
a ∪ b = b a ∩ b = ∅ a ∩ b = a (a ∩ b) ∪ c = c

a is ∅-redundant a is ∅-redundant b is Ω-redundant b is ∅-redundant
b is ∅-redundant b is Ω-redundant

Figure 2.10: ∅-redundancy and Ω-redundancy for NOD [80]

given in Figure 2.10.

In a CSG representation of the empty set all positive leaf nodes are ∅-redundant and

all negative leaf nodes are Ω-redundant. Positive nodes are those whose path from the

root branches to the right of a subtraction an even number of times. All other nodes are

negative.

It is only necessary to check that all positive leaf nodes are ∅-redundant since negative

nodes do not contribute volume to T . Leaf node ∅-redundancy testing utilises a localised

CSG tree T ′ in the region of x by pruning leaf nodes not overlapping x. Geometric and

bounding volume comparison is used for pairwise leaf node overlap testing. Usually T ′ is

a much smaller tree than T due to x usually overlapping only a few other leaf nodes. The

localised tree T ′ is equivalent to T within the region of x — as illustrated in Figure 2.11.

If x ∩ T ′ = ∅ then x is ∅-redundant and pruned from T . Otherwise, T ′ is not empty

and therefore T is not empty and the NOD algorithm terminates. The evaluation of x∩T ′

involves either classifying the geometry of x against T ′ or evaluating the boundary.

The approach has the advantage of avoiding full boundary evaluation by exploiting

the local simplicity of mechanical parts with few overlapping pairs of geometry [94].

(a) (b)
x ∩ T x ∩ T ′

Figure 2.11: NOD CSG Tree Localisation x ∩ T = x ∩ T ′ [94]

28

2.3.4 Active Zones

Following the Null-Object Detection (NOD) algorithm by Tilove [94] the Active Zone

approach was formulated by Rossignac et al. [80]. Active zones provide efficiency im-

provements for boundary evaluation, redundancy elimination, interference detection and

rendering of CSG trees. This section introduces the active zone concept and the applica-

tion of it to tree pruning.

The active zone Z of a CSG tree node x is the volume in which changes to the node

affect the volume and surface of the overall model. The active zone of a node depends on

the geometry and structure of the CSG tree but is independent of the node itself. The

redundancy of a node x is determined by checking the relationship with the active zone

Zx in the context of a particular CSG tree:

• x is ∅-redundant iff Zx ∩ x = ∅.

• x is Ω-redundant iff Zx − x = ∅.

• x is both ∅-redundant and Ω-redundant iff Zx = ∅.

Active zones are CSG trees defined in terms of branching nodes in the overall tree. In

a positive-form tree (discussed previously in Section 2.2.2) branching nodes of x are the

children of the path from x to the root, apart from those in the path itself.

• Branching nodes that are children of ∩ operators are called i-nodes

• Branching nodes that are children of ∪ operators are called u-nodes

An illustration of i-node and u-nodes is given in Figure 2.12 for a simple CSG tree.

∩

∪ c

a b

Thick lines indicate the path from a to
the root.
b and c are the branching nodes of a.
b is a u-node of a.
c is an i-node of a.

Figure 2.12: Active Zone i-nodes and u-nodes

29

The i-nodes and u-nodes form the I-zone, U -zone and active zone Z as follows:

I = i1 ∩ i2 ∩ · · · ∩ im ∩ Ω (2.1)

U = u1 ∪ u2 ∪ · · · ∪ un ∪ ∅ (2.2)

Z = I − U (2.3)

Note that Z is unbounded for even a tree of bounded geometry in the case that there

are no i-nodes. If any i-node is empty then I and Z are also empty and x is therefore

redundant. Table 2.6 applies active zone tree pruning to the CSG trees from Figure 2.10.

The active zone approach to tree pruning has the performance advantages that Zx∩x
and Zx − x are simpler trees and can be both evaluated in the same step due to their

similarity [80]. While the NOD approach [94] detects nodes equivalent to the empty set,

active zones detect redundant nodes independently of whether the tree is equivalent to

the empty set. Active zones also provide for universal set substitutions for Ω-redundant

nodes such as a ∪ Ω→ Ω, a ∩ Ω→ a and a− Ω→ ∅.

Tree a ∪ b a ∩ b a ∩ b (a ∩ b) ∪ c

Ia Ω b b b
Ua b ∅ ∅ c
Za Ω− b b b b
Za ∩ a ∅ ∅ a ∅
Za − a Ω− b b b− a b
a is ∅-redundant? yes yes no yes
a is Ω-redundant? no no no no
Ib Ω a a a
Ub a ∅ ∅ c
Zb Ω− a a a ∅
Zb ∩ b b− a ∅ a ∅
Zb − b Ω− b a ∅ ∅
b is ∅-redundant? no yes no yes
b is Ω-redundant? no no yes yes
Ic Ω
Uc a ∩ b
Zc Ω
Zc ∩ c c
Zc − c Ω− c
c is ∅-redundant? no
c is Ω-redundant? no
Pruned Tree b ∅ a c

Table 2.6: I-zones, U -zones and Active Zones for CSG Tree Pruning

30

2.3.5 S-bounds

The super-bounds (s-bounds) algorithm [22, 23] arose from robotics research as a fast

approximation approach to the NOD problem. It applies bounding volumes and redun-

dancy detection in a manner suitable for applications such as the collision detection of

robot arms. This section describes the s-bounds approach and the application of them to

CSG tree node pruning.

NOD determines whether an object is definitely empty, or definitely not empty. The

s-bounds approach partitions space into definitely empty regions, and possibly empty

regions. When the entire space is definitely empty NOD is complete. Otherwise regions of

possible emptiness need additional processing using non-approximating algorithms such as

active zones. Overall processing time is thereby minimised by limiting expensive detailed

analysis to specific localised regions.

S-bounds assigns a bounding volume to each node in the tree. The AABB bounding

volume scheme is used here for the purpose of explanation, although others could also

be used [22, 23]. The initial bounding box for leaf nodes is derived from the geometry.

The initial bounding box for parent nodes is the entire space Ω. In the initial pass of the

algorithm parent bounds are derived from their children based on the parent operator (as

described in Section 2.3.2) in a postorder traversal. This is called the upwards pass. The

next pass is a preorder traversal replacing each child bound with the intersection of the

parent and child bounds. This is called the downwards pass. The algorithm continues

with upwards and downwards passes until the bounding volumes converge — remaining

unchanged from one pass to the next. Eventual convergence is ensured by the monotonic

decrease of bounding volumes due to the intersection applied from parents to children in

the downwards pass. AABB s-bounds converge in O(n2) time with respect to the number

of nodes, but more rapidly in practice [22].

Once converged the tree is inspected for empty bounding volumes. Nodes with empty

bounds are pruned. If the root bound is empty the entire tree is null and processing is

complete. Otherwise the remaining bounding volumes can be further processed for the

purpose of redundancy or null object detection.

One advantage of the s-bound approach is that bounding volumes such as AABBs

can be processed more efficiently than the actual geometry. The s-bound algorithm can

be useful for CSG tree pruning and other applications even without the use of time

consuming geometric processing. S-bounds can also be utilised in other applications such

31

as boundary evaluation to minimise the regions processed in a detailed manner.

Some observations about the relationship of s-bounds to active zones (Section 2.3.4)

were reported subsequently [23]. S-bounds can be sensitive to the structure of the CSG

tree as well as the bounding scheme. Exact s-bounds using the exact geometry (rather

than superset bounding volumes) converge after one upwards and one downwards pass.

In general: s-bound(x) ⊇ (Zx ∩ x).

Figure 2.13 applies s-bounds to the CSG trees from Figure 2.10, resulting the same

tree simplifications as active zones in Table 2.6.

a ∪ b→ b

node init ↑ ↓
∪ Ω b b
a a a a
b b b b

a ∩ b→ ∅

node init ↑ ↓ ↑
∩ Ω ∅ ∅ ∅
a a a ∅ ∅
b b b ∅ ∅

a ∩ b→ a

node init ↑ ↓ ↑
∩ Ω a a a
a a a a a
b b b a a

(a ∩ b) ∪ c→ c

node init ↑ ↓ ↑
∪ Ω c c c
∩ Ω ∅ ∅ ∅
a a a ∅ ∅
b b b ∅ ∅
c c c c c

Figure 2.13: S-bounds for CSG Tree Pruning

32

2.4 Discussion

This chapter presented the CSG approach for geometric modelling. Primitives are com-

bined by means of operators arranged in a CSG tree. Tree restructuring methods preserve

the volume and surface of the model while satisfying structural properties. Tree pruning

can be applied to reduce the size of the CSG tree and maximise the performance of

subsequent processing such as rendering.

In the context of CSG modelling processing follows the sequence:

• Modelling is the process of specifying primitives, operators and spatial arrangement

of a geometric model.

• Transformation converts the CSG tree into form suitable for pruning.

• Pruning removes unnecessary parts of the CSG tree in order to maximise rendering

performance.

• Rendering displays an image of the CSG model.

The CSG rendering step is our focus in this thesis. Chapter 3 reviews previously

reported hardware-based rendering CSG methods and graphics hardware implementation

using OpenGL. Chapters 4 and 6 detail a new algorithm for CSG rendering we call SCS.

33

Chapter 3

Hardware-Based CSG Rendering

Integrated circuits will lead to such wonders as home computers.

— Gordon E. Moore, 1965

35

3.1 Introduction

This chapter begins with a brief discussion of CPU and graphics hardware aspects of

PC computers. The functionality and terminology of the OpenGL interface and related

graphics hardware based algorithms for CSG rendering are then introduced. The prac-

tical application of CSG rendering algorithms is closely related to the limitations and

performance characteristics of graphics hardware. Subsequent chapters in this work focus

on a new approach to CSG rendering we call Sequenced Convex Subtraction (SCS). The

new algorithms involved in SCS draw ideas and inspiration from previous techniques in-

cluding the Goldfeather and Trickle algorithms, layer extraction, layer peeling and depth

complexity sampling. This chapter focuses on foundational concepts in support of the

chapters that follow.

3.2 Hardware

3.2.1 Performance Trends

The co-founder of Intel, Gordon E. Moore made the empirical observation in 1965 that the

number of transistors on an integrated circuit roughly doubled every 12 months [65, 9, 95].

In the subsequent forty years the semiconductor industry has achieved exponential growth

in transistor count, the trend widely referred to as Moore’s Law.

The complexity for minimum component costs has increased at a rate of

roughly a factor of two per year. Certainly over the short term this rate

can be expected to continue, if not to increase. Over the longer term, the rate

of increase is a bit more uncertain, although there is no reason to believe it

will not remain nearly constant for at least 10 years. [65]

The number of transistors in Intel Central Processing Unit (CPU) chips and Nvidia

Graphics Processing Unit (GPU) chips is shown in Figure 3.1(a). Since their introduction

in the mid 1990’s, Nvidia graphics chip complexity has grown in a similar manner to Intel

CPUs — broadly following Moore’s Law.

The Floating Point Operations Per Second (FLOPS) is a more specific measure of the

computational capacity of chips intended for processing numerical data. The FLOPS for

Intel and Nvidia chips is shown in Figure 3.1(b), illustrating an approximately six-fold

floating point advantage for the G80 Nvidia GPU versus an Intel 3.0GHz Core 2 Duo

CPU.

36

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1970 1975 1980 1985 1990 1995 2000 2005

T
ra

ns
is

to
rs

Year

Intel CPU
Nvidia GPU

 0

 50

 100

 150

 200

 250

 300

 350

 2001 2002 2003 2004 2005 2006 2007

G
F

LO
P

S

Year

G70

G71

G80

Dual Core

Intel CPU
Nvidia GPU

(a) Transistor Count (b) Floating Point Operations Per Second
[9] [70, 71]

Figure 3.1: Intel CPU and Nvidia GPU Performance Trends

This notable advantage of graphics hardware is due to the computational paradigm

of interactive graphics — pixel colours are computed individually, independently and

completely for each frame. This allows for a higher latency “many at the same time”

stream-based arrangement, compared to a lower latency “one at a time” general purpose

CPU architecture.

A question that arises with the computational capacity offered by graphics hardware

is that of adapting algorithms for CPUs to the graphics pipeline paradigm. There is cur-

rently a great deal of research interest in general purpose processing using GPUs (known

as GPGPU [10]) for Fast Fourier Transform, linear system solving, motion planning,

collision detection, database, sorting and other computationally demanding problems.

This work also draws on the motivation to utilise graphics hardware computational

capacity to solve a problem that would be traditionally solved using a CPU-based algo-

rithm.

37

Figure 3.2: PC Architecture

3.2.2 PC Architecture

A schematic of the central components of the modern PC is given in Figure 3.2 including

CPU, main memory, motherboard components, system buses and graphics hardware. One

of the features of the platform is the modular hardware design, allowing for upgrading

of individual components. Over time the PC platform has evolved to take advantage of

available technologies, while mostly retaining the same overall arrangement. One notable

part of this evolution was the introduction of the Accelerated Graphics Port (AGP) in

1997, providing a dedicated connection between the CPU and graphics hardware via the

Northbridge. Graphics hardware had previously been attached less directly to the CPU,

situated with other miscellaneous modules such as network adaptors and mass storage

devices on the PCI bus. AGP also provided the capability for graphics hardware to

read from main memory using the Graphics Address Remapping Table (GART), rather

than needing to copy data across the PCI bus. One significant limitation of AGP was

bandwidth asymmetry — data transfer from the graphics hardware to main memory was

significantly slower than transfer from main memory to the graphics hardware. AGP was

superceded by PCI Express (PCIe) in 2003.

The algorithms in this work were developed and reported in the context of AGP based

PC graphics hardware.

38

3.3 OpenGL Graphics API

The OpenGL real-time 2D and 3D graphics Application Programming Interface (API)

was introduced in 1992 as an open, vendor neutral, multi-platform and scalable basis

for interactive graphics application development [1, 18, 19]. Based on SGI’s IRIS GL

library, the OpenGL standard was managed and evolved by the OpenGL Architecture

Review Board (ARB). In 2006 control of the OpenGL API was transferred to the Khronos

Group, a member-funded industry consortium focused on the creation of open standards

[2]. Current members of the Khronos Group include Nvidia, ATI, Apple, Intel, Sony,

Nokia, Motorola, Mitsubishi Electric, Philips, SGI and Sun Microsystems.

OpenGL is a low level interface providing access to the rasterisation, transformation,

lighting, texturing and other capabilities of dedicated graphics hardware. Software im-

plementations of OpenGL such as the Mesa 3D library [4] and the original SGI reference

implementation [3] are also available.

The OpenGL specification evolves through two mechanisms. The latest hardware

features are made accessible via vendor specific extensions. Widely supported extensions

are then considered for inclusion in the OpenGL standard. A significant reorganisation of

OpenGL happened while this work was in progress, in the form of OpenGL 2.0 [15] and

2.1. This work is concerned with standard OpenGL functionality in OpenGL 1.

3.3.1 OpenGL Graphics Pipeline

The graphics pipeline for interactive 3D graphics is composed of several processing steps

as information moves from the application to the frame buffer for display. These are

broadly grouped into the transformation and lighting, rasterisation and fragment testing

stages, illustrated in Figure 3.3. The OpenGL API provides an interface for configuring

the behaviour of each stage of the pipeline for achieving the desired image. The colour

buffer information is used by the graphics hardware to provide the signal for the display

device.

The transformation and lighting stage applies modelling and projection transforma-

tions to point, line and polygon data passed by the application. Clipping is applied to the

transformed geometry, preventing further processing of geometry that is outside of the

current view volume. The view volume is constrained by the edges of the view window

and the near and far clipping planes at znear and zfar. Lighting calculations are applied to

each vertex of each polygon.

39

Figure 3.3: OpenGL Graphics Pipeline

The rasterisation stage converts point, line and polygon data into fragments that cor-

respond to pixels in the frame buffer. Texturing and colour interpolation is applied at this

stage, according to the current material, lighting and texturing OpenGL state. Fragments

produced by rasterisation carry transparency and depth information in addition to colour.

The fragment testing stage applies stencil, depth and alpha tests to each fragment

produced by the rasteriser. Fragments that pass these tests are written into the frame

buffer. Updates to the stencil, depth and colour buffers are also individually controlled

via the OpenGL buffer masking interface.

40

The OpenGL graphics pipeline also includes paths for drawing, reading and copy-

ing pixel data. These pixel data paths bypass certain stages relevant to polygon data

processing, as further discussed in Section 3.3.5.

The following subsections focus on the depth and stencil testing stages of the graphics

pipeline. These pixel-level operations provide the basis for hardware based CSG rendering

in OpenGL. Foundational depth and stencil based algorithms including depth complex-

ity sampling, layer extraction and layer peeling are described in subsequent subsections,

followed by CSG rendering algorithms in Section 3.5.

3.3.2 OpenGL Depth Buffer

One of the fundamental problems in computer graphics is the visible surface problem [92]:

given a collection of geometry, which parts of which shapes are visible from a particular

viewing location? Parts of shapes may not be visible to the viewer because they are not

facing the viewer, because the viewer is not facing the object, or because another shape

is occluding the line of sight between the viewer and the object.

The primary purpose of the z-buffer algorithm is solution of the visible surface problem.

The distance from the viewer is calculated for each pixel for each geometric shape as it

is drawn. Since closer shapes occlude those more distant, the distance of fragments

corresponding to each shape are compared to the values stored in the z-buffer. Fragments

are drawn and the z-buffer updated if they are closer than the z-buffer, and ignored when

their distance is greater.

The z-buffer algorithm is simple and amenable to hardware implementation. The visi-

ble surface problem is solved for each pixel independently, making the algorithm amenable

to parallel implementation. The result of the z-buffer algorithm is independent of the or-

der in which shapes are rendered. The decreasing cost of memory for z-buffer storage

has made the hardware z-buffer implementation the predominant technology for visible

surface determination in real-time and interactive computer graphics.

The z-buffer algorithm is an image-space approach to the visible surface problem.

Object-space approaches are also well known, such as rendering sorted geometry from

back to front. Ivan Sutherland contrasted ten different visible surface algorithms in his

seminal paper in 1974 [92]. Object-space algorithms are still in use for a variety of

applications, often in combination with z-buffering in hybrid approaches.

The OpenGL API for depth testing is summarised in Table 3.1. The function

glClearDepth specifies the depth value to be used when the depth buffer is cleared, using

41

the normalised range of [0, 1]. The glClear function is used to clear buffers, including the

depth buffer. The glEnable and glDisable functions may be used to enable or disable

depth testing. The glDepthMask function specifies whether the depth buffer is writable.

The glDepthFunc function specifies the depth comparison function. Some of the available

depth comparisons include GL NEVER, GL ALWAYS, GL LESS, GL GREATER, and GL EQUAL.

glClearDepth(1.0); // Set clear depth value
glClear(GL DEPTH BUFFER BIT); // Clear depth buffer
glEnable(GL DEPTH TEST); // Enable depth testing
glDisable(GL DEPTH TEST); // Disable depth testing
glDepthMask(GL TRUE); // Enable depth buffer modification
glDepthFunc(GL LESS); // Set depth test function to less-than

Table 3.1: OpenGL Depth Testing Settings

3.3.3 OpenGL Stencil Buffer

OpenGL supports a stencil buffer in addition to the depth buffer. The stencil buffer

consists of at least one bit-plane, but is usually eight bit-planes. The stencil buffer is used

for masking fragments according to a stencil test that controls which fragments update

the frame buffer, in a manner similar to the depth test.

The OpenGL API for stencil testing is summarised in Table 3.2. The stencil clear

value is specified by the glClearStencil function. The glClear function is used to

clear buffers, including the stencil buffer. The glEnable and glDisable functions may

be used to enable or disable stencil testing. The glStencilMask function specifies which

bit-planes of the stencil buffer are updated. glStencilFunc specifies the stencil testing

function such as GL EQUAL or GL LESS, a reference value and a bitwise mask. The mask

allows specific stencil bits to be used or ignored during stencil testing. The glStencilOp

function specifies the stencil operation to be applied in the following circumstances: stencil

and depth test both fail; stencil test succeeds, but depth test fails; stencil and depth test

both succeed.

The state of the stencil buffer is determined by the initial stencil buffer value and the

subsequent result of depth and stencil testing of rasterised fragments.

42

glClearStencil(0); // Set stencil clear value
glClear(GL STENCIL BUFFER BIT); // Clear stencil buffer
glEnable(GL STENCIL TEST); // Enable stencil testing
glDisable(GL STENCIL TEST); // Disable stencil testing
glStencilMask(GL TRUE); // Enable stencil buffer updates
glStencilFunc(GL EQUAL,1,1); // Set stencil test function
glStencilOp(GL KEEP,GL KEEP,GL KEEP); // Set stencil update operation

Table 3.2: OpenGL Stencil Testing Settings

3.3.4 OpenGL Face Culling

Once polygons have been clipped and transformed, OpenGL provides the option to cull

front or back facing polygons according to the winding order. Polygons facing away from

the viewer are often not visible in the rendered image, being obscured by closer front

facing polygons. Rasterising only front-facing polygons has the advantage of reducing

the number of polygons entering the rasterisation stage and consequently, the number of

fragments that need to be processed.

Classification of front and back polygons is based on the clockwise or anti-clockwise

winding order of transformed polygon vertices. Face culling depends on polygon vertices

being consistently ordered was they are passed to OpenGL. Neighbouring polygons sharing

an edge need their vertices ordered so that the edge is traversed in opposite directions.

Face culling is conventionally used to avoid rasterisation of back-facing polygons of

closed, consistently oriented polygonised objects. In the context of CSG rendering face

culling provides a useful mechanism for separately rasterising the front and back layers

of polygonised objects. Each layer is processed in a separate pass of a multiple-pass CSG

rendering algorithm

The OpenGL API for face culling testing is summarised in Table 3.3. The glEnable

and glDisable functions are used to enable or disable face culling. The glCullFace func-

tion specifies culling of either front or back faces. glFrontFace specifies either counter-

clockwise or clockwise winding order of front faces.

glEnable(GL CULL FACE); // Enable face culling
glDisable(GL CULL FACE); // Disable face culling
glCullFace(GL BACK); // Specify culling of back faces
glCullFace(GL FRONT); // Specify culling of front faces
glFrontFace(GL CCW); // Specify counter-clockwise winding order of front faces
glFrontFace(GL CW); // Specify clockwise winding order of front faces

Table 3.3: OpenGL Face Culling Settings

43

3.3.5 OpenGL Pixel Transfer

The OpenGL graphics pipeline is primarily concerned with the processing of polygons,

rasterisation of polygons into fragments, and updating the frame buffer fragment-by-

fragment as illustrated previously in Figure 3.3.

OpenGL also supports pixel data processing via glDrawPixels, glReadPixels and

glCopyPixels. Polygon processing is generally bypassed for pixel data. Rasterisation and

fragment processing is applied to pixel data in the same manner as rasterised polygons.

Figure 3.3 illustrates the glDrawPixels path from OpenGL to the rasterisation stage,

the glReadPixels path from the frame buffer to the application, and the glCopyPixels

path from the frame buffer to the rasterisation stage.

Pixel data is written from memory into the frame buffer using glDrawPixels. A

variety of formats of pixel data are supported including stencil, depth, colour and alpha.

Various data types of pixel data are supported such as bitmap, integer and floating point.

The frame buffer is updated relative to the current raster position. The arrangement of

pixel data in memory is specified via glPixelStore. Scaling and bias of pixel values is

specified via glPixelTransfer. Pixel data can also be zoomed using glPixelZoom.

Pixel data is written from the frame buffer into memory using glReadPixels. Various

pixel formats and types can be specified as for glDrawPixels. Processing of pixel data is

specified via glPixelStore and glPixelTransfer.

Pixel data can be copied within the frame buffer using glCopyPixels. Either colour,

depth or stencil values are copied relative to the current raster position. Processing of

pixel data is specified via glPixelStore, glPixelTransfer and glPixelZoom.

Pixel transfer functionality is useful in the context of CSG rendering in several ways.

glReadPixels can be used to examine frame buffer stencil buffer values. In the next

section (Section 3.4.1) this approach is used to measure depth complexity — useful in-

formation for CSG rendering. Multiple depth buffers can be emulated by copying pixel

data in and out of the frame buffer using glDrawPixels and glReadPixels. Performance

issues related to OpenGL pixel transfer are examined in Section 7.2.

glDrawPixels(w,h,GL RGB,GL UNSIGNED BYTE,pixels); // Draw RGB pixel data
glReadPixels(x,y,w,h,GL RGB,GL UNSIGNED BYTE,pixels); // Read RGB pixel data
glCopyPixels(x,y,w,h,GL DEPTH); // Copy depth data

Table 3.4: OpenGL Pixel Transfer

44

3.4 Frame Buffer Operations

The previous section described important aspects of the OpenGL graphics pipeline for

CSG rendering applications — depth and stencil buffers, face culling and pixel transfer.

This section describes the utilisation of these OpenGL functionalities for CSG rendering

purposes.

3.4.1 Depth Complexity

(a) k = 1 (b) k = 2 (c) k = 3 (d) k = 5

Figure 3.4: Depth Complexity from Different Viewing Directions

The depth complexity of a pixel is the number of fragments drawn to the pixel [92].

In this work we refer to the maximum pixel depth complexity as the depth complexity

of the scene, denoted k, which varies with the arrangement of objects and the viewing

direction. Figure 3.4 illustrates increasing depth complexity of a row of spheres as viewed

from a direction increasingly along the row. Red is used to illustrate depth complexity of

one, green for two, blue for three, yellow for four and cyan for five.

The OpenGL stencil test can be used to measure depth complexity for a particular

viewing direction. In Algorithm 3.1 the stencil test is configured to increment the stencil

for each fragment rendered. The depth test is not used, and the colour buffer is not up-

dated. Once all fragments have been processed, each stencil value contains the number of

fragments rasterised at that pixel. The maximum stencil value can be found by examining

the stencil buffer after reading into system memory.

Algorithm 3.1 Depth Complexity Sampling

for all pixels do
stencil← 0

for all fragments do
stencil← stencil + 1

k ← 0
for all pixels do

if stencil > k then
k ← stencil

45

One potential issue with depth complexity sampling is integer overflow when the depth

complexity exceeds the maximum value of the stencil buffer. A depth complexity of

up to 255 can be directly measured using an eight bit stencil buffer, enough for many

applications. Larger depth complexities could be measured by testing groups of 2n − 1

objects, where n is the number of stencil buffer bits. The stencil buffer of each group

would need to be read into memory and combined by taking the sum.

3.4.2 Layer Extraction

(a) Collection of spheres (b) Depth complexity

(i) 1st layer (ii) 2nd layer (iii) 3rd layer

Figure 3.5: Layer Extraction of Sphere Front Faces

An image-space technique closely related to depth complexity measurement is layer

extraction [87]. A layer is a z-buffer representation of a set of geometric surfaces, with

the limitation that only one surface can be stored at each pixel. The number of layers

necessary to represent a collection of surfaces is the depth complexity — the maximum

number of surfaces rasterised at any pixel. Hardware based algorithms can process arbi-

trary collections of surfaces by extracting and processing each layer in turn.

Layer extraction utilises the stencil buffer by constraining rendering to the ith fragment

at each pixel, where 1 ≤ i ≤ k and k is the depth complexity. The first layer is the set of

fragments first rasterised at each pixel. The second layer is the second set of fragments

rasterised at each pixel, and so on. In the layer extraction algorithm (Algorithm 3.2), the

stencil is incremented at each pixel for each fragment. The pixel depth is only updated

46

when the stencil equals the index of the desired layer.

Layers are used in CSG rendering for processing concave geometry in the frame buffer.

Since the z-buffer can only store one surface at each pixel, it is necessary to extract and

process each layer of concave shapes individually. Figure 3.5 illustrates the three layers

formed by the front facing surfaces of a collection of spheres.

Algorithm 3.2 Layer Extraction

Require: i ∈ [1, k], where k is the scene depth complexity

for all pixels do
stencil← 0

for all fragments F do
stencil← stencil + 1
if stencil = i then
z ← zF

3.4.3 Layer Peeling

A variation of layer extraction called layer peeling is useful for problems such as the

correct rendering of transparent surfaces and CSG rendering. While layer extraction is

not concerned with the depth relationship of fragments in different layers, peeled layers are

sorted in front-to-back or back-to-front order with respect to z. Peeling is more difficult

to implement in OpenGL than layer extraction.

The front-to-back layer peeling algorithm is presented in Algorithm 3.3. Layers are

peeled iteratively from front to back, using the previous layer as the basis for determining

the next. The algorithm finds the closest surface which is further than the current layer

surface. Layer peeling requires two depth buffers: one to store the previous layer and

another to determine the next layer. Fragments are depth tested against the two z-buffers

to determine the next layer surface. The first depth test rejects fragments closer than the

previous layer. The second depth test resolves the nearest fragment of those passing the

first depth test. Once a peeling operation is completed, the buffer storing the previous

layer is no longer needed.

In Algorithm 3.3 the stencil buffer is used to maintain a per-pixel collision count.

This resolves the problem of multiple fragments having the same depth at the same pixel.

Without maintaining a collision count coincident fragments would collapse into the same

47

layer. In CSG rendering applications it is important that each fragment belongs to a layer,

and that each pixel in a layer corresponds to one fragment. Using closed geometry the

number of front-facing layers at a pixel should be the same as the number of back-facing

layers. Front and back-facing layer pairs define a volumetric layer, corresponding to the

enclosed volume. In this manner surfaces in the form of fragments can be tested against

volumes in the form of pairs of layers.

Back-to-front layer peeling is performed in the same manner, with some reconfiguration

to Algorithm 3.3. In the first pass, znext is initialised to zfar. To peel from back to front,

the depth test is reversed to znext < zF < zprev.

Algorithm 3.3 Front to Back Layer Peeling

Require: zprev is the previous layer
Require: znext is the next layer

Require: zprev ← znear in the first pass
Require: stencil← 0 in the first pass

[Decrement collision count]

for all pixels do
znext ← zfar

if stencil > 0 then
stencil← stencil − 1

[Determine next layer]

for all fragments F do
if zprev < zF < znext then

if stencil = 0 then
znext ← zF

[Flag pixels needing collision count update]

for all pixels do
if stencil = 0 then
flagP ixel← true

else
flagP ixel← false

[Compute collision count for flagged pixels]

for all fragments F do
if flagP ixel and zF = znext then
stencil← stencil + 1

48

Implementation of layer peeling in OpenGL is difficult1 due to the requirement of two

depth buffers and two depth tests per fragment. Layer peeling can be implemented in

OpenGL, with a single depth buffer but is considered too slow for practical use. Archi-

tectures supporting deep frame-buffers, multiple z-buffers, extended fragment testing or

high-bandwidth are more promising from a performance point of view [32, 63, 64].

3.4.4 Parity Clipping

A layer in the z-buffer can be clipped against a closed object by counting the number of

fragments in front of (or behind) each pixel. An odd number indicates a pixel inside the

volume of the object, while an even number indicates a pixel outside the volume of the

object.

In an intersection operation odd parity pixels are preserved and even parity pixels are

reset. In a subtraction operation even parity pixels are preserved and odd parity pixels

are reset.

Parity clipping can be implemented in OpenGL by toggling a stencil bit [18] at each

pixel for every fragment closer than the current depth value. The parity clipping algorithm

is presented in Algorithm 3.4.

Algorithm 3.4 Parity Clipping

Require: zO is the z-buffer surface being clipped
Require: C is the convex or concave object being clipped against

[Clear stencil buffer]

for all pixels do
stencil← 0

[Count fragments in front of z-buffer at each pixel]

for all fragments of C do
if zC < zO then
stencil← stencil + 1

[Clip pixels with even or odd parity]

for all pixels do
if C subtracted then

if stencil is odd then
zO ← zfar

if C intersected then
if stencil is even then
zO ← zfar

1Layer peeling has reportedly been implemented in OpenGL using extensions such as shadow buffering.
[42]

49

3.5 Graphics Hardware CSG Rendering

The CSG rendering problem is a generalisation of the classical visible surface problem [92]:

given a collection of geometry related by volumetric union, intersection and difference,

which parts of which shapes are visible for a particular viewing situation? CSG rendering

can be regarded as two sub-problems: clipping and visible surface determination. Clipping

in this context is the process of identifying surfaces satisfying the constraints of the CSG

tree. Visible surface determination is the process of identifying the visible surfaces with

respect to a particular viewing situation.

Rendering an image of a CSG tree can be approached in different ways. Object-space

approaches, such as boundary evaluation [74, 75, 17, 45, 40, 80] can be used to convert

from a CSG representation to a boundary representation (b-rep), which is typically polyg-

onal, that can be passed directly to the OpenGL rendering pipeline. With this approach

the clipping problem is solved view-independently, and the visible surface problem solved

per frame using standard z-buffering. Image-space approaches solve clipping and visible

surface problems on a per-pixel basis — determining the visible surface for each pixel ac-

cording to the viewing situation, geometric shapes involved and the CSG tree structure.

Image-space approaches include ray-casting [47], scanline algorithms [16, 68, 50, 48, 49]

and hardware-based z-buffer algorithms [79, 28, 37, 97, 73]. One attraction of image-

space approaches is the utilisation of parallel graphics hardware rather than serial CPU

boundary evaluation. Image-space CSG rendering is especially suited to interactive and

animation applications that would otherwise require CPU-intensive object-space bound-

ary evaluation for each and every frame.

OpenGL does not directly support CSG rendering. However, CSG rendering algo-

rithms can be devised which use multi-pass techniques and features of the OpenGL API

such as depth testing, stencil testing, buffer copying and back face culling. Image-space

CSG rendering algorithms are the focus of this research.

The next two sections describe previous techniques for image-space CSG rendering:

the Goldfeather algorithm [37, 97] and the Trickle algorithm [28]. Our new SCS algorithm

is introduced in Chapter 4.

50

3.5.1 Goldfeather CSG Rendering

The Goldfeather CSG rendering algorithm [36, 37] clips one primitive in the z-buffer at

a time. A second z-buffer is used to determine the visible surface in the usual z-less

test manner. The algorithm assumes that the CSG tree is converted to sum-of-products

(Section 2.2.1) form. A CSG tree can be normalised [36, 37] into sum-of-products form:

P1 ∪ P2 ∪ · · · ∪ Pp, where p is the number of products. Each product consists of objects

related by only intersection and difference operations.

The Goldfeather CSG rendering algorithm is presented in Algorithm 3.5. Using the

CSG tree in Figure 2.3, the operation of the Goldfeather algorithm is illustrated in Figure

3.6. Each row corresponds to a pass of the algorithm. To begin with, the current primitive

(a) is drawn into the z-buffer with front or back face culling enabled (b), according to

whether a difference or intersection is being applied. Then, the z-buffer surface is parity

clipped against all other primitives in the product (c). Parity clipping was described

previously in Section 3.4.4. Finally the clipped z-buffer is merged into the output z-buffer

(d).

Concave primitives are handled by clipping each layer (Section 3.4.2) of the primitive

in a separate pass. The number of passes corresponds to the depth complexity of the

object, since only one z-buffer surface can be clipped at each pixel per pass. The stencil

buffer is used to increment a counter for each fragment drawn into a pixel, updating the

z-buffer only when the counter equals the desired layer.

Algorithm 3.5 Goldfeather CSG Rendering

Require: all objects are convex
Require: zoutput is output z-buffer
Require: ztmp is temporary z-buffer

zoutput ← zfar

for all products P do
for all objects O ∈ P do

if O subtracted then
ztmp ← Oback

if O intersected then
ztmp ← Ofront

for all other objects C ∈ P −O do
clip ztmp against C [Algorithm 3.4]

for all pixels do
if ztmp < zoutput then
zoutput ← ztmp

51

ztmp ztmp zoutput

1st object

↓
2nd object

↓
3rd object

↓
4th object

(a) (b) (c) (d)
Current object Draw front or back Clip z-buffer Merge into output

surface, as against other z-buffer
appropriate primitives

Figure 3.6: Goldfeather CSG Rendering Algorithm

The Goldfeather algorithm has been implemented using OpenGL [87, 97]. Two z-

buffers are required by the algorithm, one for clipping each primitive and another for

accumulating the merged result. The additional z-buffer can be simulated by copying

between the z-buffer and system memory, or by subdividing the viewport. The basic

requirements are therefore a single colour buffer, a single z-buffer, a stencil buffer and the

ability to save and restore the contents of the z-buffer [97].

52

3.5.2 Layered Goldfeather Algorithm

Graphics hardware based implementations of the Goldfeather algorithm utilise buffer

copying to emulate the necessary additional z-buffer. Using this approach, z-buffer copying

has been observed to be a significant performance bottleneck [87, 97].

The Layered Goldfeather algorithm [87] aims to reduce buffer copying by clipping

layers, rather than primitives. Denoting the depth complexity k, the algorithm becomes

O(kn), rather than O(n2). The z-buffer is copied once per layer, rather than once per

primitive. When the depth complexity k is less than n, major speedups are realised by

the reduction in z-buffer copying.

Figure 3.7 illustrates the operation of the algorithm (Algorithm 3.6), clipping on a

layer-by-layer basis, rather than primitive-by-primitive: (i) a set of yellow spheres and a

grey box; (ii) the depth complexity varies between zero and three; (iii) the yellow spheres

subtracted from the grey box; (a) each layer is drawn into the z-buffer; (b) each layer is

clipped against the spheres and box; (c) each layer is then merged into zoutput.

Our implementation of this variant of the Goldfeather algorithm is given in Appendix

B.2.1.

Algorithm 3.6 Layered Goldfeather CSG Rendering

Require: Objects are convex or concave
Require: zoutput is output z-buffer
Require: ztmp is temporary z-buffer

zoutput ← zfar

for all products P do

for all layers Li ∈ L1, L2, · · ·, Lk of P do

ztmp ← Li

for all objects C ∈ P do
clip ztmp against C [Algorithm 3.4]

for all pixels do
if ztmp < zoutput then
zoutput ← ztmp

53

(i) Box and Spheres (ii) Depth Complexity (iii) Subtracted Result

1st layer

2nd layer

3rd layer

(a) Extract Layer (b) Clip Layer (c) Merge Layer

Figure 3.7: Layered Goldfeather CSG rendering algorithm

54

3.5.3 Improved Layered Goldfeather Algorithm

A further improvement to the Layered Goldfeather CSG rendering algorithm (Algorithm

3.7) is storing the result of layer clipping in the stencil buffer, rather than the depth

buffer [29]. This is a performance advantage since stencil information is more compact

than depth buffer information, and can be copied more efficiently. It is also has the

advantage that integer stencil data is not subject to the implicit conversions that depth

data is.

Our implementation of this variant of the Goldfeather algorithm is also given in Ap-

pendix B.2.2. In our implementation the depth buffer is used for merging each product,

although in principle the stencil buffer could be used instead.

Algorithm 3.7 Improved Layered Goldfeather CSG Rendering

Require: Objects are convex or concave
Require: zoutput is output z-buffer
Require: ztmp is temporary z-buffer
Require: stencili is the stencil bitmask for the ith layer, where i ∈ [1, k]

zoutput ← zfar

for all products P do

for all layers Li ∈ L1, L2, · · ·, Lk do
ztmp ← Li
for all objects C ∈ P do

clip ztmp against C
for all pixels do

if ztmp < zfar then
stencili ← true

else
stencili ← false

for all layers Li ∈ L1, L2, · · ·, Lk do
for all fragments F ∈ Li do

if zF < zoutput and stencili = true then
zoutput ← zF

55

(i) (ii) (iii)
x a ∪ b x− a− b

1st layer

2nd layer

(a) (b) (c) (d)
zoutput zfront zback zoutput

Initial z-buffer Front-facing Back-facing Subtract Layer
layer layer

Figure 3.8: The Trickle CSG Rendering Algorithm

3.5.4 Trickle Algorithm

The Trickle CSG rendering algorithm [28] subtracts volumetric layers from front to back

with respect to the viewing direction. Four depth buffers are used: two auxiliary z-

buffers for peeling the front and back layers, a temporary scratch-space z-buffer and a

z-buffer storing the cumulative result. The Trickle algorithm is designed to handle CSG

products. CSG products contain intersection and subtraction operations, but no unions.

CSG products are in the form: x∩ o1 ∩ · · · ∩ op− op+1− · · · − on. The algorithm operates

on a subtractive basis with intersection handled by subtracting inverted shapes.

Figure 3.8(a–d) illustrates the application of the Trickle algorithm to a CSG tree of

three boxes (x− a− b) as illustrated in Figure 3.8(i–iii). Initially the front of x is drawn

into the z-buffer (a). Then, the closest front-facing (b) and closest back-facing (c) surfaces

of subtracted objects are determined for each pixel. This forms a volumetric layer, which

56

(a)
Draw initial
surface into
zoutput

(b)
Compare zoutput

to zfront and zback

layers

(c)
Flag pixels inside

layer volume

(d)
Replace flagged
pixels with zback

(e)
Clear regions of

complete
subtraction

Figure 3.9: Depth Buffer Convex Subtraction

is subtracted from the output z-buffer (d). Subtraction replaces the z-buffer with zback,

the back-facing surface of the layer, for each pixel where zfront < zoutput < zback. The

next layer is then formed by finding the next closest front and back facing surfaces for

each pixel. Each layer is subtracted from the z-buffer in turn, from front to back. Layers

are view-dependent, since changing the viewing direction affects the relative distances of

surfaces to the viewer.

The subtraction of an individual convex object or volumetric layer is illustrated in

Figure 3.9. The Trickle algorithm repeats steps (b–d) for each layer of subtracted volume.

The Trickle algorithm depends on layers being subtracted in front to back order.

Since the z-buffer has capacity for only one surface per pixel, it is not possible to account

for holes behind the current z-buffer surface. By ensuring that closer subtractions are

performed earlier, holes behind the current z-buffer surface are known to be occluded,

and can be ignored.

The complete Trickle algorithm is presented in Algorithm 3.8. The near and far

clipping planes of the viewing system are denoted as znear and zfar. Layer peeling of front

and back surfaces operates as previously described in Section 3.4.3.

Intersections are handled by subtracting inverted primitives. The inverse of a convex

primitive S spanning [Sfront, Sback] is [znear, Sfront] and [Sback, zfar]. Implementing this in-

version involves swapping the front and back-facing surfaces, and manipulating the stencil

buffer. Initialising the front collision count for each pixel to the number of intersected

primitives simulates the znear surfaces. The necessary zfar surfaces result from the conver-

gence of the layer extraction algorithm to zfar.

57

Algorithm 3.8 Trickle CSG Rendering

Require: X is convex object
Require: zoutput is output z-buffer
Require: zfront is front layer z-buffer
Require: zback is back layer z-buffer

[Draw initial surface — as illustrated in Figure 3.9(a)]

zoutput ← zfar

draw Xfront into zoutput

[Layer peeling loop]

zfront ← znear

zback ← znear

for all layers do
zfront ← peelLayer(zfront) [Algorithm 3.3]
zback ← peelLayer(zback)

[Subtract volumetric layer — as illustrated in Figure 3.9(b–d)]

for all pixels do
if zfront < zoutput < zback then
zoutput ← zback

[Complete subtraction — as illustrated in Figure 3.9(e)]

for all pixels do
if zoutput > Xback then
zoutput ← zfar

58

3.6 Discussion

This chapter has introduced aspects of the OpenGL Graphics API and discussed previ-

ously reported CSG rendering algorithms. These form the foundation for our Sequenced

Convex Subtraction (SCS) CSG rendering algorithm presented in the following chapters.

The Goldfeather or Trickle algorithms were devised independently to the OpenGL

graphics architecture, and each pose performance issues in the context of OpenGL 1

graphics hardware. The Goldfeather algorithm relies heavily on depth buffer copying in

OpenGL, leading to revised versions of the algorithm [87, 29] making alternative trade-offs

in order to increase overall performance. The Trickle algorithm relies on functionality not

commonly found in graphics hardware. Limitations and performance characteristics of

graphics hardware is intricately related to the appropriate approach to image-space CSG

rendering for a particular application.

The overall progression in image-space CSG rendering techniques is the use of increas-

ingly sophisticated algorithms. The increasing sophistication of graphics hardware may

lead to even further complexity in approaches to CSG rendering. Alternatively, certain in-

novations may resolve certain bottlenecks and limitations, facilitating simpler approaches

to CSG. In this work we have tended towards relatively sophisticated use of well estab-

lished OpenGL functionality with the aim of maximising performance. With graphics

hardware rapidly evolving the ideal long-term solution to interactive CSG rendering is

not yet clear.

59

Chapter 4

Sequenced Convex Subtraction

Engineering is the professional art of applying science to the optimum conver-

sion of natural resources to the benefit of man.

— Ralph J. Smith

61

4.1 Introduction

This chapter introduces a new algorithm for hardware based image-space CSG rendering

that we call Sequenced Convex Subtraction (SCS). It is based on the subtraction of convex

objects from the z-buffer and linear time intersection of convex objects. The presentation

of SCS is based on our previous publications: A Z-Buffer CSG Rendering Algorithm

for Convex Objects [88] and Linear-time CSG Rendering of Intersected Convex Objects

[89]. We describe the methodology and implementation of the SCS algorithm in the

context of previous CSG rendering algorithms and hardware considerations. Techniques

including image-space convex intersection, convex subtraction, depth complexity sampling

and subtraction sequences are combined to form the SCS multi-pass algorithm for CSG

rendering.

Extensions to the SCS algorithm are discussed in subsequent chapters. Chapter 5

focuses on the sequences used by the SCS algorithm for CSG subtraction. Chapter

6 presents an extension to SCS making use of object-space intersection information to

improve performance. Chapter 7 examines performance aspects of the SCS algorithm.

4.1.1 Previous Algorithms

As described in Chapter 3, previous hardware based CSG rendering algorithms include

the Trickle [28] algorithm and the Goldfeather [36, 37, 97] algorithm. The strategy of

the Trickle algorithm is to sort subtracted objects into volumetric layers from front to

back and to subtract each layer in turn. As the algorithm “trickles” from front to back,

a subtracted layer may reveal a subsequent layer further away from the viewer. Once the

current layer is further than the z-buffer, no subsequent layers that are further away can

be visible to viewer since they are occluded by the z-buffer surface.

The SCS algorithm operates in a similar manner to the Trickle algorithm except that

convex objects are subtracted, rather than sorted image-space layers composed of multiple

convex or concave objects. Instead of sorting convex objects from back to front, a sub-

traction sequence is determined which ensures that the necessary sequence of subtractions

is performed.

The strategy of the Goldfeather algorithm is to clip each object, or each layer of

concave objects in the z-buffer. These clipped z-buffers are then merged into a combined

result, and finally drawn to the colour buffer.

Like previous ones, the SCS algorithm makes use of CSG tree normalisation, the

62

process of converting an arbitrary CSG tree into sum-of-products form. In this way,

intersection and subtraction of objects in each product are resolved by the SCS algorithm,

and products are merged in z-buffer form in a manner similar to the Goldfeather algorithm.

The SCS algorithm is restricted to CSG trees consisting of only convex objects. This

facilitates the use of methods less complicated and more efficient than would be otherwise

possible. However, it requires that concave objects are decomposed into convex compo-

nents by the application, rather then being handled directly by the rendering algorithm.

The Extended Convex Differences Tree (ECDT) CSG approach[72] also requires conver-

sion to a convex representation. The Trickle and Goldfeather approaches handle concave

objects directly, as part of the rendering algorithm. One of the broader considerations in

this work is determining the best arrangement of CPU and graphics hardware computation

for a particular task.

4.1.2 Hardware Considerations

The Trickle algorithm requires the use of multiple depth buffers and multiple simultaneous

z-tests. The front and back surfaces of the current volumetric layer are represented by

separate depth buffer layers. An additional depth buffer and a multiple z-test is used in the

process of determining the front or back surface of the next layer. A fourth depth buffer

is used to represent the final result of the subtracted layers. The OpenGL 1 standard

does not include multiple depth buffers or depth tests. Emulation of these features by

buffer copying and extra passes impacts substantially on the performance of the Trickle

algorithm on current graphics hardware.

The Goldfeather algorithm requires two depth buffers, one for clipping objects and

another for storing the accumulated result. The overhead involved in simulating two

depth buffers can become a bottleneck for OpenGL implementations of the algorithm

[97, 87].

The SCS CSG rendering algorithm aims to achieve improved performance by better

utilising the features and constraints of commodity graphics hardware. The algorithm

was designed with the following assumptions:

• Rasterisation is faster than buffer copying.

• Rasterisation is better supported, more robust and optimised at the driver and

hardware level than is buffer copying.

63

• Rasterisation performance is likely to improve more rapidly than buffer copying

bandwidth.

• Image-space sorting requires O(n2) or O(kn) passes.

• Rendering of individual CSG products has useful applications.

The evolution of graphics hardware has seen consistent emphasis on rasterisation per-

formance in terms of triangles per second, texturing, multi-texturing and programmable

per-pixel shading. While buffer-copying bandwidth has also improved over time, it has

not been considered as important for mainstream applications of graphics hardware such

as games. It appears that the economics of dedicating additional rasterisation features

and performance have been more attractive than increasing the performance of copying

in and out of frame buffer memory.

The SCS algorithm is particularly efficient for rendering individual CSG products since

no buffer copying is required, in contrast to the Trickle or Goldfeather algorithms. This

work was originally motivated by the need to visualise a tool grinding manufacturing pro-

cess that typically involves many subtractions from an initial convex shape. We consider

the SCS approach particularly well suited to this type of application.

Over the longer term graphics hardware functionality is expected to increase and may

become better suited to the Trickle or Goldfeather approaches to CSG rendering. While

the SCS algorithm may also benefit by being extended or enhanced to utilise new hardware

capability, it is hard to predict into the future which algorithmic approach will be best

suited to the hardware of the time.

4.1.3 Presentation of the SCS Algorithm

The following sections describe individual stages of the Sequenced Convex Subtraction

(SCS) image-space CSG rendering algorithm. Section 4.2 introduces the frame buffer

operations utilised by the SCS CSG rendering algorithm. These include intersection of

convex objects, subtraction of convex objects, depth buffer clipping, product merging and

a final pass for lighting and shading. Section 4.3 introduces the sequences of subtraction

that are used by the algorithm as the alternative to depth sorting. These sequences can

be either view-dependent or view-independent. Section 4.4 combines the frame buffer and

subtraction sequence concepts into the overall SCS CSG rendering algorithm.

64

4.2 Frame Buffer Operations

4.2.1 Convex Intersection

CSG products contain at least one intersected primitive, from which other primitives

are subtracted. The first step of the SCS algorithm is to draw the result of intersected

primitives into the z-buffer. Subsequent stages of the algorithm deal with subtraction and

union operations.

The intersection algorithm uses two principles. First, only the furthest front-facing

surface can be volumetrically inside all of the objects. Closer front-facing surfaces cannot

be volumetrically inside more distant objects. Second, the intersection surface must be

in front of n back-facing surfaces. If any back-facing surface is closer than the candidate

z-buffer pixel, then the pixel can not possibly be inside the intersection. Consequently,

if the depth-complexity of a pixel is less than n then it can not possibly be inside all n

objects.

The z-buffer image of a convex CSG intersection can be determined in linear time with

respect to the number of intersected primitives. To begin with, the z-buffer is initialised to

znear, and the stencil buffer reset to zero. The furthest front facing surface is then drawn

Convex Cylinders
A and B

z-buffer

(a)

Draw furthest
front faces

z-buffer

(b)

Count back-facing
surfaces behind

stencil buffer

(c)

Reset pixels where
stencil 6= n

z-buffer

(d)

Figure 4.1: Depth Buffer Convex Intersection

65

into the z-buffer, by rasterising with a z-greater test. The stencil buffer is then used to

count the number of back-facing primitives behind the furthest front facing surface in the

z-buffer. Finally, all pixels that do not have n back-facing surfaces behind the z-buffer

are reset to zfar.

Figure 4.1 illustrates the intersection of two cylinders. The z-buffer illustrated in (b)

is clipped according to the stencil in (c) to produce the depth buffer of the intersected

cylinders in (d). In the z-buffer diagrams grey level indicates depth with znear black and

zfar white. White, red and green denote values of zero, one and two in the stencil-buffer.

The SCS Convex Intersection algorithm is described in Algorithm 4.1. The algorithm

is linear time since each of the front and back facing surfaces of each primitive is drawn

once. In the context of the SCS rendering algorithm it is not necessary to draw the colour

image of the CSG intersection, although the algorithm can be modified to do so.

Our C++ OpenGL implementation appears in Appendix B.3.1. A maximum of 2s−1

surfaces can be counted with an s-bit stencil buffer. On hardware with an 8-bit stencil

buffer, the most common case, the algorithm is therefore limited to 255 intersected objects.

However, the last two passes could be incorporated into a loop to check 2s− 1 surfaces at

a time, at the expense of extra passes. We expect that a limitation of 255 surfaces for an

8-bit stencil is reasonable for most practical purposes.

Algorithm 4.1 SCS Convex Intersection Rendering

Require: Objects are convex
Require: n is the number of intersected objects

for all pixels do
z ← znear

stencil← 0

for all objects O do
for all front fragments Ffront of O do

if Ffront > z then
z ← Ffront

for all objects O do
for all back fragments Fback of O do

if Fback > z then
stencil← stencil + 1

for all pixels do
if stencil 6= n then
z ← zfar

66

4.2.2 Convex Subtraction

Subtracted primitives in a CSG product are handled by sequenced subtraction from the

z-buffer. Each subtraction involves comparing the front and back facing surfaces to the

z-buffer. The z-buffer is updated for each pixel volumetrically inside the subtracted prim-

itive. The algorithm is given in Algorithm 4.2.

Algorithm 4.2 SCS Convex Subtraction Rendering

Require: Object O is convex
Require: z-buffer contains front surface of intersected primitives

for all front fragments Ffront of O do
if Ffront < z then
stencil← 1

else
stencil← 0

for all back fragments Fback of O do
if Fback > z and stencil = 1 then
z ← Fback

Figure 4.2(b–d) illustrate the subtraction of a sphere from a rectangular block in the

z-buffer. The OpenGL stencil buffer is used to flag pixels that are potentially inside the

subtracted sphere. In a subsequent pass the z-buffer at these pixels is replaced with the

back-facing surface of the subtracted sphere, wherever the back surface of the sphere is

further than the depth buffer.

The z-buffer can store only one surface or layer at a time. Occluded cavities can not

be represented. For this reason the SCS algorithm subtracts each primitive more than

once to ensure that cavities revealed by other subtractions are correctly rendered. This

sequenced subtraction approach is further discussed in Section 4.3.

(a)
Draw initial
surface into

z-buffer

(b)
Compare z-buffer
to front and back

surfaces

(c)
Flag pixels inside

volume

(d)
Replace flagged
pixels with back

surface

(e)
Reset regions of

complete
subtraction

Figure 4.2: Depth Buffer Convex Subtraction

67

Our C++ OpenGL implementation appears in Appendix B.3.2. Steps (b–d) of Figure

4.2 are performed for each object in the subtraction sequence. Step (e) of Figure 4.2 is

described in the following section — clipping the result of subtraction against the back

faces of intersected objects, which we term z-buffer clipping.

4.2.3 Z-Buffer Clipping

As illustrated in Figure 4.3(b) the SCS algorithm first puts the front surface of the inter-

sected objects into the z-buffer. In the second stage (c) subtracted objects are processed.

In a third stage (d) the z-buffer is clipped against the back-facing surfaces of the intersected

objects — identifying pixels of “complete subtraction”.

In the z-buffer clipping step, pixels with z values further than any intersected back-

facing surface are reset to zfar. This ensures that all remaining pixels are within the volume

of all the intersected objects in the CSG product. The SCS z-buffer clipping algorithm is

presented in Algorithm 4.3. The back-facing surface of each intersected object is rasterised

and a stencil flag set for fragments closer than the current depth buffer.

So far, rendering a CSG product involves rasterising all of the front-facing surfaces

of intersected objects, performing a sequence of subtractions, then rasterising all of the

back-facing surfaces of intersected objects. The front and back surfaces of intersected

objects are rasterised once, while subtracted objects are rasterised up to n times.

(a)
CSG Product a− b

(b)
Intersection step

(c)
Subtraction step(s)

(d)
Clipping step

Figure 4.3: Z-Buffer Clipping Step of the SCS Algorithm

68

Algorithm 4.3 SCS Z-Buffer Clipping

Require: Objects are convex
Require: Stencil buffer is zero

for all intersected objects I do
if Iback < z then
stencil← 1

for all pixels do
if stencil = 1 then
z ← zfar

stencil← 0

4.2.4 Z-Buffer Merging

Rendering of a CSG product is performed using the single z-buffer available in OpenGL

graphics hardware. Rendering the union of multiple CSG products requires an additional

z-buffer for storing the merged result of individual products. The merging algorithm is

presented in Algorithm 4.4.

The OpenGL API provides two ways of simulating an additional z-buffer. The frame

buffer can be copied into system memory, then later re-rasterised and depth-tested to

merge it with the result of the next product. An alternative is to subdivide the viewport

using half for the current product and then rasterising into the other half with depth-

testing.

Either approach can be problematic, depending on the hardware platform. Copying

between the frame buffer and system memory can be slow due to the limited bandwidth

of the PCI or AGP bus. A round-trip from the z-buffer into system memory and back

again can also result in truncation of precision — the internal graphics hardware z-buffer

representation is not necessarily known to the application. The OpenGL implementation

itself may also be applying conversions to z-buffer data as it is copied.

Copying z-buffer data within the frame buffer can also be slow, and can truncate

precision. In our implementation we found this aspect of graphics hardware one of the

most troublesome. We are optimistic that these issues will be resolved as hardware and

Algorithm 4.4 SCS Z-Buffer Merging

Require: OpenGL z-buffer z
Require: Second z-buffer zmerged

for all pixels do
if z < zmerged then
zmerged ← z

69

drivers evolve and mature.

4.2.5 Z-Buffer Shading and Lighting

The SCS algorithm focuses primarily on forming the depth buffer image of a CSG tree.

The final step is to convert this representation to a fully lit and shaded rendered image

in the colour buffer. This final pass of the SCS algorithm redraws all geometry with a

z-equal depth test and lighting enabled.

The Z-Buffer Shading and Lighting algorithm is presented in Algorithm 4.5, and an

OpenGL implementation is given in Appendix B.1.4. For performance reasons, raster-

isation is constrained to the front-facing surfaces of intersected objects and back-facing

surfaces of subtracted objects. Several CSG object representations are illustrated in Figure

4.4, along with their shaded and lit result.

Algorithm 4.5 SCS Z-Buffer Shading and Lighting

Require: Enable updates to colour buffer
Require: colour is the OpenGL colour buffer

for all intersected primitives I do
for all front facing fragments Ffront of I do

if Ffront = z then
colour ← Ffront

for all subtracted primitives S do
for all back facing fragments Fback of S do

if Fback = z then
colour ← Fback

(a) (b) (c) (d)

Figure 4.4: Z-Buffer Lighting and Shading

70

4.3 Subtraction Sequences

Subtraction sequences need to handle depth dependencies between subtracted primitives

in the product. If a and b are overlapping subtracted primitives, subtracting a may reveal

b or subtracting b may reveal a, depending on the viewing direction. The sequence needs

to allow for both possibilities to ensure the correctly rendered result. The subtraction

sequence aba incorporates both ab and ba without needing to know if a is in front or

behind of b.

Figure 4.5 illustrates the subtraction of two cylinders in three subtraction steps. In

Figure 4.5(c) a is subtracted, followed in Figure 4.5(d) by b. The subtraction of b reveals

surfaces of a which can only be determined by subtracting a again in Figure 4.5(e). For any

viewing direction or configuration of two subtracted primitives, the sequence x−a− b−a
ensures that both possible dependencies are correctly handled. The sequence x− b−a− b
also does.

Permutation Embedding Sequences [35] (PES) have the property that all n! permuta-

tions of n objects are embedded. A sequence is embedded if it can be formed by deleting

entries. For example, cab is embedded in the sequence abcbabc: ??c?ab?. Permutation

embedding sequences of length O(n2) can be easily obtained by methods[88] described in

the following sections. Sequences of shorter and shortest length are the focus of Chapter

5.

4.3.1 View Independent Sequences

This section describes a simple method for constructing a view independent permutation

embedding sequence, given n subtracted objects in a scene. The sequence is said to be

view independent because it may be used from any viewing direction. The next section

examines view dependent permutation embedding sequences that may be shorter but must

be regenerated for each viewing direction.

(a)
CSG Tree

(b)
x

(c)
x− a

(d)
x− a− b

(e)
x− a− b− a

Figure 4.5: Subtraction Sequence for Two Objects

71

Sequence encoding uses a permutation denoted s1. Concatenation of n copies of s1

results in a sequence embedding every permutation. The length of these sequences is n2.

For example:

n = 2, s1 = ab

s1 · s1 → ab ab → abab

n = 3, s1 = abc

s1 · s1 · s1 → abc abc abc → abcabcabc

n = 4, s1 = abcd

s1 · s1 · s1 · s1 → abcd abcd abcd abcd → abcdabcdabcdabcd

A shorter sequence can be obtained by alternating between s1 and s2, where s2 is the

reversal of s1. At each boundary between s1 and s2 the repeated entries can be collapsed

into one. The length of these sequences is n2 − n+ 1.

For example:

n = 2, s1 = ab, s2 = ba

s1 · s2 → ab ba → aba

n = 3, s1 = abc, s2 = cba

s1 · s2 · s1 → abc cba abc → abcbabc

n = 4, s1 = abcd, s2 = dcba

s1 · s2 · s1 · s2 → abcd dcba abcd dcba → abcdcbabcdcba

While this approach to permutation embedding sequence construction is straight for-

ward, shorter sequences can be constructed using other methods [14, 35, 83] described in

Chapter 5. The length of sequences using these other methods is n2 − 2n+ 4.

4.3.2 View Dependent Sequences

The depth complexity of a scene is the maximum number of objects covering an individual

pixel, as previously discussed in Section 3.4.1. By determining the depth complexity of a

scene from a particular viewing direction, a shorter view dependent subtraction sequence

can be used rather than a view independent sequence.

Denoting k as the maximum number of subtracted objects overlapping any pixel,

subtraction sequences of O(kn) length can be used, rather than O(n2). In the best case

k = 1, and for convex objects in the worst case k = n. Therefore, the advantage of view

72

(a)
k = 2

(b)
k = 4

(c)
k = 8

(d)
k = 11

Figure 4.6: Depth Complexity of CSG Cheese Model with 50 Holes

dependent subtraction sequences depends on the particular arrangement of objects and

the viewing direction. Whilst view dependent subtraction sequences may be shorter and

are never longer than a view independent sequence, there may be additional overhead

involved in sampling the depth complexity in order to determine them.

Figure 4.6 illustrates a procedural swiss cheese CSG model with 50 holes of varying

size. As the holes become larger from (b) to (d), overlap between holes and the depth

complexity increases, resulting in longer view dependent subtraction sequences.

Figure 4.7 illustrates the depth complexity of a simulated 3-axis milling model from

different viewing directions. Viewed from above in (a) the depth complexity is 5, while

viewed from the side in (d) the depth complexity is 14.

The following method for constructing view dependent subtraction sequences extends

the view independent method from the previous section. As previously, two permutations

s1 and s2 are used with s2 being the reversal of s1. The sequence is formed by k alter-

nating copies of s1 and s2 with repeated entries between adjacent copies collapsed. All

k-permutations are embedded — the permutations of k selections from n objects.

73

(a)
k = 5

(b)
k = 7

(c)
k = 10

(d)
k = 14

Figure 4.7: Depth Complexity of Milling Model from Different Viewing Directions

For example:

n = 3, k = 2, s1 = abc, s2 = cba

s1 · s2 → abc cba → abcba

n = 4, k = 2, s1 = abcd, s2 = dcba

s1 · s2 → abcd dcba → abcdcba

n = 4, k = 3, s1 = abcd, s2 = dcba

s1 · s2 · s1 → abcd dcba abcd → abcdcbabcd

Methods for determining view-dependent sequences of length kn−2k+4 are examined

in Chapter 5. In Chapter 6 it is shown that even shorter subtraction sequences can be

constructed using information about the spatial overlap of subtracted objects.

74

4.4 SCS Algorithm

4.4.1 Complete Algorithm

In previous sections the image-based algorithms for CSG intersection, subtraction and

depth buffer clipping were described. Here these are combined into the overall Sequenced

Convex Subtraction (SCS) CSG rendering algorithm which renders a CSG tree in sum-

of-products form using the OpenGL graphics pipeline.

Each CSG product in the sum is processed in a separate pass. Initially, the intersected

objects in the product are drawn into the OpenGL depth buffer, as described in Section

4.2.1. Then the subtracted objects in the product are subtracted sequentially as described

in Section 4.2.2 using a sequence as discussed in Section 4.3. The depth buffer is then

clipped against the back faces of the intersected objects, as described in Section 4.2.3. If

necessary, the depth buffer is finally merged with the result of the previous CSG products

as described in Section 4.2.4. Once the depth buffer of the CSG tree has been determined,

the shaded and lit result is drawn into the colour buffer, as described in Section 4.2.5.

The complete algorithm is presented in Algorithm 4.6. The second depth buffer is

only necessary if there is more than one CSG product to be processed.

Algorithm 4.6 SCS CSG Rendering

Require: Objects are convex
Require: CSG tree in sum-of-products form
Require: Colour buffer: colour
Require: Primary z-buffer: z
Require: Secondary z-buffer: zmerged

[Clear the frame buffer]

colour ← background colour
zmerged ← zfar

[Loop over products]

for all CSG products do
do SCS convex intersection [Algorithm 4.1]
determine subtraction sequence
do SCS convex subtraction [Algorithm 4.2]
do z-buffer clipping [Algorithm 4.3]
merge z into zmerged [Algorithm 4.4]

[Convert z-buffer to colour buffer — Algorithm 4.5]

do depth buffer shading and lighting

75

4.4.2 Example

The overall strategy of the SCS CSG rendering algorithm is illustrated in Figure 4.8 and

Figure 4.9. For illustrative purposes, a simple CSG machine tool is composed of two

cylindrical sections, a conical tip and two helical swept volumes decomposed into convex

segments. The helical volumes correspond to the volume that would be subtracted by the

movement of a cutting tool over time.

In normalised form, the CSG model consists of three products, each composed of

subtractions of convex objects from a convex segment of the initial shape. Each product

is processed by the SCS algorithm in a separate pass, as illustrated in Figure 4.9. In each

pass, (a) the z-buffer intersection is formed in the depth buffer, (b) a subtraction sequence

is determined and subtractions are performed on the depth buffer, (c) the depth buffer

is clipped against the back-faces of the intersecting objects, and (d) the product depth

buffer is merged with the cumulative result of other product passes. Finally in (e), the

combined depth buffer is lit and shaded by redrawing all the geometry with a GL EQUAL

depth test.

This strategy for assembling the final sum-of-products result resembles the Goldfeather

algorithm as previously described in Section 3.5.1 and illustrated in Figure 3.6. While the

Goldfeather algorithm clips and merges each shape in each product, the SCS algorithm

only performs one merge per product. The performance implications of this are examined

in Chapter 7.

(a) x (b) x ∪ y (c) x ∪ y ∪ z

(d) Subtracted Volumes (e) Convex Subtracted Objects (f) CSG Rendered
a ∪ b ∪ c ∪ · · · (x ∪ y ∪ z)− (a ∪ b ∪ c ∪ · · ·) Result

Figure 4.8: CSG Machine Tool Example

76

(a) Intersection (b) Subtraction (c) Clipping (d) Merging

1st product

→ → →
↓

2nd product

→ → →
↓

3rd product

→ → →
↓

(e) Lighting &
Shading

Figure 4.9: Operation of the SCS CSG Rendering Algorithm

4.4.3 Discussion

This chapter has introduced the foundational concepts of the SCS approach to CSG ren-

dering. The CSG tree is converted into a sequence of convex subtraction steps, optionally

incorporating view-dependent information. The per-pixel visible surface of the CSG tree is

determined using graphics hardware implementations of convex intersection, subtraction,

z-buffer clipping, merging and shading operations.

Important components of our C++ implementation of the SCS rendering algorithm

appear in Appendix B and online [8]. A number of supporting routines and classes are

not included for the sake of brevity, but their purpose should be clear from the context.

Low-level and hardware specific issues are also discussed in the Appendix.

77

Chapter 4 explores theoretical aspects of the subtraction sequences used in the SCS

approach. Chapter 5 considers the use of object overlap information for the reduction

of subtraction sequence length. Performance aspects of our implementation of SCS and

Goldfeather algorithms are the focus of Chapter 7.

78

Chapter 5

Permutation Embedding Sequences

“The challenge of combinatorial optimisation is to develop algorithms for

which the number of elementary computational steps is acceptably small. If

this challenge is not of interest to “mathematicians” it most certainly is to

computer scientists. Moreover, the challenge will be met only through study

of the fundamental nature of combinatory algorithms and not by any conceiv-

able advance in computer technology.” [57]

— E. Lawler

79

5.1 Introduction

The Sequenced Convex Subtraction (SCS) CSG rendering algorithm utilises Permutation

Embedding Sequences (PESs) for z-buffer subtraction of convex objects. Sequences embed-

ding all n! permutations of n objects are O(n2) in length. This chapter focuses on several

aspects of PESs including the mathematical formulation, related problems, methods of

generation, shortest length sequences and techniques for efficient exhaustive computer

search.

This chapter explores the notion of shortest length subtraction sequences for the SCS

algorithm in order to maximise performance. A key outcome of this work is a complete

set of shortest length subtraction sequences for n ≤ 5. An efficient exhaustive approach

has been unable to determine subtraction sequences shorter than n2−2n+ 4 as produced

by previously reported methods [14, 35, 83]. Another outcome of this work is an O(n2)

lower bound for PES length.

A PES embeds permutation sequences. A sequence is said to be embedded if it can be

formed by removing entries. For example, the sequences ab and ac are embedded in abc.

Neither ba or ca are embedded in abc. Subtraction sequences embedding all permutations

are utilised by the SCS algorithm to ensure that all sequences of necessary subtractions

are correctly handled.

Utilisation of a PES for CSG rendering poses several issues. The length of a subtrac-

tion sequence determines the number of subtraction steps and consequently, the required

computation time for the SCS algorithm. The asymptotic relationship between the num-

ber of subtracted convex objects n and the PES length is O(n2). Consequentially, the

time requirement for the SCS algorithm is O(n2). Another aspect is the need to construct

a PES given a particular CSG tree and spatial arrangement. Several previous methods

for generating PESs of length n2, n2 − n + 1 and n2 − 2n + 4 are examined. Taking

depth complexity into account, PESs may be generalised to k-Permutation Embedding

Sequences (kPESs) of length kn, kn− k+ 1 and kn− 2k+ 4. Methods for determining a

shortest length PES or kPES are examined.

To conclude this chapter, several unresolved issues and possible future directions are

discussed.

This chapter is based in part on our publication On Minimal Strings Containing the

Elements of Sn by Decimation [30].

80

5.1.1 Formulation

The set of n elements {x1, x2, · · · , xn} is denoted An. Sn is the set of permutations of

An. The number of permutations |Sn| is n!. The set of Permutation Embedding Sequence

(PESs) is denoted L(n). A PES of length m is denoted Lm where Lm ∈ L(n) and

m = |Lm|. A sequence x is embedded in (or is a subsequence of) the sequence y iff

x = {x1 x2 · · · xn} and y = { · · · x1 · · · x2 · · · ... · · · xn · · · }.

5.1.2 Properties of L(n)

Several properties of PESs are of interest.

1. There are infinite PESs for finite n: |L(n)| =∞

From any PES Lm ∈ L(n), it is possible to construct another PES by inserting

additional entries. For example: abca and abcb both embed abc — and therefore

embed the embedded permutations of abc.

2. A lower bound for the length of a PES is n: |Lm| ≥ n

A sequence of length n can embed at most one permutation. For example, a embeds

a, but ab or ba can not embed both ab and ba.

3. A upper bound for the shortest length PES is n2: |Lm| ≤ n2

A PES formed by concatenation of n permutations embeds all permutations, since

each permutation embeds all n elements. For example: abab embeds both ab and

ba since both a and b are embedded in each copy of ab.

4. A PES contains all n elements at least once.

Since a permutation consists of all n elements a sequence can only embed permuta-

tions if all n elements are present.

5. Repetition in a PES is redundant: Lm = { · · · x x · · · } → Lm−1 = { · · · x · · · }

A repetition of an entry in a PES is unnecessary since no such repetition occurs in

any permutation. For example: abba embeds the same permutations as aba — ab

and ba.

81

6. PES in normalised form: { c b a } → { a b c }

Each sequence of n elements has n! − 1 alternative representations by relabelling.

For example: abc, acb, bac, bca, cab and cba can all be relabelled to abc. Sequences

expressed in normalised form are considered representative of the n!−1 alternatives.

5.1.3 Shortest Length PES Examples

Shortest length PESs for n = 2 and n = 3 are provided here as examples. Removed

elements are denoted ‘?’.

n = 2 n = 3

L3 = aba L7 = abcacba

ab → ab? abc → abc????
ba → ?ba acb → a?c??b?

bca → ?bca???
bac → ?b?ac??
cab → ??ca?b?
cba → ??c??ba

∴ S2 are embedded in aba ∴ S3 are embedded in abcacba

No shorter sequences have been found by exhaustive automated search. Additional

shortest length PESs are discussed in Section 5.4.8 and appear in Table 5.7.

5.2 Related Mathematical Problems

In relation to Permutation Embedding Sequences, we introduce related mathematical

problems such as de Bruijn Sequences [21] and Ouroborean Rings [86]. These sequences

are similar to PESs except that permutations are contiguously embedded. These se-

quences are not useful as CSG subtraction sequences due to their excessive length. We

discuss them for the purpose of placing PESs in a broader mathematical context.

5.2.1 de Bruijn Sequences

A binary de Bruijn sequence is a periodic binary sequence with a period of 2k bits

a1a2 · · · a2k , such that each binary string of size k is somewhere in the sequence contigu-

ously. Generalising, n-ary de Bruijn sequences with a period of nk contain each sequence

of n objects of length k contiguously. A cycle of several de Bruijn sequences is given in

Table 5.1.

82

Definition: Suppose n and k are positive integers. An n-ary de Bruijn sequence

of span k is a n-ary cycle of period nk containing nk distinct k-tuples in each cycle.

Equivalently, every possible n-ary k-tuple occurs precisely once in a period of the n-ary de

Bruijn sequence of span k.[21]

n k de Bruijn sequence cycle length
2 1 ab 2
2 2 aabb 4
2 3 aaababbb 8
2 4 aaaabaabbababbbb 16
3 1 abc 3
3 2 aabacbbcc 9
3 3 aaabaacabbabcacbaccbbbcbccc 27
4 1 abcd 4
4 2 aabacadbbcbdccdd 16
4 3 aaabaacaadabbabcabdacbaccacdadbadcaddbbbcbbdbccbcdbdcbddcccdcddd 64
5 1 abcde 5
5 2 aabacadaebbcbdbeccdceddee 25

Table 5.1: de Bruijn Sequences

The embedding of n-ary k-tuple in a de Bruijn sequence for n = 3, k = 2 is demon-

strated here as an example.

sequence = aabacbbcc aabacbbcc ..

aa → aa??????? ..
ab → ?ab?????? ..
ba → ??ba????? ..
ac → ???ac???? ..
cb → ????cb??? ..
bb → ?????bb?? ..
bc → ??????bc? ..
cc → ???????cc ..
ca → ????????c a..

5.2.2 Ouroborean Rings

Sequences of minimal length containing every possible n-ary k-tuple contiguously have

been called Ouroborean Rings by Ian Stewart [86]. The word Ourobouros comes from

an ancient Egyptian representation of a snake swallowing its tail and has a particular

meaning in ancient alchemical works. The first algorithm to generate an Ouroborean ring

83

was offered by Flye-Sainte Marie in the 19th century [60]. These sequences are also known

as full length nonlinear shift register cycles [34].

An Ouroborean ring is constructed from a de Bruijn sequence. The Ouroborean ring

is a de Bruijn sequence cycle, followed by the first k− 1 entries in the de Bruijn sequence

[61, 39, 55]. The length of the Ouroborean ring is therefore nk + k − 1. Several example

Ouroborean rings are listed in Table 5.2.

n k de Bruijn sequence cycle Ouroborean ring
2 2 abba abba a
2 3 abbbabaa abbbabaa ab
3 2 aabacbbcc aabacbbcc a
3 3 aaabbbcccbcbbaccacbabcabaac aaabbbcccbcbbaccacbabcabaac aa
4 2 aabacadbbcbdccdd aabacadbbcbdccdd a

Table 5.2: Ouroborean Rings

An important application of these sequences in cryptography is the generation of

pseudo-random binary sequences of maximal length [38, 12]. Other applications have

been described [34, 85, 86].

5.2.3 Baltimore Hilton Inn Problem

Ouroborean Rings can be applied to the cryptographic problem of the Baltimore Hilton

Inn [34, 41]. The problem is concerned with a cipher lock system using a 4 digit decimal

code. There are 10, 000 possible codes for the lock. A naive attack on the lock, trying each

possible code in turn, requires 40, 000 keypresses at most. Since the lock opens whenever

the most recent 4 digits match the code, an Ouroborean sequence can be used instead —

requiring only 10,003 keypresses.

5.2.4 Ouroborean Ring PESs

Since Ouroborean rings contain all k-tuples contigously, they are also embedding se-

quences for k-permutations. The length of these PESs can be optimised somewhat by

removing immediately repeated entries. (Property 5.1.2.5)

Figure 5.1 illustrates Ouroborean rings condensed into PESs for n = 2 and n = 3.

As it happens, aba is a shortest length PES for n = 2, but abcbcbacacbabcabaca is not

shortest for n = 3. A shortest length PES for n = 3 is abcabac.

Ouroborean rings are permutation embedding sequences, of O(nn) length in general.

Although they could be used by the SCS CSG rendering algorithm, O(n2) length PESs

84

are preferable due to their shorter length. In CSG rendering, contiguous embedding of

permutations is unnecessary for correct handling of subtractions.

n,k Ouroborean Ring Permutation Embedding Sequence
2 abbaa aba
3 aaabbbcccbcbbaccacbabcabaacaa abcbcbacacbabcabaca

Figure 5.1: Ouroborean Ring Permutation Embedding Sequences

5.3 PES Generation

This section focuses on the problem of generating PESs given a number of symbols n.

We describe a simple method for determining sequences of length n2 − n + 1. More

sophisticated methods [56, 14, 35] can be used to obtain sequences of length n2 − 2n+ 4

for n ≥ 4. In the context of CSG rendering we are also interested in kPESs — sequences

embedding all k-permutations of n elements. By determining the depth complexity k

a kPES can be used rather than a PES, resulting in shorter subtraction sequences and

faster rendering. Depth complexity was discussed previously in Section 3.4.1 and Section

4.3.2.

5.3.1 PESs of Length n2

A simple way to generate permutation embedding sequences is by concatenating n per-

mutations si, where si ∈ Sn and 1 ≤ i ≤ n. Denoting ‘·’ as the concatenation operator:

s1 · s2 · ... · sn is a permutation embedding sequence. Each si is a permutation of n

elements, therefore embedding all n elements. The jth entry of every permutation is

therefore embedded in sj. Since 1 ≤ i ≤ n and 1 ≤ j ≤ n, these sequences are PESs. The

length of these PESs is n2 since the length of si is n and there are n of them concatenated

together. Generalising to k-permutations results in kPESs of length kn: s1 · s2 · ... · sk.

5.3.2 PESs of Length n2 − n+ 1

The previous method can be refined by using Property 5.1.2.5, removing immediately

repeated entries. The sequence of permutations, si for 1 ≤ i ≤ n can be chosen so that

neighbouring permutations share the same element.

For example, sx and sy can be chosen such that sy is the reversal of sx. The embedding

sequence is formed by alternating between sx and sy, and removing the repeated entry at

85

each boundary. That results in n−1 entries being removed and a PES of length n2−n+1.

• n = 2, sx = ab and sy = ba

sx · sy → ab · ba → aba

• n = 3, sx = abc and sy = cba

sx · sy · sx → abc · cba · abc→ abcbabc

Generalising to k-permutations results in kPESs of length kn− k + 1:

• n = 4, k = 2, sx = abcd and sy = dcba

sx · sy → abcd · dcba → abcdcba

• n = 4, k = 3, sx = abcd and sy = dcba

sx · sy · sx → abcd · dcba · abcd→ abcdcbabcd

5.3.3 Adleman Sequence of Length n2 − 2n+ 4

A three step method for constructing a PES of length n2− 2n+ 4 was given by Adleman

[14] in 1974.

1. Begin with a sequence of length n2−3n+4 by repeating the sequence x1x2 · · ·xn−1.

2. Insert the nth symbol xn after the ith occurrence of the symbol xn−i for all i,

1 ≤ i ≤ n− 2.

3. Insert the nth symbol xn at the beginning and end of the sequence.

For example:

• n = 3

1. abab

2. abcab

3. cabcabc

?abc??? ?a?c?b?
??b?a?c ??bca??
cab???? c?b?a??

∴ S3 are embedded in cabcabc

86

• n = 4

1. abcabcab

2. abcdabdcab

3. dabcdabdcabd

?abcd??????? ??b??a??c??d ???c?abd???? dabc????????
?ab?d???c??? ??b??a?dc??? ???c?a?d??b? da?c??b?????
?a?c??bd???? ??bc?a?d???? ???c??b??a?d d?b??a??c???
?a?cd?b????? ??bcda?????? ???c??bd?a?? d?bc?a??????
?a??d?b?c??? ??b?da??c??? ???cdab????? d??c?ab?????
?a??d???c?b? ??b?d???ca?? ???cd?b??a?? d??c??b??a??

∴ S4 are embedded in dabcdabdcabd

These sequences are PESs. A proof by induction for n ≥ 3 is provided in the original

paper [14]. Our C++ implementation of the algorithm is included in Appendix B.4.1.

An alternative formulation resulting in essentially the same sequences was described

by Koutas and Hu [56] in 1975.

5.3.4 Galbiati Sequence of Length n2 − 2n+ 4

Another method for constructing a PES of length n2−2n+4 was given in 1976 by Galbiati

and Preparata [35].

1. The n elements are partitioned into two sets: { a, b, c, d } and U = An−{ a, b, c, d }.

2. U also denotes an arbitrary permutation of the elements of U .

3. The sequences bcdbcd · · · and aUaU · · · are interleaved in the following manner:

b c d b c d b c d b · · ·
a U a U a U a U a U · · ·

→ b a c U d a b U c a d U b a c U d a b U · · ·
Segment 1 Segment 2 Segment 3 Segment 4 · · ·

The combined sequence contains a prefix of three elements and n − 1 segments of

length n− 1. The total length is therefore 3 + (n− 1)2 = n2 − 2n+ 4.

87

For example:

• n = 4

{ a, b, c, d } and U = { }
bac|dab|cad|bac
bacdabcadbac

?a???bc?d??? bacd???????? ??c?ab??d??? ???dabc?????
?a???b??d??c ba?d??c????? ??c?a???d??c ???da?c??b??
?ac??b??d??? b?c?a???d??? ??c??b?ad??? ???d?b?a???c
?acd?b?????? b?cda??????? ??c??b??d?a? ???d?bca????
?a?d?bc????? b??da?c????? ??cdab?????? ???d??ca?b??
?a?d??c??b?? b??d??ca???? ??cd?b?a???? ???d??c??ba?

∴ S4 are embedded in bacdabcadbac

• n = 5

{ a, b, c, d } and U = { e }
bac|edab|ecad|ebac|edab
bacedabecadebacedab

A proof by induction that these sequences are PES for n ≥ 4 is provided in the original

paper [35]. It follows from the proof that the first kn−k+1 elements are kPESs. However,

this is no shorter than the sequences previously formulated in Section 5.3.2, which are

known not to be shortest length in general. The shortest length kPES given in Table 5.8

for n = 5, k = 4 is 16 while kn− k + 1 = 17. The next section discusses kPES sequences

of length kn− 2k + 4.

A C++ implementation of the Galbiati PES algorithm is included in Appendix B.4.2.

88

5.3.5 Savage Sequence of Length kn− 2k + 4

The first paper to focus on sequences embedding all k-permutations (kPESs) was by

Savage [83] in 1982. A method of construction similar to Adleman [14] results in sequences

of length kn − 2k + 4 for 3 ≤ k ≤ n and in the special case that k = n, the method is

essentially equivalent to Adleman, resulting in sequences of length n2 − 2n+ 4.

1. The n elements are partitioned into two sets: α = { a, b, · · · , xk−1} and β =

{xk, · · · , xn}.

2. α forms a recurring sequence A = ab · · ·xk−1ab · · · of length k2 − 3k + 4.

3. β forms a sequence B = xk · · ·xn.

4. Insert B after the ith occurance of the (k − i)th symbol xk−i in A for all i,

1 ≤ i ≤ k − 2.

5. Insert B at the beginning and end of the sequence.

For example:

• n = 3, k = 3

1. α = { a, b }, β = { c }

2. A = abab

3. B = c

4. abcab

5. cabcabc

The sequence cabcabc is the same sequence produced by the Adleman method

demonstrated for n = 3 in Section 5.3.3.

89

• n = 4, k = 3

1. α = { a, b }, β = { c, d }

2. A = abab

3. B = cd

4. abcdab

5. cdabcdabcd

??abc????? ??ab?d???? ??a?c??b?? ??a?cd???? ??a??d?b?? ??a??d??c?
???b??a?c? ???b??a??d ???bc?a??? ???bcd???? ???b?da??? ???b?d??c?
c?ab?????? c?a?c????? c??b??a??? c??b?d???? cda??????? cd?b??????
?dab?????? ?da?c????? ?d?b??a??? ?d?bc????? ?d??c?a??? ?d??c??b??

5.4 Shortest Length PES

In previous sections several PES encoding methods have been described. These include

the Galbiati [35] sequences of length n2 − 2n + 4 and Savage [83] sequences of length

kn−2k+4. Although there are no known methods for producing a PES of shorter length,

no proof of optimality has been given. It is not known if PESs of shorter length exist, or

can be constructed systematically. This section examines the prospect of determining the

shortest possible permutation embedding sequences.

First, several foundational concepts are formulated which aim to minimise the time

required by a computer to exhaustively search for PESs or kPESs. A full set of shortest

length PESs is presented for computationally manageable configurations. The results

indicate that the Adleman [14], Galbiati [35] and Savage [83] methods are shortest length

for n ≤ 5, since exhaustive search has not resulted in the finding of any sequences of shorter

length. Therefore, this work adds support to the understanding of SCS Subtraction

sequences being O(n2) or O(kn) in length, as implied by previous work.

5.4.1 Brute Force Search

Brute force search (or exhaustive search) is a very general purpose computer science

problem solving approach. It involves generating each potential solution candidate and

checking whether the candidate is satisfactory. In this manner a solution will always

be found, if it exists. It also has the advantage of being simple to implement. The

cost of this approach is proportional to the number of candidate solutions, which can

grow rapidly as the size of the problem increases. One approach to resolving this issue

90

of “combinatorial explosion” is to reduce the search space size, in the hope of making

it practical for exhaustive search. The search space size could be reduced by excluding

unsatisfactory candidates without generating or testing them. The search space size

could also be reduced by consolidating groups of candidate solutions into representative

candidates by means of equivalence or symmetry. Another approach to the search space

size problem is to test the more promising candidate solutions first, in the hope of a

solution being found early.

Our approach in this work is to use exhaustive search of sequences to determine if

PESs or kPESs exist (or do not exist) of a particular length. We reduce the search space

significantly by using Normalised No Repeat (NNR) sequences, rather than all nl sequences

of a particular length l. The cost of testing each candidate sequence is proportional to the

number of embedded permutations: O(n!) or O(n!
(n−k)!

). A brute force approach without

using NNR sequences would require O(nln!) or O(nln!
(n−k)!

) time.

For example, for n = 5, l = 19 there are nl = 519 = 19, 073, 486, 328, 125 candidate

sequences. The NNR search space is only 2, 798, 806, 985 — approximately seven thousand

times smaller.

5.4.2 Normalised No Repeat (NNR) Sequences

The size of the search space can be reduced by constraining sequences to those having

known characteristics of shortest length solutions. Properties 4, 5 and 6 from Section

5.1.2 can be combined to form what we call the Normalised No Repeat (NNR) search

space. NNR constrains sequences to those:

• Containing all n elements at least once — according to Property 4 a sequence cannot

be permutation embedding without containing all n elements.

• Containing no adjacent repetitions of elements — according to Property 5 no short-

est length PES will contain adjacent repetition of an element.

• We call normalised sequences — according to Property 6. Normalised sequences

have the first a somewhere to the left of the first b, the first b somewhere to the left

of the first c, and so on. Normalised sequences are representative of n! − 1 other

equivalent sequences that do not need to be considered for the purpose of exhaustive

search.

91

5.4.3 NNR Generation

For the purpose of exhaustive search of candidate sequences it is necessary to determine

all NNR sequences of a particular length. The permutation embedding properties of each

NNR sequence is tested in turn.

A recursive algorithm for generating the NNR search space is given in Algorithm 5.1.

The NNR sequence is constructed from left to right by appending entries from either the

active set or waiting set. The active set contains elements already present in the sequence,

while the waiting set contains elements not yet in the sequence but which must appear

at least once. Initially the active set is empty and the waiting set contains all n elements,

in order. Elements are moved from the waiting set to the active set as the algorithm

proceeds.

Algorithm 5.1 NNR Generation

Require: n is the number of elements
Require: l is the sequence length

active← { }
waiting ← { a, b, c, · · · , xn}
sequence← { }

if |sequence| = l then
output sequence

else

if |waiting| > 0 then
x← left-most element in waiting
return generate(active ∪ x , waiting − x , sequence · x)

if |active| > 0 and |sequence|+ |waiting| < l then
for all x ∈ active do

if x 6= right-most element in sequence then
return generate(active , waiting , sequence · x)

The algorithm is recursive with a base case and two recursive cases. In the base case,

if the sequence is of sufficient length it is output by the algorithm. In the first recursive

case, the next item from the waiting set is appended to the sequence and moved to the

active set. In the second recursive case, each item in the active set is appended to the

sequence, except the current right-most element of the sequence. The active set is only

used while there remains enough space in the sequence for the remaining waiting items.

92

In this manner the following properties are ensured:

• All n elements are present in the sequence. (Section 5.1.2, Property 4)

• There is no adjacent repetition of any element. (Section 5.1.2, Property 5)

• The sequence is normalised. (Section 5.1.2, Property 6)

The complete NNR search space for several example configurations is presented in

Table 5.3, with permutation embedding NNR sequences appearing in bold. For one

element there is only one possible NNR sequence: a. For n = 1, l > 1 it is impossible to

form an NNR sequence without repeating a. For two elements there is one NNR sequence

for l ≥ 2 formed by alternating a and b, with aba the shortest length PES. For three

elements there are seven shortest length PESs of the thirty one NNR sequences of length

seven. For four elements there are no PESs for NNR sequences of length four, five or six.

As shown in following sections, the shortest length PES for n = 4 is l = 12 in a NNR

search space of 28, 501 sequences. For five elements, the shortest length PES is l = 19 in

a NNR search space of 2, 798, 806, 985 sequences.

The number of NNR sequences |Ω|, and the total number of sequences are given in the

rightmost columns. It can be observed that the number of possible NNR sequences of a

particular length is substantially less than nl. In practice, it is much more computationally

efficient to generate and test each NNR sequence than all possible sequences of the same

length.

The following sections formulate a way of calculating the number of NNR sequences of

a particular length, and from this, a method for determining individual NNR sequences

in a non-recursive manner.

93

n l Ω |Ω| nl

1 1 a 1 1
2 2 ab 1 4
2 3 aba 1 8
2 4 abab 1 16
2 5 ababa 1 32
3 3 abc 1 27
3 4 abca abcb abac 3 81
3 5 abcab abcac abcba abcbc abaca 7 243

abacb ababc
3 6 abcaba abcabc abcaca abcacb abcbab 15 729

abcbac abcbca abcbcb abacab abacac
abacba abacbc ababca ababcb ababac

3 7 abcabab abcabac abcabca abcabcb abcacab 31 2187
abcacac abcacba abcacbc abcbaba abcbabc
abcbaca abcbacb abcbcab abcbcac abcbcba
abcbcbc abacaba abacabc abacaca abacacb
abacbab abacbac abacbca abacbcb ababcab
ababcac ababcba ababcbc ababaca ababacb
abababc

4 4 abcd 1 256
4 5 abcda abcdb abcdc abcad abcbd 6 1024

abacd
4 6 abcdab abcdac abcdad abcdba abcdbc 25 4096

abcdbd abcdca abcdcb abcdcd abcada
abcadb abcadc abcabd abcacd abcbda
abcbdb abcbdc abcbad abcbcd abacda
abacdb abacdc abacad abacbd ababcd

5 5 abcde 1 3125
5 6 abcdea abcdeb abcdec abcded abcdae 10 15625

abcdbe abcdce abcade abcbde abacde
5 7 abcdeab abcdebc abcdecd abcdede abcdeac 65 78125

abcdebd abcdece abcdeda abcdead abcdebe
abcdeca abcdedb abcdeae abcdeba abcdecb
abcdedc abcdaea abcdbea abcdcea abcdaeb
abcdbeb abcdceb abcdaec abcdbec abcdcec
abcdaed abcdbed abcdced abcdabe abcdbce
abcdcde abcdace abcdbde abcdcae abcdade
abcdbae abcdcbe abcadea abcbdea abcadeb
abcbdeb abcadec abcbdec abcaded abcbded
abcadae abcbdae abcadbe abcbdbe abcadce
abcbdce abcabde abcbcde abcacde abcbade
abacdea abacdeb abacdec abacded abacdae
abacdbe abacdce abacade abacbde ababcde

Permutation embedding sequences appear in bold.

Table 5.3: Example NNR Sequences

94

5.4.4 NNR Size

The size of an NNR search space Ω, denoted |Ω| can be represented with the following

recursive definition, denoting n as the number of elements and l as the length of the

sequence:

|Ω(n, l)| = (n− 1)× |Ω(n, l − 1)|+ |Ω(n− 1, l − 1)| (5.1)

With the following base cases:

n = 1, l = 1 → |Ω| = 1 (5.2)

n > 1, l = 1 → |Ω| = 0 (5.3)

n = 1, l > 1 → |Ω| = 0 (5.4)

It follows that:

l = n → |Ω| = 1 (5.5)

l < n → |Ω| = 0 (5.6)

The two recursive cases in Equation 5.1 are as follows: the number of NNR sequences

of length l− 1 times the n− 1 possible ending entries, and the number of NNR sequences

of length l − 1 of n− 1 entries with the nth entry appended.

The size of various NNR search spaces |Ω| is provided in Table 5.4, with Ω containing

shortest length PESs appearing in bold. For shortest length PESs, |Ω| increases rapidly:

1, 1, 31, 28501, 2798806985 for n = 1, 2, 3, 4, 5. As a fraction of the total number of se-

quences: |Ω|
nl = 1, 0.125, 0.014, 0.0017, 0.00015. In the context of exhaustive search this

indicates that |Ω| is a decreasing fraction as n and l increase: lim
n,l→∞

|Ω|
nl = 0.

Algorithm 5.2 is an efficient algorithmic approach to calculating the size of an NNR

search space. The algorithm requires O(nl) time and O(n) storage. In effect, a subset of

the complete NNR size table is computed (as in Table 5.4) while storing only two rows

in memory at a time. A C++ implementation appears in Appendix B.5.1. An arbitrary

precision Integer class is used for intermediate values and output, since the number of

possible NNR sequences can become extremely large for relatively small n and l. As an

example, for n = 7, l = 21, |Ω| = 4, 306, 078, 895, 384 requiring at least 42 bits of storage.

95

n
l 1 2 3 4 5 6 7
1 1
2 1
3 1 1
4 1 3 1
5 1 7 6 1
6 1 15 25 10 1
7 1 31 90 65 15 1
8 1 63 301 350 140 21
9 1 127 966 1,701 1,050 266

10 1 255 3,025 7,770 6,951 2,646
11 1 511 9,330 34,105 42,525 22,827
12 1 1,023 28,501 145,750 246,730 179,487
13 1 2,047 86,526 611,501 1,379,400 1,323,652
14 1 4,095 261,625 2,532,530 7,508,501 9,321,312
15 1 8,191 788,970 10,391,745 40,075,035 63,436,373
16 1 16,383 2,375,101 42,355,950 210,766,920 420,693,273
17 1 32,767 7,141,686 171,798,901 1,096,190,550 2,734,926,558
18 1 65,535 21,457,825 694,337,290 5,652,751,651 17,505,749,898
19 1 131,071 64,439,010 2,798,806,985 28,958,095,545 110,687,251,039
20 1 262,143 193,448,101 11,259,666,950 147,589,284,710 693,081,601,779
21 1 524,287 580,606,446 45,232,115,901 749,206,090,500 4,306,078,895,384

Ω containing shortest length PESs appear in bold.

Table 5.4: NNR Size |Ω|

Algorithm 5.2 NNR Size |Ω|
Require: n is the number of elements
Require: l is the sequence length

if l < n or n < 1 or l < 1 then
return 0

else

prev← { 1, 0, 0, · · · }
next← {}
for all i ∈ [1, l) do

next0 ← 0
for all j ∈ [1, n) do

nextj ← prevj × j + prevj−1

prev← next

return prevn−1

96

5.4.5 NNR Partitions

The previous section examined the computation of NNR search space size |Ω| given n and

l. This section is concerned with NNR sequence generation based on an index iΩ ∈ [0, |Ω|),
as an alternative to the recursive approach previously discussed in Section 5.4.3. Each

NNR sequence can be classified as belonging to a particular NNR partition γ ∈ Γ. The

number of partitions |Γ| and the size of each partition |γ| can be computed given n and

l. For a particular partition γ each NNR sequence can be efficiently generated based on

an integer index iγ ∈ [0, |γ|).
NNR partitioning provides an integer basis for representing NNR sequences. A subset

of the NNR search space |Ω| can be specified in terms of a set of integer indexes iΩ ∈
[0, |Ω|). For the purpose of exhaustive search this can be used for distributing the NNR

search space across multiple CPUs or testing candidate NNR sequences in a specific order.

Another advantage of NNR partitioning is that specific partitions can be exhaustively

searched without any sequences in other partitions being generated or tested. NNR parti-

tioning also leads to a proof of O(n2) shortest length PES, as discussed in the subsequent

section.

An NNR sequence can be subdivided into n segments s1 · s2 · · · · · sn according to

the position of the first occurrence of each element. As an example, the PES abacbab

is subdivided into: s1 = a, s2 = ba, s3 = cbab. The length of each segment |si| where

i ∈ [1, n] must be greater or equal to one, and the sum of the segment lengths equals

the NNR sequence length l. The first partition s1 is always a to maintain the no-repeat

property of NNR sequences. Formally:

|s1|+ |s2|+ · · ·+ |sn| = l (5.7)

with:

s1 = a, |s2| ≥ 1, · · · , |sn| ≥ 1 (5.8)

Each combination of |s1|, |s2|, · · · , |sn| we call an NNR partition denoted γ for a given

n and l. The set of partitions for n and l is denoted Γ. As an example for n = 3 and

l = 7 there are five partitions:

|s1|, |s2|, |s3| |s1|, |s2|, |s3| |s1|, |s2|, |s3| |s1|, |s2|, |s3| |s1|, |s2|, |s3|
1, 5, 1 1, 4, 2 1, 3, 3 1, 2, 4 1, 1, 5
ab????c ab???c? ab??c?? ab?c??? abc????

97

As further examples NNR partitions for n = 4 and n = 5 are given in Table 5.5.

Each partition γ and the number of NNR sequences in the partition |γ| is given for

each combination of n and l. Entries that vary for different NNR sequences of the same

partition are denoted “?”. The NNR sequences Ω is the set of NNR sequences for all

partitions Γ. Note that the listed NNR sizes |Ω| correspond to those in Table 5.4 given

in the previous section concerned with direct computation of |Ω|.

n l |Γ| γ |γ| |Ω|
4 4 1 abcd 1 1
4 5 3 ab?cd 1 6

abc?d 2
abcd? 3

4 6 6 ab??cd 1 25
ab?c?d 2
ab?cd? 3
abc??d 4
abc?d? 6
abcd?? 9

4 7 10 ab???cd 1 90
ab??c?d 2
ab??cd? 3
ab?c??d 4
ab?c?d? 6
ab?cd?? 9
abc???d 8
abc??d? 12
abc?d?? 18
abcd??? 27

4 8 15 ab????cd 1 301
ab???c?d 2
ab???cd? 3
ab??c??d 4
ab??c?d? 6
ab??cd?? 9
ab?c???d 8
ab?c??d? 12
ab?c?d?? 18
ab?cd??? 27
abc????d 16
abc???d? 24
abc??d?? 36
abc?d??? 54
abcd???? 81

n l |Γ| γ |γ| |Ω|
5 5 1 abcde 1 1
5 6 4 ab?cde 1 10

abc?de 2
abcd?e 3
abcde? 4

5 7 10 ab??cde 1 65
ab?c?de 2
ab?cd?e 3
ab?cde? 4
abc??de 4
abc?d?e 6
abc?de? 8
abcd??e 9
abcd?e? 12
abcde?? 16

5 8 20 ab???cde 1 350
ab??c?de 2
ab??cd?e 3
ab??cde? 4
ab?c??de 4
ab?c?d?e 6
ab?c?de? 8
ab?cd??e 9
ab?cd?e? 12
ab?cde?? 16
abc???de 8
abc??d?e 12
abc??de? 16
abc?d??e 18
abc?d?e? 24
abc?de?? 32
abcd???e 27
abcd??e? 36
abcd?e?? 48
abcde??? 64

Table 5.5: Example NNR Partitions for n = 4 and n = 5

98

In number theory, the number of compositions of n items into k parts is given by the

binomial coefficient
(
n−1
k−1

)
. Each NNR partition is a composition of l−1 entries into n−1

segments of sizes |s2|, · · · , |sn|, with |s1| always one. Therefore, the number of partitions

is:

|Γ| =
(
l − 2

n− 2

)
=

(l − 2)!

(n− 2)!(l − n)!
(5.9)

For the example of n = 4 and l = 8 in Table 5.5:

|Γ| =
(

6

2

)
=

6!

2!× 4!
=

720

48
= 15 (5.10)

Table 5.6 gives the number of NNR partitions |Γ(n, l)| for n ∈ [1, 9] and l ∈ [1, 20].

|Γ| = (l−2)!
(n−2)!(l−n)!

n > 1, l > 1, l ≥ n

n
l 1 2 3 4 5 6 7 8 9

1 1
2 1
3 1 1
4 1 2 1
5 1 3 3 1
6 1 4 6 4 1
7 1 5 10 10 5 1
8 1 6 15 20 15 6 1
9 1 7 21 35 35 21 7 1

10 1 8 28 56 70 56 28 8
11 1 9 36 84 126 126 84 36
12 1 10 45 120 210 252 210 120
13 1 11 55 165 330 462 462 330
14 1 12 66 220 495 792 924 792
15 1 13 78 286 715 1287 1716 1716
16 1 14 91 347 1001 2002 3003 3432
17 1 15 105 404 1253 2772 4881 6414
18 1 16 120 560 1820 4368 6780 10466
19 1 17 136 680 2380 6188 12376 19448
20 1 18 153 816 3060 8568 18564 31824

Table 5.6: NNR Partitions |Γ|

99

For a particular partition γ the number of NNR sequences |γ| can be determined from

the partition sizes |s1|, |s2|, · · · , |sn|. The first segment s1 is always a, due to the non-

repeating characteristic of NNR sequences. The second segment s2 begins with b, followed

by an alternating sequence of a and b. The third segment s3 begins with c, followed by a

sequence of a, b and c. In general, the ith segment begins with xi followed by a choice of

xj where j ∈ [1, i). Each subsequent entry in the segment can also be chosen from i − 1

elements, resulting in (i− 1)|si|−1 possible segment choices. Combined for all segments:

|γ| = 1|s2|−1 × 2|s3|−1 × 3|s4|−1 × · · · × (n− 1)|sn|−1 (5.11)

As an example the 13th partition of n = 4 and l = 8 in Table 5.5 consists of segments

|s1| = 1, |s2| = 1, |s3| = 3, |s4| = 3 (also denoted abc??d??). There are 36 NNR sequences

for this partition, of the total NNR search space of 301:

|γabc??d??| = 10 × 22 × 32 = 1× 4× 9 = 36 (5.12)

Our C++ approaches to computing the number of NNR partitions, and the size of

each partition appear in Appendix B.5.2 and Appendix B.5.3, respectively.

5.4.6 Partition Based NNR Sequences

The previous section introduced the concept of an NNR partition γ ∈ Γ which represents a

distinct subset of the complete NNR search space. Given n and l the number of partitions

|Γ| and the number of NNR sequences in each partition |γ| can be computed. This section

gives a method in Algorithm 5.3 for generating the ith NNR sequence in a particular

partition γ where i ∈ [0, |γ|).
Generating NNR sequences in this manner is more flexible than the recursive approach

previously discussed in Algorithm 5.1. NNR sequences could be randomly sampled from

the entire NNR search space, or sampled from a specific partition. It is also possible to

narrow an exhaustive search to NNR sequences of partitions that are considered more

likely to contain PESs.

Knowing a particular partition γ, and the number of possible NNR sequences in the

partition |γ|, Algorithm 5.3 generates the ith sequence in the partition. At the beginning

of each segment the jth element is appended to the sequence. Within each segment,

elements are chosen from the j − 1 possible alternatives to the previous entry, and the

index i is adjusted as these are appended to the sequence.

Our C++ implementation appears in Appendix B.5.4.

100

Algorithm 5.3 NNR Partition Sequence

Require: γ ∈ Γ is the partition of interest
Require: i ∈ [0, |γ|) is the index of the NNR sequence of interest
Require: n is the number of elements (and partition segments)
Require: l is the NNR sequence length
Require: sj is the segment, for j ∈ [1, n]
Require: |s1| = 1
Require: |sj| ≥ 1 for j ∈ [1, n]
Require: l =

∑n
j=1 |sj|

sequence ← { }
for all segments sj with j ∈ [1, n] do

sequence ← sequence · xj
if j > 1 then

for all k ∈ [2, |si|] do
c← i % (j − 1) [Integer modulus division]
i← i

j−1
[Integer division]

prev ← last element in sequence
sequence ← sequence · x(prev+1+c)%j [Integer modulus division]

5.4.7 A Lower Bound of Ω(n2) for Shortest Length PESs

In computer science O(f(n)) denotes the order of an upper bound and Ω(f(n)) denotes

the order of a lower bound.[54] This section provides a proof of an Ω(n2) lower bound

for shortest length PESs based on the Normalised No Repeat (NNR) and partitioning

concepts introduced in previous sections.

Consider the last segment sn in the NNR partition: s1 · s2 . . . sn. The segment sn

begins with the nth element followed by a non-repeating sequence of all n elements. By

definition, this segment is the only one containing the nth element.

For an NNR sequence to embed permutations of n elements, the segment sn must

embed all permutations of n− 1 elements, corresponding to the permutations beginning

with the nth element. Therefore, the length of the segment sn is at least the shortest

length PES for n− 1, plus one. The length of the other segments must be at be at least

one, resulting in:

101

f(1) = 1 (5.13)

f(n) = f(n− 1) + n for n > 1 (5.14)

∴ f(n) = f(n− 2) + (n− 1) + n (5.15)

= 1 + · · ·+ (n− 2) + (n− 1) + n (5.16)

= n+ (n− 1) + (n− 2) + · · ·+ 1 (5.17)

∴ f(n) + f(n) = (n+ 1) + · · ·+ (n+ 1) (5.16) + (5.17) (5.18)

2f(n) = n(n+ 1) (5.19)

f(n) =
n2 + n

2
(5.20)

Giving a lower bound for PES length as:

|PESn| ≥ (n + |PESn−1|) (5.21)

|PESn| ≥ n2 + n

2
(5.22)

This Ω(n2) PES length lower bound excludes the possibility of asymptotic improve-

ment to O(n2) PES length. Consequently the SCS CSG rendering of convex subtraction

is firmly established as being O(n2) time.

We can also be certain that no better than a two times SCS CSG rendering speedup

could be achieved using shorter length PESs than those of length n2 − 2n+ 4.

5.4.8 Known Shortest Length PESs

It is currently feasible on a desktop PC to exhaustively generate and test the NNR search

space for 1 ≤ n ≤ 5. Table 5.7 gives the complete set of shortest length PESs for

1 ≤ n ≤ 5. It takes a 2Ghz Pentium 4 around 12 hours to test all NNR sequences for

n = 5, l = 19. We estimate that searching all NNR sequences for n = 6, l = 27 would

take around 100 years on the same machine. We have not found a PES of shorter length

than those constructed using the methods of Adleman [14], Galbiati [35] or Savage [83],

and no others have been reported.

We have also searched for shortest length kPESs, given in Table 5.8. As in the previous

case, the size of the NNR space multiplied with the n! embedded sequence test for each

candidate substantially limits the size of n, k and l that can be handled by current

technology. This experiment also confirmed Savage [83] sequences as being shortest length

for those cases that could be manageably searched.

102

n l PES n2 − 2n + 4
for n ≥ 3

1 1 a
2 3 aba
3 7 abcabac abcabca abcacba 7

abcbabc abcbacb abacaba
abacbab

4 12 abcdabcadbac abcdabcadbca abcdabcadcba 12
abcdacbadbca abcdacbadcab abcdacbadcba
abcdbacbdabc abcdbacbdacb abcdbacbdcab

5 19 abcdeabcdaebcadbcea abcdeabcdaebcadbeac abcdeabcdaebcadbeca 19
abcdeabcdaebcadcbea abcdeabcdaebcadceba abcdeabcdaebcadebac
abcdeabcdaebcadebca abcdeabcdaebcadecba abcdeabcdaecbadbcea
abcdeabcdaecbadbeca abcdeabcdaecbadcbea abcdeabcdaecbadceab
abcdeabcdaecbadceba abcdeabcdaecbadebca abcdeabcdaecbadecab
abcdeabcdaecbadecba abcdeabdcaebdacbdea abcdeabdcaebdacbead
abcdeabdcaebdacbeda abcdeabdcaebdacdbea abcdeabdcaebdacdeba
abcdeabdcaebdacebad abcdeabdcaebdacebda abcdeabdcaebdacedba
abcdeabdcaedbacbdea abcdeabdcaedbacbeda abcdeabdcaedbacdbea
abcdeabdcaedbacdeab abcdeabdcaedbacdeba abcdeabdcaedbacebda
abcdeabdcaedbacedab abcdeabdcaedbacedba abcdeacbdaebcadbcea
abcdeacbdaebcadbeac abcdeacbdaebcadbeca abcdeacbdaebcadcbea
abcdeacbdaebcadceba abcdeacbdaebcadebac abcdeacbdaebcadebca
abcdeacbdaebcadecba abcdeacbdaecbadbcea abcdeacbdaecbadbeca
abcdeacbdaecbadcbea abcdeacbdaecbadceab abcdeacbdaecbadceba
abcdeacbdaecbadebca abcdeacbdaecbadecab abcdeacbdaecbadecba
abcdeacdbaecdabcdea abcdeacdbaecdabcead abcdeacdbaecdabceda
abcdeacdbaecdabdcea abcdeacdbaecdabdeca abcdeacdbaecdabecad
abcdeacdbaecdabecda abcdeacdbaecdabedca abcdeacdbaedcabcdea
abcdeacdbaedcabceda abcdeacdbaedcabdcea abcdeacdbaedcabdeac
abcdeacdbaedcabdeca abcdeacdbaedcabecda abcdeacdbaedcabedac
abcdeacdbaedcabedca abcdeadbcaebdacbdea abcdeadbcaebdacbead
abcdeadbcaebdacbeda abcdeadbcaebdacdbea abcdeadbcaebdacdeba
abcdeadbcaebdacebad abcdeadbcaebdacebda abcdeadbcaebdacedba
abcdeadbcaedbacbdea abcdeadbcaedbacbeda abcdeadbcaedbacdbea
abcdeadbcaedbacdeab abcdeadbcaedbacdeba abcdeadbcaedbacebda
abcdeadbcaedbacedab abcdeadbcaedbacedba abcdeadcbaecdabcdea
abcdeadcbaecdabcead abcdeadcbaecdabceda abcdeadcbaecdabdcea
abcdeadcbaecdabdeca abcdeadcbaecdabecad abcdeadcbaecdabecda
abcdeadcbaecdabedca abcdeadcbaedcabcdea abcdeadcbaedcabceda
abcdeadcbaedcabdcea abcdeadcbaedcabdeac abcdeadcbaedcabdeca
abcdeadcbaedcabecda abcdeadcbaedcabedac abcdeadcbaedcabedca
abcdebacdbeacbdaceb abcdebacdbeacbdaebc abcdebacdbeacbdaecb
abcdebacdbeacbdcaeb abcdebacdbeacbdceab abcdebacdbeacbdeabc
abcdebacdbeacbdeacb abcdebacdbeacbdecab abcdebacdbecabdaceb
abcdebacdbecabdaecb abcdebacdbecabdcaeb abcdebacdbecabdceab
abcdebacdbecabdceba abcdebacdbecabdeacb abcdebacdbecabdecab
abcdebacdbecabdecba abcdebadcbeadbcadeb abcdebadcbeadbcaebd
abcdebadcbeadbcaedb abcdebadcbeadbcdaeb abcdebadcbeadbcdeab
abcdebadcbeadbceabd abcdebadcbeadbceadb abcdebadcbeadbcedab
abcdebadcbedabcadeb abcdebadcbedabcaedb abcdebadcbedabcdaeb
abcdebadcbedabcdeab abcdebadcbedabcdeba abcdebadcbedabceadb
abcdebadcbedabcedab abcdebadcbedabcedba

Table 5.7: Known Shortest Length PESs in NNR Form

103

n k l kPES kn− 2k + 4
for n ≥ k ≥ 3

1 1 1 a
2 1 2 ab
2 2 3 aba
3 1 3 abc
3 2 5 abcab
3 3 7 abcabac 7
4 1 4 abcd
4 2 7 abcdabc
4 3 10 abcdabcabd 10
4 4 12 abcdabcadbac 12
5 1 5 abcde
5 2 9 abcdeabcd
5 3 13 abcdeabcdabce 13
5 4 16 abcdeabcdabecabd 16
5 5 19 abcdeabcdaebcadbcea 19
6 1 6 abcdef
6 2 11 abcdefabcde
6 3 16 abcdefabcdefabcd 16
7 1 7 abcdefg
7 2 13 abcdefgabcdef

Table 5.8: Known Shortest Length kPESs in NNR Form

5.5 Discussion

PES methods due to Adleman [14], Galbiati [35] and Savage [83] result in sequences of

length n2 − 2n + 4 for PESs and kn − 2k + 4 for kPESs. Although these have not been

proven to be shortest length, no shorter sequences are known. The O(n2) lower bound

for PES length excludes the possibility of PES of significantly shorter length.

Utilisation of a generate and test strategy and formulation of the Normalised No Repeat

(NNR) search space allow computerised exhaustive search for shortest length PESs. This

is performed in substantially less time than would be otherwise necessary by making use

of known characteristics of shortest length permutation embedding sequences. Further

refinements and optimisations would be necessary to tackle increasingly large search spaces

for n > 5.

Adleman [14], Galbiati [35] and Savage [83] sequences are therefore the best known

general purpose subtraction sequences for CSG rendering. Whether these are shortest

length, or search techniques can be refined and a counter-example located, remains an

open problem.

104

5.5.1 Further Work

There are several aspects of the NNR search space that remain to be investigated. While

these issues are of broader theoretical interest subsequent chapters focus on other aspects

of SCS CSG rendering.

• The NNR search space could be further constrained, allowing exhaustive search for

larger sized problems such as n > 5. For example the last partition sn is known to

have a certain minimum length.

• It may be possible to decrease the time required to test each candidate sequence. In

our approach, each permutation is checked for the embedding property individually,

in an arbitrary order. The test terminates with a fail condition as soon as any

permutation is found not to be embedded. It may be possible to test multiple

permutations or multiple candidates, as an alternative. Or, it may be possible to

process the candidate sequence in a way that tests less likely embedded permutations

earlier.

• The iterative NNR generation algorithm presented here results in lexicographically

dissimilar adjacent sequences. It may be desirable to produce a more orderly se-

quence, and allow increased permutation embedding testing efficiently. Alterna-

tively, it may be possible to order sequences in way that high quality candidates are

clustered allowing the use of gradient search techniques.

• For n ≥ 4, all known shortest length sequences are contained in the partition be-

ginning with abc · · · xn (Table 5.7). A search focused on this partition would be

the most promising, and require less time than the entire NNR search space. Even

though it is the largest partition, Table 5.5 suggests that it becomes a diminishing

fraction as n and l increase.

• n = 6, l = 27 could be exhaustively searched with current technology using a

distributed computation effort in the manner of Seti@Home [5] or Folding@Home

[6]. Iterative generation of NNR sequences allows different machines to test different

subsets of the search space.

105

Chapter 6

Overlap Graph

“We approached the task by starting with a simple scheme and adding com-

mands and features that we felt would enhance the power of the machine.

Gradually the processor became more complex. We were not disturbed by

this because computer graphics, after all, are complex. Finally the display

processor came to resemble a full-fledged computer with some special graph-

ics features. And then a strange thing happened. We felt compelled to add

to the processor a second, subsidiary processor, which, itself, began to grow

in complexity. It was then that we discovered a disturbing truth. Designing

a display processor can become a never-ending cyclical process. In fact, we

found the process so frustrating that we have come to call it the ‘wheel of

reincarnation’.” [66]

— T. H. Myer and I. E. Sutherland

107

6.1 Introduction

As described in Chapter 4, the Sequenced Convex Subtraction (SCS) CSG rendering al-

gorithm performs sequenced subtraction of convex shapes from the depth buffer. A dis-

cussion of Permutation Embedding Sequences (PESs) followed in Chapter 5, focusing on

subtraction sequences of shortest length. In these previous chapters subtraction sequence

encoding methods have been based on knowing the number of subtracted objects, and

perhaps also the maximum depth complexity from a particular viewing direction.

This chapter approaches subtraction encoding by utilising additional information

about the CSG tree — the object-space intersection (or overlap) between shapes. This

overlap information is represented as a undirected graph, or a matrix. As a graph, each

node corresponds to a shape and each edge corresponds to an overlap between a pair of

shapes. As a matrix, each entry corresponds to an overlap between the shapes corre-

sponding to a particular row and column.

The overlap graph is then processed into a subtraction sequence by examining the

graph for particular properties. In the best case O(n) subtraction sequences can be

determined by taking this approach, although in the worst case view independent or

view dependent subtraction sequences remain O(n2) in length. The length of subtraction

sequences resulting from overlap graph processing are less than, or equal to, the length of

the subtraction sequences discussed previously in Chapter 4 and Chapter 5.

6.1.1 Graph Theory Background

Here we introduce graph theory terminology and notation used in our work, based on

that given in [27].

A graph G = (V,E) is a set of nodes V and a set of edges E. Edges connect pairs of

nodes in the graph. The order of a graph, denoted |G| is the number of nodes in a graph.

The number of edges in a graph is denoted ||G||.
If v ∈ V , e ∈ E and v ∈ e, then the node v is an end of edge e, edge e is incident on v,

and e is an edge at node v. Two nodes x, y are adjacent if xy is an edge of G. Two edges

are adjacent if they have an end in common. The degree of a node d(v) is the number of

edges incident at v. Nodes of degree zero are termed isolated. Nodes of degree one are

called leaves.

A path is a graph P = (V,E) linking two end nodes via intermediate nodes and edges.

The degree of the end nodes in a path is 1 and the degree of the intermediate nodes is 2.

108

The length of a path is the number of edges. A cycle is a graph C = (V,E) connecting

the nodes of the cycle V into a loop along the edges E. The degree of the nodes in a cycle

is 2. The length of a cycle is the number of nodes or edges. A graph containing no cycles

is acyclic.

A graph is connected if every pair of nodes is connected by a path in G. Otherwise,

the graph is disconnected. If U is a set of nodes, G − U is obtained by deleting all the

nodes in U ∩ V and their incident edges.

The disconnected graph in Figure 6.1 is composed of four nodes and three edges. A

cycle is formed by nodes A, C and D with the other node B isolated.

G = {V,E}
V = {A,B,C,D}
E = {x, y, z}
|G| = 4
||G|| = 3

Figure 6.1: Graph Theory Notation

6.1.2 Overlap Graph Implementation

Our overlap graph is implemented in C++ as an adjacency-list using the C++ standard

library vector and map templated containers. Use of a sparse representation is based on

the assumption that there are generally few edges at each node. Sparse graphs are more

likely to result in short subtraction sequences. We expect that real-world applications

typically result in sparse graphs.

Specifically, the implementation uses a std::vector of std::map — one map for each

node in the graph. Each map is a balanced tree of edges incident on a particular node.

Each edge is stored at both end nodes. The class interface supports edge addition and

node removal. Node degree and edge list queries are efficient.

Our own shape intersection testing routines have been used for overlap graph con-

struction. In principle a collision detection library such as I-COLLIDE [25] could be used

as an alternative. Optimisation of this aspect was not pursued in this investigation due

to our focus on per-frame performance — overlap graph construction is a once off pre-

processing step. If the CSG tree or shapes change over time the overlap graph also needs

to be updated.

109

(a) a ∪ b (b) a ∩ b (c) a− b
Figure 6.2: Non-overlapping Intersection

6.2 Overlap Properties

6.2.1 Intersected Objects

For a CSG product to be non-empty, all intersected objects in the product must overlap

all other intersected objects in the product. If any pair of intersected objects in the

product do not overlap then the whole product is empty and no rendering is required.

Figure 6.2 illustrates (a) two non-overlapping objects, (b) the empty intersection and (c)

the difference.

Algorithm 6.1 compares all pairs of intersected objects, returning false for any pair

found not to be overlapping. Axis-Aligned Bounding Boxes (AABBs) are used in our im-

plementation; other intersection testing methods could also be used. In this context false

positives for intersection arising from the use of AABBs will affect rendering performance,

but not the correctness of the end result. However, false negatives (two objects incorrectly

classified as not intersecting) will lead to the product being ignored and left out of the

rendered image. There is a tradeoff between the precision of intersection testing, the

time spent intersection testing, and the time spent rendering the result. AABBs result in

false positives but not false negatives. We found AABB intersection testing adequate for

overlap graph purposes.

Algorithm 6.1 Intersected Objects Check

for all pairs of intersected objects: Ii ∈ P and Ij ∈ P do

if Ii and Ij are not overlapping then
return false [CSG product is empty]

return true

110

(a) x− a (b) Rendered Result

Figure 6.3: External Subtracted Object

6.2.2 External Subtracted Objects

Surfaces of subtracted objects in the CSG product must be inside all intersected objects in

the product to be visible. Subtracted objects in the product not overlapping all intersected

objects in the product are external and can be omitted from the subtraction sequence.

In the example in Figure 6.3, a cylinder is subtracted from a rectangular block. The

cylinder and block do not overlap, so the cylinder need not be subtracted. The resulting

subtraction sequence for the set of external nodes is empty. This process is analogous to

view-frustum culling — only subtracted objects overlapping particular areas of interest

need to proceed to subsequent processing steps.

Algorithm 6.2 compares each subtracted object to all intersected objects. If the sub-

tracted object is not overlapping every intersected object, the subtracted object is removed

from the overlap graph.

Algorithm 6.2 External Subtracted Objects

for all subtracted objects: S ∈ P do
for all intersected objects: I ∈ P do

if S and I are not overlapping then
remove S from G [S is not visible]

111

(a) x− a− b− c (b) Rendered Result (c) Overlap Graph

Figure 6.4: Leaf Nodes

6.2.3 Leaf Node Trimming

Subtraction sequences include only the subtracted objects in the CSG product. The

previous two tests make use of the spatial overlap of intersected objects in the prod-

uct. Intersected objects are removed from the overlap graph at this stage leaving only

subtracted nodes.

Leaf nodes are those having a degree of one (connected by one edge only) and represent

subtracted objects that only overlap one other subtracted object in the overlap graph.

Leaf node trimming can result in new leaf nodes, cyclic graphs, isolated nodes, or an

empty graph. A set of removed leaf nodes is referred to as a trim. The overlap graph is

trimmed until no further trimming is possible, resulting in a set of trims: T1, T2, · · · , Tn.

Repeated trimming results in cyclic graphs, isolated nodes, or an empty graph. An acyclic

overlap graph is illustrated in Figure 6.4, with initial leaf nodes of a and c. The iterative

leaf trimming algorithm is given in Algorithm 6.3.

Algorithm 6.3 Leaf Node Trimming

Ti is the trim in the ith pass

i← 1

while leaf nodes exist do
Ti ← leaves
remove Ti from G
i← i+ 1

112

Subtraction sequence encoding is based on the observation that necessary sequences

of subtraction proceed from the outer trims towards the inner trims and then back out

towards the outer trims. The trims are combined into the subtraction sequence T1 · T2 ·
... · Tn · S(G− T1− T2− ...− Tn) · Tn · ... · T2 · T1 with S(G− T1− T2− · · · − Tn) being the

subtraction sequence for the graph resulting from leaf trimming.

In the example in Figure 6.4, three cylinders are subtracted from a rectangular block.

The two outer cylinders are trimmed as leaves in the first pass: T1 = a, c. The combined

subtraction sequence is: acbac. Each leaf node appears in the subtraction sequence twice,

resulting in O(n) length subtraction sequences for completely acyclic overlap graphs.

In the example in Figure 6.5, the fifteen subtracted spheres form an acyclic overlap

graph. The first trim consists of the spheres at each end: T1 = a, o. The second trim

consists of the spheres second from each end: T2 = b, n. Seven leaf trimming passes

form a combined subtraction sequence of: aobncm · · · cmbnao, an O(n) length subtraction

sequence. If this spiral was adjusted to form a loop the overlap graph would no longer

be acyclic. In the next section we will describe how ring graphs can also be encoded into

O(n) length subtraction sequences.

(a) x− a− b− · · · − n− o (b) Rendered Result

Figure 6.5: Acyclic Overlap Graph Example

113

6.2.4 Ring Graphs

Left node trimming may result in an empty graph, or a collection of cyclic graphs and

isolated nodes. Cyclic graphs in a ring formation can be identified and encoded as O(n)

subtraction sequences. This section discusses the procedure of overlap graph subtrac-

tion sequences for so-called “ring graphs”. Each ring graph is identified and encoded

individually.

A ring is formed by a set of degree two nodes connected into a loop. Figure 6.6

illustrates four cylinders (a) subtracted from a rectangular block (b) forming an overlap

graph ring (c).

Subtraction sequences for ring graphs need to embed all forward and reverse traver-

sals of the ring. The sequence R1 · · ·RnR1 · · ·Rn−1 embeds all forward traversals. The

sequence Rn · · ·R1Rn · · ·R2 embeds all reverse traversals. With the length of each of these

sequences being 2n− 1, the combined subtraction sequence length is 4n− 2.

For the subtracted cylinders in Figure 6.6 the embedding of forward and reverse traver-

sals into the sequence abcdabcdcbadcb is as follows:

R1 · · ·RnR1 · · ·Rn−1

forward abcdabc
abcd abcd???
bcda ?bcda??
cdab ??cdab?
dabc ???dabc

Rn · · ·R1Rn · · ·R2

reverse dcbadcb
dcba dcba???
cbad ?cbad??
badc ??badc?
adcb ???adcb

(a) x− a− b− c− d (b) Rendered Result (c) Overlap Graph

Figure 6.6: Ring Graph

114

Algorithm 6.4 Ring Graph

Require: R1, · · · , Rk are nodes forming a ring

for all nodes of degree two: i do

R1 ← i
R2 ← overlapping node of R1

k ← 2

while degree of Rk is two do

Rk+1 ← overlapping node of Rk where Rk+1 6= Rk−1

if Rk+1 = R1 then
remove R1, · · · , Rk from G [Found a ring]
return R1, · · · , Rk

k ← k + 1

The method for finding an overlap ring graph is given in Algorithm 6.4. A depth-first

search is used to visit nodes of degree two (node connected to two others) until the ring

starting node is found. The algorithm is applied until there remains no further rings in

the overlap graph.

In the example in Figure 6.7, the fifteen subtracted spheres form a ring overlap graph.

The subtraction sequence is an O(n) length subtraction sequence, compared to the O(n2)

subtraction sequence that would be necessary otherwise.

The next section will discuss the problem of shortest length ring graph subtraction

sequences, as a further performance improvement over the 4n− 2 length sequences here.

(a) x− a− b− · · · − n− o (b) Rendered Result

Figure 6.7: Ring Overlap Graph Example

115

6.2.5 Shortest Length Ring Graph Sequences

The ring subtraction sequences described previously in Section 6.2.4 are 4n− 2 in length.

Shorter length sequences have been found using the search techniques discussed in Chapter

5. Shortest length ring subtraction sequences for n ≤ 6 are given in Table 6.1. For n > 6

sequences shorter than 4n− 2 have been found, but are not known to be shortest length.

These are given in Table 6.2. A systematic way of generating shortest ring subtraction

sequences without exhaustive searching remains unresolved.

Our implementation makes use of a table of best-known ring subtraction sequences

for 3 ≤ n ≤ 10, or uses the general method in Section 6.2.4 for n > 10, resulting in 4n− 2

length sequences.

n l sequence 4n− 2

3 7 abcabca 10
abcbabc
abcabac
abcacba
abcbacb
abacbab
abacaba

4 10 abcdcbadbc 14
abcdcbabdc
abcdcabadc
abcdacbadc

5 14 abcdedcbaedbcd 18
6 18 abcbdaefdcebabecdf 22

Table 6.1: Shortest Length Ring Sequences

n l sequence 4n− 2
7 22 abcdbaefgfedabcbadfegf 26
8 26 abcdedcbafghagdfbcedcbfahg 30
9 30 abcdefgedcbhiaibhcgdfedcbfgaih 34

10 35 abcdefghgfiedcbajaighfedcbacdjefhgi 38

Table 6.2: Shortest Known Ring Sequences

116

(a) x− a− b− c− d− e− f (b) Rendered Result (c) Overlap Graph

Figure 6.8: Disconnected Graphs

6.2.6 Disconnected Graphs

An overlap graph may be disconnected, that is, composed of separate connected compo-

nents. Each connected component is treated individually when converted to a subtraction

sequence. There is no need to embed sequences between disconnected portions of the

overlap graph. This results in shorter sequences as the sum of the squares is less than the

square of the sum, in general.

Individual connected components can be identified by starting from any node and

traversing all the known edges until no unvisited nodes can be found. This can be imple-

mented as either a depth-first or breadth-first traversal.

Each component can be encoded separately and combined into a concatenated sub-

traction sequence without concern for the order — as separate connected components in

the overlap graph have no interdependence. Figure 6.8 illustrates six subtracted objects

forming a disconnected graph with two connected components.

Isolated overlap graph nodes (those with a degree of zero) can be treated as trivial

connected components. The subtraction sequence for an isolated node is simply the node

itself — the object need only be subtracted once to ensure the correctly rendered result.

117

(a) x− a− b− c− d (b) Rendered Result (c) Overlap Graph

Figure 6.9: Cyclic Graph

6.2.7 Cyclic Graphs

Cyclic graphs that are not rings are encoded as either O(n2) view-independent or O(kn)

view-dependent ‘image-space’ subtraction sequences as discussed in Chapter 4 and 5.

In the example in Figure 6.9, the four subtracted cylinders all overlap each other.

None of the nodes are external to the block or are leaf nodes. Also, the cylinders do not

form a ring. In this case either a O(n2) view-independent or a O(kn) view-dependent

subtraction sequence must be used.

6.3 Overlap Graph Subtraction Sequences

6.3.1 Sequence Encoding Algorithm

The overlap graph methods discussed in previous sections are combined in Algorithm 6.5

to produce a subtraction sequence S for a given CSG product P with an overlap graph

G. Apart from the O(n2) cyclic graph subtraction sequences, the resulting subtraction

sequences are O(n).

118

Algorithm 6.5 Overlap Graph Subtraction Sequence Encoding

Require: P is the CSG product
Require: G is the overlap graph

Require: ntrim is the number of leaf node trims
Require: nring is the number of ring graphs
Require: ncyclic is the number of cyclic graphs

Require: Sring(Ri) is the subtraction sequence for the ith ring
Require: Scyclic(Ci) is the subtraction sequence for the ith cyclic graph

Require: L is the set of isolated nodes

[Empty intersection — Algorithm 6.1]

for all pairs of intersected objects: Ii ∈ P and Ij ∈ P do
if Ii and Ij are not overlapping then

return empty sequence

[External subtracted objects — Algorithm 6.2]

for all subtracted objects S ∈ P do
for all intersected objects I ∈ P do

if S and I are not overlapping then
remove S from G

[Leaf node trimming — Algorithm 6.3]

for all leaf trims Ti ∈ G where i ∈ [1, ntrim] do
remove Ti from G

[Ring graphs — Algorithm 6.4]

for all ring sub-graphs Ri ∈ G where i ∈ [1, nring] do
remove Ri from G

[Cyclic connected graphs]

for all connected cyclic graphs Ci ∈ G where i ∈ [1, ncyclic] do
remove Ci from G

[Combined subtraction sequence SP for product P]

SP ← T1 · T2 · ... · Tntrim
[Append leaf nodes from outer to inner]

SP ← SP · Sring(R1) · Sring(R2) · ... · Sring(Rnring
) [Append ring graph sequences]

SP ← SP · Scyclic(C1) · Scyclic(C2) · ... · Scyclic(Cncyclic
) [Append cyclic graph sequences]

SP ← SP · L [Append isolated nodes]
SP ← SP · Tntrim

· ... · T2 · T1 [Append leaf nodes from inner to outer]

return SP

119

6.3.2 Example

Subtraction sequence encoding using an overlap graph is illustrated in Figure 6.10. Nine

subtracted objects are tested for mutual intersection and form the overlap graph in Figure

6.10(a). Intersected nodes are not shown — empty intersection and external subtracted

object tests have already been applied. The result of the first leaf trimming pass is given

in Figure 6.10(b). Four leaf nodes are removed in total, which form the prefix and suffix of

the combined subtraction sequence. The second trimming pass removes an additional leaf

node as illustrated in Figure 6.10(c). Now that no further leaves exist in the overlap graph,

cyclic connected graphs are considered. The ring graph of size three is encoded as the first

part of the inner subtraction sequence. Finally, the remaining (isolated) node is added

to the inner subtraction sequence. In this case the length of the combined subtraction

sequence is O(n) and no depth complexity sampling for view-dependent sequence encoding

is necessary.

The combined sequence is formed by surrounding the encoded cyclic graph and isolated

node with the leaf trims: T1 · T2 · Sring(Gring) ·Gisolated · T2 · T1

(a) Initial overlap graph G

(b) First leaf trimming pass G− T1

(c) Second leaf trimming pass G− T1 − T2

Figure 6.10: Overlap Graph Sequence Encoding Example

120

6.3.3 Discussion

This chapter introduced the concept of overlap graph processing for the purpose of sub-

traction sequence construction. Traversal of the undirected overlap graph facilitates de-

tection of certain nodes that can be omitted from the general-purpose O(n2) subtraction

sequence. A significant benefit of the approach is the O(n) subtraction sequences possible

for entirely acyclic overlap graphs. Application of overlap graph subtraction sequences to

CSG rendering is discussed further in Chapter 7.

121

Chapter 7

Experimental Results

Doubt is not a pleasant condition, but certainty is absurd.

— Voltaire

123

7.1 Introduction

This chapter examines empirical performance aspects of graphics hardware based CSG

rendering algorithms, with particular focus on our new Sequenced Convex Subtraction

(SCS) algorithm. The previously reported algorithms discussed in Chapter 3 are com-

pared to the SCS approach as described in Chapter 4, 5 and 6 utilising shortest length

permutation embedding sequences and overlap graph techniques. The broader aims of

this chapter are to explore the real-world motivation, rationale and benefits of the SCS

approach to CSG rendering.

The performance of CSG rendering is sensitive to various aspects of the platform,

including CPU, GPU, memory, bandwidth and graphics hardware and drivers. Section 7.2

focuses on graphics hardware performance characteristics. Of particular interest to CSG

rendering is the performance of depth buffer and stencil buffer copying, within the frame

buffer and between the frame buffer and main system memory. Traditionally, computer

algorithms tend to be either CPU, memory or disk intensive. Graphics applications can

also be graphics hardware limited, which is what we find to be the case for CSG rendering.

A uniform platform was used in Section 7.3 for the purpose of comparing CSG render-

ing performance for the Goldfeather [36, 37], Layered Goldfeather [87], Improved Layered

Goldfeather [29] and SCS [88, 89, 90] algorithms. Three generations of Nvidia OpenGL

graphics cards on a reference PC platform were used to investigate algorithm performance

for a set of benchmark CSG models.

Section 7.4 focuses on performance characteristics of the SCS algorithm such as convex

intersection, convex subtraction and subtraction sequences. Linear-time convex intersec-

tion is confirmed experimentally. Overlap graph subtraction sequences are shown to be

advantageous in certain circumstances. The cost of overlap graph processing is exam-

ined as a proportion of total rendering time. The performance of concave versus convex

representations is also examined.

A discussion and conclusion of our experimental results follows in Section 7.5.

124

7.2 OpenGL Buffer Copying

The performance of image-space hardware-based CSG rendering algorithms is limited by

the capability and performance characteristics of 3D graphics hardware. One important

characteristic is the buffer copying rate — the number of pixels that can be copied per

unit time within the frame buffer, or copied between the frame buffer and system memory.

The Goldfeather algorithm makes particularly heavy use of buffer copying, due to the

approach of clipping primitives or layers in one buffer and then merging those results

in a second depth buffer. The SCS algorithm also uses this approach for merging CSG

products in a second depth buffer.

In analysing the performance of various CSG rendering algorithms, it is therefore

important to examine the buffer copying ability of a particular platform. In this experi-

ment three different Nvidia-based graphics cards are benchmarked for three distinct buffer

copying tasks:

• glCopyPixels

Copy colour, stencil or depth pixels within the frame buffer.

• glReadPixels

Read colour, stencil or depth pixels into system memory.

• glDrawPixels

Draw colour, stencil or depth pixels from system memory into the frame buffer.

The three graphics cards tested:

• ASUS V8200 Deluxe GeForce3, 64MB of memory

• Leadtek A250LE GeForce4 Ti 4200, 64MB of memory

• Leadtek A310 GeForceFX 5600, 128MB of memory

The machine used for testing was a 2.0GHz Pentium 4 with 512MB RAM running

RedHat Linux 9 with version 44.96 of the Nvidia drivers at an X11 desktop resolution of

1280x1024. Each value in Tables 7.1, 7.2 and 7.3 is the average taken over approximately

30 seconds, sufficient time to average out the variability observed in buffer copying time.1

The variation in buffer copying performance is not examined in this work.

1We find that the size of the OpenGL window does not tend to affect the copy rate.

125

Platform glCopyPixels OpenGL glReadPixels glDrawPixels

(106 pixel/s) Format (106 pixel/s) (106 pixel/s)

GeForce3 320 RGBA GLbyte 43 10
RGBA GLubyte 43 70
BGRA GLbyte 43 0.8
BGRA GLubyte 43 70

GeForce4 Ti 4200 470 RGBA GLbyte 43 10
RGBA GLubyte 43 93
BGRA GLbyte 43 0.8
BGRA GLubyte 43 93

GeForceFX 5600 480 RGBA GLbyte 44 10
RGBA GLubyte 44 71
BGRA GLbyte 44 0.8
BGRA GLubyte 44 71

Table 7.1: OpenGL Colour Buffer Copying Performance

The results in Table 7.1 indicate that the performance of glCopyPixels for colour

data ranges from 320 to 480 million pixel/s. glReadPixels is approximately an order of

magnitude slower — around 43 million pixel/s. The performance of glDrawPixels ranges

from 0.8 to 93 million pixel/s, depending on the format, signed RGBA and signed BGRA

are considerably slower than unsigned RGBA or unsigned BGRA.

Across the three generations of graphics hardware there is some performance improve-

ment in glCopyPixels, but similarity for glReadPixels and glDrawPixels. This may

be due to architectural and driver similarities — or that the PCI/AGP bus is the ultimate

bottleneck for glReadPixels and glDrawPixels. Compared to the theoretical AGP 4X

capacity of 8 Gb/s, 93 million pixel/s corresponds to 3 Gb/s. To give an idea, a 32

bit/pixel 1024x768 image at 100 Hz would require 79 million pixel/s — bandwidth of

2.5Gb/s. So it does not appear that AGP bus bandwidth is the limiting factor.

OpenGL stencil buffer copying performance results are given in Table 7.2.

glCopyPixels for stencil data ranges from 320 to 420 million pixel/s. glReadPixels is

around 43 million pixel/s. glDrawPixels ranges from 110 to 130 million pixel/s.

Platform glCopyPixels OpenGL glReadPixels glDrawPixels

(106 pixel/s) Format (106 pixel/s) (106 pixel/s)

GeForce3 320 GLbyte 44 110
GLubyte 44 110

GeForce4 Ti 4200 420 GLbyte 43 130
GLubyte 43 130

GeForceFX 5600 320 GLbyte 44 115
GLubyte 44 115

Table 7.2: OpenGL Stencil Buffer Copying Performance

126

Interestingly, glCopyPixels of 8-bit stencil data is copied at a fairly similar rate to 32-

bit colour data (Table 7.1). Stencil glReadPixels performance is close to that of colour.

Stencil glDrawPixels performance is somewhat better than colour — even though 8-bit

stencil data is one quarter of the size of 32-bit colour data. Only minor differences are

observed between the three cards tested.

The results for depth buffer copying are given in Table 7.3. They indicate that the

performance of glCopyPixels for depth data is 0.50 million pixel/s, compared to 320–

480 million pixel/s for colour or stencil data. glReadPixels is comparable to colour or

stencil data at 43 million pixel/s, except for the GLfloat format. glDrawPixels is also

comparable to colour or stencil for unsigned integer formats at 100–115 million pixel/s.

There is little variation between the three generations of cards tested.

The performance of depth data copying within the frame buffer has significant impli-

cations for CSG rendering. For depth data it is far more efficient to copy between the

frame buffer and main memory, than to copy within the frame buffer. The relatively

good performance of colour and stencil copying within the frame buffer suggest that

glCopyPixels depth performance could be dramatically improved in future hardware or

driver releases.

The OpenGL architecture specifies that glCopyPixels rasterises depth data, and all

of the fragment testing stages are applied — which could account for the relative slowness

of copying depth data. However, glDrawPixels also rasterises depth data as it is copied,

Platform glCopyPixels OpenGL glReadPixels glDrawPixels

(106 pixel/s) Format (106 pixel/s) (106 pixel/s)

GeForce3 0.50 GLshort 43 0.5
GLushort 43 100
GLint 43 0.5
GLuint 43 100
GLfloat 26 20

GeForce4 Ti 4200 0.50 GLshort 43 0.5
GLushort 43 110
GLint 43 0.5
GLuint 43 115
GLfloat 18 25

GeForceFX 5600 0.50 GLshort 44 0.5
GLushort 44 110
GLint 44 0.5
GLuint 44 110
GLfloat 18 12

Table 7.3: OpenGL Depth Buffer Copying Performance

127

applying the same fragment processing stages, so that is not a complete explanation.

Summarising these results:

• While colour or stencil data can be copied within the frame buffer at 320 to 480

million pixel/s, depth copying is considerably slower at 0.5 million pixel/s — for

reasons unclear.

• The emulation of multiple depth buffers for CSG rendering on these graphics cards

is most efficiently implemented using glReadPixels and glDrawPixels, rather than

glCopyPixels.

• The performance of moving colour and depth data between the frame buffer and

main memory is particularly sensitive to the format. For example, depth glDrawPixels

throughput varies from 0.5 million pixel/s for GLint to 110 million pixel/s for

GLuint.

The results in following sections have all used depth buffer copying between the frame

buffer and main memory to emulate multiple depth buffers in OpenGL. The results here

reflect the hardware we used in our work, but may not reflect graphics hardware from

other vendors or later products.

7.3 CSG Rendering Performance

This section examines the rendering performance of the Goldfeather [37], Layered Gold-

feather [87], Improved Layered Goldfeather [29] and SCS [88, 89, 90] algorithms.

These experiments used the same hardware and configuration as detailed in Section

7.2. The time per frame appearing in each table is averaged over one thousand frames,

each frame from a random viewing direction. The time per frame is also averaged across

the three graphics cards, and listed as average frequency, time and relative time. The

relative average time per frame summarises the performance of each algorithm for each

CSG model. A relative time of 10.0 is ten times slower than the fastest measured algorithm

for that model.

The CSG models in this section are composed of convex objects including spheres,

cylinders and boxes. The Goldfeather algorithms can also handle concave geometry, but

the SCS algorithm cannot. The issue of convex and concave geometry is specifically

addressed in Section 7.4.5.

128

(a) Shapes (b) a ∩ b− c− d

Figure 7.1: CSG Widget Model

7.3.1 Widget

The widget model is a single CSG product composed of the intersection of a sphere and

a box with two subtracted cylinders, as illustrated in Figure 7.1. This arrangement is

representative of a typical machining operation. The depth complexity is the same from

every viewing direction due to all of the objects overlapping each other. Timing results

are given in Table 7.4.

The Layered Goldfeather algorithm is slower than the original Goldfeather algorithm

since all the objects overlap and there is no advantage in clipping layers, rather than

individual objects. The Improved Layered Goldfeather algorithm is the fastest Gold-

feather variant, but is nine times slower than the SCS algorithm. The SCS algorithm is

particularly advantageous in this case since no buffer copying is required for rendering a

single CSG product.

Rendering Algorithm time (s/frame) average relative
GF3 GF4 FX (s/frame) (Hz) time

Goldfeather 0.414 0.386 0.419 0.407 2.5 16.9
Layered Goldfeather 0.495 0.376 0.538 0.470 2.1 19.6
Imp. Layered Goldfeather 0.193 0.178 0.276 0.216 4.6 9.0
SCS 0.017 0.015 0.039 0.024 42.3 1.0

Table 7.4: CSG Widget Rendering Performance

129

(a) Shapes (b) x− a− b− c− · · ·

Figure 7.2: CSG Grid Model

7.3.2 Grid

The grid model is a single CSG product composed of 25 non-overlapping spheres sub-

tracted from a box, as illustrated in Figure 7.2. The depth complexity of the subtracted

spheres ranges between one and ten, depending on the viewing direction. Timing results

are given in Table 7.5.

The Goldfeather algorithm is particularly slow in this case — as each sphere is clipped

against all of the other spheres even though there is no overlap between them. The

Layered Goldfeather and Improved Layered Goldfeather algorithms provide a performance

advantage with an average of 3.5 layers being substantially less than the 25 primitives.

The SCS algorithm is particularly advantageous in this case since no buffer copying

is required. SCS is four times faster on average than the Improved Layered Goldfeather

algorithm for this model.

Rendering Algorithm time (s/frame) average relative
GF3 GF4 FX (s/frame) (Hz) time

Goldfeather 3.426 3.164 3.187 3.259 0.3 42.3
Layered Goldfeather 0.565 0.421 0.551 0.512 2.0 6.6
Imp. Layered Goldfeather 0.315 0.279 0.446 0.347 2.9 4.5
SCS 0.069 0.060 0.102 0.077 13.0 1.0

Table 7.5: CSG Grid Rendering Performance

130

(a) Shapes (b) (a ∪ b ∪ c)− (d ∪ e ∪ f)

Figure 7.3: CSG Pipe Model

7.3.3 Pipe

The pipe model is composed of cylinders with a spherical joint, as illustrated in Figure

7.3. The inner cylinders and sphere (not shown) are subtracted from the outer cylinders

and sphere forming a hollowed out tube. The CSG tree in normalised form is: (a − d −
e− f) ∪ (b− d− e− f) ∪ (c− d− e− f). Timing results are given in Table 7.6.

With three CSG products, the SCS algorithm makes use of buffer copying, but is

twice as fast as the Improved Layered Goldfeather algorithm. The Layered Goldfeather

algorithm is the slowest algorithm, nearly ten times slower than SCS.

Rendering Algorithm time (s/frame) average relative
GF3 GF4 FX (s/frame) (Hz) time

Goldfeather 1.444 1.364 1.247 1.351 0.7 5.6
Layered Goldfeather 2.676 1.964 2.374 2.338 0.4 9.7
Imp. Layered Goldfeather 0.479 0.448 0.607 0.511 2.0 2.1
SCS 0.278 0.202 0.245 0.242 4.1 1.0

Table 7.6: CSG Pipe Rendering Performance

131

(a) Shapes (b) a ∩ b ∩ c ∩ · · ·

Figure 7.4: CSG Intersected Cylinders Model

7.3.4 Intersected Cylinders

The cylinders model is a single CSG product composed of ten intersected cylinders, as

illustrated in Figure 7.4. With all the cylinders intersecting, the depth complexity is ten.

Timing results are given in Table 7.7.

The SCS algorithm is substantially faster than the Goldfeather algorithms due to the

efficiency of intersection of convex shapes as implemented in SCS. No buffer copying or

subtraction sequences are necessary in this special case. On the three graphics cards

we tested, SCS is 29 times faster than the Improved Layered Goldfeather algorithm on

average.

The linear-time characteristic of SCS intersection is confirmed later in Section 7.4.1

by measuring the rendering time for a varying number of intersecting cylinders.

Rendering Algorithm time (s/frame) average relative
GF3 GF4 FX (s/frame) (Hz) time

Goldfeather 1.297 1.188 1.309 1.265 0.8 39.5
Layered Goldfeather 1.475 1.391 1.773 1.546 0.6 48.3
Imp. Layered Goldfeather 0.710 0.631 1.448 0.930 1.1 29.0
SCS 0.028 0.020 0.048 0.032 31.3 1.0

Table 7.7: CSG Intersected Cylinders Rendering Performance

132

(a) Shapes (b) Wireframe (c) (a ∩ b ∩ c)− x− y − · · ·

Figure 7.5: CSG Swiss Cheese Model

7.3.5 Swiss Cheese

The Swiss cheese model consists of fifty spheres subtracted from the intersection of an

ellipsoid and two boxes, as illustrated in Figure 7.5. The subtracted spheres resembling

the holes in Swiss cheese are randomly positioned and scaled. The depth complexity of

the spheres varies from eight to 14, with an average of 10.6. Timing results are given in

Table 7.8.

The SCS algorithm is the most efficient on all three graphics cards, being over three

times faster than the Improved Layered Goldfeather algorithm on average. The advantage

of the layered Goldfeather approach, relative to the original algorithm is illustrated in this

situation with the depth complexity being considerably less than the number of objects.

The O(n2) rendering passes of the Goldfeather algorithm could be improved. Weigand

[97] suggests optimisations including object-space bounding box tests to reduce the num-

ber of clipping passes for each layer in the frame buffer. Although we would expect this

to improve performance it does not resolve the common bottleneck — the O(n) depth

buffer copying operations.

Rendering Algorithm time (s/frame) average relative
GF3 GF4 FX (s/frame) (Hz) time

Goldfeather 7.895 7.204 7.798 7.632 0.1 19.8
Layered Goldfeather 2.051 1.510 2.101 1.887 0.5 4.9
Imp. Layered Goldfeather 1.279 1.115 1.932 1.442 0.7 3.7
SCS 0.313 0.259 0.587 0.386 2.6 1.0

Table 7.8: CSG Swiss Cheese Rendering Performance

133

(a) Shapes (b) x− a− b− c− · · ·

Figure 7.6: CSG Tool Model

7.3.6 Tool

The tool model is a single CSG product composed of twenty convex segments of a concave

helix subtracted from a cylinder, as illustrated in Figure 7.6. The depth complexity of

the subtracted segments ranges between three and seven, with an average of 4.8. Timing

results are given in Table 7.9.

While the Goldfeather algorithm is the slowest, the Layered Goldfeather algorithms

benefit from utilising the relatively low depth complexity.

The SCS algorithm is the fastest, being over six times faster than the Improved Layered

Goldfeather algorithm on average. The single CSG product requires no buffer copying

and low depth complexity is beneficial for minimising subtraction sequence length.

Overlap graph leaf trimming is particularly advantageous for this model with the

subtracted segments arranged in a strand from one end to the other. This results in a

more linear-time performance characteristic (with respect to the number of helix segments)

than O(n2) in the general case.

Rendering Algorithm time (s/frame) average relative
GF3 GF4 FX (s/frame) (Hz) time

Goldfeather 2.703 2.508 2.563 2.591 0.4 27.3
Layered Goldfeather 1.431 1.045 1.422 1.299 0.8 13.7
Imp. Layered Goldfeather 0.566 0.505 0.872 0.648 1.5 6.8
SCS 0.064 0.058 0.163 0.095 10.5 1.0

Table 7.9: CSG Tool Rendering Performance

134

(a) Blank
b1 ∪ b2 ∪ b3

(b) Swept Volumes
r1 ∪ · · · ∪ g1 · · ·

(c) Subtracted Result
b1 · · · − r1 · · · − g1 · · ·

Figure 7.7: CSG Step Tool Model

7.3.7 Step Tool

The step tool model is a more elaborate and realistic version of the tool model in the

previous section. Rather than a simple cylindrical blank, volumes are subtracted from a

blank with multiple cylindrical and tapered sections. This model is also representative of

an intended application of the SCS algorithm — tool grinding simulation.

The CSG tree illustrated in Figure 7.7 is formed by the sections of the blank: b1 ∪
b2 ∪ b3, with red swept volumes: r1 ∪ r2 ∪ · · · and green swept volumes: g1 ∪ g2 ∪ · · ·
subtracted. In normalised form the tree is three CSG products:

• b1 − r1 − r2 − · · · − g1 − g2 − · · ·

• b2 − r1 − r2 − · · · − g1 − g2 − · · ·

• b3 − r1 − r2 − · · · − g1 − g2 − · · ·

Each product corresponds to a section of the blank with all of the swept volumes

subtracted. Overlap graph processing reduces the size of each product by eliminating

swept volume elements not overlapping the blank segment. Further detail of this example

is given in Section 4.4.2.

Rendering Algorithm time (s/frame) average relative
GF3 GF4 FX (s/frame) (Hz) time

Goldfeather 9.840 9.175 8.752 9.256 0.1 20.9
Layered Goldfeather 5.287 4.938 4.742 4.989 0.2 11.3
Imp. Layered Goldfeather 1.891 1.693 2.715 2.100 0.5 4.7
SCS 0.417 0.401 0.511 0.443 2.3 1.0

Table 7.10: CSG Step Tool Rendering Performance

135

From the results in Table 7.10, the SCS algorithm achieves the best average frame rate

of 2.3 Hz, compared to 0.1–0.5 Hz for the Goldfeather implementations. This demonstrates

the performance advantage of the SCS algorithm. It also illustrates that CSG rendering

of these kinds of models is not quite possible at interactive frame rates. Frame rates below

10 Hz are generally not considered sufficient for interactive applications.

7.4 SCS Performance

The previous section demonstrates performance advantages of the SCS CSG rendering

algorithm, in comparison to previously reported approaches. This section focuses on

performance aspects of the SCS algorithm itself. Several features of the algorithm are

beneficial to overall performance, depending on the situation.

Section 7.4.1 examines the linear-time intersection of convex objects, which is one of

the unique characteristics of the SCS approach. Section 7.4.2 quantifies the performance

advantage of using intersection in preference to subtraction for interactive CSG rendering

of the Swiss cheese model introduced in Section 7.3.5.

Section 7.4.3 and Section 7.4.4 focus on overlap graph subtraction sequences. Overlap

graph processing often results in shorter subtraction sequences and consequently better

performance overall. However, this overall improvement depends on the number and

arrangement of edges in the overlap graph, and the cost of the overlap graph processing

step.

One of the simplifying assumptions made by the SCS algorithm is that concave geom-

etry is handled only indirectly by the algorithm. Concave shapes need to be converted

into convex geometry for the purpose of rendering with the SCS algorithm. Section

7.4.5 compares the real-world performance of rendering convex geometry with the SCS

algorithm with methods that handle concave geometry natively.

136

(a) 2 Cylinders (b) 5 Cylinders (c) 10 Cylinders

Figure 7.8: CSG Intersected Cylinders

7.4.1 SCS Intersection

The SCS CSG rendering algorithm uses a linear-time algorithm for intersecting convex

primitives in a product. The algorithm is described in detail in Section 4.2.1. This section

experimentally confirms the linear relationship using a generalisation of the Intersected

Cylinders model in Section 7.3.4.

The results were obtained on a 1Ghz Pentium III system with Nvidia GeForce3

OpenGL graphics, running RedHat Linux 7.1. Images were rendered in a 1024x768 win-

dow, each gluCylinder having 15 slices and 10 stacks.

The performance of SCS intersection averaged over 1000 frames appears as a table

in Figure 7.9. In each run, a product of n intersected cylinders form a faceted spherical

shape, as illustrated in Figure 7.8. The graph shows the linear relationship between the

rendering time per frame, and the number of intersected cylinders.

n Time Frame Rate
(s/frame) (Hz)

10 0.016 59
20 0.031 33
30 0.044 22
40 0.059 17
50 0.073 14
60 0.087 11
70 0.101 10
80 0.115 9
90 0.130 8

100 0.144 7
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 20 40 60 80 100

tim
e

(s
/fr

am
e)

n (cylinder)

Convex Intersection

Figure 7.9: Cylinder Intersection Performance

137

(a) 25 subtracted
spheres

(b) 50 subtracted
spheres

(c) 75 subtracted
spheres

Figure 7.10: Swiss Cheese Model

7.4.2 Intersection versus Subtraction

This experiment demonstrates the advantage of using intersection rather than subtraction

in a CSG tree. Our motivation is that intersection of convex objects is linear-time, while

subtraction is not.

A test model was developed for verifying the performance advantage of the SCS inter-

section. The Swiss Cheese CSG model in Figure 7.10 is formed by subtracting four boxes

from an ellipsoid and randomly subtracting spherical holes of varied radius. This results

in a CSG product consisting of n+ 4 subtractions: ellipsoid− box1− box2− box3− box4−
hole1 − hole2 − · · · − holen.

The same shape can also be formed by intersecting boxes with the ellipsoid, rather

than subtracting them. This alternative CSG tree consists of two intersections and n

subtractions: ellipsoid ∩ box4 ∩ box5 − hole1 − hole2 − · · · − holen
The average time per frame and frame rates for the two CSG trees are given in Table

7.11. Time per frame is plotted in Figure 7.11.

The non-linear time requirement for subtraction is evident in the increasing slope of

both plots. The relative performance of intersection and subtraction can be contrasted

to some extent by comparing convex intersection in Figure 7.9 and subtraction in Table

7.11. For n = 100, there is a considerable slowdown from 7 Hz for intersection to 1.2 Hz

for subtraction.

The relative efficiency of intersection is also evident by contrasting the performance

of these two Swiss Cheese CSG models. The tree using intersection operations is between

15% and 30% faster to display. Some of this speedup is due to the O(n) time intersection

138

Subtraction Intersection and Subtraction
n Time Frame Rate Time Frame Rate Speedup

(s/frame) (Hz) (s/frame) (Hz) (%)
10 0.069 14 0.050 20 29
20 0.111 9.0 0.078 13 27
30 0.164 6.1 0.120 8.3 25
40 0.227 4.4 0.169 5.9 26
50 0.294 3.4 0.217 4.6 24
60 0.357 2.8 0.286 3.5 20
70 0.455 2.2 0.370 2.7 20
80 0.588 1.7 0.500 2.0 15
90 0.714 1.4 0.588 1.7 17

100 0.833 1.2 0.714 1.4 15

Table 7.11: Swiss Cheese With and Without Intersection.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100

tim
e

(s
/fr

am
e)

n (cylinder)

Subtraction
Intersection and Subtraction

Figure 7.11: Swiss Cheese With and Without Intersection.

of boxes, rather than O(n2) time subtraction. Some of this speedup is also due to the fact

that only two boxes need to be intersected, rather than four boxes being subtracted.

These results confirm that making appropriate use of the convex intersection algorithm

results in a performance improvement over a purely subtractive algorithm. They also

suggest that intersection should be used (or even substituted) in preference to subtraction

wherever possible.

139

(a) n=50 (b) n=100 (c) n=200

Figure 7.12: Procedural Swiss Cheese

7.4.3 Overlap Graph Subtraction Sequences

The Swiss cheese CSG model is generated procedurally. The user supplies a specification

of the number and maximum size of holes, and a seed for the random number generator.

In this experiment, the maximum size of holes and random number sequence are fixed, and

the number of holes varied between 10 and 200. The model is illustrated in Figure 7.12

with 50, 100 and 200 holes.

Table 7.12 lists the minimum, maximum and average subtraction sequence lengths

for Swiss cheese with up to two hundred holes. The sequence lengths were obtained by

observing one thousand random viewing directions. kPES lengths are plotted in Figure

7.13(a), and overlap graph object-space sequence lengths are plotted in Figure 7.13(b).

The improvement of the overlap graph object-space sequence over kPES for the average

sequence length is plotted as an improvement factor in Figure 7.13(c). The improvement

factor asymptotes to 1.0 as the number of holes increases.

The data was collected in increments of n = 10 as plotted in Figure 7.13. Increments

of n = 20 appear in Table 7.12 for the sake of brevity.

n kPES Overlap graph sequence
min max average min max average

20 58 115 78 30 30 30
40 157 391 252 83 143 103
60 355 709 463 164 301 208
80 554 1107 760 349 749 506
100 793 1684 1143 628 1212 867
120 1072 2024 1468 876 1520 1160
140 1530 2642 1993 1351 2311 1738
160 1750 3340 2476 1570 2970 2197
180 2328 4118 3069 2146 3776 2817
200 2986 4976 3777 2788 4628 3517

Table 7.12: Swiss Cheese Sequence Length

140

 0

 1000

 2000

 3000

 4000

 5000

 0 50 100 150 200

se
qu

en
ce

 le
ng

th

number of holes

n

n2

min
max

average

(a) kPES subtraction sequences

 0

 1000

 2000

 3000

 4000

 5000

 0 50 100 150 200

se
qu

en
ce

 le
ng

th

number of holes

n

n2

min
max

average

(b) Overlap graph subtraction sequences

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200

im
pr

ov
em

en
t f

ac
to

r

number of holes

improvement factor

(c) Overlap Graph improvement factor

Figure 7.13: Swiss Cheese Subtraction Sequences

141

Overlap graphs for n = 25, 50 and 100 are illustrated in Figures 7.14, 7.15 and 7.16.

Dotted nodes indicate those with no spatial overlap (Section 6.2.6) and so appear just

once in the final subtraction sequence. Nodes processed in leaf trimming passes (Section

6.2.3) appear unshaded and appear twice in the final subtraction sequence. Shaded nodes

forming ring subgraphs (Section 6.2.4) appear up to four times in the final subtraction

sequence. The remaining shaded nodes are those forming cyclic subgraphs, each of which

is encoded into an O(kn) or O(n2) subtraction sequence.

These results indicate that object-space overlap graph subtraction sequences are con-

sistently shorter, with minimum, maximum and average case characteristics all being

similar. In Figure 7.13(c) for small n, sequence length improvement factors of between

two and three are observed until n = 40 when leaf trimming opportunities diminish. As

n approaches 80, the relative advantage drops dramatically and approaches an asymptote

at unity as n increases. This reflects the fact that as the number of holes increases the

overlap graph becomes more dense and cyclic and the opportunity for leaf node pruning

diminishes. Overlap graph subtraction sequences will never be longer, since in the worst

case the image-space encoding algorithm is used.

As the number of nodes is increased, the proportion of cyclic nodes also increases. For

n = 25 in Figure 7.14 there is only one cyclic subgraph, compared to five cyclic subgraphs

for n = 50 in Figure 7.15. A30, A39 and A37 are responsible for the formation of the

two major cyclic subgraphs illustrated in Figure 7.15 for n = 50. The resulting decline in

improvement factor for n = 40 compared to n = 30 is evident in Figure 7.13(c).

A0

A14

A15

A1

A9

A20A2

A3

A7

A19
A4

A5

A6

A8

A10

A11

A12
A22

A13

A16

A17 A18

A21

A23

A24

Figure 7.14: Swiss Cheese Overlap Graph for n = 25

142

As the number of nodes is further increased, these cyclic subgraphs merge into one large

interconnected component illustrated in Figure 7.16. Relatively few nodes can be pro-

cessed in leaf-trimming passes, leaving the majority to be encoded as an O(kn) or O(n2)

subtraction sequence. Subtraction sequences therefore trend from a linear to quadratic

length subtraction sequence as nodes are added.

A0

A14

A49

A15

A1

A9

A37

A20

A2

A40

A3

A7

A39

A19

A34

A4

A5

A6
A48

A8
A42

A46

A47

A10

A11

A27

A30

A12 A22

A28

A13

A26

A36

A38

A32

A16

A17

A18

A21

A23

A24

A25

A29

A31
A43

A33

A35

A41

A44A45

Figure 7.15: Swiss Cheese Overlap Graph for n = 50

143

A0

A14

A49

A58

A61

A70

A75

A98

A76

A15

A88

A81

A91 A94

A1

A9

A37

A51

A79

A87

A90A20

A93

A2
A40 A62A3

A7

A39

A19

A34

A73

A89

A92

A4

A53

A63

A97

A5

A6

A48

A57

A69

A74

A8

A42

A46

A47

A85

A10

A11

A27

A65

A80

A30

A12

A22

A28

A55

A13

A26

A36

A38

A60

A67

A96

A83

A32

A71

A84

A95

A16

A17

A18

A21

A68

A23

A24

A25

A29

A50

A31

A43

A33 A35
A78

A41

A44

A45

A52

A54

A56

A59 A86

A64

A66A72

A77

A82

A99

Figure 7.16: Swiss Cheese Overlap Graph for n = 100

144

(a) n=50 (b) n=100 (c) n=200

Figure 7.17: Simulated Three Axis Drilling

7.4.4 Overlap Graph Rendering Time

This experiment considers a simulated three axis drilling scenario. User specified param-

eters for the number and maximum size of holes are used to randomly generate drilled

holes of varied radius and position. The model is illustrated in Figure 7.17 with 50, 100

and 200 holes.

This experiment focuses on time rather than sequence length and examines the pro-

cessing overhead of object-space overlap graph sequence encoding. Table 7.13 lists the

encoding time and total time for three axis drilling models with up to two hundred holes.

One thousand random viewing directions were sampled for kPES and overlap graph based

sequence encoding methods. kPES rendering times are plotted in Figure 7.18(a) and

overlap graph rendering times are plotted in Figure 7.18(b). The relative performance

of overlap graph CSG rendering is plotted as a speedup factor in Figure 7.18(c). The

proportion of time spent encoding subtraction sequences is plotted as a fraction in Figure

7.18(d).

kPES (s/frame) Overlap Graph (s/frame)
n encode render total encode render total
20 0.0144 0.0141 0.0285 0.0003 0.0074 0.0076
40 0.0159 0.0379 0.0538 0.0007 0.0157 0.0164
60 0.0173 0.0700 0.0873 0.0148 0.0283 0.0430
80 0.0187 0.1171 0.1358 0.0701 0.0574 0.1274
100 0.0203 0.1669 0.1873 0.0858 0.0839 0.1697
120 0.0216 0.2458 0.2674 0.0765 0.1542 0.2307
140 0.0233 0.3101 0.3333 0.0551 0.2329 0.2880
160 0.0250 0.3926 0.4176 0.0464 0.3230 0.3693
180 0.0261 0.4748 0.5009 0.0378 0.4576 0.4954
200 0.0276 0.5719 0.5995 0.0422 0.5541 0.5963

Table 7.13: Three Axis Rendering Time (s/frame)

145

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200

tim
e

(s
/fr

am
e)

number of holes

encode
render

total

(a) kPES encoding and total time (s/frame)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200

tim
e

(s
/fr

am
e)

number of holes

encode
render

total

(b) Overlap Graph encoding and total time (s/frame)

 0

 1

 2

 3

 4

 5

 0 50 100 150 200

sp
ee

du
p

fa
ct

or

number of holes

speedup factor

(c) Overlap Graph speedup factor

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

C
P

U
 p

er
ce

nt
ag

e
(%

)

number of holes

overlap graph encoding
kPES encoding

(d) Relative encoding time

Figure 7.18: Three Axis Rendering Time

146

For n up to 40, all nodes are processed in leaf trimming making depth complexity

sampling unnecessary. Overlap graph sequence encoding is particularly advantageous

in these cases, resulting in overall speedups of between three and four. As drill holes

start forming cyclic clusters for 60 ≤ n ≤ 90, execution time for overlap graph encoding

increases in both absolute and relative terms. For n > 100 overlap graph encoding time

decreases as the model becomes increasingly dense and cyclic. As opportunities for leaf

trimming and ring finding diminish, the overall performance of both approaches converge.

For overlap graph sequence encoding, the fraction of time spent encoding the sub-

traction sequence peaks at nearly 60%, but still results in an overall speedup. In these

experiments, the per-frame overlap graph encoding time is always more than offset by

the performance benefit of shorter subtraction sequences. Stencil buffer copying related

to depth complexity sampling has been observed to be a bottleneck at resolutions higher

than 800x600. The size at which stencil buffer copying becomes the bottleneck depends

on the relative rasterisation and buffer copying performance of a particular platform.

Overlap graphs for n = 25, 50 and 100 are illustrated in Figures 7.19, 7.20 and 7.21.

As in the previous section dotted nodes indicate those with no spatial overlap (Section

6.2.6) and appear once in the final subtraction sequence. Nodes processed in leaf trimming

passes (Section 6.2.3) appear unshaded and appear twice in the final subtraction sequence.

Shaded nodes forming ring subgraphs (Section 6.2.4) appear up to four times in the final

subtraction sequence. The remaining shaded nodes are those forming cyclic subgraphs,

each of which is encoded into an O(kn) or O(n2) subtraction sequence.

C0
C10

C1

C2
C11

C3

C4C5

C6

C8

C9

C7

C12

C13

C14 C15 C16

C17

C18C19C20
C21

C22

C23

C24

Figure 7.19: Three Axis Overlap Graph for n = 25

147

Compared to the overlap graphs in the previous section, the three axis scenario results

in a similar pattern of increasing cyclicity. Although the drilled holes are constrained

to two dimensions instead of three, individual holes are somewhat less likely to overlap

spatially because they are relatively small.

C0

C10

C1

C2

C11C29

C48

C3

C4 C25

C33

C5

C6

C8

C9

C7

C26

C12 C31

C36

C13 C37

C45

C14
C35

C15

C28
C34

C43

C16

C30

C17

C18

C49

C19

C20

C21

C22

C23

C24

C27

C32

C38

C39

C40

C44

C41

C42

C46

C47

Figure 7.20: Three Axis Overlap Graph for n = 50

148

C0

C10
C97

C1

C53

C98

C2

C11

C29

C48

C71

C3

C61

C62

C4

C25

C33

C68

C5

C83

C87

C6

C8

C9

C58 C60

C74

C7

C26

C59

C73

C89

C12

C31

C36

C13

C37

C45

C72

C14

C35C91

C15

C28

C34

C43

C69

C16
C30

C52

C84
C17

C78
C99

C18

C49

C75

C86

C90

C85

C19

C20

C55

C77

C64

C21

C92

C22

C50

C23

C24

C54

C79

C65

C27

C32

C56

C57

C63

C66

C95

C38

C39

C40

C44

C41

C42

C46

C70

C81

C47

C51

C67

C76

C88

C80C82

C93

C94

C96

Figure 7.21: Three Axis Overlap Graph for n = 100

149

(a) Concave helix shape (b) Convex decomposition (c) Subtracted result

Figure 7.22: Convex and Concave Helical Volume Representation

7.4.5 Convex versus Concave Shapes

The SCS algorithm is specifically designed to process CSG trees of convex shapes, whereas

the Goldfeather algorithm can also handle concave shapes. SCS handles concave shapes

by requiring a decomposition into convex shapes.

This experiment examines the performance of CSG rendering algorithms using either

convex or concave representations. Tesselating concave volumes into convex elements

results in a larger number of volumes and a larger surface area for processing. However,

convex elements allow algorithmic simplifications — each object can be processed at a

lower cost with convex assumptions. This same approach of convex decomposition is used

in OpenGL for handling concave polygons.

The model used in this experiment is illustrated in Figure 7.22. Two helical volumes

are subtracted from a cylinder to form a cutting or milling tool. Each helix is either

represented as (a) a concave volume, or (b) decomposed into convex segments, to form

(c) the subtracted result.

The platform used for timing the algorithms is an AMD Athlon XP 1800+ with 256

kB cache, 1GB RAM using Nvidia FX 5900 Ultra graphics card running the Fedora

Core 3 Linux operating system and Nvidia version 71.74 OpenGL drivers. The SCS and

Goldfeather CSG rendering time was averaged over at least 1000 frames, in an 800x600

window.

150

x b1 c1 d1 e1 f1 g1 h1 i1 j1 k1 l1 m1 n1 o1 p1 q1 r1 s1 t1 u1
x •
b1 • • •
c1 • • • •
d1 • • • •
e1 • • • •
f1 • • • •
g1 • • • •
h1 • • • •
i1 • • • •
j1 • • • •
k1 • • • •
l1 • • • •

m1 • • • •
n1 • • • •
o1 • • • •
p1 • • • •
q1 • • • •
r1 • • • •
s1 • • • •
t1 • • • •
u1 • • •

Table 7.14: Helix Overlap Matrix

The overlap matrix in Table 7.14 represents the spatial overlap between the cylinder

x and the convex elements b1, c1, d1, · · · , u1 of one of the helices. Each helix element is

touching one or two others, as well as the cylinder. These subtracted elements form an

acyclic graph making it well suited for graph based sequence encoding and resulting in

an O(n) subtraction sequence. The second helix in the model also has the same overlap

characteristics, being rotated with respect to the axis of the cylinder. It should be noted

that if the two helices were overlapping each other, the overlap graph of the subtracted

elements would no longer be acyclic.

Timing results for the convex and concave versions of the model in Table 7.15 show

the performance advantage of the SCS approach for this model. The SCS algorithm can

render at 152 Hz, compared to the 20 Hz of the Goldfeather algorithm. The convex

representation is particularly poorly suited for the Goldfeather approach, resulting in less

than 6 Hz.

Algorithm average relative
(s/frame) (Hz) time

Convex Goldfeather 2.110 0.5 301.4
Layered Goldfeather 0.281 3.6 40.1
Imp. Layered Goldfeather 0.174 5.8 24.9
SCS 0.007 152.1 1.0

Concave Goldfeather 0.050 19.9 7.1
Layered Goldfeather 0.166 6.0 23.7
Imp. Layered Goldfeather 0.076 13.0 10.0
SCS n/a n/a

Table 7.15: Convex and Concave CSG Rendering Performance

151

7.5 Discussion

To conclude this chapter, performance aspects of the SCS CSG rendering algorithm are

summarised, and some assumptions and limitations discussed.

The SCS CSG algorithm achieves interactive frame rates on commodity PC hardware

platforms for some of the models, but not the more complicated ones. Depth buffer

copying has been identified as a significant bottleneck for CSG rendering, motivating the

SCS algorithm which makes heavier utilisation of rasterisation, rather than buffer copying.

The algorithm has been shown to be advantageous for a variety of CSG models, compared

to the Goldfeather-style algorithms.

Several performance aspects of the SCS CSG algorithm are investigated experimentally

and the results discussed. Intersection of convex objects is performed in linear time.

Subtraction of convex objects is linear time in the best case, O(n2) time in the worst case.

Overlap graph processing can utilise spatial overlap information to reduce the length of

subtraction sequences, especially in cases of low to moderate overlap. Handling of concave

shapes as convex decompositions can result in an overall speedup, compared to algorithms

that process concave shapes directly.

The SCS CSG rendering algorithm was formulated, developed and tested for fixed-

pipeline OpenGL graphics hardware. A variety of Nvidia graphics hardware was used in

this work, other vendors such as ATI were not tried. With the rapid pace of PC and

graphics hardware we would expect CPU speed, GPU performance and bus bandwidth

to affect the relative performance of CSG rendering algorithms.

The CSG models used in this work tend to be test-cases rather than real-world data

sets, although some of the models are intended to be similar to real-world cases. Develop-

ing a more comprehensive set of models to represent real world examples is a suggestion

for further work.

152

Chapter 8

Conclusion

If a man will begin with certainties, he shall end in doubts; but if he will be

content to begin with doubts he shall end in certainties.

— Sir Francis Bacon

153

8.1 Conclusion

This work has introduced a new approach to CSG rendering based on sequenced sub-

traction of convex objects on graphics hardware. We have called this Sequenced Convex

Subtraction1 (SCS), drawing on the Trickle algorithm [28] concept of front to back sub-

traction of convex layers, but utilising convex objects instead of frame-buffer layers and

utilising a subtraction sequence instead of sorting by depth.

The SCS algorithm is motivated by a specific application domain and performance

characteristics of fixed-pipeline graphics hardware. The algorithm has been found to be

applicable to a broad set of CSG models2, although is better suited to some situations than

to others. The SCS approach is particularly well suited to models involving convex objects

with little to moderate overlap, and moderate overall depth complexity3. The algorithm is

suitable for implementation in mainstream graphics hardware, and is designed to minimise

the number of buffers and buffer copying required by prior approaches.

This work has introduced the concept of a subtraction sequence, the specific sequence

in which convex objects are subtracted from the depth buffer. A subtraction sequence

can be derived from information about the subtracted objects including the number of

objects, the view-dependent depth complexity of the objects and the pairwise overlap of

the objects. In the general case an O(n2) sequence is used4. If depth complexity k is

known, an O(kn) sequence can be used5. Utilisation of pairwise overlap information can

result in O(1) or O(n) sequences in particular circumstances6.

Subtraction sequences have also been examined from the abstract mathematical view-

point of Permutation Embedding Sequences7 (PESs). Previous work [14, 35, 83] has

established algorithms for generating n2 − 2n + 4 length subtraction sequences, but has

not established a lower bound for PES length.

This work introduces the concept of Normalised No Repeat (NNR) sequences, a su-

perset of the shortest length subtraction sequences that serves to reduce the overall space

of possible subtraction sequences. Utilising NNR we were able to determine a complete

list8 of shortest length subtraction sequences for 1 ≤ n ≤ 5, which has not been reported

1Chapter 4 and 6.
2Chapter 7.
3Section 7.4.3.
4Chapter 5.
5Section 4.3.2.
6Chapter 6.
7Chapter 5.
8Table 5.7.

154

previously. We did not discover any PESs of shorter length than n2 − 2n+ 4. The NNR

approach also establishes an Ω(n2) lower bound for PES length9, which has not been

reported previously.

This work also examined the utilisation of pairwise subtracted object overlap for sub-

traction sequences10. Non-cyclic parts of the overlap graph can be utilised to obtain O(n)

subtraction sequences, and certain cyclic sub-graphs can also result in O(n) sequences.

Experimentally, we have shown that the performance improvement resulting from over-

lap graph subtraction sequences is worth the CPU computational cost, even in fairly

degenerate worst cases11.

This work has also experimentally confirmed the correctness and performance of the

SCS approach to CSG rendering by means of an implementation12 in C++ and OpenGL,

and application to a variety of CSG models13.

We are optimistic about hardware and algorithmic progress towards CSG rendering

using graphics hardware and the potential for useful interactive applications of CSG mod-

elling.

9Section 5.4.7.
10Chapter 6.
11Section 7.4.4.
12Appendix B and available online.
13Chapter 7.

155

8.2 Further Work

There are a variety of future directions for hardware based CSG rendering. We will

mention here some of the unresolved questions and potential improvements to the SCS

approach in particular.

Graphics hardware presents a “moving target” in terms of features and performance

characteristics. At this point in time the technology horizon for interactive computer

graphics includes multi-core CPU, universal GPU shaders and integration of the CPU and

GPU. SCS is formulated in terms of the OpenGL 1 fixed-pipeline architecture, with an

emphasis on minimising depth buffer copying. The relative competitiveness of hardware-

based algorithms is likely to shift over time. New graphics hardware features may be

better suited to a particular CSG rendering approach.

We think there are further improvements that can be made to overlap graph subtrac-

tion sequences. Taking into account the viewing direction and the depth relationship of

overlapping objects, the graph could be treated as a directed graph, greatly improving

the potential for non-cyclic leaf trimming, resulting in shorter subtraction sequences.

Nodes could be grouped into clusters and treated as non-cyclic leaves, resulting in O(2n2

g
)

sequences, being especially beneficial when the groups are of comparable size and the

number of groups g is greater than 2.

PESs of shortest length remains an unsolved problem. Some ideas for further investi-

gation of these were mentioned previously in Section 5.5.1.

Finally, there is a broader question of the “ideal” hardware-based CSG rendering

approach. To what extent can electronics advances, graphics hardware design, engineering

and manufacturing solve the problem? Alternatively, is the CSG rendering challenge an

algorithmic one of utilising graphics hardware and CPU in an optimal arrangement?

156

8.3 Citations and Subsequent Work

In the time during and after the development of the SCS algorithm there has been other

related work reported:

• The Improved Layered Goldfeather Algorithm [29] made better utilisation of the

stencil buffer for Goldfeather CSG rendering. We have described this briefly in

Section 3.5.3, and include experimental performance results for our implementation

in Section 7.3.

• A survey of depth buffer techniques [93] includes discussion of CSG rendering, in-

cluding SCS.

• CSG rendering using a two-sided depth test [42] improved layer-peeling performance

by utilising the hardware shadow buffer depth test.

• Several SCS performance improvements were reported by utilising off-screen render-

ing as an alternative to depth or stencil copying and using the OpenGL occlusion

query for depth complexity [52].

• The OpenCSG real-time 3D graphics library [53] implements CSG rendering using

algorithms including SCS.

• The Blister CSG rendering algorithm [43] avoids conversion of the CSG to sum-of-

products form and utilises hardware-based layer peeling.

• Subsequent to the Blister approach, the Constructive Solid Trimming (CST) algo-

rithm [46] and Optimised Blist Form [76].

• Transparent and edge-enhanced interactive CSG rendering [67].

• A surfel approach to CSG rendering [13].

• Hardware-based slicing algorithm for CSG [58, 44].

• Romeiro et al. [33] report spatial subdivision, CSG tree simplification shader-based

raytracing of CSG models.

157

Appendix A

Software Documentation

I would sooner read a timetable or a catalog than nothing at all.

— W. Somerset Maugham

159

Grid Ring Cheese Helix

Figure A.1: CSG Models Included with CsgDemo

A.1 CsgDemo

A.1.1 Introduction

CsgDemo is an interactive real-time graphical application for demonstrating and exper-

imenting with real-time OpenGL CSG rendering algorithms. The Goldfeather [37, 97],

Layered Goldfeather [87], Improved Layered Goldfeather [29] and Sequenced Convex Sub-

traction [88, 89, 30] (SCS) CSG rendering algorithms are implemented. A number of CSG

trees are included with the program, as well as the facility to import CSG models via a

simple file format. Some included CSG models are illustrated in Figure A.1.

A.1.2 System Requirements

CsgDemo is available for Windows with OpenGL drivers installed and Linux with Mesa or

OpenGL drivers. Hardware graphics acceleration is recommended. A variety of hardware

platforms were used for development including 3Dlabs Permedia 2 and Nvidia TNT2,

Geforce 2, GeForce 3, GeForce 4 and GeForce FX.

160

Left Mouse Button Menu
Right Mouse Button Rotation
Right Mouse Button + SHIFT Panning
Right Mouse Button + CTRL Zooming
1,2,· · · Select CSG Tree
1,2,· · · + SHIFT Select information mode
i,o Zoom in and out
a,z,x,c Rotation
g,b,n,m Panning
f,v Forward and back in z
[,],{,} Scale and translate frustum in z
+,- Adjust number of subtracted objects
F9 Save RGB colour buffer
F10 Save stencil buffer
F11 Save depth buffer
TAB Toggle full-screen mode
q,ESC Quit application

Table A.1: CsgDemo Mouse and Keyboard Bindings

A.1.3 Mouse and Keyboard

Interaction with CsgDemo is provided via mouse, keyboard and pop-up menus. The

mouse and keyboard bindings are listed in Table A.1.

A.1.4 Menu

The CsgDemo pop-up menu is activated by clicking the left mouse button with the appli-

cation window. The menu items are detailed in Table A.2. Several of the display modes

are illustrated in Figure A.2.

Preview Wireframe CSG Depth
Complexity

Figure A.2: CsgDemo Display Modes

161

Model Select CSG model for display.
Tree Select and display CSG tree from current model.
Primitive Select and display primitive from current model.

Algorithm Select the rendering algorithm.
Preview Display all surfaces without CSG rendering.
Wireframe Display in wire-frame without CSG rendering.
Layer Extract ith layer. (Use l and L to adjust i)
Depth Complexity Depth-complexity visualisation mode.
Goldfeather Goldfeather [37, 97] CSG rendering algorithm.
Layered Goldfeather Layered Goldfeather [87] CSG rendering algorithm.
Imp. Layered Goldfeather Improved Layered Goldfeather [29] algorithm.
SCS Sequenced Convex Subtraction [88, 89] algorithm.

Options

Display Options for configuring the 3D display.
Fast Manipulation Faster display mode during mouse manipulation.
Bounding Boxes Display bounding boxes of all objects.
Z Histogram Display z-buffer histogram.
Benchmark Mode Redraw continuously for benchmarking purposes.

Info Information display options.
Introduction Display title, version and credit information.
OpenGL Driver Display OpenGL driver and version information.
CSG Information Display CSG rendering statistics.
Overlap Display current overlap matrix.
Frame Rate Display frame-rate information.
Hide No displayed information.

CSG Rendering CSG Rendering options.
Copy/Draw Use z-buffer copying or read/draw for multiple z-buffer.
Sample K Use depth complexity sampling. (recommended)
Object-Space Use object-space SCS subtraction sequence encoding.
BSP Overlap Use Binary Space Partitioning for overlap graph.
Cull Faces Use face culling.
Calculate Adjacency Recalculate adjacency.

Save Files are saved increasing numerically from 00000000.ext
RGB Save OpenGL colour buffer as PNG file.
Stencil Buffer Save OpenGL stencil buffer as PPM file.
Z-Buffer Save OpenGL depth buffer as PPM file.
Overlap (LATEX) Save overlap graph as LATEXtable.
Overlap (dot) Save overlap graph as dot [7] graph.

Table A.2: CsgDemo Menu Items

162

A.1.5 Command Line Options

CsgDemo supports a variety of command line options:

• filename

Specify CSG model from an input file, or from standard input: -

• -size width height

Specify the width and height of the window.

• -ini filename

Specify a configuration file

• -set "name:value"

Specify an internal setting.

• -quiet

Suppress start-up messages.

• +keys

Specify list of keyboard events for processing.

For example:

• csgdemo -size 800 600

Run in an 800x600 window

• csgdemo -fullscreen

Run in fullscreen mode

• csgdemo +^

Show frame rate information

• csgdemo -set csgdemo.shape.mode:DepthComplexity

Display depth complexity

• csgdemo -set csgdemo.shape.mode:SCS

Display using the SCS CSG rendering algorithm

• csgdemo -set csgdemo.display.benchmark:true -set csgdemo.samples:100

Draw 100 frames in benchmark mode

163

A.1.6 File Format

In addition to built-in CSG models, CsgDemo has the facility to read CSG models from a

file or standard input. The CsgDemo file format is text based. Each line describes either

a leaf shape, or a complete CSG tree. An example CSG model is illustrated in Figure

A.3. The full grammar is as follows:

〈file〉 → 〈entries〉
〈entries〉 → 〈entry〉 〈entries〉 |
〈entry〉 → 〈leaf〉 | 〈tree〉 | 〈trans〉 |
〈leaf〉 → 〈name〉 = 〈shape〉 〈color〉 〈transforms〉
〈shape〉 → sphere | box | cylinder | helix | helixseg | mesh

〈color〉 → black | white | red | green | blue | orange | yellow

〈transforms〉 → 〈transform〉 〈transforms〉 |
〈transform〉 → 〈scale〉 | 〈translate〉 | 〈rotate〉 |
〈scale〉 → scale 〈vector〉
〈translate〉 → translate 〈vector〉
〈rotate〉 → rotate 〈vector〉 〈angle〉
〈vector〉 → 〈number〉 〈number〉 〈number〉
〈angle〉 → 〈number〉
〈tree〉 → Tree = 〈expression〉
〈expression〉 → 〈name〉 | (〈expression〉 〈operator〉 〈expression〉)

〈operator〉 → + | - | .

〈trans〉 → Transform = 〈transforms〉

X1 = sphere yellow scale 2.0 2.0 2.0
X2 = box green scale 1.5 1.5 1.5
A = cylinder orange scale 0.8 0.8 5.0 translate 0.0 0.0 -2.5
B = cylinder orange scale 0.8 0.8 5.0 translate 0.0 0.0 -2.5 rotate 0.0
1.0 0.0 90.0
Tree = (A+B)
Tree = (A.B)
Tree = (A-B)
Tree = ((X1.X2)-(A+B))

Figure A.3: Sample CsgDemo Input File

164

A.2 CSG Tools

Several separate command line tools have been developed for the purpose of research,

testing and demonstration. These are typically used to supply a complete CSG model to

the CsgDemo program as follows:

tool | csgdemo -

A.2.1 Three Axis Milling

The program 3axis produces a randomised three axis CSG model consisting of a rectan-

gular block and subtracted endmill or ballnose shaped holes.

3axis type seed n

• type is 0 for endmill (square) shaped holes, or 1 for ballnose (spherical) shaped

holes.

• seed is the random number seed for varying the position and size of subtracted

holes.

• n is the number of subtracted holes.

3axis 0 251274 50 3axis 1 251274 50 3axis 0 251074 100

Figure A.4: Three Axis Milling Examples

165

A.2.2 Swiss Cheese

The program cheese produces a randomised Swiss cheese CSG model consisting of a CSG

rounded block and subtracted holes.

cheese type radius seed n

• type is 0 for an intersected cheese block, or 1 for subtracted. As the SCS algorithm

can intersect more efficiently than it can subtract, 0 is the recommended mode of

operation.

• radius is the maximum radius of subtracted holes. The Swiss cheese model is

approximately 1 unit in width, height and depth. A maximum hole radius of between

0.15 and 0.30 is recommended.

• seed is the random number seed for varying the position and size of subtracted

holes.

• n is the number of subtracted holes.

cheese 1 0.2 251274 10 cheese 1 0.2 251274 25 cheese 1 0.2 251274 100

Figure A.5: Swiss Cheese Examples

166

A.2.3 Cylinders

The program cylinders produces a CSG model consisting of n intersected cylinders.

This program is primarily intended for benchmarking the performance of the SCS convex

intersection algorithm.

cylinders n

• n is the number of cylinders.

cylinders 2 cylinders 10 cylinders 100

Figure A.6: Cylinders Examples

167

A.2.4 Helix

The program helix produces a CSG model composed of helical volumes subtracted from

a solid cylinder. These are intended to resemble the arrangement of swept volumes sub-

tracted from a metal blank in CNC tool manufacturing. The helical volumes are composed

of convex components for the SCS rendering algorithm. For the Goldfeather algorithm,

concave helical volumes are produced.

helix n convex stacks slices radius freq

• n is the number of helical volumes.

• convex is 1 for convex volumes, 0 for concave.

• slices is the number of subdivisions along the helical path.

• stacks is the number of subdivisions around the circle swept along the helical path.

• freq is the number of revolutions of the helical path.

helix 1 1 40 20 0.2 5 helix 2 1 8 8 0.4 1 helix 3 1 20 20 0.3 1

Figure A.7: Helix Examples

168

A.3 OpenGL Diagnostic Tools

A.3.1 OpenGL Buffer Copying Benchmark

The program glcopysp times the OpenGL glCopyPixels() call for copying depth, stencil

of colour buffer information within an OpenGL window. Depth buffer copying can be a

substantial bottleneck in CSG rendering algorithms. The performance characteristics of

several platforms is included in Table A.3. A more detailed examination of OpenGL buffer

copying performance is in Section 7.2.

Graphics Hardware colour depth stencil
(106 pixel/s)

SGI IMPACT/2/2/4 17 22 34
SGI IRL/S/1/16/4 Onyx Irix 6.4 30 19 42
GeForce3 320 0.5 320
GeForce4 MX 440/AGP/3DNOW! 300 0.16 400
GeForce4 Ti 4200 470 0.5 420
GeForceFX 5600 480 0.5 320
GeForce 6150 LE/PCI/SSE2/3DNOW! 80 0.47 182
GeForce 7600 GS/PCI/SSE2/3DNOW! 390 0.35 184

Table A.3: OpenGL Buffer Copying Performance

169

Figure A.8: Output of glzcopy Diagnostic for Nvidia GeForce4 MX

A.3.2 OpenGL Depth Buffer Copying Diagnostic

The program glzcopy demonstrates a potential problem with the accuracy of depth buffer

copying within an OpenGL window. The window is divided into two viewports: left and

right. The left viewport is covered by a quadrilateral from znear at the bottom to zfar at

the top. The z-buffer is then copied from the left viewport to the right viewport. The

same quadrilateral is drawn to the right viewport with a z-equal depth test. Where the

depth test passes, green pixels are drawn. Where the depth test fails, red pixels are drawn.

The result of this diagnostic varies for different OpenGL implementations. Figure A.8

illustrates the result on Nvidia GeForce4 MX hardware. Depth buffer precision is lost

for the front quarter of the frustum. Therefore for this OpenGL implementation it is

important to restrict use of the frustum to the reliable region of z-buffer copying.

Figure A.9 illustrates results collected for a variety of platforms. In previous versions

of the program a sphere was drawn rather than a quadrilateral.

170

(a) SGI Indy (b) SGI Impact

(c) Windows 95 (d) 3DLabs 3Demon

(e) Mesa 2.2 (f) GeForce 6150 LE

Figure A.9: glzcopy Results for Various Platforms

171

Appendix B

Source Code

As we know, there are known knowns.

There are things we know we know.

We also know there are known unknowns.

That is to say, we know there are some things we do not know.

But there are also unknown unknowns, the ones we don’t know we don’t know.

— Donald H. Rumsfeld

173

B.1 Goldfeather CSG Rendering

B.1.1 Goldfeather CSG Rendering Algorithm

The routine csgRenderGoldfeather implements the Goldfeather CSG rendering algo-

rithm, as described in Section 3.5.1. The routine takes as input a CSG sumOfProducts,

runtime configuration options, and an information object for collecting runtime statis-

tics. The stencil and depth buffers are assumed to be cleared before the routine is called.

The routine makes use of a CsgDepthBufferHelper to simulate a second OpenGL

depth buffer. This second depth buffer can read and write to and from the OpenGL

depth buffer.

The routine makes use of csgRenderLightShadeZBuffer for converting the final depth

buffer into a lit and shaded RGB colour buffer.

The routine makes use of parityIntersect, paritySubtract and parityApply sub-

routines for managing stencil parity bit-masks, the stencil buffer and clipping the depth

buffer.

Nvidia graphics hardware requires some special handling due to inconsistency between

the fragments generated with lighting turned on or off. Lighting can be disabled on other

graphics hardware, and enabled for the final pass that generates the RGB image of the

CSG model. For Nvidia hardware, a depth test of GL EQUAL is only reliable if lighting is

enabled or disabled for all passes of the algorithm. For other hardware, disabling lighting

calculations for intermediate passes may result in a performance improvement. The option

options.nvidiaHardware should be enabled whenever Nvidia hardware is detected by

the application.

Upon completion the CSG rendered result is stored in the OpenGL colour and depth

buffers. The OpenGL state is restored, except for the stencil buffer which is undefined.

The GLERROR macro is used to trap any OpenGL errors that occur before or during the

execution of the routine.

1 void csgRenderGoldfeather
2 (
3 const CsgSumOfProducts &sumOfProducts ,
4 const CsgOptions &options ,
5 CsgInfo &in format ion
6)
7 {
8 Timer t imer ; // Track e l a p s e d t ime
9 GLERROR // Check f o r OpenGL e r r o r s

10
11 glPushAttr ib (GL ENABLE BIT | GL DEPTH BUFFER BIT | GL COLOR BUFFER BIT |
12 GL POLYGON BIT | GL VIEWPORT BIT) ;
13
14 // S imu la t ed second OpenGL dep th b u f f e r
15 CsgDepthBufferHelper zBuf f e r2 (opt ions . zBufferCopy) ;
16
17 // Massage OpenGL t ran s f o rma t i on ma t r i c i e s , i f n e c e s s a r y
18 i f (opt ions . msDriver)
19 massageOpenGLMatrices () ;
20

174

21 // Query OpenGL f o r number o f s t e n c i l b i t−p lanes ,
22 // u s u a l l y e i g h t
23
24 GLint s t e n c i l B i t s = 0 ;
25 g lGet Integerv (GL STENCIL BITS,& s t e n c i l B i t s) ;
26 in format ion . s t e n c i l B i t s = GLuint (s t e n c i l B i t s) ;
27
28 // Do not draw i n t o RGBA, or do e x p en s i v e
29 // t h i n g s l i k e l i g h t i n g or no rma l i s a t i on
30
31 glColorMask (GL FALSE,GL FALSE,GL FALSE,GL FALSE) ;
32 g lD i s ab l e (GL NORMALIZE) ;
33
34 // Nvid ia hardware g en e r a t e s d i f f e r e n t f ragment s depending
35 // on the l i g h t i n g mode . The dep th w i l l need to match
36 // when csgRenderL igh tShadeZBuf f e r i s c a l l e d .
37
38 i f (opt ions . nvidiaHardware)
39 glEnable (GL LIGHTING) ;
40 else
41 g lD i s ab l e (GL LIGHTING) ;
42
43 // Process each CSG product , in turn
44
45 bool useSecondZbuf fer = fa l se ;
46 GLuint p ;
47
48 // For p roduc t s o f s i z e g r e a t e r than one , each l a y e r
49 // o f each p r im i t i v e needs to be c l i p p e d i n d i v i d u a l l y
50
51 glDepthFunc (GL ALWAYS) ;
52 glDepthMask (GL TRUE) ;
53
54 for (p=0; p<sumOfProducts . s i z e () ; p++)
55 i f (sumOfProducts [p] . s i z e ()>1)
56 {
57 const CsgProduct &product = sumOfProducts [p] ;
58
59 // Non− t r i v i a l p roduc t s are c l i p p e d ,
60 // each l a y e r o f each p r im i t i v e a t a t ime .
61
62 for (GLuint i =0; i<product . s i z e () ; i++)
63 {
64 // Determine dep th comp l e x i t y o f t h e shape ,
65 // each l a y e r w i l l be c l i p p e d in turn
66
67 glEnable (GL CULL FACE) ;
68 g lCul lFace (GL BACK) ;
69 const GLuint maxK = countSur faces (∗ product . shape (i) ,COUNT SURFACES ALL) ;
70
71 for (GLuint k=0; k<maxK; k++)
72 {
73 in format ion . l a y e rC l i p s++;
74
75 // Copy OpenGL dep th b u f f e r to t h e 2nd bu f f e r ,
76 // f o r merging back in l a t e r
77
78 i f (useSecondZbuf fer)
79 {
80 zBuf f e r2 . read () ;
81 in format ion . depthReads++;
82 }
83
84 // In the convex case , on l y one l a y e r to be
85 // p ro c e s s e d f o r t h i s p r im i t i v e .
86
87 i f (maxK==1)
88 {
89 g lD i s ab l e (GL STENCIL TEST) ;
90
91 // Draw f r o n t or back s u r f a c e i n t o z−b u f f e r
92 i f (product . p o s i t i v e (i))
93 product [i] . drawFront () ;
94 else
95 product [i] . drawBack () ;
96 }
97 else
98 {
99 g lC l ea r (GL STENCIL BUFFER BIT) ;

100 in format ion . s t e n c i l C l e a r s++;
101
102 glEnable (GL STENCIL TEST) ;
103 g lStenc i lOp (GL INCR,GL INCR,GL INCR) ;
104 g lS tenc i lFunc (GL EQUAL, k , ˜ 0) ;
105 g lStenc i lMask (˜ 0) ;
106
107 i f (product . p o s i t i v e (i))
108 product [i] . drawFront () ;
109 else
110 product [i] . drawBack () ;
111
112 g lC l ea r (GL STENCIL BUFFER BIT) ;
113 in format ion . s t e n c i l C l e a r s++;
114 }
115
116 // C l i p dep th b u f f e r a g a i n s t o t h e r p r im i t i v e s
117 // in t h e CSG produc t .
118
119 GLuint b i t = 0 ;
120 GLuint mask = 0 ;
121
122 for (GLuint j =0; j<product . s i z e () ; j++)
123 {

175

124 // Only c l i p a g a i n s t o t h e r shapes
125
126 i f (j != i)
127 {
128 // The p a r i t y t e s t i s i n v e r t e d depend ing on
129 // whether we ’ re i n t e r s e c t i n g or s u b t r a c t i n g .
130
131 i f (product . p o s i t i v e (j))
132 p a r i t y I n t e r s e c t (∗ product . shape (j) , b it , mask) ;
133 else
134 par i tySubt rac t (∗ product . shape (j) , b it , mask) ;
135
136 b i t++;
137 }
138
139 // Apply p a r i t y mask as soon as s t e n c i l b i t p l an e s
140 // have been exhaus ted , or f i n i s h e d wi th c l i p p i n g
141
142 i f ((b i t==GLuint (s t e n c i l B i t s) | | j==product . s i z e ()−1) && b i t)
143 {
144 // P i x e l s t h a t don ’ t match t he p a r i t y mask
145 // are r e s e t t o zFar
146
147 parityApply (mask , ˜ 0) ;
148 g lC l ea r (GL STENCIL BUFFER BIT) ;
149 in format ion . s t e n c i l C l e a r s++;
150
151 mask = 0 ;
152 b i t = 0 ;
153 }
154 }
155
156 // Merge w i th 2nd z−b u f f e r , i f a v a i l a b l e
157
158 i f (useSecondZbuf fer)
159 {
160 zBuf f e r2 . wr i t e (true) ;
161 in format ion . depthWrites++;
162 }
163
164 // Prese rve 1 s t z−b u f f e r nex t t ime
165 useSecondZbuf fer = true ;
166 }
167 }
168 }
169
170 // (OPTIMISATION)
171 //
172 // For p roduc t s o f s i z e one , no c l i p p i n g i s ne c e s sa ry
173 // Simply draw f r o n t s u r f a c e s w i th z− l e s s t e s t
174
175 g lD i s ab l e (GL STENCIL TEST) ;
176 glEnable (GL DEPTH TEST) ;
177 glDepthFunc (GL LESS) ;
178 glDepthMask (GL TRUE) ;
179
180 for (p=0; p<sumOfProducts . s i z e () ; p++)
181 i f (sumOfProducts [p] . s i z e ()==1)
182 sumOfProducts [p] . f r on t () . drawFront () ;
183
184 // Now t h a t dep th b u f f e r c on t a i n s CSG r e s u l t ,
185 // the l i t and shaded RGB r e s u l t can be drawn .
186
187 csgRenderLightShadeZBuffer (sumOfProducts , opt ions) ;
188
189 glPopAttr ib () ; // Res tore OpenGL s t a t e
190 GLERROR // Check f o r e r r o r s
191 g lF in i s h () ; // Wait f o r OpenGL to f i n i s h
192
193 in format ion . drawTime += timer . c l o ck () ; // C o l l e c t e l a p s e d t ime f o r a n a l y s i s
194 }

176

B.1.2 Parity Testing

The routine parityTest implements depth buffer parity testing. The routine takes

as input a shape, the stencil bit to be used to store pixel parity, and the OpenGL

depthFunction to be used.

The routine is used via the parityIntersect and paritySubtract routines which

serve to manage the stencil parity mask used by the parityApply routine described in

the next section.

The parity of the depth buffer is even outside the volume of the shape, and odd when

inside. In the case of intersection, pixels of even parity are subsequently clipped. In the

case of subtraction, pixels of odd parity are subsequently clipped. Clipping passes are

minimised by forming a parity mask which is applied once all the stencil bit-planes are in

use.

Upon completion the depth buffer parity is stored in the specified stencil bitplane,

leaving the other stencil bitplanes intact. The OpenGL state is restored and the depth

and colour buffers left intact. The GLERROR macro is used to trap any OpenGL errors

that occur before or during the execution of the routine.

1 void pa r i t y I n t e r s e c t (const GltShape &shape , const GLuint bit , GLuint &mask , const GLenum depthFunction)
2 {
3 par i tyTest (shape , bit , depthFunction) ;
4 mask |= (1<<b i t) ; // Se t p a r i t y mask b i t
5 }

1 void par i tySubt rac t (const GltShape &shape , const GLuint bit , GLuint &mask , const GLenum depthFunction)
2 {
3 par i tyTest (shape , bit , depthFunction) ;
4 mask &= ˜(1<<b i t) ; // Clear p a r i t y mask b i t
5 }

1 void par i tyTest (const GltShape &shape , const GLuint bit , const GLenum depthFunction)
2 {
3 GLERROR
4
5 const GLuint mask = 1<<b i t ;
6
7 glPushAttr ib (GL ENABLE BIT | GL DEPTH BUFFER BIT |
8 GL COLOR BUFFER BIT | GL STENCIL BUFFER BIT) ;
9

10 glEnable (GL STENCIL TEST) ; // Conf i gure s t e n c i l t e s t t o t o g g l e
11 g lS tenc i lFunc (GL ALWAYS, ˜ 0 , ˜ 0) ; // the mask b i t f o r each p i x e l f o r
12 g lStenc i lOp (GL KEEP,GL KEEP,GL INVERT) ; // each fragment .
13
14 glEnable (GL DEPTH TEST) ; // Conf i gure t h e dep th t e s t
15 glDepthFunc (depthFunction) ; // (u s u a l l y GL LESS) , and
16 g lD i s ab l e (GL CULL FACE) ; // d i s a b l e back−f a c e c u l l i n g
17
18 g lStenc i lMask (mask) ;
19 glDepthMask (GL FALSE) ;
20 glColorMask (GL FALSE,GL FALSE,GL FALSE,GL FALSE) ;
21
22 shape . draw () ;
23
24 glPopAttr ib () ;
25
26 GLERROR
27 }

177

B.1.3 Depth Buffer Parity Clipping

The routine parityApply implements depth buffer parity clipping. The routine takes as

input a stencil parityMask that specifies the desired parity of each bit-plane in the stencil

buffer, and a stencilMask that specifies which stencil planes should be considered.

The depth buffer is updated according to the parity and stencil masks and the stencil

is left intact. Upon completion the OpenGL state is restored. The GLERROR macro is used

to trap any OpenGL errors that occur before or during the execution of the routine.

1 void parityApply (const GLuint parityMask , const GLuint stenc i lMask)
2 {
3 GLERROR
4
5 glPushAttr ib (GL ENABLE BIT | GL DEPTH BUFFER BIT | GL STENCIL BUFFER BIT) ;
6
7 glEnable (GL STENCIL TEST) ; // Use s t e n c i l t e s t i n g to
8 g lS tenc i lFunc (GL NOTEQUAL, parityMask , s tenc i lMask) ; // r e s t r i c t f ragment s to p i x e l s
9 g lStenc i lOp (GL KEEP,GL KEEP,GL KEEP) ; // not s a t i s f y i n g t h e p a r i t y mask

10
11 glEnable (GL DEPTH TEST) ; // Enable dep th t e s t i n g
12 glDepthFunc (GL ALWAYS) ; // Depth t e s t a lways pa s s e s
13 g lD i s ab l e (GL CULL FACE) ; // D i s a b l e f a c e c u l l i n g
14
15 g lStenc i lMask (0) ; // D i s a b l e s t e n c i l upda t e s
16 glDepthMask (GL TRUE) ; // Enable dep th upda t e s
17
18 drawZfar () ; // Draw v i ewpo r t s i z e po l ygon
19
20 glPopAttr ib () ;
21
22 GLERROR
23 }

178

B.1.4 Z-Buffer Shade and Light

The routine csgRenderLightShadeZBuffer implements shading and lighting of the depth

buffer, as described in Section 4.2.5. The routine takes as input a CSG sumOfProducts

and runtime configuration options. Shading and lighting of the OpenGL depth buffer

surface is achieved by redrawing the shapes in the CSG tree with an OpenGL depth test

of GL EQUAL.

Use of face culling is optional, and is configured as part of the options parameter.

With culling enabled, fewer triangles are rasterised, resulting in fewer fragments, and

a possible improvement to performance. With culling disabled, the algorithm correctly

handles geometry without consistent face-winding, but may be less efficient.

Upon completion the lit and shaded result is stored in the OpenGL colour buffer. The

OpenGL state is restored, and the stencil and depth buffers remain unchanged.

1 void csgRenderLightShadeZBuffer
2 (
3 const CsgSumOfProducts &sumOfProducts ,
4 const CsgOptions &opt ions
5)
6 {
7 GLERROR // Check f o r OpenGL e r r o r s
8
9 glPushAttr ib (GL ENABLE BIT | GL DEPTH BUFFER BIT | GL COLOR BUFFER BIT | GL POLYGON BIT) ;

10
11 // Match z−b u f f e r w i th p r im i t i v e s u r f a c e s
12
13 g lD i s ab l e (GL STENCIL TEST) ; // No s t e n c i l t e s t i n g
14
15 glEnable (GL DEPTH TEST) ;
16 glDepthFunc (GL EQUAL) ; // z−e qua l dep th t e s t
17 glDepthMask (GL FALSE) ; // No upda t e s to dep th b u f f e r
18
19 glEnable (GL LIGHTING) ;
20 glEnable (GL NORMALIZE) ;
21 glColorMask (GL TRUE,GL TRUE,GL TRUE,GL TRUE) ; // Draw i n t o co l ou r b u f f e r
22
23 // Face c u l l i n g i s norma l l y used , bu t can be
24 // d i s a b l e d a t some expense to per formance
25
26 i f (opt ions . cu l lFac e s)
27 glEnable (GL CULL FACE) ;
28 else
29 g lD i s ab l e (GL CULL FACE) ;
30
31 // Draw f r o n t f a c i n g s u r f a c e s o f i n t e r s e c t e d o b j e c t s
32
33 g lCul lFace (GL BACK) ;
34
35 for (GLuint i =0; i<sumOfProducts . s i z e () ; i++)
36 {
37 const CsgProduct &product = sumOfProducts [i] ;
38
39 for (GLuint j =0; j<product . s i z e () ; j++)
40 i f (product . p o s i t i v e (j))
41 product . shape (j)−>draw () ;
42 }
43
44 // Draw back f a c i n g s u r f a c e s o f s u b t r a c t e d o b j e c t s
45
46 g lCul lFace (GL FRONT) ;
47
48 for (GLuint i =0; i<sumOfProducts . s i z e () ; i++)
49 {
50 const CsgProduct &product = sumOfProducts [i] ;
51
52 for (GLuint j =0; j<product . s i z e () ; j++)
53 i f (! product . p o s i t i v e (j))
54 product . shape (j)−>draw () ;
55 }
56
57 glPopAttr ib () ; // Res tore OpenGL s t a t e
58
59 GLERROR // Check f o r e r r o r s
60 }

179

B.2 Goldfeather CSG Rendering Variants

B.2.1 Layered Goldfeather CSG Rendering Algorithm

The routine csgRenderGoldfeatherLayered implements a variation [87] of the Gold-

feather CSG rendering algorithm, as described in Section 3.5.2. The same remarks in

relation to the Goldfeather implementation in Appendix B.1.1 apply here.

1 void csgRenderGoldfeatherLayered
2 (
3 const CsgSumOfProducts &sumOfProducts ,
4 const CsgOptions &options ,
5 CsgInfo &in format ion
6)
7 {
8 Timer t imer ; // Track e l a p s e d t ime
9

10 GLERROR // Check f o r OpenGL e r r o r s
11
12 glPushAttr ib (GL ENABLE BIT | GL DEPTH BUFFER BIT | GL COLOR BUFFER BIT |
13 GL POLYGON BIT | GL VIEWPORT BIT) ;
14
15 // S imu la t ed second OpenGL dep th b u f f e r
16 CsgDepthBufferHelper zBuf f e r2 (opt ions . zBufferCopy) ;
17 bool useSecondZbuf fer = fa l se ;
18
19 // Massage OpenGL t ran s f o rma t i on ma t r i c i e s , i f n e c e s s a r y
20 i f (opt ions . msDriver)
21 massageOpenGLMatrices () ;
22
23 // Query OpenGL f o r number o f s t e n c i l b i t−p l ane s
24 GLint s t e n c i l S i z e = 0 ;
25 g lGet Integerv (GL STENCIL BITS,& s t e n c i l S i z e) ;
26
27 // Do not draw i n t o RGBA, or do e x p en s i v e
28 // t h i n g s l i k e l i g h t i n g or no rma l i s a t i on
29
30 glColorMask (GL FALSE,GL FALSE,GL FALSE,GL FALSE) ;
31 g lD i s ab l e (GL NORMALIZE) ;
32
33 // NVIDIA hardware g en e r a t e s d i f f e r e n t f ragment s depend ing on the l i g h t i n g mode
34
35 i f (opt ions . nvidiaHardware)
36 glEnable (GL LIGHTING) ;
37 else
38 g lD i s ab l e (GL LIGHTING) ;
39
40 // Process each CSG product , in turn
41
42 GLuint p ;
43
44 // For p roduc t s o f s i z e g r e a t e r than one , each l a y e r
45 // o f each p r im i t i v e needs to be c l i p p e d i n d i v i d u a l l y
46
47 glDepthFunc (GL ALWAYS) ;
48 glDepthMask (GL TRUE) ;
49
50 for (p=0; p<sumOfProducts . s i z e () ; p++)
51 i f (sumOfProducts [p] . s i z e ()>1)
52 {
53 const CsgProduct &product = sumOfProducts [p] ;
54
55 // Here ’ s t h e v a r i a t i o n on Go l d f e a t h e r .
56 // S t a r t w i th f r o n t f a c i n g s u r f a c e s o f non−i n v e r t e d p r im i t i v e s .
57 // Ex t r a c t t h e 0 to k t h l a y e r and c l i p a g a i n s t a l l p r im i t i v e s .
58
59 // Sepe ra t e e l emen t s i n t o f r o n t (i n t e r s e c t e d) and back (s u b t r a c t e d) .
60 // Front or back f a c e c u l l i n g i s used , depending on whether t h e e l ement i s s u b t r a c t e d .
61
62 GltShapes f ront , back ;
63 product . s p l i t (f ront , back) ;
64
65 const GLint frontK = countSur faces (f ront ,COUNT SURFACES ALL) ;
66 const GLint backK = countSur faces (back ,COUNT SURFACES ALL) ;
67 const GLint kMax = frontK + backK ;
68
69 // C o l l e c t s t a t i s t i c s
70 in format ion . depthComplexityFront += frontK ;
71 in format ion . depthComplexityBack += backK ;
72 in format ion . depthComplexity += kMax ;
73
74 a s s e r t (kMax<(1<< s t e n c i l S i z e)) ;
75
76 for (GLint k=0; k<kMax ; k++)
77 {
78 // Copy OpenGL dep th b u f f e r to t h e 2nd bu f f e r , f o r merging back in l a t e r
79
80 i f (useSecondZbuf fer)
81 {
82 zBuf f e r2 . read () ;
83 in format ion . depthReads++;
84 }
85

180

86 // S t e n c i l needs to be c l e a r e d f o r l a y e r coun t ing
87 g lC l ea r (GL STENCIL BUFFER BIT) ;
88 in format ion . s t e n c i l C l e a r s++;
89
90 // Draw k ’ th l a y e r i n t o z−b u f f e r
91
92 glDepthFunc (GL ALWAYS) ;
93 glDepthMask (GL TRUE) ;
94 glEnable (GL CULL FACE) ;
95
96 glEnable (GL STENCIL TEST) ;
97 g lStenc i lOp (GL INCR,GL INCR,GL INCR) ;
98 g lStenc i lMask (˜ 0) ;
99

100 i f (k<frontK)
101 {
102 g lCul lFace (GL BACK) ;
103 g lS t enc i lFunc (GL EQUAL, k , ˜ 0) ;
104 f r on t . draw () ;
105 }
106 else
107 {
108 g lCul lFace (GL FRONT) ;
109 g lS t enc i lFunc (GL EQUAL, k−frontK , ˜ 0) ;
110 back . draw () ;
111 }
112
113 // C l i p dep th b u f f e r a g a i n s t a l l p r im i t i v e s in t h e CSG produc t .
114
115 GLint b i t = 0 ;
116 GLuint mask = 0 ;
117
118 // S t e n c i l needs to be c l e a r e d f o r p a r i t y c l i p p i n g
119 g lC l ea r (GL STENCIL BUFFER BIT) ;
120 in format ion . s t e n c i l C l e a r s++;
121
122 for (GLuint j =0; j<product . s i z e () ; j++)
123 {
124 // The p a r i t y t e s t i s i n v e r t e d depend ing on
125 // whether we ’ re i n t e r s e c t i n g or s u b t r a c t i n g .
126
127 i f (product . p o s i t i v e (j))
128 p a r i t y I n t e r s e c t (∗ product . shape (j) , b it , mask ,GL LEQUAL) ;
129 else
130 par i tySubt rac t (∗ product . shape (j) , b it , mask ,GL LEQUAL) ;
131
132 b i t++;
133
134 // Apply p a r i t y mask as soon as s t e n c i l b i t p l an e s
135 // have been exhaus ted , or f i n i s h e d w i th c l i p p i n g
136
137 i f ((b i t==s t e n c i l S i z e | | j==product . s i z e ()−1) && b i t)
138 {
139 // P i x e l s t h a t don ’ t match t he p a r i t y mask are r e s e t t o zFar
140
141 parityApply (mask , ˜ 0) ;
142 g lC l ea r (GL STENCIL BUFFER BIT) ;
143 in format ion . s t e n c i l C l e a r s++;
144
145 mask = 0 ;
146 b i t = 0 ;
147 }
148 }
149
150 // Merge w i th 2nd z−b u f f e r , i f a v a i l a b l e
151
152 i f (useSecondZbuf fer)
153 {
154 zBuf f e r2 . wr i t e (true) ;
155 in format ion . depthWrites++;
156 }
157
158 // Prese rve 1 s t z−b u f f e r nex t t ime
159 useSecondZbuf fer = true ;
160 }
161 }
162
163 // Opt im i sa t i on
164 //
165 // For p roduc t s o f s i z e one , no c l i p p i n g i s ne c e s sa r y
166 // Simply draw f r o n t s u r f a c e s w i th z− l e s s t e s t
167
168 g lD i s ab l e (GL STENCIL TEST) ;
169 glEnable (GL DEPTH TEST) ;
170 glDepthFunc (GL LESS) ;
171 glDepthMask (GL TRUE) ;
172
173 for (p=0; p<sumOfProducts . s i z e () ; p++)
174 i f (sumOfProducts [p] . s i z e ()==1)
175 sumOfProducts [p] . f r on t () . drawFront () ;
176
177 // Now t h a t dep th b u f f e r c on t a i n s CSG r e s u l t ,
178 // the l i t and shaded RGB r e s u l t can be drawn .
179
180 csgRenderLightShadeZBuffer (sumOfProducts , opt ions) ;
181
182 glPopAttr ib () ; // Res tore OpenGL s t a t e
183 GLERROR // Check f o r e r r o r s
184 g lF in i s h () ; // Wait f o r OpenGL to f i n i s h
185
186 in format ion . drawTime += timer . c l o ck () ; // Co l l e c t e l a p s e d t ime f o r a n a l y s i s
187 }

181

B.2.2 Improved Layered Goldfeather CSG
Rendering Algorithm

The routine csgRenderGoldfeatherLayered implements a variation [29] of the Gold-

feather CSG rendering algorithm, as described in Section 3.5.3. The same remarks in

relation to the Goldfeather implementation in Appendix B.1.1 apply here.

The routine makes use of a GltFrameBufferStencilUbyte object for copying stencil

buffers into memory. A C++ std::list [51] container is used for storing all the necessary

stencil buffers in memory.

The routine partitions the stencil buffer bit-planes into lower and higher portions.

The lower bits are used for counting during layer extraction and for storing the result

of intermediate parity tests. The higher bits are used for storing per-layer masks for

combining layers in the final phase. stencilBits is the total size of the OpenGL sten-

cil buffer. lowerBits is the number of bits used for layer counting and parity testing,

lowerMask is used as a bit-mask. The parityBit accesses one of the lower bits and is

masked with parityMask. During parity testing, parityApply subroutine is applied to

reset the depth of clipped pixels to zfar. The layerBit is the current high bit for flagging

un-clipped pixels, and is masked with layerMask. The layer bit-planes are formed by

detecting pixels closer than zfar. Layer bit-planes are transferred into main memory once

the capacity of the stencil buffer has been reached.

The number of lower bit-planes is minimised by choosing only enough bits to count

layers of front or back surfaces. This way, the number of bit-planes utilised for layer masks

is maximised, and as a consequence the copying of stencil buffers between the frame buffer

and main memory is minimised.

While we regard this ‘improved’ Goldfeather algorithm to be superior to the previous

two variants, we have found it to be the most intricate and complicated to implement.

This is mainly due to the way that stencil bit-planes are interpreted differently at various

stages of the algorithm.

A potential refinement to this algorithm is to completely eliminate the need for depth-

buffer copying, making use of stencil buffers for all layers of all products and merging all

of these as a final step. This may complicate the implementation even further, since each

product may partition the stencil buffer differently. However, we think the performance

advantage may be significant, depending on the relative speed of copying depth buffer

and stencil buffer data on a particular hardware platform.

182

1 void csgRenderGoldfeatherLayeredImproved
2 (
3 const CsgSumOfProducts &sumOfProducts ,
4 const CsgOptions &options ,
5 CsgInfo &in format ion
6)
7 {
8 Timer t imer ; // Track e l a p s e d t ime
9 GLERROR // Check f o r OpenGL e r r o r s

10
11 glPushAttr ib (GL ENABLE BIT | GL DEPTH BUFFER BIT | GL COLOR BUFFER BIT |
12 GL POLYGON BIT | GL VIEWPORT BIT) ;
13
14 // S imu la ted second OpenGL dep th b u f f e r
15 CsgDepthBufferHelper zBuf f e r2 (opt ions . zBufferCopy) ;
16 bool useSecondZbuf fer = fa l se ;
17
18 // Massage OpenGL t ran s f o rma t i on ma t r i c i e s , i f n e c e s sa r y
19 i f (opt ions . msDriver)
20 massageOpenGLMatrices () ;
21
22 // Query OpenGL f o r number o f s t e n c i l b i t−p l ane s
23 GLint s t e n c i l B i t s = 0 ;
24 g lGet Integerv (GL STENCIL BITS,& s t e n c i l B i t s) ;
25
26 // Process each CSG product , in turn
27
28 // For p roduc t s o f s i z e g r e a t e r than one , each l a y e r
29 // o f each p r im i t i v e needs to be c l i p p e d i n d i v i d u a l l y
30
31 for (GLuint p=0; p<sumOfProducts . s i z e () ; p++)
32 i f (sumOfProducts [p] . s i z e ()>1)
33 {
34 // Do not draw i n t o RGBA, or do e x p en s i v e
35 // t h i n g s l i k e l i g h t i n g or no rma l i s a t i on
36
37 glColorMask (GL FALSE,GL FALSE,GL FALSE,GL FALSE) ;
38 g lD i s ab l e (GL NORMALIZE) ;
39
40 // NVIDIA hardware g en e r a t e s d i f f e r e n t f ragment s depend ing
41 // on the l i g h t i n g mode
42
43 i f (opt ions . nvidiaHardware)
44 glEnable (GL LIGHTING) ;
45 else
46 g lD i s ab l e (GL LIGHTING) ;
47
48 glDepthFunc (GL ALWAYS) ;
49 glDepthMask (GL TRUE) ;
50
51 // Copy OpenGL dep th b u f f e r to t h e 2nd bu f f e r ,
52 // f o r merging back in l a t e r
53
54 i f (useSecondZbuf fer)
55 {
56 zBuf f e r2 . read () ;
57 in format ion . depthReads++;
58 }
59
60 //
61
62 const CsgProduct &product = sumOfProducts [p] ;
63
64 // Sepe ra t e e l emen t s i n t o f r o n t (i n t e r s e c t e d) and
65 // back (s u b t r a c t e d) . Front or back f a c e c u l l i n g i s
66 // used , depending on whether t h e e l ement i s s u b t r a c t e d .
67
68 GltShapes f ront , back ;
69 product . s p l i t (f ront , back) ;
70
71 // Find the dep th comp l e x i t y o f f r on t−f a c i n g and
72 // back−f a c i n g s u r f a c e s s e p e r a t e l y .
73
74 const GLuint frontK = countSur faces (f ront ,COUNT SURFACES ALL) ;
75 const GLuint backK = countSur faces (back ,COUNT SURFACES ALL) ;
76
77 //
78
79 const GLuint maxK = MAX(frontK , backK) ;
80 const GLuint totalK = frontK+backK ;
81
82 // Determine t h e number o f b i t s r e q u i r e d f o r
83 // l a y e r coun t ing .
84
85 GLuint lowerBi t s = 0 ;
86 for (GLuint kTmp = maxK; kTmp>0; l owerBi t s++,kTmp>>=1);
87
88 // Mask th e l ow e s t l ow e rB i t s b i t s in t h e s t e n c i l b u f f e r
89 // f o r l a y e r coun t ing and p a r i t y t e s t i n g . The o t h e r
90 // s t e n c i l b i t s are r e s e r v e d f o r l a y e r p a r i t y masks .
91
92 const GLuint lowerMask = (1<< l owerBi t s)−1;
93
94 // Co l l e c t s t a t i s t i c s
95 in format ion . depthComplexityFront += frontK ;
96 in format ion . depthComplexityBack += backK ;
97 in format ion . depthComplexity += totalK ;
98 in format ion . s t en c i lBu f f e rKB i t s = lowerBi t s ;
99

100 // Check t h a t we have enough s t e n c i l b i t s t o
101 // do l a y e r coun t ing upto maxK
102
103 a s s e r t (maxK <(1<< s t e n c i l B i t s)) ;

183

104 a s s e r t (maxK <(1<< l owerBi t s)) ;
105
106 // l a y e rB i t i s t h e cu r r en t s t e n c i l b i t f o r l a y e r p a r i t y mask
107
108 GLuint l ay e rB i t = lowerBi t s ;
109
110 // Layer p a r i t y masks t h a t don ’ t f i t i n t o
111 // s t e n c i l p l an e s must be cop i ed i n t o memory
112
113 l i s t <GltFrameBufferStenci lUbyte ∗> s t e n c i l B u f f e r s ;
114
115 // Find the s t e n c i l mask f o r each l a y e r
116
117 for (GLuint k=0; k<totalK ; k++)
118 {
119 // Clear l a y e r coun t ing p l ane s o f
120 // s t e n c i l b u f f e r in p r e pa r a t i on
121 // f o r l a y e r coun t ing
122
123 g lStenc i lMask (lowerMask) ;
124 g lC l ea r (GL STENCIL BUFFER BIT) ;
125 in format ion . s t e n c i l C l e a r s++;
126
127 // Setup dep th t e s t i n g to draw a l l
128 // f ragment s t h a t pass t h e s t e n c i l t e s t .
129
130 glDepthFunc (GL ALWAYS) ;
131 glDepthMask (GL TRUE) ;
132 glEnable (GL CULL FACE) ;
133
134 // Draw k ’ th l a y e r i n t o z−b u f f e r
135
136 glEnable (GL STENCIL TEST) ;
137 g lStenc i lOp (GL INCR,GL INCR,GL INCR) ;
138 g lStenc i lMask (lowerMask) ;
139
140 i f (k<frontK)
141 {
142 g lCul lFace (GL BACK) ;
143 g lS tenc i lFunc (GL EQUAL, k , lowerMask) ;
144 f r on t . draw () ;
145 }
146 else
147 {
148 g lCul lFace (GL FRONT) ;
149 g lS tenc i lFunc (GL EQUAL, k−frontK , lowerMask) ;
150 back . draw () ;
151 }
152
153 //
154 // Par i t y t e s t l a y e r a g a i n s t a l l p r im i t i v e s
155 //
156
157 // p a r i t yB i t i s t h e cu r r en t s t e n c i l p a r i t y b i t
158 // par i tyMask i s t h e combined s t e n c i l p a r i t y mask
159
160 // Par i t y i n f o rma t i on i s u s ing t h e same b i t p l a n e s
161 // as l a y e r coun t ing .
162
163 GLuint pa r i t yB i t = 0 ;
164 GLuint parityMask = 0 ;
165
166 // Clear l ower b i t−p l ane s in p r e pa r a t i on f o r p a r i t y t e s t i n g
167
168 g lStenc i lMask (lowerMask) ;
169 g lC l ea r (GL STENCIL BUFFER BIT) ;
170 in format ion . s t e n c i l C l e a r s++;
171
172 // Do p a r i t y t e s t i n g
173
174 for (GLuint j =0; j<product . s i z e () ; j++)
175 {
176 i f (product . p o s i t i v e (j))
177 p a r i t y I n t e r s e c t (∗ product . shape (j) , par i tyBi t , parityMask ,GL LEQUAL) ;
178 else
179 par i tySubt rac t (∗ product . shape (j) , par i tyBi t , parityMask ,GL LEQUAL) ;
180
181 // Use t he nex t a v a i l a b l e s t e n c i l b i t
182 pa r i t yB i t++;
183
184 // I f we ’ ve run out o f s t e n c i l b i t s , or
185 // we ’ re f i n i s h e d w i th p a r i t y t e s t i n g , i t ’ s
186 // t ime to app l y t h e p a r i t y mask
187
188 i f ((pa r i t yB i t==lowerBi t s | | j==product . s i z e ()−1) && par i tyB i t)
189 {
190 // Reset p i x e l s t h a t f a i l p a r i t y t e s t
191
192 parityApply (parityMask , lowerMask) ;
193
194 // Clear p a r i t y t e s t i n g s t e n c i l p l an e s
195
196 g lStenc i lMask (lowerMask) ;
197 g lC l ea r (GL STENCIL BUFFER BIT) ;
198 in format ion . s t e n c i l C l e a r s++;
199
200 // Reset mask and cu r r en t b i t
201
202 parityMask = 0 ;
203 pa r i t yB i t = 0 ;
204 }
205 }
206

184

207 // Now t h a t p a r i t y c l i p p i n g i s complete , c r e a t e a b ina ry mask
208 // f o r p i x e l s w i th z<zFar . We ’ l l use t h i s f l a g l a t e r to
209 // merge a l l t h e c l i p p e d s u r f a c e s i n t o t h e f i n a l image .
210
211 const GLuint layerMask = (1<< l a y e rB i t) ;
212
213 g lStenc i lMask (layerMask) ;
214 g lS tenc i lFunc (GL ALWAYS, layerMask , layerMask) ;
215 g lStenc i lOp (GL ZERO,GL ZERO,GL REPLACE) ;
216
217 glDepthMask (GL FALSE) ;
218 glDepthFunc (GL GREATER) ;
219 g lD i s ab l e (GL CULL FACE) ;
220
221 drawZfar () ;
222
223 // S e l e c t t h e nex t s t e n c i l b u f f e r b i t f o r l a y e r
224 // mask
225
226 l ay e rB i t++;
227
228 // I f we ’ ve run out o f s t e n c i l b u f f e r b i t s , i t ’ s t ime
229 // to read th e s t e n c i l b u f f e r i n t o main memory
230
231 i f (l ay e rB i t==GLuint (s t e n c i l B i t s) && k+1<totalK)
232 {
233 l ay e rB i t = lowerBi t s ;
234
235 s t e n c i l B u f f e r s . push back (new GltFrameBufferStenci lUbyte ()) ;
236 in format ion . s t enc i lReads++;
237 }
238 }
239
240 // Rep lace saved zBu f f e r i f p o s s i b l e , o t h e rw i s e
241 // c l e a r dep th b u f f e r to z−f a r
242
243 i f (useSecondZbuf fer)
244 {
245 zBuf f e r2 . wr i t e (fa l se) ;
246 in format ion . depthWrites++;
247 }
248 else
249 {
250 // Prese rve OpenGL z−b u f f e r nex t t ime
251 useSecondZbuf fer = true ;
252
253 glDepthMask (GL TRUE) ;
254 g lC l ea r (GL DEPTH BUFFER BIT) ;
255 in format ion . depthClears++;
256 }
257
258 // Use t he s t e n c i l masks to mask each l a y e r and merge t h e f i n a l
259 // r e s u l t . Work in r e v e r s e order , s i n c e t h e r e may be masks in
260 // the s t e n c i l b u f f e r b e f o r e we s t a r t copy ing s t e n c i l b u f f e r s
261 // from memory .
262
263 for (k=totalK −1; k<totalK ; k−−)
264 {
265 // S e l e c t t h e p r e v i o u s s t e n c i l b u f f e r b i t f o r l a y e r
266 // mask
267
268 layerBi t −−;
269
270 // I f we ’ ve run out o f s t e n c i l b u f f e r b i t s , i t ’ s t ime
271 // to copy th e nex t memory b u f f e r i n t o t h e s t e n c i l
272
273 i f (l ayerBi t <l owerBi t s)
274 {
275 l ay e rB i t = s t e n c i l B i t s −1;
276
277 s t e n c i l B u f f e r s . back()−>wr i te () ;
278 delete s t e n c i l B u f f e r s . back () ;
279 s t e n c i l B u f f e r s . pop back () ;
280 in format ion . s t e n c i lWr i t e s++;
281 }
282
283 // Clear l a y e r coun t ing p l ane s o f
284 // s t e n c i l b u f f e r in p r e pa r a t i on
285 // f o r l a y e r coun t ing
286
287 g lStenc i lMask (lowerMask) ;
288 g lC l ea r (GL STENCIL BUFFER BIT) ;
289 in format ion . s t e n c i l C l e a r s++;
290
291 // Draw k ’ th l a y e r i n t o z−b u f f e r
292
293 glDepthFunc (GL LESS) ;
294 glDepthMask (GL TRUE) ;
295 glEnable (GL CULL FACE) ;
296
297 glColorMask (GL TRUE,GL TRUE,GL TRUE,GL TRUE) ;
298 glEnable (GL NORMALIZE) ;
299 glEnable (GL LIGHTING) ;
300
301 const GLuint layerMask = (1<< l a y e rB i t) ;
302
303 glEnable (GL STENCIL TEST) ;
304 g lStenc i lOp (GL INCR,GL INCR,GL INCR) ;
305 g lStenc i lMask (lowerMask) ;
306
307 i f (k<frontK)
308 {
309 g lCul lFace (GL BACK) ;

185

310 g lS tenc i lFunc (GL EQUAL, k | layerMask , lowerMask | layerMask) ;
311 f r on t . draw () ;
312 }
313 else
314 {
315 g lCul lFace (GL FRONT) ;
316 g lS tenc i lFunc (GL EQUAL, (k−frontK) | layerMask , lowerMask | layerMask) ;
317 back . draw () ;
318 }
319 }
320
321 // Hope fu l l y , no memory l e a k s !
322 a s s e r t (s t e n c i l B u f f e r s . s i z e ()==0);
323 }
324
325 // For CSG produc t s o f s i z e one , s imp l y
326 // draw wi th z− l e s s dep th t e s t
327
328 glDepthFunc (GL LESS) ;
329 glDepthMask (GL TRUE) ;
330
331 glEnable (GL DEPTH TEST) ;
332 g lD i s ab l e (GL STENCIL TEST) ;
333
334 glColorMask (GL TRUE,GL TRUE,GL TRUE,GL TRUE) ;
335 glEnable (GL NORMALIZE) ;
336 glEnable (GL LIGHTING) ;
337
338 glEnable (GL CULL FACE) ;
339 g lCul lFace (GL BACK) ;
340
341 for (p=0; p<sumOfProducts . s i z e () ; p++)
342 i f (sumOfProducts [p] . s i z e ()==1)
343 sumOfProducts [p] . shape(0)−>draw () ;
344
345 glPopAttr ib () ; // Res tore OpenGL s t a t e
346 GLERROR // Check f o r e r r o r s
347
348 g lF in i s h () ; // Wait f o r OpenGL to f i n i s h
349 in format ion . drawTime += timer . c l o ck () ; // C o l l e c t e l a p s e d t ime f o r a n a l y s i s
350 }

186

B.2.3 Depth Complexity Sampling

The routine countSurfaces implements stencil based depth complexity sampling as de-

scribed in Section 3.4.1. The routine takes a shape as input. The depth complexity of each

pixel is stored in the stencil buffer as output. The stencil buffer is cleared as necessary

by the routine, and the depth buffer is ignored. The GLERROR macro is used to trap any

OpenGL errors that occur before or during the execution of the routine.

Additional programming is required to copy the stencil buffer into memory and deter-

mine the overall depth complexity by examining all of the stencil values for the maximum.

1 void countSur faces (const GltShape &shape)
2 {
3 GLERROR
4
5 glPushAttr ib (GL ENABLE BIT | GL DEPTH BUFFER BIT |
6 GL COLOR BUFFER BIT | GL STENCIL BUFFER BIT) ;
7
8 // Ensure s t e n c i l b u f f e r i s f u l l y z e ro
9

10 g lC l e a r S t e n c i l (0) ;
11 g lStenc i lMask (˜ 0) ;
12 g lC l ea r (GL STENCIL BUFFER BIT) ;
13
14 // D i s a b l e z b u f f e r t e s t & update
15
16 glDepthMask (GL FALSE) ;
17 glDepthFunc (GL ALWAYS) ;
18
19 // Use s t e n c i l t e s t t o count s u r f a c e s
20
21 glEnable (GL STENCIL TEST) ;
22 g lS tenc i lFunc (GL ALWAYS, 0 , ˜ 0) ;
23 g lStenc i lOp (GL INCR,GL INCR,GL INCR) ;
24
25 // D i s a b l e upda t e s to c o l ou r b u f f e r
26
27 g lD i s ab l e (GL LIGHTING) ;
28 glColorMask (GL FALSE,GL FALSE,GL FALSE,GL FALSE) ;
29
30 // Draw a l l o b j e c t s
31 shape . draw () ;
32
33 glPopAttr ib () ;
34
35 GLERROR
36 }

187

B.3 SCS CSG Rendering

B.3.1 Convex Intersection

The routine csgRenderConvexIntersection implements convex intersection of objects

in the OpenGL depth buffer, as described in Section 4.2.1. The routine takes as input a

CSG product, runtime configuration options, and an information object for collecting

runtime statistics. Intersection is performed in the OpenGL depth buffer and also makes

use of the OpenGL stencil buffer. The depth and stencil buffers are cleared as necessary

by the routine, and therefore do not need to be initialised by the calling routine.

Nvidia graphics hardware requires some special handling due to inconsistency between

the fragments generated with lighting turned on or off. Lighting can be disabled on other

graphics hardware, and enabled for the final pass that generates the RGB image of the

CSG model. For Nvidia hardware, a depth test of GL EQUAL is only reliable if lighting is

enabled or disabled for all passes of the algorithm. For other hardware, disabling lighting

calculations for intermediate passes may result in a performance improvement. The option

options.nvidiaHardware should be enabled whenever Nvidia hardware is detected by

the application.

In the special case that there is only one intersected object in the CSG product, the

front facing polygons are simply drawn to the depth buffer with a GL ALWAYS depth test.

In this situation it is also unnecessary to clear the stencil buffer or use stencil testing.

The routine makes use of a function drawZfar() that draws a viewport covering

polygon at the far clipping plane of the viewing frustum. Fragments of this polygon

are stencil tested to determine which pixels should be set to zfar, and which should be

retained.

Upon completion the intersected result is stored in the OpenGL depth buffer. The

OpenGL state is restored, and the stencil buffer contains only zeros. The GLERROR macro

is used to trap any OpenGL errors that occur before or during the execution of the routine.

188

1 void csgRenderConvexIntersect ion
2 (
3 const CsgProduct &product , // CSG Product
4 const CsgOptions &options , // Runtime Opt ions
5 CsgInfo &in format ion // Runtime In f o
6)
7 {
8 GLERROR // Check f o r OpenGL e r r o r s
9

10 CsgProduct i n t e r s e c t , subt rac t ; // Pa r t i t i o n CSG produc t i n t o
11 product . s p l i t (i n t e r s e c t , subt rac t) ; // i n t e r s e c t e d and s u b t r a c t e d
12
13 // Prese rve OpenGL s t a t e
14
15 glPushAttr ib (GL ENABLE BIT | GL POLYGON BIT | GL DEPTH BUFFER BIT |
16 GL STENCIL BUFFER BIT | GL COLOR BUFFER BIT) ;
17
18 // Enable w r i t e s to dep th and s t e n c i l b u f f e r s on l y
19
20 glColorMask (GL FALSE,GL FALSE,GL FALSE,GL FALSE) ;
21 glDepthMask (GL TRUE) ;
22 g lStenc i lMask (˜ 0) ;
23
24 // D i s a b l e s t e n c i l t e s t i n g and no rma l i s a t i on
25
26 g lD i s ab l e (GL STENCIL TEST) ;
27 g lD i s ab l e (GL NORMALIZE) ;
28
29 // D i s a b l e l i g h t i n g , u n l e s s u s ing NVIDIA hardware
30
31 i f (opt ions . nvidiaHardware)
32 glEnable (GL LIGHTING) ;
33 else
34 g lD i s ab l e (GL LIGHTING) ;
35
36 // Draw the f u r t h e s t f r o n t f a c i n g s u r f a c e i n t o z−b u f f e r .
37
38 const int n = i n t e r s e c t . s i z e () ;
39
40 g lC l e a r S t e n c i l (0) ;
41 glEnable (GL DEPTH TEST) ;
42 glEnable (GL CULL FACE) ;
43 g lCul lFace (GL BACK) ;
44
45 // Clear dep th b u f f e r , as nec e s sa ry
46
47 i f (n>1)
48 {
49 glClearDepth (0 . 0) ;
50 glDepthFunc (GL GREATER) ;
51 g lC l ea r (GL DEPTH BUFFER BIT | GL STENCIL BUFFER BIT) ;
52
53 in format ion . depthClears++;
54 in format ion . s t e n c i l C l e a r s++;
55 }
56 else
57 {
58 glDepthFunc (GL ALWAYS) ;
59 g lC l ea r (GL STENCIL BUFFER BIT) ;
60
61 in format ion . s t e n c i l C l e a r s++;
62 }
63
64 // Draw a l l i n t e r s e c t e d o b j e c t s
65
66 int i ;
67 for (i =0; i<n ; i++)
68 i n t e r s e c t . shape (i)−>draw () ;
69
70 // I f t h e r e i s more than one i n t e r s e c t e d o b j e c t ,
71 // perform image−space c l i p p i n g
72
73 i f (n>1)
74 {
75 // Count t h e number o f back−f a c i n g s u r f a c e s beh ind each p i x e l .
76
77 glEnable (GL STENCIL TEST) ;
78 g lS t enc i lFunc (GL ALWAYS, 0 , ˜ 0) ;
79 g lStenc i lOp (GL KEEP,GL KEEP,GL INCR) ;
80 g lCul lFace (GL FRONT) ;
81 glDepthMask (GL FALSE) ;
82
83 for (i =0; i<n ; i++)
84 i n t e r s e c t . shape (i)−>draw () ;
85
86 // Reset t h e z−b u f f e r f o r p i x e l s where s t e n c i l != n
87 // Also , r e s e t s t e n c i l t o z e ro
88
89 g lS t enc i lFunc (GL NOTEQUAL, n , ˜ 0) ;
90 g lStenc i lOp (GL ZERO,GL ZERO,GL ZERO) ;
91 glDepthFunc (GL ALWAYS) ;
92 glDepthMask (GL TRUE) ;
93 g lD i s ab l e (GL CULL FACE) ;
94
95 // Draw v i ewpo r t c o v e r i n g po l ygon a t zFar
96 drawZfar () ;
97
98 in format ion . i n t e r s e c t i o n s += n ;
99 }

100
101 glPopAttr ib () ; // Res tore OpenGL s t a t e
102 GLERROR // Check f o r OpenGL e r r o r s
103 }

189

B.3.2 Convex Subtraction

The routine csgRenderConvexSubtraction implements sequenced SCS convex subtrac-

tion of objects from the OpenGL depth buffer, as described in Section 4.2.2. The routine

takes as input a CSG product, a subtraction sequence, runtime configuration options,

and an information object for collecting runtime statistics. Subtraction is performed on

the OpenGL depth buffer which would normally contain the front faces of the intersected

objects in the CSG product.

Use of face culling is optional, and is configured as part of the options parameter.

With culling enabled, fewer triangles are rasterised, resulting in fewer fragments, and

a possible improvement to performance. With culling disabled, the algorithm correctly

handles geometry without consistent face-winding, but may be less efficient.

Nvidia graphics hardware requires some special handling due to inconsistency between

the fragments generated with lighting turned on or off. Lighting can be disabled on other

graphics hardware, and enabled for the final pass that generates the RGB image of the

CSG model. For Nvidia hardware, a depth test of GL EQUAL is only reliable if lighting is

enabled or disabled for all passes of the algorithm. For other hardware, disabling lighting

calculations for intermediate passes may result in a performance improvement. The option

options.nvidiaHardware should be enabled whenever Nvidia hardware is detected by

the application.

This implementation detects the number of available stencil bits and aims to min-

imise the number of stencil clear operations. It is assumed that the stencil buffer is

cleared to zero before the csgRenderConvexSubtraction routine is called. The variable

stencilCode is used to mark pixels in the first pass that may need updating in the second

pass. This variable is incremented until it exceeds the size of the stencil buffer. In this

case the stencil buffer is cleared and stencilCode is reset to 1. An 8-bit stencil buffer

needs to cleared after each 255th entry in the subtraction sequence.

Several runtime statistics are gathered by the routine and stored in the information

object. These statistics include the total number of subtraction operations, the number

of stencil buffer clears, and the number of stencil buffer bits.

Upon completion the subtracted result is stored in the OpenGL depth buffer. The

OpenGL state is restored, with the exception of the stencil buffer which contains arbitrary

information left over from subtraction operations. The GLERROR macro is used to trap

any OpenGL errors that occur before or during the execution of the routine.

190

1 void csgRenderConvexSubtraction
2 (
3 const CsgProduct &product , // CSG Product
4 const CsgSubtract ionSequence &sequence , // Su b t r a c t i o n Sequence
5 const CsgOptions &options , // Runtime Opt ions
6 CsgInfo &in format ion // Runtime In f o
7)
8 {
9 GLERROR // Check f o r OpenGL e r r o r s

10
11 glPushAttr ib (GL ENABLE BIT | GL POLYGON BIT | GL DEPTH BUFFER BIT |
12 GL STENCIL BUFFER BIT | GL COLOR BUFFER BIT) ;
13
14 // Enable w r i t e s to dep th and s t e n c i l b u f f e r s on l y
15
16 glColorMask (GL FALSE,GL FALSE,GL FALSE,GL FALSE) ;
17 glDepthMask (GL TRUE) ;
18 g lStenc i lMask (˜ 0) ;
19
20 // Enable s t e n c i l and dep th t e s t i n g , d i s a b l e no rma l i s a t i on
21
22 glEnable (GL STENCIL TEST) ;
23 glEnable (GL DEPTH TEST) ;
24 g lD i s ab l e (GL NORMALIZE) ;
25
26 // Cu l l i n g mode i s o p t i o n a l (perhaps f a s t e r)
27
28 i f (opt ions . cu l lFac e s)
29 glEnable (GL CULL FACE) ;
30 else
31 g lD i s ab l e (GL CULL FACE) ;
32
33 // D i s a b l e l i g h t i n g , u n l e s s u s ing NVIDIA hardware
34
35 i f (opt ions . nvidiaHardware)
36 glEnable (GL LIGHTING) ;
37 else
38 g lD i s ab l e (GL LIGHTING) ;
39
40 // Determine t h e number o f s t e n c i l b u f f e r b i t s
41
42 GLint s t e n c i l B i t s = 0 ;
43 g lGet Integerv (GL STENCIL BITS,& s t e n c i l B i t s) ;
44 a s s e r t (s t e n c i l B i t s >0);
45
46 in format ion . s t e n c i l B i t s = GLuint (s t e n c i l B i t s) ;
47
48 const GLuint stenc i lMask = (1<< s t e n c i l B i t s)−1;
49 GLuint s t enc i lCode = 0 ;
50
51 // Sub t r a c t each o b j e c t in t h e sequence . . .
52
53 for (GLuint i =0; i<sequence . s i z e () ; i++)
54 {
55 // Clear s t e n c i l b u f f e r when nece s s a ry
56
57 i f (++stenc i lCode>s tenc i lMask)
58 {
59 s t enc i lCode = 1 ;
60 g lC l ea r (GL STENCIL BUFFER BIT) ;
61 in format ion . s t e n c i l C l e a r s++;
62 }
63
64 // Get t h e i ’ t h en t r y in t h e sequence
65
66 const GLuint j = sequence [i] ;
67 a s s e r t (! product . p o s i t i v e (j)) ;
68
69 const GltShapePtr &shape = product . shape (j) ;
70 a s s e r t (shape . get ()) ;
71
72 // Se t s t e n c i l code f o r f r o n t f a c i n g s u r f a c e s
73 // c l o s e r or e qua l t o t h e z−b u f f e r
74
75 g lCul lFace (GL BACK) ;
76 glDepthFunc (GL LEQUAL) ;
77 glDepthMask (GL FALSE) ;
78 g lS t enc i lFunc (GL ALWAYS, stenc i lCode , s tenc i lMask) ;
79 g lStenc i lOp (GL KEEP,GL KEEP,GL REPLACE) ;
80
81 shape−>draw () ;
82
83 // Rep lace z−b u f f e r w i th back f a c i n g s u r f a c e
84 // i f f g r e a t e r than z−b u f f e r and s t e n c i l code matches
85
86 g lCul lFace (GL FRONT) ;
87 glDepthFunc (GL GEQUAL) ;
88 glDepthMask (GL TRUE) ;
89 g lS t enc i lFunc (GL EQUAL, stenc i lCode , s tenc i lMask) ;
90 g lStenc i lOp (GL KEEP,GL KEEP,GL KEEP) ;
91
92 shape−>draw () ;
93 }
94
95 glPopAttr ib () ; // Res tore OpenGL s t a t e
96
97 GLERROR; // Check f o r OpenGL e r r o r s
98
99 in format ion . sub t r a c t i on s += sequence . s i z e () ; // Co l l e c t s u b t r a c t i o n s t a t i s t i c s

100 }

191

B.3.3 Z-Buffer Clip

The routine csgRenderClipZBuffer implements OpenGL depth buffer clipping, as de-

scribed in Section 4.2.3. The routine takes as input a CSG product. Clipping is performed

on the OpenGL depth buffer which would normally contain the result of image-space in-

tersection and subtraction of objects in the product. The GLERROR macro is used to trap

any OpenGL errors that occur before or during the execution of the routine.

1 void csgRenderCl ipZBuffer (const CsgProduct &prod)
2 {
3 GLERROR // Check f o r OpenGL e r r o r s
4
5 glPushAttr ib (GL ENABLE BIT | GL STENCIL BUFFER BIT | GL DEPTH BUFFER BIT) ;
6
7 // Clear t h e s t e n c i l b u f f e r
8 g lC l ea r (GL STENCIL BUFFER BIT) ;
9

10 // Cu l l f r o n t f a c i n g po l y gons
11 g lCul lFace (GL FRONT) ;
12 glEnable (GL CULL FACE) ;
13
14 // Conf i gure z− l e s s dep th t e s t w i th
15 // no upda t e s to dep th b u f f e r
16 glDepthFunc (GL LESS) ;
17 glDepthMask (GL FALSE) ;
18
19 // Conf i gure s t e n c i l t e s t t o s e t p i x e l s
20 // to one which pass t h e dep th t e s t
21 glEnable (GL STENCIL TEST) ;
22 g lS tenc i lFunc (GL ALWAYS, 1 , ˜ 0) ;
23 g lStenc i lOp (GL KEEP,GL KEEP,GL REPLACE) ;
24
25 // Draw a l l i n t e r s e c t e d o b j e c t s in t h e CSG produc t
26 for (GLuint i =0; i<prod . s i z e () ; i++)
27 i f (prod . p o s i t i v e (i))
28 prod . shape (i)−>draw () ;
29
30 // Conf i gure OpenGL f o r second pass , u s ing
31 // a s t e n c i l t e s t t o r e s e t p i x e l s w i th s t e n c i l
32 // e qua l t o one
33 g lD i s ab l e (GL CULL FACE) ;
34 glDepthFunc (GL ALWAYS) ;
35 glDepthMask (GL TRUE) ;
36 g lS tenc i lFunc (GL EQUAL,1 , 0 x f f f f) ;
37 g lStenc i lOp (GL KEEP,GL KEEP,GL KEEP) ;
38
39 // Draw v i ewpo r t c o v e r i n g po l ygon a t zFar
40 drawZfar () ;
41
42 glPopAttr ib () ; // Res tore OpenGL s t a t e
43 GLERROR // Check f o r OpenGL e r r o r s
44 }

192

B.4 Subtraction Sequence Generation

The Sequenced Convex Subtraction (SCS) algorithm as described in Chapters 4 and 6

utilises Permutation Embedding Sequences (PESs) as subtraction sequences for CSG ren-

dering. This section presents a C++ implementation of PES generation as used by SCS.

B.4.1 Adleman Subtraction Sequence

The routine gscsSequenceAdleman encodes a Permutation Embedding Sequence (PES)

for a given number of objects n, where n ≥ 3. The Adleman method [14] is described in

Section 5.3.3. The routine outputs a subtraction sequence of length n2−2n+4 as a C++

std::vector of unsigned integers:

typedef std::vector<unsigned int> CsgSubtractionSequence;

1 CsgSubtract ionSequence gscsSequenceAdleman (const unsigned int n)
2 {
3 // n must be a t l e a s t 3
4 a s s e r t (n>=3);
5 i f (n<3)
6 return CsgSubtract ionSequence () ;
7
8 // S to rage f o r g ene ra t ed sequence .
9

10 CsgSubtract ionSequence tmp ;
11 tmp . r e s e r v e (n∗n−2∗n+4);
12
13 // The sequence b e g i n s w i th t h e n ’ th symbol
14 tmp . push back (n−1);
15
16 // Repeat t h e s t r i n g abcd . . abcd . .
17 // With t h e n ’ th symbol i n s e r t e d a f t e r
18 // the i ’ t h occurance o f t h e symbol n−i
19 // where 1 <= i <= n−2
20
21 const unsigned int s i z e = n∗n−3∗n+4;
22
23 unsigned int k=n−2;
24 for (unsigned int i =0; i<s i z e ; i++)
25 {
26 const unsigned int j = i%(n−1);
27 tmp . push back (j) ;
28
29 // I n s e r t t h e n ’ th symbol
30
31 i f (j==k && k>0)
32 {
33 tmp . push back (n−1);
34 k−−;
35 }
36 }
37
38 // The sequence ends w i th t h e n ’ th symbol
39 tmp . push back (n−1);
40
41 return tmp ;
42 }

193

B.4.2 Galbiati Subtraction Sequence

The routine gscsSequenceGalbiati encodes a Permutation Embedding Sequence (PES)

for a given number of objects n, where n ≥ 4. The Galbiati method [35] is described in

Section 5.3.4. The routine outputs a subtraction sequence of length n2−2n+4 as a C++

std::vector of unsigned integers:

typedef std::vector<unsigned int> CsgSubtractionSequence;

1 CsgSubtract ionSequence gsc sSequenceGa lb ia t i (const unsigned int n)
2 {
3 // n must be a t l e a s t 4
4
5 a s s e r t (n>=4);
6 i f (n<4)
7 return CsgSubtract ionSequence () ;
8
9 // S to rage f o r g ene ra t ed sequence .

10
11 CsgSubtract ionSequence tmp ;
12 tmp . r e s e r v e (n∗n−2∗n+4);
13
14 // Ga l b i a t i u se s f ou r a r b i t r a r y e l emen t s : 1 ,2 ,3 ,4
15 // We use ze ro as base : 0 ,1 ,2 ,3
16
17 tmp . push back (1) ;
18 tmp . push back (0) ;
19 tmp . push back (2) ;
20
21 // Append each segment
22
23 const unsigned int V[3] = { 1 ,2 ,3 } ;
24 unsigned int v = 2 ;
25
26 for (unsigned int i =0; i<n−1; i++)
27 {
28 // Append U
29
30 for (unsigned int j =4; j<n ; j++)
31 tmp . push back (j) ;
32
33 // Append nex t e l ement in V
34 tmp . push back (V[v++%3]);
35 tmp . push back (0) ;
36 tmp . push back (V[v++%3]);
37 }
38
39 return tmp ;
40 }

194

B.4.3 Savage Subtraction Sequence

The routine gscsSequenceSavage encodes a Permutation Embedding Sequence (PES)

for a given number of objects n and depth complexity k, where 3 ≤ k ≤ n. The Savage

method [83] is described in Section 5.3.5. The routine outputs a subtraction sequence of

length kn− 2k + 4 as a C++ std::vector of unsigned integers. In the case that k = n

the length is n2 − 2n+ 4.

typedef std::vector<unsigned int> CsgSubtractionSequence;

1 CsgSubtract ionSequence gscsSequenceSavage (const unsigned int n , const unsigned int k)
2 {
3 // n and k must be a t l e a s t 3
4
5 a s s e r t (n>=3 && k>=3);
6 i f (n<3 | | k<3)
7 return CsgSubtract ionSequence () ;
8
9 // S to rage f o r g ene ra t ed sequence .

10
11 CsgSubtract ionSequence tmp ;
12 tmp . r e s e r v e (k∗n−2∗k+4);
13
14 // The n e l emen t s are p a r t i t i o n e d i n t o two
15 // s e t s : A = ab . . x {k−1} , B = x {k } . . x {n}
16
17 // The sequence b e g i n s w i th B
18 unsigned int m;
19 for (m=k−1; m<n ; m++)
20 tmp . push back (m) ;
21
22 // Repeat t h e s t r i n g AA. .
23 // With t h e B symbol i n s e r t e d a f t e r
24 // the i ’ t h occurance o f t h e symbol n−i
25 // where 1 <= i <= k−2
26
27 const unsigned int s i z e = k∗k−3∗k+4;
28
29 unsigned int p=k−2;
30 for (unsigned int i =0; i<s i z e ; i++)
31 {
32 const unsigned int j = i%(k−1);
33 tmp . push back (j) ;
34
35 // I n s e r t B
36
37 i f (j==p && p>0)
38 {
39 for (m=k−1; m<n ; m++)
40 tmp . push back (m) ;
41 p−−;
42 }
43 }
44
45 // The sequence ends w i th B
46 for (m=k−1; m<n ; m++)
47 tmp . push back (m) ;
48
49 return tmp ;
50 }

195

B.4.4 Combined Subtraction Sequence Generation

The routine gscsSequence encodes a Permutation Embedding Sequence (PES) for a

given number of objects n and depth complexity k. A table of “best known” subtraction

sequences is used for 0 < n < 8 and k ≤ n. Otherwise the Galbiati or Savage methods

are used, if possible. If necessary, the simple method described in Section 5.3.2 is used to

produce a sequence of length n2 − n+ 1.

This routine is utilised by the Sequenced Convex Subtraction (SCS) CSG rendering

algorithm to determine the subtraction sequence for each frame. If depth complexity

sampling is used, k will tend to be less than n. If overlap graph processing is used, PES

for cyclic subgraphs are combined into an overall subtraction sequence as described in

Section 6.3.

The use of a lookup table is based on the possibility of determining PES of shorter

length than those produced by other methods such as Galbiati or Savage. Sequence

encoding as implemented here has not been observed to be a performance issue, except

for depth complexity sampling associated with overlap graph processing. The subtraction

sequences appearing in the lookup table correspond to Table 5.7 and Table 5.8 in Section

5.4.8 — PES proven computationally to be shortest length.

196

1 CsgSubtract ionSequence gscsSequence (const unsigned int n , const unsigned int k)
2 {
3 // Best known s u b t r a c t i o n sequence s
4
5 stat ic const uint32 bestSequences = 8 ;
6 stat ic const char ∗bestSequence [bestSequences] [bestSequences] =
7 {
8 { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL } , // n=0
9 { NULL, ”a” , NULL, NULL, NULL, NULL, NULL, NULL } , // n=1

10 { NULL, ”ab” , ”aba” ,NULL, NULL, NULL, NULL, NULL } , // n=2
11
12 // n=3
13 {
14 NULL,
15 ”abc” ,
16 ”abcab” ,
17 ”abcabac” ,
18 NULL, NULL, NULL, NULL
19 } ,
20
21 // n=4
22 {
23 NULL,
24 ”abcd” ,
25 ”abcdabc” ,
26 ”abcdabcabd” ,
27 ”abcdabcadbac” ,
28 NULL, NULL, NULL
29 } ,
30
31 // n=5
32 {
33 NULL,
34 ”abcde” ,
35 ”abcdeabcd” ,
36 ”abcdeabcdabce” ,
37 ”abcdeabcdabecabd” ,
38 ”abcdeabcdaebcadbcea” ,
39 NULL, NULL
40 } ,
41
42 // n=6
43 {
44 NULL,
45 ” abcdef ” ,
46 ” abcdefabcde ” ,
47 ” abcdefabcdefabcd ” ,
48 NULL, NULL, NULL, NULL
49 } ,
50
51 // n=7
52 {
53 NULL,
54 ” abcdefg ” ,
55 ” abcdefgabcde f ” ,
56 NULL, NULL, NULL, NULL, NULL
57 }
58 } ;
59
60 // Check s a n i t y o f parameters .
61
62 a s s e r t (k<=n) ;
63 a s s e r t (n>=0);
64 a s s e r t (k>=0);
65
66 // Use t he be s t−known sequence i f a v a i l a b l e
67
68 i f (n<bestSequences && k<bestSequences && bestSequence [n] [k])
69 {
70 CsgSubtract ionSequence tmp ;
71 for (const char ∗ i = bestSequence [n] [k] ; ∗ i != ’ \0 ’ ; i++)
72 tmp . push back (∗ i− ’ a ’) ;
73 return tmp ;
74 }
75
76 // Use Ga l b i a t i i f p o s s i b l e
77
78 i f (n>=4 && k==n)
79 return gsc sSequenceGa lb ia t i (n) ;
80
81 // Use Savage , i f p o s s i b l e
82
83 i f (n>=3 && k>=3)
84 return gscsSequenceSavage (n , k) ;
85
86 // Use nˆ2−n+1 sequence i f n e c e s sa r y
87
88 CsgSubtract ionSequence tmp ;
89 tmp . r e s e r v e (n∗n−n+1);
90
91 //
92
93 for (unsigned int i =0; i<k ; i++)
94 for (unsigned int j =0; j<n ; j++)
95 i f (i==0 | | j >0)
96 tmp . push back ((i%2)==0 ? j : n−1−j) ;
97
98 return tmp ;
99 }

197

B.5 Shortest Length Subtraction Sequences

This section presents key components of our C++ implementation of Normalised No

Repeat (NNR) search as detailed in Section 5.4.2.

B.5.1 NNR Size

The routine NNRsize calculates the number of NNR sequences of a particular length. Two

rows of storage are allocated dynamically and utilised to evaluate the recursive expression

detailed in Section 5.4.4. An arbitrary precision Integer class is used for intermediate

and output values, since the number of possible NNR sequences can potentially exceed

232 − 1. The algorithm requires O(nl) time and O(n) storage.

|Ω(n, l)| = (n− 1)× |Ω(n, l − 1)|+ |Ω(n− 1, l − 1)|
n = 1, l = 1 → |Ω| = 1

n > 1, l = 1 → |Ω| = 0

n = 1, l > 1 → |Ω| = 0

1 In t eg e r NNRsize (const uint32 n , const uint32 length)
2 {
3 i f (length<n | | n<1 | | length <1)
4 return 0 ;
5
6 // A l l o c a t e s t o r a g e f o r two rows o f l e n g t h n
7 In t ege r ∗ bu f f e r = new I n t eg e r [2∗n] ;
8 a s s e r t (bu f f e r) ;
9

10 // Tab le i s i n i t i a l i s e d to 1 , 0 , 0 , . . .
11 In t eg e r ∗row = bu f f e r ;
12 row [0] = 1 ;
13 for (u int32 k=1; k<n ; k++)
14 row [k] = 0 ;
15
16 // Next row f o l l o w s cu r r en t row in memory
17 In t eg e r ∗next = bu f f e r+n ;
18
19 // Ca l c u l a t e s u b s e quen t rows o f t a b l e i t e r a t i v e l y ,
20 // based on v a l u e s o f p r e v i o u s row .
21
22 for (u int32 i =1; i<l ength ; i++)
23 {
24 next [0] = 0 ;
25
26 // Apply r e c u r s i v e d e f i n i t i o n
27 for (u int32 j =1; j<n ; j++)
28 next [j] = row [j]∗ j + row [j −1] ;
29
30 // Update row po i n t e r
31 swap (row , next) ;
32 }
33
34 // NNR s i z e i s n ’ th e l ement o f l a s t row .
35 In t ege r s i z e = row [n−1] ;
36
37 // Free r e s ou r c e s
38 delete [] b u f f e r ;
39
40 return s i z e ;
41 }

198

B.5.2 NNR Partitions

The routine NNRpartitions calculates the number of NNR partitions of a particular

length, as discussed in Section 5.4.5. An arbitrary precision Integer class is used for in-

termediate and output values, since the number of possible NNR partitions can potentially

exceed 232 − 1.

|Γ| = (l−1)!
(n−1)!(l−n)!

n ≥ 1, l ≥ 1, l ≥ n

1 In t eg e r
2 NNRpartitions (const uint32 n , const uint32 length)
3 {
4 In t ege r x (1) ;
5 In t ege r y (1) ;
6 In t ege r z (1) ;
7
8 i f (length >1) x = fac (length −1);
9 i f (n>1) y = fac (n−1);

10 i f (length−n>1) z = fac (length−n) ;
11
12 return x/(y∗z) ;
13 }

B.5.3 NNR Partition Size

The routine NNRpartitionSize calculates the number of NNR sequences for a particular

partition p, as discussed in Section 5.4.5. An arbitrary precision Integer class is used

for intermediate and output values, since the number of possible NNR partitions can

potentially exceed 232 − 1.

|γ| = 1|s2|−1 × 2|s3|−1 × 3|s4|−1 × · · · × (n− 1)|sn|−1

1 In t eg e r
2 NNRpartit ionSize (const std : : vector<uint32> &p)
3 {
4 Pes Integer s i z e = 1 ;
5
6 for (u int32 i =1; i<p . s i z e () ; i++)
7 s i z e ∗= pow(In t eg e r (i) , I n t eg e r (p [i] −1)) ;
8
9 return s i z e ;

10 }

199

B.5.4 NNR Partition Sequence

The routine NNRsequence determines the ith NNR sequence for a particular partition p, as

discussed in Section 5.4.6. An arbitrary precision Integer class is used for intermediate

and output values, since the number of possible NNR sequences can potentially exceed

232 − 1.

Following the NNR sequence structure, the first entry in each segment is always fixed.

The following entries in each segment are chosen according to idx and can not repeat the

previous entry. Integer modulus division is used to determine the choice of entries based

on the desired unique sequence in the partition. Using this approach adjacent sequences

have little lexicographic similarity due to the least significant bits of i being used for the

leftmost variable elements of the sequence.

1 Sequence
2 NNRsequence (const std : : vector<uint32> &p , const I n t eg e r &i)
3 {
4 a s s e r t (p . s i z e () >0);
5
6 // i d x i s used to choose e l emen t s in each segment
7 In t ege r idx (i) ;
8
9 // Output sequence

10 Sequence seq (p . s i z e ()) ;
11
12 // For each segment . . .
13 for (u int32 j =0; j<p . s i z e () ; j++)
14 {
15 // Each segment b e g i n s w i th n ’ th e l ement
16 seq . push back (j) ;
17
18 // F i r s t segment can on l y have l e n g t h o f one
19 i f (j >0)
20 {
21 // For each sub s e quen t en t r y in t h e segment
22 for (u int32 k=1; k<p [j] ; k++)
23 {
24 // Make a cho i c e based on i d x and segment
25 uint32 c = idx%j ;
26
27 // No repea t s , based on p r e v i o u s en t r y
28 seq . push back ((seq . back()+1+c)%(j +1)) ;
29
30 // Adjus t i d x
31 idx /= j ;
32 }
33 }
34 }
35
36 return seq ;
37 }

200

References

[1] OpenGL 3D and 2D graphics API. http://www.opengl.org, Feb 2008.

[2] Khronos Group. http://www.khronos.org, Feb 2008.

[3] SGI OpenGL. http://www.sgi.com/products/software/opengl, Feb 2008.

[4] The Mesa 3D graphics library. http://www.mesa3d.org, Feb 2008.

[5] Seti@home. http://setiathome.berkeley.edu, Feb 2008.

[6] Folding@home. http://folding.stanford.edu, Feb 2008.

[7] Graphviz graph drawing software. http://www.research.att.com/sw/tools/

graphviz, Feb 2008.

[8] SCS CSG rendering algorithm. http://www.nigels.com/research, Feb 2008.

[9] Intel page on Moore’s Law. http://www.intel.com/technology/mooreslaw, Feb

2008.

[10] General-purpose computation using graphics hardware. http://www.gpgpu.org, Feb

2008.

[11] BRL-CAD cross-platform solid modelling system. http://brlcad.org, Feb 2008.

[12] P. C. van Oorschot A. J. Mezenes and S. A. Vanstone. Handbook of applied cryptog-

raphy. CRC Press, 1997.

[13] B. Adams and P. Dutré. Interactive boolean operations on surfel-bounded solids.

ACM Trans. Graph., 22(3):651–656, 2003.

[14] L. Adleman. Short permutation strings. Discrete Mathematics, 10:197–200, 1974.

[15] K. Akeley, P. Brown, C. Frazier, J. Leech, and M. Segal. The OpenGL Graphics

System: A Specification, 2004.

[16] P. Atherton. A scan-line hidden surface removal procedure for constructive solid

geometry. Computer Graphics (Proc Siggraph), 17(3):73–82, Jul 1983.

[17] J. Ayala, P. Brunet, R. Juan, and I. Navazo. Object representation by means of

nonminimal division quadtrees and octrees. ACM Trans. on Graphics, 4(1):41–59,

Jan 1985.

[18] OpenGL Arch. Review Board. OpenGL Programming Guide. Addison Wesley.

[19] OpenGL Arch. Review Board. OpenGL Reference Manual. Addison Wesley.

[20] K. Bouatouch, M. O. Madani, T. Priol, and B. Arnaldi. A new algorithm for space

tracing using a csg model. Proc. Eurographics ’87, pages 65–78, 1987.

201

[21] K. Paterson C. Mitchell. Perfect factors from cyclic codes and interleaving. Siam J.

Discrete Math., 11(2):241–264, 1998.

[22] S. Cameron. Efficient intersection tests for objects defined constructively. Int. J.

Rob. Res., 8(1):3–25, 1989.

[23] S. Cameron and J. Rossignac. Relationship between S-bounds and active zones in

constructive solid geometry. Proc. of Theory and Practice of Geometric Modeling,

pages 369–382, Oct 1988.

[24] J. Clark. Hierarchical geometric models for visible surface algorithms. Commun.

ACM, 19(10):547–554, 1976.

[25] J. Cohen, M. Lin, D. Manocha, and K. Ponamgi. I-COLLIDE: An interactive and

exact collision detection system for large-scaled environments. Proceedings of ACM

Int. 3D Graphics Conference, pages 189–196, 1995.

[26] F. Crow. Shadow algorithms for computer graphics. In SIGGRAPH ’77: Proceedings

of the 4th annual conference on Computer graphics and interactive techniques, pages

242–248, New York, NY, USA, 1977. ACM.

[27] R. Diestal. Graph Theory. Sprinter-Verlag, 2000.

[28] D. Epstein, F. Jansen, and J. Rossignac. Z-buffer rendering from CSG: The trickle

algorithm. IBM Research Report RC 15182, Nov 1989.

[29] G. Erhart and R. Tobler. General purpose Z-buffer CSG rendering with consumer

level hardware. VRVis Technical Report 2000-03, 2000.

[30] R. Erra, N. Lygeros, and N. Stewart. On minimal strings containing the elements of

Sn by decimation. Discrete Mathematics & Theoretical Computer Science, AA:165–

176, 2001.

[31] C. Everitt and M. Kilgard. Practical and robust stenciled shadow volumes for

hardware-accelerated rendering, Mar 2002.

[32] J. Eyles, S. Molnar, J. Poulton, T. Greer, A. Lastra, N. England, and L. Westover.

Pixelflow: The realization. Proc. 1997 Siggraph/Eurographics Workshop on Graphics

Hardware, pages 3–13, Aug 1997.

[33] L. H. Figueiredo F. Romeiro, L. Velho. Hardware-assisted rendering of CSG models.

XIX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI

’06), pages 139–146, Oct 2006.

[34] H. Fredricksen. A survey of full length nonlinear shift register cycle algorithms. SIAM

Review, 24:195–221, April 1982.

[35] G. Galbiati and F. P. Preparata. On permutation-embedding sequences. SIAM J. of

Appl. Math., 30(3):421–423, May 1976.

202

[36] J. Goldfeather, J. Hultquist, and H. Fuchs. Fast constructive solid geometry in the

pixel-powers graphics system. Computer Graphics (SIGGRAPH ’86 Proceedings),

20(4):107–116, Aug 1986.

[37] J. Goldfeather, S. Molnar, G. Turk, and H. Fuchs. Near real-time CSG rendering

using tree normalization and geometric pruning. IEEE CG&A, 9(3):20–28, May 1989.

[38] S. Golomb. Shift register sequences. Holden-Day, San Fransisco, 1967.

[39] I. J. Good. Normal recurring decimals. Journal of the London Mathematical Society,

21:167–169, 1946.

[40] M. Goodrich. Applying parallel processing techniques to classification problems in

constructive solid geometry. In SODA ’90: Proceedings of the first annual ACM-

SIAM symposium on Discrete algorithms, pages 118–128, Philadelphia, PA, USA,

1990. Society for Industrial and Applied Mathematics.

[41] A. Gottlieb. Cracking the secret of the baltimore hilton. Technology Review, Feb

1980. cited in [34].

[42] S. Guha, S. Krishnan, K. Munagala, and S. Venkatasubramanian. Application of

the two-sided depth test to CSG rendering. In SI3D ’03: Proceedings of the 2003

symposium on Interactive 3D graphics, pages 177–180, New York, NY, USA, 2003.

ACM Press.

[43] J. Hable and J. Rossignac. Blister: GPU-based rendering of boolean combinations

of free-form triangulated shapes. ACM Trans. Graph., 24(3):1024–1031, 2005.

[44] G. Herres. Real time constructive solid geometry rendering using 3D texture map-

ping. J. Comput. Small Coll., 19(5):333–335, 2004.

[45] G. Hunter and K. Steiglitz. Operations on images using quad trees. IEEE Trans. on

Pattern Analysis and Machine Intelligence, PAMI-1(2):145–153, Apr 1979.

[46] J. Rossignac J. Hable. CST: Constructive solid trimming for rendering BReps and

CSG. GVU Tech Report GIT-GVU-06-16, pages 1–10, Sep 2006.

[47] F. Jansen. A csg list priority hidden surface algorithm. Proceedings Eurographics

’85, pages 51–62, 1985.

[48] F. Jansen. CSG hidden surface algorithms for vlsi hardware systems. Advances in

Graphics Hardware I, pages 75–82, 1987.

[49] F. Jansen. Depth-order point classification techniques for CSG display algorithms.

ACM Transactions on Graphics, 10(1):40–70, Jan 1991.

[50] F. Jansen and R. Sutherland. Display of solid models with a multi-processor system.

Proceedings Eurographics’87, pages 377–387, 1987.

[51] N. Josuttis. The C++ Standard Library: A Tutorial and Reference. Addison-Wesley,

1999.

203

[52] F. Kirsch and J. Döllner. Rendering techniques for hardware-accelerated image-based

CSG. WSCG 2004, 2(12):221–228, 2004.

[53] F. Kirsch and J. Döllner. OpenCSG: A library for image-based CSG rendering. 2005

USENIX Annual Technical Conference, pages 129–140, 2005.

[54] D. E. Knuth. Big omicron and big omega and big theta. SIGACT News, 8(2):18–24,

1976.

[55] D. E. Knuth. The Art of Computer Programming, Vol. 2, Seminumerical Algorithms,

3rd edition. Addison-Wesley, 1997.

[56] P. J. Koutas and T. C. Hu. Shortest string containing all permutations. Discrete

Mathematics, 11:125–132, 1975.

[57] E. Lawler. Combinatorial Optimization : Networks and Matroids. Dover Publica-

tions, 1976.

[58] D. Liao and S. Fang. Fast volumetric csg modeling using standard graphics system.

In SMA ’02: Proceedings of the seventh ACM symposium on Solid modeling and

applications, pages 204–211, New York, NY, USA, 2002. ACM.

[59] M. Mano. Computer Engineering: Hardware Design. Prentice Hall, 1988.

[60] Flye-Sainte Marie. Solution to problem number 58. L’Intermédiaire des

Mathématiciens, 1:107–110, 1894.

[61] M. H. Martin. A problem in arrangements. Bulletin of the American Mathematical

Society, 40:859–864, 1934.

[62] M. Mazzetti and L. Ciminiera. Computing CSG tree boundaries as algebraic expres-

sions. In SMA ’93: Proceedings on the second ACM symposium on Solid Modeling

and Applications, pages 155–162, New York, NY, USA, 1993. ACM.

[63] S. Molnar. Combining Z-buffer engines for higher-speed rendering. Proc. Eurographics

’88, Third Workshop on Graphics Hardware, pages 171–182, Sep 1988.

[64] S. Molnar, J. Eyles, and J. Poulton. Pixelflow: High-speed rendering using image

composition. SIGGRAPH ’92, pages 231–240, 1992.

[65] G. E. Moore. Cramming more components onto integrated circuits. Electronics,

38(8), April 1965.

[66] T. Myer and I. Sutherland. On the design of display processors. Commun. ACM,

11(6):410–414, June 1968.

[67] M. Nienhaus, F. Kirsch, and J. Döllner. Illustrating design and spatial assembly of

interactive CSG. In Afrigraph ’06: Proceedings of the 4th international conference

on Computer graphics, virtual reality, visualisation and interaction in Africa, pages

91–98, New York, NY, USA, 2006. ACM Press.

204

[68] N. Okino, Y. Kakazu, and M. Morimoto. Extended depth-buffer algorithms for

hidden-surface visualization. IEEE CG&A, 4(5):79–88, May 1984.

[69] Modern Machine Shop Online. Better production software provides the edge for

tool grinding, Sep 2001. http://www.mmsonline.com/articles/0801bp3.html, Feb

2008.

[70] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. Lefohn, and T. Pur-

cell. A survey of general-purpose computation on graphics hardware. Eurographics

2005 - State of the Art Reports, pages 21–51, 2005.

[71] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. Lefohn, and T. Pur-

cell. A survey of general-purpose computation on graphics hardware. Computer

Graphics Forum, 26(1):80–113, 2007.

[72] A. Rappoport. The n-dimensional extended convex differences tree (ecdt) for repre-

senting polyhedra. In SMA ’91: Proceedings of the first ACM symposium on Solid

modeling foundations and CAD/CAM applications, pages 139–147, New York, NY,

USA, 1991. ACM.

[73] A. Rappoport and S. Spitz. Interactive boolean operations for conceptual design

of 3-D solids. Computer Graphics (SIGGRAPH ’97 Proceedings), 31:269–278, Aug

1997.

[74] A. Requicha. Representations for rigid solids: Theory, methods, and systems. Com-

puting Surveys, 12(4):437–464, Dec 1980.

[75] A. Requicha and H. Voelcker. Boolean operations in solid modelling: Boundary

evaluation and merging algorithms. Proc. of the IEEE, 73(1):30–44, Jan 1985.

[76] J. Rossignac. Optimized blist form (OBF). GVU Tech Report GIT-GVU-07-10.

[77] J. Rossignac. Processing disjunctive forms directly from CSG graphs. CSG 94:

Set-theoretic Solid Modelling: Techniques and Applications, pages 55–70, Apr 1994.

[78] J. Rossignac. Blist: A boolean list formulation of CSG trees. GVU Tech Report

GIT-GVU-99-04, pages 1–9, Oct 1998.

[79] J. Rossignac and A. Requicha. Depth-buffering display techniques for constructive

solid geometry. IEEE CG&A, 6(9):29–39, Sep 1986.

[80] J. Rossignac and H. Voelcker. Active zones in CSG for accelerating boundary evalu-

ation, redundancy elimination, interference detection, and shading algorithms. ACM

Trans. Graph., 8(1):51–87, 1989.

[81] S. Rubin and T. Whitted. A 3-dimensional representation for fast rendering of

complex scenes. In SIGGRAPH ’80: Proceedings of the 7th annual conference on

Computer graphics and interactive techniques, pages 110–116, New York, NY, USA,

1980. ACM.

205

[82] H. Sato, M. Ishii, K. Sato, M. Ikesaka, H. Ishihata, M. Kakimoto, K. Hirota, and

K. Inoue. Fast image generation of construcitve solid geometry using a cellular array

processor. In Proceedings of the 12th annual conference on Computer graphics and

interactive techniques, pages 95–102. ACM Press, 1985.

[83] C. Savage. Short strings containing all k-element permutations. Discrete Mathemat-

ics, 42:281–285, 1982.

[84] C. E. Shannon. A Symbolic Analysis of Relay and Switching Circuits. Massachusetts

Institute of Technology, Dept. of Electrical Engineering, 1940.

[85] S. Stein. Mathematics, The Man-Made Universe. Freeman, San Fransisco, 1976.

[86] I. Stewart. Game, Set and Math. Penguin Mathematics, 1989. published initially in

Scientific American.

[87] N. Stewart, G. Leach, and S. John. An improved Z-buffer CSG rendering algo-

rithm. 1998 Eurographics/Siggraph Workshop on Graphics Hardware, pages 25–30,

Aug 1998.

[88] N. Stewart, G. Leach, and S. John. A Z-buffer CSG rendering algorithm for convex

objects. The 8th International Conference in Central Europe on Computer Graphics,

Visualisation and Interactive Digital Media 2000 - WSCG 2000, II:369–372, Feb

2000.

[89] N. Stewart, G. Leach, and S. John. Linear-time CSG rendering of intersected convex

objects. The 10th International Conference in Central Europe on Computer Graphics,

Visualization and Computer Vision 2002 - WSCG 2002, II:437–444, Feb 2002.

[90] N. Stewart, G. Leach, and S. John. Improved CSG rendering using overlap graph

subtraction sequences. International Conference on Computer Graphics and Interac-

tive Techniques in Australasia and South East Asia - GRAPHITE 2003, pages 47–53,

Feb 2003.

[91] W. Stürzlinger. Bounding volume construction using point clouds. Spring Conference

on Computer Graphics ’96, pages 239—-246, June 1996.

[92] I. Sutherland, R. Sproull, and R. Schumacker. A characterization of ten hidden-

surface algorithms. ACM Comput. Surv., 6(1):1–55, 1974.

[93] T. Theoharis, G. Papaioannou, and E. Karabassi. The magic of the Z-buffer: A

survey. The 9th International Conference in Central Europe on Computer Graphics,

Visualization and Computer Vision - WSCG 2001, II:379–386, Feb 2001.

[94] R. B. Tilove. A null-object detection algorithm for constructive solid geometry.

Commun. ACM, 27(7):684–694, 1984.

[95] I. Tuomi. The lives and death of moore’s law. First Monday, 7(11), November 2002.

[96] H. Weghorst, G. Hooper, and D. P. Greenberg. Improved computational methods

for ray tracing. ACM Trans. Graph., 3(1):52–69, 1984.

206

[97] T. Wiegand. Interactive rendering of CSG models. Computer Graphics Forum,

15(4):249–261, Oct 1996.

207

	02whole
	03appendixes

