21,413 research outputs found

    Towards a human eye behavior model by applying Data Mining Techniques on Gaze Information from IEC

    Get PDF
    In this paper, we firstly present what is Interactive Evolutionary Computation (IEC) and rapidly how we have combined this artificial intelligence technique with an eye-tracker for visual optimization. Next, in order to correctly parameterize our application, we present results from applying data mining techniques on gaze information coming from experiments conducted on about 80 human individuals

    Ergonomic Chair Design by Fusing Qualitative and Quantitative Criteria using Interactive Genetic Algorithms

    Get PDF
    This paper emphasizes the necessity of formally bringing qualitative and quantitative criteria of ergonomic design together, and provides a novel complementary design framework with this aim. Within this framework, different design criteria are viewed as optimization objectives; and design solutions are iteratively improved through the cooperative efforts of computer and user. The framework is rooted in multi-objective optimization, genetic algorithms and interactive user evaluation. Three different algorithms based on the framework are developed, and tested with an ergonomic chair design problem. The parallel and multi-objective approaches show promising results in fitness convergence, design diversity and user satisfaction metrics

    Genetic Programming for Smart Phone Personalisation

    Full text link
    Personalisation in smart phones requires adaptability to dynamic context based on user mobility, application usage and sensor inputs. Current personalisation approaches, which rely on static logic that is developed a priori, do not provide sufficient adaptability to dynamic and unexpected context. This paper proposes genetic programming (GP), which can evolve program logic in realtime, as an online learning method to deal with the highly dynamic context in smart phone personalisation. We introduce the concept of collaborative smart phone personalisation through the GP Island Model, in order to exploit shared context among co-located phone users and reduce convergence time. We implement these concepts on real smartphones to demonstrate the capability of personalisation through GP and to explore the benefits of the Island Model. Our empirical evaluations on two example applications confirm that the Island Model can reduce convergence time by up to two-thirds over standalone GP personalisation.Comment: 43 pages, 11 figure

    Fast computation of the performance evaluation of biometric systems: application to multibiometric

    Full text link
    The performance evaluation of biometric systems is a crucial step when designing and evaluating such systems. The evaluation process uses the Equal Error Rate (EER) metric proposed by the International Organization for Standardization (ISO/IEC). The EER metric is a powerful metric which allows easily comparing and evaluating biometric systems. However, the computation time of the EER is, most of the time, very intensive. In this paper, we propose a fast method which computes an approximated value of the EER. We illustrate the benefit of the proposed method on two applications: the computing of non parametric confidence intervals and the use of genetic algorithms to compute the parameters of fusion functions. Experimental results show the superiority of the proposed EER approximation method in term of computing time, and the interest of its use to reduce the learning of parameters with genetic algorithms. The proposed method opens new perspectives for the development of secure multibiometrics systems by speeding up their computation time.Comment: Future Generation Computer Systems (2012

    Approximated and User Steerable tSNE for Progressive Visual Analytics

    Full text link
    Progressive Visual Analytics aims at improving the interactivity in existing analytics techniques by means of visualization as well as interaction with intermediate results. One key method for data analysis is dimensionality reduction, for example, to produce 2D embeddings that can be visualized and analyzed efficiently. t-Distributed Stochastic Neighbor Embedding (tSNE) is a well-suited technique for the visualization of several high-dimensional data. tSNE can create meaningful intermediate results but suffers from a slow initialization that constrains its application in Progressive Visual Analytics. We introduce a controllable tSNE approximation (A-tSNE), which trades off speed and accuracy, to enable interactive data exploration. We offer real-time visualization techniques, including a density-based solution and a Magic Lens to inspect the degree of approximation. With this feedback, the user can decide on local refinements and steer the approximation level during the analysis. We demonstrate our technique with several datasets, in a real-world research scenario and for the real-time analysis of high-dimensional streams to illustrate its effectiveness for interactive data analysis

    Visualization and Correction of Automated Segmentation, Tracking and Lineaging from 5-D Stem Cell Image Sequences

    Get PDF
    Results: We present an application that enables the quantitative analysis of multichannel 5-D (x, y, z, t, channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks. Conclusions: By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. There is a pressing need for visualization and analysis tools for 5-D live cell image data. We combine accurate unsupervised processes with an intuitive visualization of the results. Our validation interface allows for each data set to be corrected to 100% accuracy, ensuring that downstream data analysis is accurate and verifiable. Our tool is the first to combine all of these aspects, leveraging the synergies obtained by utilizing validation information from stereo visualization to improve the low level image processing tasks.Comment: BioVis 2014 conferenc

    An Interactive Visualisation System for Engineering Design using Evolutionary Computing

    Get PDF
    This thesis describes a system designed to promote collaboration between the human and computer during engineering design tasks. Evolutionary algorithms (in particular the genetic algorithm) can find good solutions to engineering design problems in a small number of iterations, but a review of the interactive evolutionary computing literature reveals that users would benefit from understanding the design space and having the freedom to direct the search. The main objective of this research is to fulfil a dual requirement: the computer should generate data and analyse the design space to identify high performing regions in terms of the quality and robustness of solutions, while at the same time the user should be allowed to interact with the data and use their experience and the information provided to guide the search inside and outside regions already found. To achieve these goals a flexible user interface was developed that links and clarifies the research fields of evolutionary computing, interactive engineering design and multivariate visualisation. A number of accessible visualisation techniques were incorporated into the system. An innovative algorithm based on univariate kernel density estimation is introduced that quickly identifies the relevant clusters in the data from the point of view of the original design variables or a natural coordinate system such as the principal or independent components. The robustness of solutions inside a region can be investigated by novel use of 'negative' genetic algorithm search to find the worst case scenario. New high performance regions can be discovered in further runs of the evolutionary algorithm; penalty functions are used to avoid previously found regions. The clustering procedure was also successfully applied to multiobjective problems and used to force the genetic algorithm to find desired solutions in the trade-off between objectives. The system was evaluated by a small number of users who were asked to solve simulated engineering design scenarios by finding and comparing robust regions in artificial test functions. Empirical comparison with benchmark algorithms was inconclusive but it was shown that even a devoted hybrid algorithm needs help to solve a design task. A critical analysis of the feedback and results suggested modifications to the clustering algorithm and a more practical way to evaluate the robustness of solutions. The system was also shown to experienced engineers working on their real world problems, new solutions were found in pertinent regions of objective space; links to the artefact aided comparison of results. It was confirmed that in practice a lot of design knowledge is encoded into design problems but experienced engineers use subjective knowledge of the problem to make decisions and evaluate the robustness of solutions. So the full potential of the system was seen in its ability to support decision making by supplying a diverse range of alternative design options, thereby enabling knowledge discovery in a wide-ranging number of applications
    corecore