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Abstract 

This thesis describes a system designed to promote collaboration between the human and computer 

during engineering design tasks. Evolutionary algorithms (in particular the genetic algorithm) can 

find good solutions to engineering design problems in a small number of iterations, but a review of 

the interactive evolutionary computing literature reveals that users would benefit from 

understanding the design space and having the freedom to direct the search. The main objective of 

this research is to fulfil a dual requirement: the computer should generate data and analyse the 

design space to identify high performing regions in terms of the quality and robustness of solutions, 

while at the same time the user should be allowed to interact with the data and use their experience 

and the information provided to guide the search inside and outside regions already found. 

To achieve these goals a flexible user interface was developed that links and clarifies the 

research fields of evolutionary computing, interactive engineering design and multivariate 

visualisation. A number of accessible visualisation techniques were incorporated into the system. 

An innovative algorithm based on univariate kernel density estimation is introduced that quickly 

identifies the relevant clusters in the data from the point of view of the original design variables or 

a natural coordinate system such as the principal or independent components. The robustness of 

solutions inside a region can be investigated by novel use of 'negative' genetic algorithm search to 

find the worst case scenario. New high performance regions can be discovered in further runs of 

the evolutionary algorithm; penalty functions are used to avoid previously found regions. The 

clustering procedure was also successfully applied to multiobjective problems and used to force the 

genetic algorithm to find desired solutions in the trade-off between objectives. 

The system was evaluated by a small number of users who were asked to solve simulated 

engineering design scenarios by finding and comparing robust regions in artificial test functions. 

Empirical comparison with benchmark algorithms was inconclusive but it was shown that even a 

devoted hybrid algorithm needs help to solve a design task. A critical analysis o f the feedback and 

results suggested modifications to the clustering algorithm and a more practical way to evaluate the 

robustness of solutions. The system was also shown to experienced engineers working on their real 

world problems, new solutions were found in pertinent regions of objective space; links to the 

artefact aided comparison of results. It was confirmed that in practice a lot of design knowledge is 

encoded into design problems but experienced engineers use subjective knowledge of the problem 

to make decisions and evaluate the robustness of solutions. So the full potential of the system was 

seen in its ability to support decision making by supplying a diverse range of alternative design 

options, thereby enabling knowledge discovery in a wide-ranging number of applications. 
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Chapter 1: Introduction 

1.1 Motivation of Research 

This research project was inspired by recognising the need to understand the information 

supplied by optimisation algorithms working on engineering design problems. Many 

algorithms, particularly evolutionary algorithms, have been successfully incorporated into 

systems that supply good solutions to practical problems. However many of those systems 

return 'the best' solution they can find without explaining where the solution comes fix)m 

or providing alternative options. Furthermore i f the designs produced by a system are not 

satisfactory, the engineer (or user) is forced to repeat the algorithm using different 

parameter settings to find another 'good' solution. Evaluating the robustness or sensitivity 

of the solution is usually limited to varying the input variables and observing the change in 

design objective or cost, leading to further blind search that may be inconclusive. 

hi practice an engineering design model does not fully explain the problem and 

engineers use their experience to choose between different solutions. As computational 

power continues to increase, more solutions can be generated to more complex and higher 

dimensional problems, increasing the diversity of choice. But accessing and understanding 

all the available choices is very difficult. Therefore a system that enables users to visualise 

and interact with high dimensional data was seen as an essential tool needed for modem 

engineering design activity (Parmee & Bonham 1998). histead of returning a single 

solution to a problem, all the solutions that have been considered by the algorithm can be 

presented to the user for analysis. By interacting with the system the user can define a 

region of the search space and run a more detailed search or check the robustness of that 

region. Due to the large variety of solutions returned, an experienced engineer, or group of 

multidisciplinary engineers (Baird et al. 2000), can assess the merits of each solution and 

its neighbours and come to some decisions on the best set of design variables to use. 
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Before a system can evaluate solutions for engineering design purposes, or any 

other purpose, the data needs to be generated in an efUcient way. For a long time 

evolutionary computing has been involved in engineering design because of its advanced 

search and fast optimisation capabilities; evolutionary computing is a group of techniques 

inspired by Darv^n's theory of evolution (Darwin 1859). The genetic algorithm (GA) is 

one such approach proposed by Holland (1975) that explores the search space and exploits 

good solutions. The GA adapts to the objective function that defines the good solutions, so 

can be controlled in various ways by the user. Other search and hill climbing algorithms 

could be used, but the GA was chosen because of its more exploratory attributes (crossover 

and mutation), robustness, coding simplicity and the relatively small number of parameters 

required. The GA has been successfully applied to the theory of engineering design 

(Goldberg 1989, Fonseca & Fleming 1995, Deb et al. 2000) and used in many practical 

applications (see Parmee et al. 2000. Gen & Chen 1997, Rafiq & Southcombe 1998, 

Balling et al. 2000. Walters et al, 1999). 

Most systems using genetic algorithms applied to an engineering problem merely 

return a few solutions to the problem without explaining where they came from or how 

they relate to each other; in a multidimensional problem this is particularly frustrating. 

Traditional approaches to evaluate the robustness of solutions in engineering design vary 

the input variables close to the desired solution and evaluate the change in objective value 

of those solutions to ensure that manufacturing tolerances are met. Taguchi analysis is a 

systematic approach to this process using orthogonal matrices (Taguchi 1986); more recent 

non-linear techniques can also be used to evaluate the robustness of the feasibility of 

solutions (Parkinson et al. 1993. Du & Chen 2000). Again there is an element of trial and 

error with these techniques because of the large size of the search space. In order to fully 

understand the problem there would be an obvious benefit from visualising all the data 

available and trying to understand how solutions and variables relate to each other. 
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Pannee et al. (2000) proposed a number of ways evolutionary algorithms could be 

used in an interactive engineering design environment, but the details of exactly how this 

would be performed were not given. Many researchers also advocate such systems 

(Mathews & Rafiq 1994) but usually implement them for specific problems (Mathews et 

al. 1996). Further review of the literature reveals that a lot of research has been undertaken 

in interactive evolutionary computation (see recent review in Takagi 2001)» but the ability 

to directly interact with the search space, analyse the robustness of solutions and guide the 

system towards innovative solutions is limited. 

1.2 Aims of Research and Implementation 

This thesis explains the development, testing and evaluation of a visualisation system 

designed to support the iterative and systematic process of engineering design using 

evolutionary computing. The overall research aim was to promote collaboration between 

the human and computer to help improve understanding of the search space and how 

variables interact to form robust solutions. It was determined that the strengths of the 

human and computer would be exploited by supporting the following dual requirement: 

1. The computer should quickly generate data and analyse the design space to identify 

high performing regions in terms of the quality and robustness of solutions 

2. The user should be allowed to interact with the data and guide the search using 

their experience and the information provided 

The multivariate visualisation, clustering and statistical analysis literature was 

consulted to discover techniques that fulfil this dual requirement. It was established that 

many state of the art systems use advanced techniques to classify data but the visual 

representation is often too abstract to describe a concrete engineering design problem; even 

principal component analysis is limited unless the results are related to the original design 
3 



variables. Conversely techniques that are specifically designed for interactive engineering 

design do represent the data in an accessible way (for example Tweedie et al. 1996b), but 

the data is generated randomly and there is no way of guaranteeing the robustness of 

solutions. Therefore a new system was designed to the following specifications: 

a. Generate informative data as quickly as possible using the genetic algorithm (GA) 

b. Quickly identify the main clusters in the data pertinent to engineering design and 

relate the clusters to the original design variables 

c. Ability to analyse interesting regions of the search space suggested by the GA, in 

particular to evaluate the quality and robustness of those regions 

d. Introduce multivariate visualisation techniques that are understandable and do not 

distort the data for engineering design purposes 

e. The system should be easy to use and flexible to allow further GA search and 

analysis inside and outside regions already found 

The system was then evaluated to test that it satisfied the dual requirement and was 

an improvement on automated algorithms. The preliminary evaluation was designed to test 

the useftilness and applicability of features of the system to help users understand 

engineering design problems. An engineering design task was simulated on continuous 

artificial test functions by asking novice users to find regions of the search space that are 

robust according to a tolerance specification. The test functions were designed so that the 

'ideal' regions the user should be looking for could be determined. The ability of the 

system to support decision making was evaluated by asking the users to give a relative 

preference measure for the regions found. The quantitative success of the users was 

evaluated by comparing their results with those from benchmark algorithms used to solve 

problems with multiple optima. The overall success of the system was evaluated through a 

critical analysis of the results and feedback supplied by the participants. 
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Subsequently the system was shown to experienced engineers working on their 

design problems to assess its usefulness and effectiveness in the real world. Some of the 

features in the system needed modification, particularly when applied to problems with 

discrete variables and multiple objectives. The ability to view individual details of designs 

was a further suggestion by the contributors. The enhanced system was shown to other 

experts, instigating discussion and feedback that provided further insight into the potential 

of the system for knowledge discovery and evaluating the robustoess of solutions. 

1.3 Contributions to Knowledge and Results 

The main contribution to knowledge is the development of a system that combines the 

research areas of engineering design, evolutionary computing and multivariate 

visualisation, enabling the understanding of problems in a novel and clear way. This is a 

new approach to understanding the output of data from a genetic algorithm that will clearly 

benefit many engineering design applications. Individual features of the system include: 

• A fast, novel clustering algorithm based on kernel density estimation (Silverman 

1986) that defines pertinent regions of the search space in terms the original 

variables or alternative coordinate systems such as the principal components 

• A novel method to evaluate and confirm the robustness of regions using 'negative' 

GA search to find the worst case and a filtering mechanism to redefine clusters 

• A mutation scheme that prevents the duplication of individuals in the GA 

• Data can be visualised and analysed in 'natural* coordinate systems; clusters are 

highlighted with colour so they can be related to the original design variables 

• A flexible interface that allows GA search and clustering in any coordinate system, 

inside or outside any region defined by the user or clustering algorithm 

• The ability to focus on parts of objective space using penalty functions, generating 

new information and designs that are most relevant to real world problems 
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The artificial multidimensional test functions used during the user evaluation 

experiments are also a novel addition; they were designed to simulate problems found in 

engineering design. It could not be statistically proved that the users performed better than 

the benchmark algorithms on the engineering design task because the paradigms were 

more successful on some aspects of the problem. However the system received positive 

feedback from the users and it was shown that even a devoted algorithm would need help 

to solve the engineering design task. The critical analysis of the system suggested some 

modifications to the clustering procedure that would help to ensure all the required 

infomiation is made obvious to the user. The analysis also suggested a simpler, more 

practical routine to help assess the robustness of solutions, whilst concluding that any 

routine needs to be adapted to the engineering design task presented. Overall the potential 

of the system is confirmed and suggestions for future testing are given. 

The system was developed for continuous problems and then tested on a variety of 

engineering design problems. The studies confirmed that the system provides a valuable 

addition to the engineering design community, promoting knowledge discovery and 

understanding in many real world problems. Visualising the trade-off between objectives 

and using the system to generate new solutions in pertinent regions of objective space 

provided 'better' solutions to previously published results. However the true strength of the 

system is its ability to support decision making by supplying a diverse range of alternative 

design options, particularly when the constraints on the problem are not explicitly given 

and the engineer is contemplating many design scenarios. Viewing the individual details of 

designs (or a representation of the artefacts) helps the engineer assess their relevance to the 

design problem. The clustering and robustness evaluation procedures were less useful in 

discrete domains, but it was suggested that the user should be given more control to choose 

the variables or objectives used in the analysis. Furthermore it was shown that the system 

could theoretically be used to evaluate the feasibility robustness of solutions. 
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Feedback fix)m the engineering design experts revealed that a lot of design 

knowledge is encoded into practical problems, but decision making and robustness 

evaluation is performed subjectively using experience of the problem. The difference 

between the theoretical concepts applied in the user evaluation experiments and the 

practical knowledge used in real world design scenarios was therefore highlighted. Further 

work was suggested, such as modifying the system for discrete and combinatorial 

problems, assessing the application of visualising and clustering data in alternative 

coordinate systems and the inclusion of advanced multiobjective optimisation techniques. 

1.4 Overview of the Thesis 

In Chapter 2 the literature in evolutionary computing applied to engineering design is 

critically reviewed and the need for the system proposed here is outlined. An extensive 

literature review of multivariate visualisation techniques, paying particular attention to the 

visualisation and analysis of engineering design data, is given in Chapter 3. The clustering 

technique that is tailored to produce information relevant to engineering design is 

presented in Chapter 4; the method is based on univariate kernel density estimation and can 

be applied in any coordinate system. Chapter 5 describes the system that was developed by 

the author based on the visualisation literature, enabling users to apply genetic algorithms 

flexibly to engineering design problems. Chapter 6 introduces the artificial objective 

functions and engineering design task created to test the system and the methodology used 

to compare the performance of novice users and benchmark algorithms. Chapter 7 presents 

the interesting results of the testing exercise, including a critical analysis that suggests 

modifications to the system, further ways to evaluate the robustness of solutions and 

procedures for future experiments. The case studies of experienced engineers evaluating 

the system working on real world problems are given in Chapter 8; analysis of the results 

and feedback provided by the engineers are given for each study. Finally conclusions and 

suggestions on how to exploit the potential shown by the system are given in Chapter 9. 
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Chapter 2: Interactive Evolutionary Computation applied to 
Engineering Design 

2.1 Introduction 

Many researchers have attempted to capture the design process using evolution and other 

techniques. This chapter begins by describing a number of definitions of design, 

demonstrating that the process depends on the people doing the designing as well as the 

object or entity that is being designed. The review concentrates on engineering design and 

the importance of finding robust solutions to the problem. With the advent of computers it 

is usually possible to generate a number of solutions to an engineering design problem and 

allow the designer to use their knowledge and creativity to verify those solutions or try 

other parameter settings to find more robust solutions. ]n a multidimensional problem this 

process can be limited i f the user cannot visualise the solutions or indeed see how the 

solutions are related to each other. Visualisation of the design space would inmiediately 

improve understanding of the problem and allow the engineer to assess the robustness of 

solutions. 

There are a number of ways the data can be generated even before visualising the 

search space, fi'om random sampling to customised optimisation algorithms. Evolutionary 

computation is one of the most efRcient ways of exploring a search space whilst exploiting 

the good solutions foimd, thus potentially robust solutions may be generated in this way. 

One particular form of evolutionary computing, the genetic algorithm, is suited to many 

engineering design problems and is briefly described along with extensions intended to 

ensure diverse solutions will be produced. The field of interactive evolutionary computing 

is particularly active and relevant to engineering design, so the relevant literature is also 

reported in this chapter. It was found that while a number of systems have been 

successfully developed for specific engineering design problems, there was no 



evolutionary architecture that promotes visualisation and understanding of a general 

engineering design problem. The issue of robusmess is also rarely catered for. 

Visualisation of evolutionary computation is also reviewed and was mostly found to be 

limited to understanding the evolutionary process; analysis of this information may lead to 

more efficient ways of producing robust solutions to a problem, but is not immediately 

relevant to the practical engineer. The conclusion of this chapter summarises the 

requirements of an interactive evolutionary system to support practical engineering design 

and describes the further research and processes required to build the system. 

2.2 Engineering Design 

2.2.1 Introduction 

The process of design is iterative (Eckert et al. 1999) following a repeated cycle such as: 

formulate the problem, create the design, evaluate the design, reformulate the problem and 

so on. This is true for any sort of decision making process, from software development 

(Boehm 1988) to the completion of a large engineering project. There are many different 

versions of the design process that can be broadly categorised as either systematic or 

creative design, although Cross (2000) argues that a rational, systematic approach can lead 

to creative designs. In this section the different design methodologies are reviewed and 

compared to discover how the user and computer can work together to produce robust and 

creative designs and how evolutionary computing can support this goal. 

2.2.2 Systematic and Creative Design 

All designing is detemiined by a perceived need to make a product, demanding the 

formulation of a product specification or design brief. A typical design process by French 

(1999) is summarised in Figure 2.1. Engineering design is focussed on the manufacture of 

the product. A typical engineering design process called the Total Design activity model by 

Pugh (1990) is summarised in Figure 2.2. Both models shown in Figures 2.1 and 2.2 have a 
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loop that allows backtracking to previous stages due to the lessons learnt during the design 

process. These are descriptive approaches that concentrate on generating a solution early 

on in the design process and adapting the solution mostly by trial and error using heuristics 

built up by knowledge of the problem. This method can often lead to unfeasible design 

solutions and the need to begin the loop again (Cross 2000, p. 30). 

Analysis of Problem 

Conceptual Design 

Embodiment of Schemes 

Detailing 

Figure 2.1: 
Design Process (French 1999). 

Product Specification 

Concept Design 

Detail Design 

Manufacture 

Figure 2.2: 
Engineering Design (Pugh 1990). 

To reduce some of the error in descriptive design some engineers prefer the 

systematic approach to design, summarised by Jones (1992, pp. 49-50). This is a 

prescriptive method that is almost algorithmic, encouraging rational thinking and analysis 

within each design stage. The iterative steps are: analysis, synthesis and evaluation, 

making infonned decisions between the steps so that a number of well thought out design 

concepts are produced. Pahl & Beitz (1996) proposed a complete engineering design 

system based on this systematic approach. It could be argued that this method constrains 

the designer fi-om creativity since the steps in the process are planned (Jones 1992), 

however Cross (2000) asserts that such a systematic procedure can be used to widen the 

original design space with the safety net of knowing that good quality design decisions 

have been made (ibid. p. 56). 
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After studying all the major views Dym (1994, p. 17) defines engineering design 

thus: 

Engineering design is the systematic, intelligent generation of specifications for 
artifacts whose form and function achieve stated objectives and satisfy specified 
constraints. 

Because the aim of engineering design is to manufacture a product, it is important that the 

design meets the original specifications and is robust to manufacturing and material 

discrepancies. Discovering a flaw or inconsistency, not identified during the conceptual 

design process, forces the loop to begin again. It is important to make the right decisions at 

the preliminary and conceptual stage to avoid making costly mistakes; thus consideration 

of the robustness of the design is required as reviewed in Section 2.2.4. 

Creative designing is often supported by dialogue between a number of designers; 

in particular discussing ideas is essential for a large scale design project (Bucciarelli 1984, 

Baird et al 2000). Putting thoughts into words is an effective method for teaching design 

(Schon 1984, 1988), allowing the student to investigate new ideas and the teacher to impart 

experienced knowledge. Analysis of the conversation between novice and experienced 

engineers reveals firstly that a great deal of implicit knowledge is used by experienced 

engineers to make faster design decisions (Schon 1984) and secondly that designers have 

very different perspectives on what is a good design (Sch6n 1988). This reflective practice 

reveals how designers attempt to resolve conflicts and suggests that the ambiguity in 

design should be recognised, allowing participants to negotiate and eventually improve the 

quality of the design (Bucciarelli 1988). Study of these social and ethnographic processes 

usually involves painstaking analysis over many years that often provide a deeper 

understanding of design. For example, Baird et al. (2000) identified how specialist 
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engineers hunt for information from generalist engineers; they defined ethnographic terms 

to understand this interaction between engineers that will enlighten and assist fiiture 

studies. However Bucciarelli (1984) admits that a purely ethnographic analysis may result 

in a design vocabulary that is too rich to be usefiil and may bias future designing. 

As well as considering dialogue during the design process, Schon & Wiggins 

(1992) emphasise the importance of the materials used and how their visual interpretation 

will impact on the outcome. They describe designing as reflection and action, in other 

words 'seeing' the design in terms of perceived quality or visual gestalts, 'moving' to a 

new design, then 'seeing' again. This requires redrawing the design many times, possibly 

labelling the individual parts and explaining the moves to another designer (although as an 

engineer becomes more experienced the explanations will become less necessary). The 

next section describes attempts to model this process using computers. 

In practice each model of the design process can and should be used in conjunction 

v^th other models, so systematic design can be used to produce creative solutions and the 

social impact on design should be considered whilst the engineering codes are being 

consulted, as concluded by Bucciarelli (1984). 

2.2.3 Computer Models of the Design Process 

Preliminary and conceptual design needs a lot of guidance by a designer or design team. 

Computerisation of the task would allow many designs to be evaluated before they need to 

be manufactured. Capturing preliminary or conceptual design in a computer program is a 

difficult task (Pham & Yang 1993a), although there have been numerous attempts. Some 

have tried to give a formal definition of the design process so that it can be used to make a 

computer design. The Knowledge Level by Newell (1980) proposed that an agent could 

undertake designing by giving it goals and rational behaviour to achieve those goals. 
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Smithers (2000) developed and tested such a method that formulates the knowledge needed 

at each step of design with partially successful results. Maher (1990) was concerned that 

using the prescriptive approach to model design is restrictive as they tell designers what to 

do, but not how to do it. She suggested that computer based models should facilitate the 

designer rather than prescribe design. 

Other methods of capturing the design process include Gero's "situated learning" 

(Reffat & Gero 2000). that assumes knowledge is more useful when learned in the context 

of the design situation, and "design rationale" developed by Brown (Burge & Brovwi 2000) 

that captures the decisions and the reasons behind each decision during design. These 

models are attempts to recreate the moves and analyse the explanations between design 

stages, as described by Schon & Wiggins (1992). A lot of heuristics and learning methods 

are used to simulate this view of design, but it is doubtful whether the full complexity of 

the design process can be simulated in this way. 

Coyne (1990) puts forward the seemingly contrary view to the cognitive models 

described above; this is the connectionist view that design can be modelled without explicit 

explanations and labels. I f one models how the brain learns (at a very general and 

simplistic level) using design variables as inputs and the resulting designs as outputs, then 

examples of those designs can be retrieved by exposing various inputs to the trained 

network (see Coyne et al. (1993) for details of this process). However new (or imaginary) 

designs can be retrieved just as easily if unusual inputs are put into the system; these may 

be valid answers to the design problem. Hence Coyne (1990) argues that a model of design 

does not necessarily have to follow the traditional cognitive route o f drawings and 

explanations to succeed. The model has drawbacks, such as how to represent a complicated 

design scenario for the system to learn. Also the black box nature of the result is a cause 

for concern; without an explanation of the output it will be difficult to justify the design. 
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Sim and Duffy (2000) performed protocol analysis on a designer at work to 

evaluate a model of learning in design. Methods such as protocol analysis usually involve 

the activities of a single engineer that was not found to be useful for large, 

multidisciplinary design teams (Jagodzinski et al. 2000); in this case social interaction has 

a large impact on the design process so the ever changing needs of the customers and 

company managers, as well as the morale of the design engineers, should be taken into 

account. This socio-technical approach underlines the need to consider the human 

perspective when organising design activity (Mumford 2003). 

Because designing is a cognitive activity, attempts to capture the design process is 

the same as asking: What does a person do when they are designing? The answer to this is 

different for every person and problem, depending on the amount of knowledge and 

experience of the problem the person has (Eysenck & Keane 2000, Ch. 14). Gero (1990) 

gives three classifications of design: routine, innovative and creative. Routine design is 

constrained by pre-defined regulations, variable ranges and parameter values. A design 

activity is innovative i f the variable ranges can be changed so designs can be found outside 

the expected domain. Creative designs are found by changing variable parameters and 

adding new variables to the model (Gero & Kumar 1993). As an example, Hof&nan et al. 

(2001) describe an urban planning environment that benefited fix>m a designer having the 

capability to turn all the rooms on the first floor through 90 degrees; this design was 

outside the initial constraints of the problem. However Maimon & Horowitz (1999) claim 

that creative designs must be in the 'neighbourhood' of the original design specifications, 

otherwise the problem has changed. The jury is still out on the exact definition of creative 

design, but it is encouraged by giving designers time to think about the problem, trying 

different scenarios, adding new information and possibly changing the problem (Eysenck 

& Keane 2000. Ch. 15). 
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Many of these models of design are attempting to describe an abstract process that 

is difficult to represent in a computer. Many researchers fix)m the ethnographic community 

recommend that a computer system should provide an environment that facilitates design 

rather than attempting to model the complete design process (Bucciarelli 1988, Baird et aL 

2000, Schon & Wiggins 1992). Researchers fi-om the artificial intelligence community may 

argue that modelling the design process can facilitate design (Maher 1990, Gero & Maher 

1993), but a different way to accomplish this is described in Section 2.2.5. 

2.2.4 Robust Design 

An additional aspect of engineering design is the need to produce robust design solutions 

to the problem, that is to try to find parameter or variable settings so that small or large 

changes in the settings cause small changes in the quality or cost of the product. Genichi 

Taguchi and his students undertook an in-depth study of robustness and quality (Taguchi 

1986, Phadke 1989). Because of this work the difference between the quality of products 

produced in the USA and Japan became evident during the 1960s and 1970s. The 

American philosophy was to use known materials for an engineering task and specify tight 

tolerances on that material to produce a product of desired quality (known as tolerance 

design). Taguchi's philosophy (known as parameter design) was to assiune low grade 

materials were to be used and to set wide tolerances on the noise and control factors (or 

parameter ranges), then try to find parameter settings that define a design within 

specification (Phadke 1989, pp. 33-34). To reduce the cost of a product (including the 

operating cost due to failure in the hands of a customer, known as quality loss), parameter 

design should always be performed before tolerance design. Taguchi (1986) performs 

parameter design by undertaking a small number of experiments defined using orthogonal 

arrays; parameters are tested a number of times and the outcome suggests a sensitivity 

ranking of each parameter due to a particular design objective. Analysis of these results 

can lead to a set of parameters that are robust in terms of a design objective. 
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According to Du & Chen (2000) most practitioners define robustness as 

"optimising the mean performance" and "minimising the performance variance" of an 

objective. Additionally the most popular way to evaluate robustness is through the worst 

case analysis concept (see Parkinson et al. 1993 for example). This procedure leads to 

conservative and sometimes infeasible designs, but because of the lack of guidelines and 

understanding of the problem it is the technique most often used. The importance of 

undertaking sensitivity analysis was stressed by Savic & Walters (1996) in their criticism 

of a method for designing water distribution networks by Eiger et al. (1994). In general 

this task is very difllcult because of the size of the search space and the many difTerent 

factors that cause sensitivity, there are also a number of alternative procedures that could 

be used to analyse the sensitivity (de Schaetzen et al, 2000). 

Tweedie et aL (1996b) demonstrated how tolerance design can be visualised by 

specifying the tolerances in 'parameter space' (this is design or variable space) and using 

colour coding to highlight designs that satisfy the tolerances and also satisfy performance 

criteria (objective space). Colours vary depending on the number o f parameter or 

performance limits that are satisfied. The authors also define the 'yield' of solutions that 

are acceptable due to performance criteria and can be manufactured according to the 

tolerance limits; very tight tolerances will resuU in a yield of 100%, but wil l probably be 

very expensive while wide tolerances may reduce cost but could result in a lower yield 

(some solutions will not satisfy performance criteria). This method depends on the random 

generation of solutions inside a defauh set of limits; i f the user specifies tight tolerance or 

performance limits, the specified region may not contain many solutions so the system, 

developed by Tweedie et al. (1996), will generate more random solutions in this region. 

Random sampling, however, cannot guarantee that all solutions inside the region will 

behave in the same way. more intensive investigation may be necessary. 
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2.2.5 Summary: Why use Evolutionary Computation? 

Rather than applying some abstract design model to capture the human designer's 

preferences (Gero & Maher 1993), an alternative approach (to find an innovative or 

creative design) is to generate a number of feasible or near-feasible solutions to the design 

problem and let the designer choose v^hich solutions are best suited to the purpose and 

represent the best compromise between design objectives. In this way design is facilitated 

by the computer, instead of driven by the computer it in an attempt simulate the design 

process. Providing many solutions will enable the designer to reflect on the problem 

(Sch6n & Wiggins 1992) and make new design decisions, either in a systematic or creative 

way (Bucciarelli 1984). 

The vast amount of computational power now available means that i f a design 

objective can be modelled or approximated using mathematics then the simulation time on 

a computer is usually reasonable. Evolutionary algorithms have the ability to explore and 

identify good solutions in a pre-defined search space without a priori knowledge. Indeed 

Bentley (1999) postulates that computers can evolve creative designs, but humans are 

needed to identify the novel and useful designs from the infeasible and bad designs. In a 

conceptual design system the human can assess the quality of solutions found and guide 

the system to extend exploration outside the current search space. The search and 

exploitation characteristics of evolutionary computation can also be used to identify 

particularly bad solutions inside a region that can improve confidence in the evaluation of 

robustness of the region. 

The following section gives a brief description of evolutionary computation (and 

the genetic algorithm in particular) and discusses methods from the literature that attempt 

to maximise the diversity of solutions returned by the algorithms. 
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2.3 Evolutionary Computation 

2.3.1 Introduction 

Evolutionary computing is the generic term for a group of techniques that were inspired by 

Darwin's theory that variation and natural selection is necessary for a species to adapt and 

succeed in its environment (Darwin 1859). The genetic algorithm (GA) is one form of 

evolutionary computation developed by Holland (1975) that includes genetic theory by 

representing a problem as a binary string and using crossover to pass on inherited 

information from generation to generation. Variation or mutation of bits in the binary 

string allows the evolving population to search outside the constraints of the previous 

generations. Alternative paradigms such as evolution strategies or evolutionary 

programming (reviewed by Back & Schwefel 1993) were developed at about the same 

time using a real valued representation. The paradigms are similar but vary in the 

implementation and the relative importance of each operator. Evolutionary algorithms have 

an advantage over many other optimisation algorithms because they do not concentrate 

search locally but combine information from multiple individuals in a parallel search and 

are more likely to find other optima through the action of mutation. 

2.3.2 The Genetic Algorithm 

Goldberg (1989) popularised the genetic algorithm and emphasised how its search and 

optimisation capabilities have been applied to many research and industrial techniques, in 

particular biology, psychology, pattern recognition and engineering applications. Much of 

the popularity and success of the genetic algorithm is due to its relative simplicity and 

robustness. The GA tends to perform well on many problems because it adapts to the 

problem domain itself; the only limitation is the difficulty in finding an appropriate 

representation and the definition of 'good solutions' for the GA to use. For engineering 

problems that involve discrete parameters in particular, the GA operators may return 

infeasible solutions unless repair operators or domain knowledge is included in the 
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representation (Rafiq & Southcombe 1998). Real valued GAs, evolution strategies or 

evolutionary programming may be more suitable for specific problems that require integer 

or floating point representation (Savic & Walters 1994). The canonical GA using binary 

representation will be described here because it is the type of evolutionary computation 

used in this research; it will be described primarily in the context of engineering design. 

The genetic algorithm (GA) creates new solution to a problem following the 

iterative steps given in Figure 2.3. In contrast to other types of evolutionary algorithms 

each individual in the GA is represented as a set of genes called a chromosome in analogy 

with biological evolution. Each gene on the chromosome can take on one of a set of values, 

known as an allele. It is common for the chromosome to be represented as a binary string 

so the allele is either 0 or 1. The GA population is usually initialised randomly with alleles. 

Figure 2.4 illustrates how the binary string (or genotype) is decoded to the real-valued 

variable space (phenotype) for the engineering design problem. The variable space, also 

known as search or decision space, is usually bounded by limits given by the engineering 

problem or the designer. The variable values are in turn evaluated by an objective function 

to determine how good the solution is in terms of the engineering problem. It is possible 

that the engineering problem has more than one objective and they may be conflicting, so it 

is common to combine the objectives in some way to give a single fitness value. 

Members of the population are then selected for reproduction a number of times 

depending on their fitness values and the selection technique used (Baker 1987). The 

selected individuals are paired off to generate children via crossover at the chromosome 

level (Figyre 2.5). Additionally each gene (or bit) of the chromosome is subject to mutation 

at a low rate of probability (Figure 2.6). These operations occur in the genotypic space, so 

the binary representation is convenient, however the operators can be applied in a real-

valued situation (such as simulated binary crossover and self-adaptive evolution strategies 
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(Deb & Beyer 1999)). The child population is then passed to the next generation and 

evolution continues until terminating conditions, such as convergence criteria or some pre

determined nimiber of generations, have been met. 

Random Initial Population 

Parents Selected by Fitness 

Crossover Pairs of Parents 

Mutate Bits of Offspring 

New Population Generated 

i 
Save to Database 

For given 
number of 

generations 

Figure 2.3: The Simple Genetic Algorithm. 
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Figure 2.4: Mapping from genotypic space to phenotypic space; after evaluation the 
objective values and thus fitness rank is found. 
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The selection, crossover and mutation operators will encourage the population to 

explore various options. In the simple GA good solutions will continue to be selected and 

the whole population will eventually converge on a local optimum in the fitness landscape 

(derived from the engineering objectives). Most practitioners then examine the final 

population or even just the best individual in that population, others identify good solutions 

to keep fix)m each generation (Parmee 1996), but there is no reason why all the data 

generated by the GA cannot be saved and examined by the engineers. The latter strategy is 

adopted in this research. 

The exact reason for the success of GAs is as yet unproven (Bentley 1999). They 

have been shown to be successful in many diverse problems and applications (Goldberg 

1989) because the GA will nearly always return one or more regions of the search space 

that are worthy of further investigation and usually will return a large number of design 

alternatives in engineering problems. 

There are two main drawbacks of the GA that are particularly apparent in functions 

containing multiple local optima (known as "multimodal" functions) and a large number of 

variables. The first problem occurs when too many diverse solutions exist in a population 

with similar fitness causing the GA to exhibit random search without getting a foothold on 

a good solution. Introducing elitism so that a proportion of the best individuals always 

survive in subsequent generations will help solve this problem; allowing the GA to 

concentrate search in specific areas. Conversely the GA may converge on a local sub-

optimal solution where mutation is not enough to find more diverse solutions in the 

population without a long wait; techniques to slow down convergence are described in the 

following sub-section. 
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2.3.3 Maintaining Diversity through Multimodal Optimisation 

The main requirement of an engineering design system is the ability to explore complex 

design spaces allowing the exploitation of known good regions of the search space and 

exploration of regions outside the known regions. In a conceptual design system one way 

to tackle this problem is by the interaction of human knowledge combined with the 

computer's data generation capabilities (Parmee et aL 2000). Evolutionary computation 

provides one of the most adaptable and explorative tools for data generation. But 

evolutionary algorithms will still stagnate to local optima without external help. This 

section briefly reviews multimodal techniques applied to evolutionary computation that 

could be used in interactive engineering design. 

Researchers use multimodal optimisation techniques to maintain diversity in the 

GA by influencing either the objective space or decision space. The former approach is to 

modify the fitness function to allow search away from a converged region of the search 

space. The "sharing" algorithm (Deb & Goldberg 1989) encourages diversity by reducing 

the fitness of solutions according to their closeness to other solutions. Similarity between 

solutions can be determined by comparing solutions in genotypic space (the number of bits 

that are different in the binary string) or phenotypic space (the difference in the decoded 

variables, usually measured using Euclidean distance). The distance between all solutions 

is calculated, i f the distance between a pair of solutions is less than a predetemiined value 

(oi/wre), then the fitness of each is reduced proportionally. Another parameter (a) controls 

the rate of fitness reduction. Deb & Goldberg (1989) give a method for determining the 

parameter P i w by assuming that the peaks are equally spaced throughout the search space 

and that the number of peaks present is known or can be estimated. 

The sequential niche technique (Beasley et al. 1993) searches for new peaks by 

"derating" the fitness of peaks already found, in a similar way to the sharing algorithm. 
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However this method suffers from the same problems as sharing (and the dynamic sharing 

method of Miller & Shaw (1996)): to be successful the peaks need to be evenly spaced and 

the sharing parameter needs to be carefully chosen otherwise the derating process can 

cause new artificial peaks in the search space or the algorithm will merely find the bottom 

of peaks already identified. 

The second approach to multimodal optimisation influences the search in decision 

space by attempting to keep diverse solutions away from each other during replacement or 

crossover. One of the first attempts at controlling convergence was the "crowding" 

technique by De Jong (1975). Crowding uses a steady state GA such that a subpopulation 

(proportion G of the main population) is chosen for reproduction. Children of the 

subpopulation are compared with a certain number of the main population and replace the 

individual that they are most similar to (in genotypic space). The number of individuals 

used for comparison is called the "crowding factor" {CF). CF is usually set at 2 or 3 

resulting in two or three niches being maintained in the population, this is known as 

replacement error and is a major criticism of crowding. Increasing CF may increase the 

number of maintained niches, but overall performance is reduced, eventually the whole 

population will converge anyway. The ecological (ECO) GA (Davidor 1991) also uses a 

steady state GA and encourages separate niches to flourish in a population by simulating 

reproduction among 'neighbouring' individuals. Again the population will eventually 

converge so some online metric or visualisation technique is required to observe interesting 

results from the ECO GA. 

Crowding has fewer parameters than sharing, but Mahfoud (1992) introduced 

"deterministic crowding" (DC) that virtually eliminated the replacement errors of crowding 

and does not requires additional parameters to the simple GA. At every generation the 

whole population is paired ofT, crossover and mutation is applied to each pair of parents, 
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producing two children. Each child then competes with its most similar parent for survival 

and will replace the parent i f it has a higher fitness. This algorithm allows a number of 

subpopulations to be maintained in the population in an efficient way. The similarity 

between individuals is performed in phenotypic space (as in phenotypic sharing), which is 

a great improvement over comparing in genotypic space (as in original crowding) because 

adjacent designs in binary space are often very far apart in variable space, even i f grey 

coding is used. DC will distribute solutions proportional to the width (or hypervolume) of 

peaks in variable space, although i f two local optima are adjacent the one of higher fitness 

will dominate and the lower peak will be lost (Mahfoud 1994). 

Multimodal optimisation is particularly relevant to engineering design for which 

Parmee (1996) developed the Cluster-Oriented Genetic Algorithm (COGA), which 

samples all the information generated during search. This means that clusters of good 

solutions found during early stages of the GA search can be saved thus avoiding loss of 

infomiation due to the convergence of the algorithm. Like sharing and crowding this 

technique requires parameters that need careful tuning and often a priori knowledge of the 

search space. Deb et al. (2000) developed the crowding technique without parameters to 

adapt to the current information and Pham and Yang (1993b) successfully applied various 

multimodal techniques to the design of their preliminary engineering design system. 

However in general it is difficult to find a technique that adapts to all possible fitness 

functions, thus in recent years evolutionary research has reverted to more fundamental 

theories of genetics and concentrates on attempting to find a smooth mapping between 

genotype and phenotype space to assist the evolutionary process (Harvey & Thompson 

1997, Shipman et al 2000). 

Humans are good at inferring information from data, so combining the human and 

computer directly during a GA search can only improve the exploration. Rather than 
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guessing the number or width of optima before a search, it is proposed to let the user 

explore data generated by the GA and make decisions based on that exploration. The use of 

current multimodal techniques will obviously be beneficial but the parameters that control 

them need to be determined during the search. Most of the literature on multimodal 

optimisation uses either test functions with one or two dimensions, such as the sine 

function (Deb & Goldberg 1989), or multidimensional problems with regularly spaced 

peaks, such as De Jong's test suite (Goldberg 1989, pp. 108-110) and the functions 

proposed by Ackley (see Back & Schwefel 1993), Rastigin, Griewangk and Schwefel 

(given in Gordon & Whitley 1993). Engineers may have some idea of the number of peaks 

or at least the location of good solutions in problems they have defined, but will not 

appreciate making multiple parameter changes to locate those regions. Additionally when 

looking for innovative or novel solutions, engineers have less knowledge of the search 

space and may need to break out of their pre-conceived assumptions. 

The next section critically reviews the literature to find a system that combines the 

human and evolutionary computation to effectively analyse and explore the design space. 

The main requirements of such a system is to identify robust regions within the known 

search space and support exploration to find novel solutions outside those already found. 

2A Interactive Evolutionary Systems 

2.4.1 Introduction 

There are two main approaches to interactive evolution. Some researchers define 

interactive evolution (IE) or an interactive genetic algorithm to be a special type of 

evolutionary algorithm where a human user performs evaluation or selection thus 

subjectively capturing the designer's requirements (Graf & Banzhaf 1995, Takagi 2001, 

Caldwell & Johnston 1991). The alternative approach is to design an interactive system 

that uses information fi-om an evolutionary process or genetic algorithm (Parmee et al. 
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2000, Pham & Yang 1993a, Jo 1998). These latter systems allow the user to try new 

variable ranges or manipulate the system in some way but do not insist that the user selects 

individuals for the next generation. In fact because of the large number of individuals used 

in these systems it is not viable for a human to evaluate all the designs that are generated 

(Hudson & Parmee 1995). The former type of interactive evolutionary computation (lEC), 

characterised by human evaluation or selection, is the 'narrow' definition of lEC according 

to Takagi (2001). While he gives the 'broad' definition of lEC to human-computer 

interactive systems that use evolutionary computation. In this thesis the term interactive 

evolution is used with the broader definition in mind unless qualified by the word narrow. 

2.4.2 Narrow Interactive Evolutionary Computation 

Narrow-IEC has been successfully applied to face recognition (Caldwell & Johnston 

1991), generation of jazz music by responding to a human musician (Biles 2001), sound 

and computer aided design (CAD) applications (Takagi 1996) and engineering design 

(Graf 1996). Takagi (2001) gives a review of around 250 research papers on interactive 

evolutionary computation (mostly narrow). There are some interesting designs created 

using variations of narrow-IEC. Graf & Banzhaf (1995) used an expansion operator that 

applies regression to the input from the user to evolve graphical shapes of fish and cars. 

Sato & Hagiwara (2001) evolved novel cutting tools by combining different stages of the 

design process; handles and blades of the tool were evolved by human selection 

independently, the next stage was to combine the handle with the blade, in later stages the 

user refined the designs further. 

The advantage of subjective human selection over traditional evolutionary 

computation is the use of knowledge or intuition of the user to evaluate designs (Herdy 

1991). The user's choice and preferences are directly captured in the evolutionary system. 

The main drawback of narrow-IEC is the 'fitness bottleneck' (Biles 2001) which is related 
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to human fatigue (Takagi 2001). There is a limited number of evaluations a person can and 

will be motivated to perform in a certain time. 

To overcome the problem of the fitness bottleneck Caldwell & Johnston (1991) 

introduced a number of techniques including optimising the starting position of individuals 

and changing crossover and mutation rates online. This appUcation concems the 

recognition of Photofit-like pictures by witnesses. The approach is interesting because it 

uses the human's powers of pattern matching rather than feature recall (humans find it 

difficult to describe another face but accurately recognise faces &om an early age). The 

user is shown twenty faces and asked to rate the fitness of each face according to its 

similarity to the remembered suspect. Once the witness had found a close match they 

found it useful to fix the parameters of desired features of the face to prevent the loss of 

that information due to future mutations. 

Takagi (1996) also applied narrow-IEC to drawing faces imagined by the human. 

To speed up the search process the members of each population were sorted in order of 

likely fitness. This fitness was derived &om a neural network (NN) by extrapolating the 

fitness given to similar solutions in previous generations. The algorithm by Takagi (1996) 

shows that a computer can simulate the human through fitness evaluation, even though the 

human's evaluation is psychological and subject to change. Takagi points out that it is 

surprising that a NN can learn to generalise in such a large parameter space and 

hypothesises that this is because the NN is only learning a small part of the whole 

parameter space. But this emphasises the point that using human interaction in this way 

will generally focus the search and cause stagnation of the search process. 

Indeed Biles (2001) found that using a human to evaluate Jazz tunes resulted in a 

certain style being returned that the musician (Biles himselO found boring. The solution to 
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this problem was to effectively remove fitness from the system. New populations were 

generated automatically using domain knowledge rules of jazz and intelligent crossover. 

The convergence problem was removed, but the fitness landscape is basically flat because 

crossover and mutation will always result in a jazz phrase that is 'safe' or musically 

plausible. 

In general a knowledgeable engineer will build the variables and objectives in an 

engineering design system. But the aim of conceptual or preliminary design is to discover 

innovative or creative solutions to problems. This means dropping routine design and 

looking outside the search space of known solutions to the problem. In this case rather than 

using the user to select solutions for future generations, it is desirable for the human and 

computer to look in regions outside the normal search space. So an evolutionary system is 

required that can confirm the quality or robustness of solutions ah^ady found and allows 

the user to look for other good solutions. Such a system will reside in the broad view of 

EC. That is evolutionary systems that are directed by a human user either by manipulating 

where the search takes place or influencing which objective has more importance, but the 

user does not actively select individuals for future generations. There follows a review of 

such systems. 

2.4.3 Broad Interactive Evolutionary Computation 

Pham & Yang (1993a) developed an often-cited preliminary design system called 

TRADES (TRAnsmission DESsigner) that incorporates a genetic algorithm (GA). The 

components of the system such as gears, shafts and belt wheels are the building blocks. 

The building blocks are quite large and further domain knowledge is present in the system 

because the designer chooses specific design requirements. The GA produces 

configurations for the user to evaluate; infeasible configurations are penalised using a 

simple fitness function. Many design options are available because the GA incorporates a 
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number of multimodal techniques (Pham & Yang 1993b). The engineer can view all the 

raw data firom the GA or details of individual design configurations. So individual designs 

can be chosen or another GA run performed as required. This system is very domain 

specific as the components of the system and how they fit together are incoiporated into 

the algorithm. New design solutions can be generated, but they are presented in a text-

based interface so differences between solutions may be difficult to comprehend. 

Jo (1998) discovered that adding human interaction to his evolutionary design 

system meant domain knowledge could be incorporated online. He acknowledges that 

(i7)/W. pp. 219-220): 

Many researchers have attempted to model human intelligence in the computer 
system, in order to make an intelligent design system. However, it may be an easier 
and better idea to include a human designer as a process module in the design 
system, rather than trying to build an intelligent computer program for design. By 
doing so the system will bring the designer into the design process actively and 
dynamically. Designers will then be able to reflect their ideas in the process quickly 
and efficiently. The design solution space will be expanded, shrunk or moved 
dynamically, as the designer's perceptions, interests or design requirements 
changes. 

He allows the user to interact with the system at all stages of the GA process: initialisation, 

evaluation, selection and recombination. Solutions are independently visualised in a space 

layout problem and the user is allowed to modify individual elements of the design. The 

user can also give arbitrary fitness values to the designs. In this way the user can direct the 

search using design knowledge and intuition to guide the algorithm away from a local 

optimum. One of the main aims of adding the user to the system was to solve the 

convergence problem; the GA will quickly converge to a solution but it will take some 

time to improve the solution afler convergence. So the user will attempt to find new 

solutions using intuition and domain knowledge. There is no indication that the system 

suggests the location of other good solutions. 
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A user's input greatly improved the speed of convergence and quality of solutions 

to the travelling salesperson problem according to Louis & Tang (1999). The complexity 

of this problem is exponential, so for a large number of cities the traditional GA takes a 

long time to find useful solutions. Using this method the user selects clusters of cities to 

'divide and conquer' the problem into a number of smaller problems for the GA to work 

on. The user then reconnects the sub-problems. This example shows the great advantage of 

an interactive genetic algorithm, although the authors point out that the user's input may 

guide the search process to sub-optimal solutions as a lot of the search space will be 

ignored. 

The interaction of a user has also been considered in a multiobjective environment. 

Fonseca & Fleming (1993) proposed a decision-maker (DM) that controls which objectives 

have more importance within a non-dominated set of solutions. They suggested the DM 

could be human or an expert system. The objectives were visualised using a parallel 

coordinate type of technique (see Section 3.3.5). The multiobjective genetic algorithm was 

put forward as a good way to bring decision making to engineering design. Balling et al. 

(2000) devised a multiobjective decision making tool to interactively create and analyse 

potential city plans with visual feedback. Horn (1997) points out that there are three 

different approaches to decision making in multicriteria problems: make a multicriteria 

decision before search, make a decision after search or integrate the search and decision 

making. The latter approach would appear to be the most powerfiil, incorporating iterative 

search and decision making. Mathews & Rafiq (1994) also suggested that adaptive search 

could by harnessed to assist a multidisciplinary design team in reaching a compromise 

between constraints and feasible solutions at the preliminary stage of structural design. 
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Ian Parmee proposed an Interactive Evolutionary Design System (lEDS) based on a 

system of iterative redefinition of variable and objective space by a designer as search 

progresses (Parmee & Bonham 1998, Parmee et al. 2000). Evolutionary modules generate 

results in a multimodal and multiobjective environment that can be evaluated off-line by 

the user. Identification of high performance regions is available due to the evolutionary 

process and confirmed by the user with visualisation techniques. Subsequent redefinition 

of variable limits or change in preference of objectives is supported. Except for the input of 

preferences exactly how the information between user and computer is exchanged is not 

discussed. The visualisation technique of individual two-dimensional plots is limiting and 

does not take into account the complex interactions of high dimensional variables 

(Packham 2000). However the tool is a good approach to conceptual design, it is intended 

to complement the human (Hudson & Parmee 1995) and allow the designer to discover 

more about the search space by exploiting what is already known and exploring other 

alternatives. The woric on COGAs (Parmee 1996) that identified clusters of good solutions 

during the genetic algorithm run was extended with particular emphasis on the extraction 

of knowledge (Bonham & Parmee 1999); visualising the output of GA runs using different 

parameter settings improved understanding of multimodal fimctions and the location in 

decision space of the best compromise between multiple objectives. 

2.4.4 Related work 

There has been some interesting research in techniques that are not interactive evolutionary 

systems per se but are relevant to the discussion of how to involve the user in design. 

Matthews et al. (2000) trained a neural network on patterns during an interactive 

design process to discover how the decision space is mapped onto evaluation space. 

Features were extracted using principal component analysis (PCA) and self-organising 

maps (SOMs) that described the design heuristics enabling the authors to develop design 
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guidelines and general concepts used to form an initial evaluation of the design process. 

This method shows the usefulness of PCA and SOMs to describe the interactions of high-

dimensional data. The main components indicate which variables have most affect on 

important objectives and each other. Josephson et al. (1998) encourages exploration of 

large search spaces by filtering good solutions according to the non-dominance criterion. 

Good trade-off solutions are then displayed between two criteria at a time; the user can 

choose subsets of solutions from the interface for further examination. This technique is 

not evolutionary but allows the user to inspect and interact with generated designs. 

John Gero has done a lot of work attempting to capture the design process in 

evolution, although without using interaction explicitly. In Gero (1998) he postulated that 

the building blocks of the genetic process contain the design infomiation and used genetic 

engineering to exploit that infomiation. This system thus evolves problem specific 

knowledge and due to the genetic engineering is likely to converge more quickly (Gero & 

Kazakov 2000), but may also stagnate at a local optimum without human intervention. 

Bentley (1999) also encodes domain knowledge into evolutionary systems and attempts to 

evolve new designs using the computer without human intervention. However in the 

conclusions of his thesis, Bentley (1996) suggests input from a user during the evolution of 

solid objects via an interface would facilitate the design process. 

These examples indicate that PCA, SOMs and evolution can capture design 

heuristics and important design features. However a human is needed to interpret the 

features, choose between design options or help the algorithms escape from local optima. 

Therefore visualisation of the search or solution space and analysis of the regions 

discovered is essential in an engineering design environment. A review of the literature 

concerning visualisation applied to evolutionary computation follows to discover the state 

of the art research in this area to date. 
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2.5 Visualisation of Evolutionary Computation 

There has been a lot of interest in the visualisation of evolutionary computation (EC) in 

recent years as evidenced by workshops devoted to the subject (GECCO 1999, Smith et al. 

2002). This is motivated by a yearning to understand the underlying process and to see 

how much decision and problem space the GA has covered. In order to assist the user 

during engineering design using EC it is necessary to display the information generated by 

the GA so that the user can see the different sort of solutions that are generated, the 

robustness of those solutions and identify areas of the search space worthy of further 

investigation. Review of the literature reveals two main categories for EC visualisation 

research: visualisation of the ongoing EC process and visualisation of the search space 

covered by the algorithm (Hart & Ross 2001, Collins 1997, Shine & Eick 1997, Pohlheim 

1999). In this section visualisation techniques applied to evolutionary computation will be 

summarised, more details of the algorithms and guidelines for visualisation will be given in 

Chapter 3. 

Visualisation of the ongoing EC process involves looking at individual 

chromosomes or the fitness of solutions to see how the algorithm is progressing from 

generation to generation. Online visualisation of fitness versus generation graphs and 

genotypic or phenotypic infomiation helps the user evaluate the efficiency and dynamics of 

the GA operators. Pohiheim (1999) devised a set of standard techniques for this type of GA 

visualisation. A sophisticated and recent technique visualises the course of the GA process 

(Hart & Ross 2000). They describe a new tool called GAVEL that attempts to help the user 

understand how the GA travels along a certain search path using colour and shading to 

represent fitness, phenotype and allele values. At the end of the run the best chromosome is 

found and its evolutionary history is inspected by backtracking. This enables the user to 

identify how different GA operators such as crossover and mutation have affected the 

search. This technique does not take into account multiple solutions or multimodal fitness 
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functions. How solutions evolve is interesting and can teach us how to optimise the GA 

parameters, but most users in an engineering design environment will not be GA experts. 

Engineers will be more interested in the quality (in terms of objective value) and 

robustness (in terms of the change in variables that provide the objective value) of 

solutions. In related work Ross & Come (1994) point out how GAs can be most useful as 

simple hill climbers when applied to problems and too much time is wasted on tweaking 

GA parameters for minimal improvement. 

The visualisation of decision and objective space is more applicable to engineering 

design applications. I f the problem is multidimensional most researchers attempt to view 

the problem in fewer dimensions using principal component analysis (PCA) (Collins 

1999) . PCA enables the natural distribution of the data to be viewed from an orthogonal set 

of vectors called eigenvectors. The first two or three eigenvectors usually contain most of 

the information about the variability of the data. However the two main problems with 

multidimensional scaling (MDS) techniques such as PCA are: firstly the result is a 

distorted representation of the original and secondly there is no consistent spatial 

relationship between successive views of the principal components (PCs), a particular 

problem as data generated by the GA is always changing (Collins 1997, Hart and Ross 

2000) . Collins (1999) went some way towards rectifying the second problem by visualising 

the GA progress using a manifold of PCs over generations enabling the user to assess the 

efficiency of the GA and determine when it is stuck at a local optimum. 

Most MDS methods try to represent the high-dimensional search space on a low-

dimensional picture whilst retaining the spatial distance between points. This technique 

means finding the optimal representation in low dimensions that correctly represents the 

real distances in high dimensions. Pohlheim (1999) used SAMMON mapping (Sammon 

1969) to do just this; optimising the starting configuration of the algorithm using PCA. 
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However the algorithm is very computationally expensive and prohibitive for a large 

number of data points. Shine and Eick (1997) also represented high dimensional data in 

two dimensions using a similar method to SAMMON mapping, although it does not 

preserve distances from generation to generation. Additionally they used quad-codes to 

estimate how much solution space has been explored, but this technique does not retain the 

relative distance between individuals. Collins (1997) suggested an interesting technique 

called 'search space matrices' that maps every chromosome onto a two-dimensional space 

using the allele values. The distance between chromosomes is preserved. However in 

engineering design the interest is in the difference between variables of solutions as well as 

the overall difference between solutions. 

In their review of the state of the art in visualisation techniques for GAs, Hart and 

Ross (2001) have a small section on visualising the whole space searched by the GA. 

Those few researchers that have attempted this have tried to represent the whole space in 

two or three dimensions and find it difHcult to assess the effect of GA parameters on the 

search or differentiate between landscapes. Again an engineer will be less interested in 

how the GA is performing, more in what parts of the search space have been explored and 

how different variables interact. This type of question leads onto more general 

visualisation of high-dimensional data. 

Spears (1999) reviews other multidimensional visualisation tools that have been 

applied to GA visualisation. Pictures can be used to represent the data in a form that is 

readily recognised by a human; these are sometimes called icons or glyphs. For example 

Chemoff faces can represent values of different variables by the size of features on a face. 

This technique takes advantage of the facial recognition ability by humans. There are a 

limited number of variables that can be represented on the face before the complexity 

makes even these difficult to understand. Projection techniques are also mentioned as a 
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way to represent high-dimensional data in low dimensions. The most interesting 

projections indicate the main clusters in the data and which variables contribute to those 

clusters, however these algorithms are optimisation techniques that attempt to find certain 

shapes of data; looking for 'interesting projections' may take a long time and often need 

human supervision (see Section 3.4.5 and Cook et al. (1993)). 

The problem with most high-dimensional visualisation techniques is that in order to 

be understandable by a human the representation is distorted to be viewed in lower 

dimensions. This means some of the actual information is not preserved in the 

transformation, in particular subtle changes in the data and individual variable information 

will be lost. There is one visualisation technique that preserves the original information and 

can be viewed on a two-dimensional picture. Parallel coordinates display all variables and 

objectives as vertical lines. Individual points in Cartesian space are represented as lines in 

parallel coordinates between the variables. This means the mathematical structure of the 

original data is preserved (Spears 1999). Fonseca & Fleming (1993) showed results of 

multiobjective interaction using parallel coordinates (they did not refer to them as such). 

By temporarily constraining the limits of one of the objectives and redisplaying they could 

look at individual solutions in more detail. 

In this section visualisation techniques applied to EC have been reviewed. It would 

appear that the needs for visualisation of EC applied to engineering design have not been 

catered for. Rather than visualising genetic information and how chromosomes have 

evolv^ from previous generations, the requirements for engineering design are the 

visualisation of individual variable infomiation as well as the overall distance between 

solutions themselves. So there is a need to develop an interface where the distance between 

regions of solutions is obvious in terms of each variable. Also interaction should be 

supported so the user can easily change the ranges of the variables and zoom in on 
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different portions of the search space. Two visualisation techniques appear to support this: 

one option is to use parallel coordinates, the other is to represent all the data in a number of 

two or three-dimensional graphs and allow the user to compare variables with each other. 

The second method is more familiar to engineers and the GA users who often see data 

represented as a fitness landscape. 

2.6 Conclusions 

The use of interactive evolutionary computation in engineering design is in a healthy shape 

according to various writers, bi their study of the applications of genetic algorithms (GAs), 

Ross & Come (1994) claim that GAs have been much more accepted than, say, expert 

systems. GAs are easier to use and more understandable and they can find quick solutions 

to problems without endless tweaking of parameters. Takagi (2001) unsurprisingly predicts 

that evolutionary computation will become very important in design and creation systems, 

making the computer more user-friendly. However there is a large gap to be filled between 

the potential use of evolutionary computing in engineering design and actual systems that 

flexibly allow users to reap the benefits. Most decision support tools that use genetic 

algorithms are designed to solve specific problems such as building design (Mathews et al. 

1996), water system design (Moriey et al. 2001) and mechanical engineering (Pham & 

Yang 1993a), but a system that can represent all problems in an easy to understand way 

and allow the easy implementation of genetic algorithms in the problem would broaden the 

scope of applications that could be used and increase the likelihood of engineers trying out 

the new technology. However the complexity and diversity of engineering design problems 

are such that some tailoring will be required for any system, as a potential user needs to 

become comfortable with the system as well as be an expert in their problem. 

Missing from current interactive evolutionary systems is the ability to understand 

the solutions in variable space and the capability of the human to interact with the search 
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space and guide the system towards innovative solutions. Such a system should give clues 

as to the location of other high performing regions, i f possible. Caldwell & Johnston 

(1991) allowed the user to fix parameters during the evolution of suspect faces for 

recognition. This type of interaction is useful to exploit certain attributes of search, but the 

opposite is also needed where variables are set free to find new solutions. Therefore 

engineering design and evolutionary computing can both be enhanced with appropriate 

visualisation tools to help understand the search space allowing interaction by the user to 

guide the search. Current visualisation research in evolutionary computing does not cater 

for this need. 

In a forward thinking appraisal, Lund (2000) compares two interaction styles: 

direct manipulation of the traditional graphical user interface and interactive evolution. 

The direct manipulation style provides control to the user with little surprise while 

interactive evolution can be used with little training and may provide a lot of surprise and 

add to the creative process. He claims that the combination of the two styles can 

complement each other in supporting creativity. To include direct manipulation in an 

interactive engineering design system based on evolutionary computation (interactive 

evolution in the broad sense) a review of the general information visualisation literature is 

needed. A comprehensive overview of all related techniques is given in Ch^ter 3. 

Evaluating robustness in engineering design is a difBcult issue mainly because the 

definition of robustness is problem dependent. In this thesis, robustness is defined with the 

assumption that engineering data will be generated using evolutionary computing. At the 

local level a solution is defined as robust i f changes in variable values cause little or no 

change in objective values. Hence a set of solutions is defined as robust i f they are 

neighbours in variable space and their corresponding objective values are similar (see 

Section 6,3); these sets of solutions are termed 'robust regions' of the search space. To find 
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these regions, the philosophy of Taguchi (1986) points to setting wide tolerances in 

variable space and attempting to find solutions that satisfy various engineering 

requirements (Section 2.2.4). Tweedie et al (1996b) provided a visualisation system 

(described in Section 3.6) that allows the examination of feasible solutions in variable 

space with tolerances chosen by the user superimposed on the plots. The technique was 

limited by the random generation of solutions (as was another similar proposal by 

Josephson et al. (1998) that used dominance filtering to present good trade-off solutions to 

the engineer), but i f such an idea is extended to include optimisation techniques such as the 

genetic algorithm then the engineer can have more confidence that the solutions inside a 

region are the best that can be found. Equally in order to test robustness of the region the 

conservative 'worst case scenario' concept can be implemented using 'negative' 

optimisation, that is using the GA to find the worst solution in a region. A system that 

includes such additions is described in Chapter 5 and is novel, al least in regard to the 

application of evolutionary computing to engineering design. 

To evaluate the robustness of engineering design data it is necessary to identify the 

interesting clusters with respect to the problem domain, that is the objectives used by the 

GA. Techniques such as density estimation, clustering and PCA can speed up some of the 

data analysis tasks (Matthews et ai 2000) and explain how variables interact, but the 

results need to be presented in a way understandable to the user and relevant to the design 

process. Mathematical and clustering techniques are reviewed in Chapter 3 with particular 

emphasis on identifying robust regions returned by a genetic algorithm. 

An interactive evolutionary system will allow the user to fireely explore the search 

space supporting innovation and possible creativity. To test such a system it is necessary to 

develop test functions with multimodality in high dimensions containing an unknown 

number of peaks and random placement of peaks. This is in contrast to most of the 
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literature on multimodal optimisation that either use test functions with peaks that are 

evenly spaced and it is known beforehand how many peaks there are in the search space 

(Beasley et al. 1993) or multidimensional problems that are designed to be difficult for 

GAs but the global optimum can be deduced by visualisation or inductive search (Bilchev 

& Parmee 1996). When applying their multimodal optimiser to an engineering problem 

many researchers report a few results that have no meaning to the reader so the success 

cannot be substantiated (for example Roy et al (1996)). Therefore test functions with 

engineering design features and location of peaks that can be analytically defined but 

difficult to solve using a genetic algorithm are presented in Chapter 6. 

After the review of the general visualisation literature and associated techniques 

given in Chapter 3, a novel clustering technique used to locate regions pertinent to 

engineering design is presented in Chapter 4. The proposed interactive system using 

evolutionary computations will be described in Chapter 5. This system is motivated by 

some of the concepts and ideas that followed fi-om the development of COGAs (Bonham & 

Parmee 1999) and the Interactive Evolutionary Design System (lEDS) proposed by Parmee 

et al. (2000). The novel additions to the system described in this section bring the proposal 

some steps towards reality and at the very least offer another usefiil decision support tool 

enabling knowledge discovery as suggested by Mathews & Rafiq (1994) and Mathews et 

al. (1996). It is hypothesised that the interactive visualisation system will support 

systematic design (Cross 2000), reflective design (Schon & Wiggins 1992) and social or 

multidisciplinary design (Jagodzinski et al. 2000). Whether the system can be extended to 

capturing the design process and provide truly creative designs, as suggested by Gero 

(1990) and Gero & Kumar (1993), is up for debate. A lot of research in this area (Gero & 

Maher 1993) would suggest that implementing such a creative design system is possible. 
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Chapter 3: Visualisation for Interactive Engineering Design 

3.1 Introduction 

The power of human perception and cognition can identify clusters in data that statistics 

find difficult to describe. However the same powers can suggest fictitious clusters or 

imaginary relationships in the data because of the assumptions made by the human. 

Therefore carefiil design and implementation of an interactive system is extremely 

important to ensure that the human can interpret information in the correct way. The first 

part of this chapter will investigate some of the theories behind human computer 

interaction and general visualisation guidelines. Particularly relevant to engineering design 

are multivariate and multidimensional visualisation techniques, which are described in 

Section 3.3 using the classic Iris Data as an example. 

The aim of this investigation is to find a set of visualisation tools relevant to 

interactive engineering design and evolutionary computation. Pure visualisation tools rely 

heavily on the user who may not have the time or inclination to perform a complete 

analysis. The advantage of using a human is that they may see unusual patterns of data or 

use their intuition to search, but the user can also get stuck looking in regions of the search 

space that are not important. Conversely statistical and clustering methods can be 

perceived as a black box that simply tell the user where to look next; this leaves the 

engineer asking why is the information important and where do the results come fit)m. So a 

balance is required between using pure visualisation or human perception and statistical or 

clustering techniques. A broad range of statistical analysis and clustering methods are 

described in Sections 3.4 and 3.5. Then state of the art multivariate visualisation systems 

that have been used or can be applied to engineering design are investigated before 

conclusions are drawn at the end of the chapter. 
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3.2 Human Computer Interaction Guidelines 

3.2.1 Introduction 

Building a successful interaction between the human and the computer is fundamental to a 

controllable visualisation system. Before designing the interface a number of issues need to 

be researched and addressed. A basic understanding of the psychological processes being 

used during human computer interaction needs to be understood. In this section a brief 

summary of the psychological literature is given followed by an overview of human 

computer interaction guidelines, as well as recommendations regarding the use of colour. 

3.2.2 Psychology 

There are a large number of models attempting to describe what is happening in the human 

brain during interaction with a computer. For example the model human processor (Card et 

aL 1983): information passes through the perceptual system to perceptual memory, i f it 

lasts long enough in perceptual memory the information will be represented symbolically 

in working memory. Once the perceptual processor has encoded the information, the 

cognitive processor will decide what to do with the information and tell the motor system 

to act accordingly. High-level theories such as the GOMS (goals, operators, methods and 

selection rules) model by Card et al. (1983) attempt to describe interaction in terms of the 

model human processor and predict how well a human will perform a specific task. Each 

task is broken down into a series of sub-tasks needed to achieve the goals using cognitive 

or motor operators. A number of methods may achieve the same goal so selection rules are 

used to choose between those methods. This theory can be used to validate the 

effectiveness of interfaces, however it does not suggest how to build the interface in the 

first place. 

Norman (1986) introduces a theory of action that is similar to the GOMS model 

(Card et al. 1983), but emphasises the difference between psychological and physical 
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variables involved in human-computer interaction. He suggests ways to bridge the gulf 

between the user and computer by either bringing the user nearer to the system or the 

system nearer to the user. In this human centred approach the needs and interests of the 

user are stressed; it should be obvious what an object on the interface does by its physical 

interpretation. In later research he defines these clues to how an object operates as 

"afifordance" (Norman 1998, pp. 9-10). A physical example of this is the simple question 

of how to open a door; a plate on the door implies it should be pushed to open, a bar 

implies it should be pulled. Unfortunately many doors are not designed in this way. 

More recently Shneiderman (1998, pp. 61-67) presented the object-action interface 

model. This model describes direct manipulation interfaces that use objects such as buttons 

and dropdown menus. Most of the components of the system are ah-eady provided by 

object-oriented or GUI design systems, so the task is more to match the available objects to 

the set of required tasks. Some of the most important considerations are to promote 

consistency between programs and systems, so that the same key presses (CTRL-C for 

example) mean the same thing in all instances (usually copy). Preece et al. (1994) go 

further by declaring that traditional cognition does not go far enough; research on 

distributed cognition is needed to take into account the environment of the user and 

interaction with other users. 

Some psychological experiments have supplied results that can be used in practice. 

For example Card et al. (1983) used Fitt's Law to show that the mouse had a clear 

advantage over other pointing devices on many criteria. Fitt's Law states that the time 

taken to point to an object on the screen is related to the distance fixjm the target and 

inversely related to the width of the target. So the ftuther away and smaller the target, the 

longer time it will take to point to the target. Additionally the time taken to react to visual 

feedback is approximately a quarter of a second, which is an eternity in terms of the speed 
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of a computer processor, so it is not necessary to update information any faster than this. In 

fact in some cases where decisions need to be made an update of 1 second may be 

acceptable (Spence 2003). The response time needed to connect events (that is to make a 

dynamic visualisation process look continuous) is 0.1 second (Card et al. 1999b). 

Most researchers have come to realise that the only way to proceed with interface 

design is to pass experience in the form of principles and guidelines onto others so that 

mistakes are not repeated. This is because most interfaces are designed by trial and error 

with only passing reference to psychological literature. A lot of testing has also revealed 

the best techniques to use; some of these are given in Section 3.6. 

3.2 J General guidelines 

One of the most useftil and popular guidelines to interface design is Shneiderman's mantra: 

Overview first, zoom and filter, then details on demand. 

These are some of the tasks that need to be supported for all types o f visualisation 

according to Shneiderman (1998, pp. 522-541). The other tasks that need to be supported 

are: Relate, History and Extract. So the idea is to get an overview of the data, then allow 

the user to zoom in on interesting items and filter out uninteresting items. I f requested 

details of individual or a group items should be readily available and visualising the 

relationships between items will help understanding of the data. Keeping a history of 

actions will support undo or redo commands and allow users to change and refine their 

searches. Extraction is the process of saving interesting parts of the data and parameter 

settings so other users can discover how that data was arrived at. 

Shneiderman (1998. pp. 67-79) also indicates three main principles of design, 

which can be refined and adapted for individual requirements and systems. The first 
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principle is to recognise the diversity of users; there are novice users, knowledgeable 

(intermittent) users and expert users. With a new system only the designers will be expert 

users so they should take into account the inexperience of other users. The second principle 

is actually eight golden rules of interface design, they are: strive for consistency, enable 

shortcuts for expert users, supply feedback about what the system is doing, design 

dialogues to yield closure, error prevention and handling, easy reversal of actions, make 

the users initiators of actions (so there should be no surprises, on the other hand the user 

should not have to perform many routine, tedious actions) and reduce short-term memory 

load (the rule of thumb is 7±2 chunks of memory (Miller 1956)). The third principle of 

interface design is to prevent errors. While it is useful to supply strong and unambiguous 

error messages after errors have occurred, Shneiderman (1998, pp. 76-79) suggests that it 

would be better to prevent errors happening before they can affect the system. Habitual 

users may ignore important instructions such as hitting OK to a save without quitting 

command with disastrous results (Garfinkel 2000, Raskin 2000); an alternative design may 

be required to prevent this error. Other considerations such as providing documentation 

and help files for the design system, keeping the display uncluttered and simple to reduce 

information overload and improve usability are conmion sense proposals. 

While Shneiderman (1998) provides many useful guidelines for the design of 

interfaces, Hutchins et al. (1986) were concerned that providing an interface that is purely 

based on direct manipulation may restrict the actions that can actually be performed. It 

may be obvious what a button-click or drop-down menu will do, but does it reflect the 

requirements of the user? They suggest that the system should be designed for "direct 

engagement" so that the "user experiences direct interaction with the objects in a domain" 

{ibid. p. 114), in other words the user should be able to integrate with the system to 

perform the actions they want rather than be restricted by the objects on the interface. 
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Robert Spence of the Intelligent and Interactive Systems Group, Imperial College, 

Lx)ndon, UK has built many tools over the years using concepts and philosophies that were 

devised before computers were fast enough to draw multidimensional images and compute 

large data sets. These tools are all based on an effective combination of techniques 

described in Section 3.3; his interesting web page includes views on the past, present and 

fixture of interactive visualisation systems (Spence 2003), see also his book (Spence 2001). 

Initially Spence invented MINNIE, a tool for circuit design. He claims that success came 

fix3m allowing invention on the part of the user by removing constraints and letting the user 

formulate problems as they search for solutions. The tool should facilitate exploration and 

not require unnecessary expertise to use. Input and output parameters should be on the 

same view so that the effect of parameters is directly seen. A simple menu was designed to 

navigate interactively and default behaviour was implemented to return the system to a 

familiar state. MINNIE was one of the earliest examples of direct manipulation before the 

term was coined. He also points out that focus and context is needed, but both of these 

cannot always be provided at the same time. For document viewing a bifocal display or 

fisheye view was used so that most of search space is in outline apart fi-om the region of 

interest. 

When considering automated design Spence (2003) points out that algorithms can 

make new designs, but the question is whether designers readily accept them. Do designers 

have the time or motivation to learn the new skills required to understand the algorithm or 

the new design produced? Additionally he found that icons did not give a significant 

advantage over text for selection tasks once the user had learnt the meaning of the symbols, 

especially when the user is choosing between a large number of parameters. These findings 

led to the development of Attribute Explorer and Influence Explorer described in Section 

3.6. 
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3.2.4 Colour 

One of the most controversial and difficult choices to make when designing a user 

interface is the number and selection of colours to make available to the user. The main 

problems are to mix colours that can be viewed easily without overloading the display. 

Colour should be used carefully to illustrate variation in important information because 

colour deficient viewers may not be able to see the difference and i f the picture is printed 

off in grey scale the differences in the original colour may not be apparent. 

Shneiderman (1998, pp. 398-403) suggests designing for monochrome first and 

adding colour to enhance the display. Tufte (1990) also recommends using saturated 

colours to emphasise important, unusual data while unimportant (close to average) data 

should be depicted as a grey or neutral background. A good example of this is seen in Carr 

(1994) in which the residuals of a statistical study on male colon cancer are shown on a 

map of the United States. Most of the map is grey indicating the average across the region; 

those regions with a noticeable deviation Scorn the mean are shown in a light colour (red 

denoting higher than average, blue lower than average). Regions that are markedly 

different fix)m the mean are depicted in a dark red or blue. Because these regions are 

minimal they stand out on the map and overall trends can be seen and related to local 

living conditions. 

The combination of colours on a display can be critical in designing something that 

is easily readable and not too confiising. For example saturated red and blue next to each 

other will strain the eyes because they are on opposite ends of the Hght spectrum. For text 

or objects to stand out one should try to use colours that have very different brightness, for 

example black on white or white on dark blue. Figure 3.1 shows how different colours can 

be difficult to see depending on the background. Most colours can be seen against a grey 

background. 
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Hello 

Hello 

Hello 
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Figure 3.1: The effect of colour and brightness combinations on a display. In the left 
hand picture the white and yellow letters are easy to see whilst red and black are 
difOcult to see on a dark background. The opposite is the case in the right hand 

picture on a pale green background. 

Figure 3.1 shows another characteristic: a colour wi l l not seem as bright in all 

conditions, depending on the brightness and wavelength of surrounding colours. This 

phenomenon is due to fundamental laws of the theory of light, such as Weber's Law: the 

brighter the stimuli are the larger the difference is needed between stimuli to make a 

noticeable difference. So for example the relative brightness of red and blue next to each 

other may change depending on the overall light conditions (Kaiser 1996). In general some 

colours are bad to mix and some can sit together nicely (Preece et al. 1994, p. 92) because 

of the difference in contrast between colours as well as the problems for users with a 

colour deficiency; a significant percentage of the male population cannot differentiate 

between red and green. However most people can perceive the difference in brightness and 

different shades in a grey-scale version of an image because of the way light is interpreted. 

When light is emitted from the computer screen or reflected from a piece of paper, 

the eye and brain interprets the wavelength and intensity of the photons as a colour. One of 

the most accepted definitions o f colour appearance is the hue, saturation and value model 

(HSV) that is used to select colours for painting (Padgham & Saunders 1975, p. 95-99). 

The HSV model is based on the psychological definitions of colour perception (Wyszecki 

& Stiles 1967, p. 229, Padgham & Saunders 1975, pp. 61-77). The 'hue' o f the colour is 

the pure form of one of the spectral colours seen when white light is split by a prism. The 
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'saturation' measures the purity of the colour; a colour is made less pure with the addition 

of white light causing the colour to pass through pastel shades to a grey or white that is the 

least saturated. The 'value' is the brightness or luminosity o f the colour which is the 

intensity of light being perceived, from black (no light) to very bright colours. A l l these 

factors suggest an infinite number of colours and shades are available but only a finite 

number of colours can comfortably be used in a display (Shneiderman 1998, p. 399). 

Figure 3.2a-c illustrates the HSV model; these "colorbars' were generated in MATLAB 

that also provides a direct mapping between the HSV and RGB (red-green-blue) models. 
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Figure 3.2: The HSV colour model illustrated by changing one attribute at a time: (a) 
hue, (b) saturation and (c) value. Changing saturation and brightness at the same 

time provides a large range of variation (d). The corresponding RGB values are also 
given. For both models each attribute is scaled between zero and one. 

A visualisation system for engineering design requires the representation of both 

continuous attributes (to signify the change in objective value, for example) and discrete 

attributes (such as data with the same or similar variable values). The hue of colour wi l l 

obviously provide a number of discrete cues while the brightness value (or luminosity) can 

suggest continuity. Saturation can be used to provide more discrete choices or more 

variability in the continuous attribute. Figure 3.2d shows the range of shades available 
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when brightness and sahiration is varied for a single hue, the variation should be apparent 

to most people including those with a colour deficiency. Such a representation should be 

used to indicate change in the most important attribute o f a display. 

In summary colour can definitely enhance a display but can be confiising i f over 

used. A number of (sensible) default colours should be provided but users wi l l have their 

own favourite colour preferences so the ability to choose colours should be available, 

particularly for those users with a colour deficiency. 

3.2.5 Visualisation Guidelines 

Tufte (1983) suggests general guidelines on visualisation. The important lesson is to keep 

the amount of information that is not actually data (non-data ink) o f f the picture. For 

example gridlines and text describing the data is usually redundant or can dominate the 

actual data. The main principles during the graphical design process are: 

• Above all else show the data 

• Maximise data-ink ratio 

• Minimise non-data-ink ratio 

• Erase redundant data-ink 

• Revise and Edit 

Tufte also gives guidelines for graphical excellence suggesting that the best designs 

involve complex, often multivariate data presented with clarity and precision, so that the 

greatest number of ideas is communicated using the least ink in the smallest space. It is 

also important not to distort the truth about data using disproportionately sized graphics, a 

technique often employed by the media to misrepresent facts. Too much infonnation on the 

same page can be confiising especially i f multicoloured graphics are employed. 
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Particularly good designs are those that are drawn in a way directly relevant to the actual 

data, for example on p. 50 of Tufte (1983), the varying size of white pine plants due to 

varying amounts of calcium are depicted by the size of actual drawings of the plants. The 

use of colour in a sparing but meaningful way can enhance the graphic according to Tufte 

(1990). A small amount of saturated colour wi l l emphasise the important information, this 

is seen in the design of traffic lights. The best design strategies reveal detail and 

complexity whilst leaving background information in a greyish or neutral colour. 

3.2.6 Summary 

Human computer interaction guidelines suggest that the best interfaces allow users to do 

what they like, within reason; with the ability to have an overview o f the data, zoom and 

filter the data, then inspect individual data points (Shneiderman 1998, p. 523). The goal is 

to bring the user and system together so that physical objects on the interface relate to the 

psychological needs of the user (Norman 1986). This is not necessarily achieved by an 

interface that is purely based on direct manipulation, Hutchins et al. (1986) suggest some 

flexibility in the design would allow the user to become immersed in the system. 

The literature suggests novice users would benefit from a simple button click 

interface, while knowledgeable users prefer more commands (perhaps on a menu driven 

interface). Common sense ideas to keep in mind are to maintain consistency o f the system, 

design dialogues to yield closure, think about error handling and letting the user initiate 

actions. Where possible automating the system takes away tedious actions, but the user 

should be allowed to take over i f they want to try something different. Back tracking to 

undo what the system or user has done is also very important. The user should be able to 

set the colour of regions, however default settings and colours should be used to give the 

user some feeling of familiarity. The interests of colour deficient users should be kept in 

mind when selecting colours to use; in most cases brightness of colour is the best attribute 
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to use to represent change in continuous data whilst the hue can highlight discrete 

attributes or groups of data. 

Graphical visualisation can reveal complexities in data that simple statistical 

analysis may not, as demonstrated by Anscombe's quartet (Anscombe 1973). Figure 3.3 

shows four sets of data that are described by the same linear model: the mean of x and y are 

the same, the equation of regression line, standard error of slope and correlation 

coefficients are the same as well as the root mean square in jc and residual sum o f squares 

my. However the data pairs all look different to the naked eye. The difference in relations 

between the data becomes apparent once analysis of residuals and non-linear data 

modelling is applied to the data. In higher dimensions the human cannot see even these 

relations so more sophisticated statistical analysis is necessary to help understand the data. 

In general it is not sufficient to describe data using a linear model. Some relation between 

the variables needs to be computed and checked. To visualise results o f this analysis 

multivariate visualisation and clustering is required as described in the following sections. 

15 

10 
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X 

Figure 3.3: Anscombe's quartet, the same linear model describes all four data sets. 
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3.3 Multidimensional and Multivariate Visualisation 

33.1 introduction and the Iris Data 

Many o f the multidimensional visualisation ideas o f today are inspired by the satirical 

book "Flatland: A Romance of Many Dimensions" by Abbott (1884). This book is written 

from the point of view of a square living in a two-dimensional world who encoimters first 

some inhabitants of Lineland (1 dimension) and then the inhabitants of Spaceland (three 

dimensions). After much mathematical and physical persuasion the square eventually 

believes in the existence of worlds containing a different number of dimensions to 

Flatland. He then deduces the existence of Extra-Solids, that is shapes of four dimensions 

and the possibility of worlds with an infinite number o f dimensions. From our point o f 

view it is difficult to think of a world containing more than three dimensions, but we need 

to i f we wish to understand general engineering and mathematical problems. 

Wong & Bergeron (1997) provide an overview o f 30 years of scientific 

visualisation. During the development o f computers, researchers were forced to display 

data on paper or using simple displays. However the groundwork for the best data analysis 

techniques grew out o f this era. Exploratory Data Analysis written by Tukey (1977) 

introduced new ways o f thinking about decoding information from data. This started by 

writing down numbers in such a way that reveals the relationships between data (called 

stem and leaf displays, similar to histograms), then introducing scatterplot displays and 

regression lines to understand relationships between variables, to alternative displays such 

as boxplots and understanding the importance o f residuals. As computers got faster so 

more data could be visualised and statistics computed faster, but since the 1970s only a few 

completely novel high dimensional visualisation techniques have been invented. 

In their review Wong & Bergeron (1997) provide a distinction between 

multidimensional and multivariate variables. They define the dimensionality of the space 
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as the number of independent variables that describe the problem while the number of 

variates is the number of dependent variables. Unfortunately other researchers do not use 

the same convenfions, for example Gilbert et al (2000) use the tenn multivariate to 

describe raw data and multidimensional to describe data where only the distance between 

objects is defined. To avoid confusion in this thesis the problems wi l l be explicitly defined 

in term of the dependent and independent variables. In general the term multivariate wil l 

apply to real-valued data sets, while multidimensional wi l l refer to those problems where 

only the distance between objects is known. For example multidimensional scaling (MDS) 

is a form of multidimensional analysis that approximates the Euclidean distances between 

data points using a metric that can be more easily visualised in fewer dimensions. 

During this discussion most of the visualisation examples wi l l use a classic data set. 

The Iris Data is a well-known benchmark data set used to test pattern recognition and 

clustering algorithms. The data was collected by Anderson (1935) and made famous by 

Fisher (1936) when he used it in statistical analysis. Three varieties o f the Iris flower are 

classified: Iris Setosa, Iris Versicolor and Iris Virginica, The Iris database consists of 50 

examples of each class of flower, containing four variable measurements: sepal width, 

sepal length, petal width and petal length (see Appendix A for the actual data values). The 

Iris Setosa class is linearly separable from the rest of the data (seen most clearly in the 

lower ranges of petal width and length of Figure A.1 in Appendix A, see also Figure 3.4), 

but the Iris Versicolor and Iris Virginica are not linearly separable. 

3.3,2 The Scatterplot Matr ix: Additions and Variants 

The subject of multivariate visualisation is categorised into three areas by Wong & 

Bergeron (1997): techniques based on two-variate displays, multivariate displays and 

animation. The two-variate displays generally consist of the scatteiplot matrix (sometimes 

called the generalised draftsman display (Chambers el al. 1983), see Figure 3.4). The data 
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is projected onto two-dimensional plots and each variable is plotted against the others (see 

also Section 5.2.1, Figure 5.1). This display can be enhanced by adding fitting lines or 

important statistical details such as the mean, median or standard deviation. Figure 3.5 

shows one of the scatter plots from Figure 3.4 with the linear regression line; box plots (or 

box-and-whisker plots (Tukey 1977)) of each variable are also shown. The box plots show 

the median value of the data, the upper and lower quartiles and the upper and lower 

adjacent values (Chambers et al. 1983, pp. 11-24). The interquartile range is the difference 

between the upper and lower quartiles and describes the spread o f the solutions around the 

median. The upper and lower adjacent values are determined by the adding or subtracting 

the interquartile range (multiplied by 1.5) to the upper or lower quartile respectively. 

Outliers can be identified by showing the points that are outside the upper and lower 

adjacent values (in Figure 3.5 the outliers are depicted by red stars above and below the 

box plot). 

7.9 

sepal length 
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. ^ P T * petal length ^ 
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Figure 3.4: Scatterplot matrix of the four dimensional Iris Data. The windows on the 
main diagonal give the variable name corresponding to that row and column, the 

numbers in the corners are the minimum and maximum of that variable. 
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Figure 3.5: Box plots give a summary of the data in each dimension, the red stars are 
outliers. The dashed line is the linear regression line. 

Often a linear model does not best describe the data. Chambers et al. (1983) 

describe a non-linear smoothing technique called lowess (or loess) to fit the data to a line. 

More sophisticated statistical techniques include analysis of variance and covariance, 

principal component analysis (PCA, linear) and independent component analysis (ICA, not 

necessarily orthogonal). A l l these techniques need confirmation by analysing outliers, 

residuals or hypothesis testing. Kohonen's self-organising maps (Kohonen 1997), fr-means 

and hierarchical clustering also help to understand relationships in data; these methods are 

discussed later in this chapter. 

One of the most common and usefiil techniques to help understand multivariate 

displays is brushing (Becker & Cleveland 1987). It allows the user to link a set of points 

and see the effect on all the variables. Martin & Ward (1995) developed a 

multidimensional brush for the XmdvTool (Ward 1994). The brushing tool can be used in 
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all the displays generated by XmdvTool: scatterplot matrix, glyphs (Section 3.3.3), parallel 

coordinates (Section 3.3.5) and hierarchical clustering (Section 3.5.2) displays. Figure 3.6 

shows the multidimensional interactive brushing tool being used on the classic Iris Data 

(see Chambers et al. (1983) and Cleveland (1993) for extensive discussion and references 

on this data). The Iris Setosa subset was selected in the petal width versus petal height plot 

and the relevant points are highlighted in red in the other graphs. The brushing tool is very 

useful in helping the user identify clusters in the data and to understand the relationship 

between variables by visualising the effect of moving the brush. The fact that the same 

information can be displayed in a variety of different formats is also an advantage (Figures 

3.4, 3.5, 3.6, 3.7 and 3.11). 

Figure 3.6: Scatterplots by XmdvTool (Ward 1994) showing the Ir is Data, the 
interactive brushing tool highlights the Setosa cluster in the petal width and petal 

length variables. Used with permission. 
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Hyperslice by van Wijk & van Liere (1993) is another enhancement of the 

scatterplot matrix. A focal point of interest is defined by a centre point and a width in each 

dimension to create a region the user wishes to concentrate on. This technique allows 

direct manipulation by navigation of the focal point around the space. Hyperslice can also 

be used on discrete data. Various authors have used distortion techniques to concentrate on 

specific data in a two dimensional display by magnifying the data at the focal point or 

reducing the size of surrounding data using a variety o f magnifying functions (Leung & 

Apperley 1994), the ideas have been extended to three dimensions by Carpendale et aL 

(1997). This kind of controllable distortion has an advantage over simply 'zooming in ' as 

details of the data can be seen in the context of surrounding data. 

Wong & Bergeron (1997) also mention a technique by Alpem & Carter (1991) that 

uses the information from a scatterplot matrix but displays them all as a side of a 

Hyperbox. Some of the sides of the box wi l l be occluded by the others so an array of 

Hyperboxes is displayed all sliced at different places so the subsets o f the data are seen. 

When drawn on the page or screen the sides of the box are all of different lengths so the 

data is scaled by a different factor in each variable. The Hyperbox is an example of the 

main stumbling block to visualisation using non-scatter techniques: the data needs to be 

interpreted as not all the actual information can be displayed i f more than two dimensions 

are used. Some data v^ l l be occluded or distorted at different rates in each variable and the 

actual position of the data can be uncertain (this latter point is also true in three-

dimensional scatter displays). With more than three dimensions some imagination is 

required to make sense out of the displays. In some cases it can take a long time to decode 

the information that is being presented. Apart from the scatterplot matrix, visualisation 

techniques tend to represent high dimensional data using abstract or iconic displays. 
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3.3.3 Iconic / Abstract Displays 

Symbolic pictures such as icons, glyphs, stick figures and cartoon faces have all been used 

to display each data point individually. The value of each variable is represented by the 

size or shape of a component of the picture. Figure 3.7 shows a star glyph display used by 

XmdvTool. The length of each line emanating from the central point defines the size of 

that particular variable. Chemoff faces are a popular multidimensional display that depicts 

each dimension using a physical attribute of the face (Figure 3.8). The idea o f this display 

is to take advantage of a human's face recognition ability. Each point is represented as a 

single face. As the number of variables increases the complexity of the faces wil l increase 

and understanding the relationship between variables is difficult. Also as the number of 

points increases the size of each glyph or face wi l l become smaller to fit on the screen so 

comparing data is difTicult. In general there is no natural order for the position of the 

pictures as each variable wil l change at different rates so finding clusters by comparing 

glyphs or faces wil l be difficult. 

t t k i t t 4 t « 1 L t 

4 i t t t t 1 ^ 

i L i L L A 4 £̂  L 4 t 

t t t t t • 1 t i 4 ^ t 

^ ^ ^ 

T ^ 

^ ^ 

^ ^ ^ 

NX/ ^ ^ 

\ y ^ \ ] Z \ K 

\ t / ^ ^ 

•ociBOBcal OlMMiou! owt«c CO iaal 
• • p « l _ l « a g t h : c w d l M i i t y S 
» * M l _ l « a a t k : eardlMltcy 5 

meal timnmtomms owcr to iBMr n 

y«t*l_vitfc l i : cmmAkwmltty S 

1 

J 

}Gtyph 59 (••p«l_l«nglh-5 20 %aptl_miHhm7 70 90 p*«l_««Jlh"1 40 ) 

Figure 3.7: Star glyph display by XmdvTool (Ward 1994). Used with permission. 
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Figure 3.8: Examples of ChernofT Faces. Size and shape of face, eyes, nose, mouth, 
eyebrows & hair could all signify difTerent variable values. 

3.3.4 Embedded Axes 

Another attempt to display multivariate data in a single display is to embed each variable 

within other variables. This means that an order for the variables needs to be chosen 

beforehand, hence the one-dimensional version o f the embedded axes family is termed 

Hierarchical Axes (see Wong & Bergeron (1997, pp. 18-19)). Each variable is represented 

as a histogram with a user-defined number of bins. Histograms for the 'faster' variables are 

drawn inside the histograms of the 'slower' variables. Figure 3.9 shows the values of x 

(fastest) in dark grey, y in light grey and z (slowest) in white. The two-dimensional version 

is called Dimension Stacking (Leblanc et al. 1990). Again variables are embedded inside 

each other so the inner squares are a combination o f all the variables and brushing is used 

to link the data. A similar technique called Autoglyph by Beddow (1990) (see Keller & 

Keller 1993, p. 178) takes advantage of a human's pattern recognition to see clusters in 

regions of the display. However these displays take some time to learn and it is necessary 

to change the order of the axes to see different attributes o f the data. 

A three dimensional version o f embedded variables is the Worlds Within Worlds 

model (Figure 3.10). Feiner & Beshers (1990a) introduced n-Vision, an interactive display 

incorporating sets of axes within other axes. The values of the outer variables need to be 

fixed, and then the objective function (or dependent variable) can be calculated from the 

other two fi-ee variables and shown as a surface plot. The authors have incorporated a 
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number of interactive tools, but the main problem is that users need to know what they are 

looking for, as most of information is not visible in the initial display. The updated version 

called AutoVisual added a rule-based user interface, turning the system into a datamining 

tool as the criteria for search needs to be determined beforehand (Beshers & Feiner 1993). 

jc 1 2 1 2 1 2 1 2 
y \ 2 1 2 
z 1 2 

Figure 3.9: Hierarchical Axes display, the variable is embedded i n s i d e t h e y are 
both inside The points (1,1,1), ( M , 2 ) , (1,2,2) and (2,2,2) are shown indicated by the 

dark grey boxes. 

var2=2 10 0 
var1=3 

Figure 3.10: Worlds \V ithin Worlds. Variables 1, 2 and 3 are fixed, 4 and 5 are 
changeable to give *obj r values, shown as a surface plot. 
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3.3.5 Parallel Coordinates 

The problem with many multivariate visualisation techniques is that trying to capture all 

the information in one picture or set of pictures requires imagination or training by the 

human. Parallel coordinates is a visualisation technique that shows all the data in one 

picture and each dimension is represented equally. Figure 3.11 shows the Iris Data 

displayed using parallel coordinates by XmdvTool. The variables are arranged vertically in 

parallel while lines joining the relevant axes (or coordinates) represent an individual data 

item. A straight line in Cartesian space corresponds to the intersection of lines in parallel 

coordinates. Inselberg & Dimsdale (1994a) describe a number o f geometric properties o f 

parallel coordinates and applies them to collision avoidance in air traffic control (Inselberg 

& Dimsdale 1994b). As shown in Figure 3.11, brushing can also enhance the information 

presented in parallel coordinates. Drawbacks of parallel coordinates are that with a large 

number of data points and variables the lines overlap and darken making the plot difficult 

to read. Occlusion again becomes a problem wdth a large number o f data points, the user 

wi l l have to choose which variables and data points to view on top. Swayne et al (1998) 

choose a subset of variables to display in parallel coordinates. The problem of dailcening 

can be partially solved by colouring subsets of data and replacing clusters of lines by the 

average or centroid o f the cluster (Siirtola 2000). 

3.3.6 Animation 

Wong and Bergeron (1997) also mention animation as another visualisation tool. Often 

these are interactive and animated versions of the multivariate tools mentioned above. The 

Grand Tour method by Buja & Asimov (1986) used time as one of the dimensions, so the 

display would change as the time parameter changes. 
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Figure 3.11: Parallel Coordinates of the Iris Data by XmdvTool (Ward 1994), used 
with permission. 

3.3.7 Summary 

This overview reveals the diversity o f classical visualisation techniques that have been 

developed due to the increasing power of modem technology. Most visualisation systems 

incorporate a number of these tools as separate or combined displays. For the visualisation 

of engineering design data using evolutionary computation, it is suggested that the user 

does not wish to spend time understanding abstract symbols but wi l l want to interact 

directly with data that is presented in an intuitive manner. The most intuitive displays that 

allow easy interaction are two-dimensional scatterplot matrices (Chambers et al. 1983) and 

parallel coordinates (Inselberg & Dimsdale 1994a, 1994b). Brushing (Becker & Cleveland 

1987) is a useful enhancement to both these displays, as demonstrated by Hyperslice (van 
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Wijk & van Liere 1993) and interactive parallel coordinates (Siirtola 2000). Distortion 

controlled by the user can also enhance scatter displays in two or three dimensions 

(Carpendale et al. 1997), although the exact position of data in three dimensions may be 

unclear to the user. Most state of the art interactive displays use scatterplot matrices and 

parallel coordinates with brushing to depict multivariate data, although some authors 

recommend limiting the number of linked displays to three and filling the whole screen 

with those displays (Jem et al. 2003. Brodbeck & Girardin 2003). The rest of this chapter 

will review techniques to help visualisation for engineering design applications including 

sophisticated statistical techniques such as principal component analysis (PCA), 

independent component analysis (ICA) and clustering to enhance the information 

presented to the user. 

64 



3.4 Multivariate Statistical Analysis 

3.4.1 Introduction 

Multivariate data may exhibit complex structure that cannot be inferred by looking at or 

manipulating the original data. Statistical analysis is a form of exploratory data analysis 

that tries to match the structure of the data to known statistical models. Clustering is 

another type of data analysis technique that typically describes the arrangement of data in 

terms of clusters using a certain metric, usually Euclidean distance. Statistical and 

clustering techniques are closely linked but because of the large number of examples they 

are presented here in two separate sections. The techniques are demonstrated on the Iris 

Data described in Section 3.3.1. 

3.4.2 Statistical Tests 

Statistical tests on a set of data measure the extent individual items vary from some pre

defined acceptable measure; if not acceptable the data (or process) is termed 'out of 

control*. Usually the data is assumed to have a normal distribution and any data not within 

95% of the centre of that distribution is out of control. For a single variable the t-

distribution can be used (using n-\ degrees of freedom where n is the number of data 

points). 

Two scatter plots show the Iris Data in Figure 3.12. The lines show the variance of 

the data projected onto each variable; they intersect at the mean value or centroid of the 

data. The outliers are obtained by a Mest on 95% confidence limits for each variable, that 

is those points of a variable Xj that lie outside the bounds ±cr^ *t where Xf is the mean, 

(T; is the standard deviation and r=1.97 for 149 degrees of freedom (virtually infinite). 

These outliers are due to the sepal length and width variables only. However this test is not 

a good test for multiple variables especially if the variables are correlated (Jackson 1991). 
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Figure 3.12: The Iris Data. Variances (var) of each variable are given and shown to 
scale on the plots, centred at the mean (centre of mass) of the data. Outliers outside 

95% confidence limit according to the Mest computed for each variable are also 
shown. 

3.4.3 Principal Component Analysis (PCA) 

A multivariate Mest has been devised by Hotelling (1947) (see Gnanadesikan 1997, p. 82 

and Jackson 1991, pp. 21-23) that uses principal component analysis (PCA) to define the 

outliers. The principal components are an orthogonal set of vectors that are the 

eigenvectors of the covariance matrix of a set of data. For a matrix of data X with v 

variables and n data points the covariance matrix S is defined by: 

S = SXJ Sy 
Equation 3.1 

Where 5/ the variance of variable (/=l,...,v) and the individual covariance sy is given 

by: 

k k 

nin-l) 
Equation 3.2 
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The eigenvectors form the transformation matrix U such that U'SU=Lwhere L i s a 

diagonal matrix. The diagonal elements of Lare called the eigenvalues of S. The 

detemiinant of the covariance matrix |S{ is called the generalised variance; the square root 

is proportional to the volume generated by normalised data (Jackson 199U P- 13). 

The first principal component is the vector of largest variance through the data; the 

magnitude of the variance is equal to the corresponding eigenvalue. The second principal 

component is the vector with the second largest variance through the data with the 

constraint that it is orthogonal to the first, and so on. The projections of the data onto the 

principal components are called the z-scores: z = U' (x -x ) . The y-scores are the 

normalised z-scores so that the mean ( y ) is zero and standard deviation <j is one. They-

scores are used to calculate the multivariate 7̂  statistic: = y.y'. The whole process is out 

of control if it exceeds a value found from the tables using the F-distribution: 

Equation 3.3 

Hence for the Iris Data with p=4, n=150, F4.146..05 2.425 for 95% confidence, so 

r^ îjo 05 = 1^-45. Any value of y.y' that exceeds this value is regarded as an outlier. Figure 

3.13 shows the z-scores and the corresponding eigenvalue (or variance) of each principal 

component as well as the outHers. Figure 3.14 shows the same outliers and the directions 

of the principal components on the original axes. In general the first few principal 

components can be used to describe most of the variance of the original data, the 

magnitude of each eigenvalue gives an idea of its importance. However if some of the 

principal components are used to reconstruct the original data, a residual analysis of the 

lesser principal components should be performed to check that no significant information 

has been discarded. 
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Figure 3.13: Principal components of the Iris Data showing the magnitude of 
eigenvalues (e-v) represented as a line. The outliers (highlighted by squares) are due 

to the 7̂  statistic. 
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Figure 3.14: Principal component directions shown as lines on the original Iris Data 
axes, with eigenvalues (e-v) and outliers as in Figure 3.13. 

3.4.4 Independent Component Analysis (ICA) 

hidependent component analysis (ICA) was developed by Jutten and Herault (1991) to 

tackle blind source separation (BSS). As described in HyvSrinen & Oja (2000) one of the 

applications of blind source separation is in solving the cocktail party problem that 
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separates the mixtures of signals in a noisy room so that the original signals can be 

detected. ICA was found to be successful at signal separation applications but it turned out 

that the technique used was very similar to projection pursuit (Friedman & Tukey 1974), 

despite the difference in application (see Section 3.4.5). 

In general ICA uses an optimisation routine to find signals or vectors in the space 

so that the projection of the data onto the vector has a distribution that is maximally 

different from the Gaussian distribution (termed "nongaussianity")- There are various ways 

of measuring the nongaussianity of a projection. The classical definition of nongaussianity 

is Kurtosis; other approaches include using negentropy and maximum likelihood 

estimation (MLE). The FastICA algorithm (HyvSrinen 2003) uses a mixture of Kurtosis 

and negentropy to estimate nongaussianity. 

A result of the FastICA algorithm on the Iris Data is shown in Figure 3.15. The 

outliers were found by performing a 7̂  test as in the previous section. The values of k are 

the KuTtosis of the projection. The Kurtosis is the fourth central moment of a set of data 

(where the second central moment is the variance and the third is the skewness of the 

distribution). For normalised data u: 

k(u) = £ ( « ' ) - 3 = - Y w / - 3 Equation 3.4 
« .-I 

Gaussian data has a Kurtosis value of zero, a positive Kuitosis value indicates data that is 

thinner than Gaussian, with more data near the mean (super-Gaussian), while negative 

Kurtosis values indicate a flatter distribution than Gaussian (sub-Gaussian). As can be seen 

in Figure 3.15 the independent component with a negative Kurtosis value reveals the 

separation between the Iris Setosa data and the rest. Figure 3.16 shows the independent 

components and outliers on the original axes. 
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Figure 3.15: Independent components, outliers and kurtosis (A) values. Kurtosis is a 
measure of how closely the data resembles a Gaussian distribution. Computed using 

the FastICA algorithm (Hyvarinen 2003), supplied under the GNU (2003) licence. 
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Figure 3.16: Direction of the independent components shown on the original axes, the 
value of Kurtosis, A, is shown. 

hi the case of the complete Iris Data there is little difference between the outcome 

of PCA and ICA. The Iris Setosa class is easily identified from the original variables. If the 

Iris Setosa cluster is removed the advantage of ICA over PCA can be seen. Figure 3.17 

shows the result of PCA analysis, which does not reveal any separation of the data. One of 
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the ICA results (different results are obtained each time) shown in Figure 3.18 reveals a 

separation in the independent component with a large negative kurtosis value. The line 

icl—0.25 separates the Iris Virginica and Iris Versicolor clusters up to a few exceptions, 

which is the best that can be expected fix)m a linear approach. 
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Figure 3.17: PCA on the Iris Data with Setosa removed, z-scores, outliers and 
eigenvalues (e-v) of this data are shown, the Versicolor cluster is partially separated 

from the rest of the data by the first principal component (pel). 
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Figure 3.18: I C A on the Iris Data with Setosa removed, outliers and value of kurtosis, 
k are shown, icl visibly separates Versicolor from the rest of the data up to a few 

exceptions. 
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3.4.5 Projection Pursuit 

PCA and ICA are both special cases of a procedure called projection pursuit by Friedman 

and Tukey (1974). Projection pursuit attempts to find 'interesting projections' in a set of 

data, these projections (unlike in PCA) do not have to be orthogonal, ICA as described in 

Hyvarinen & Oja (2000) is a special case of projection pursuit whose goal is to maximise 

the "nongaussianity" of the projections. 

The original version of Projection Pursuit by Friedman & Tukey (1974) maximised 

two attributes of the data - the variance of the data and a local density measure. These 

criteria are motivated from their experience that the most interesting projections keep the 

overall spread of the data high while searching for a number of small local clusters. The 

outcome of the iterative algorithm depends on the choice of the initial vectors. The 

algorithm seeks distinct vectors, but they do not have to be orthogonal. The idea is that 

they are independent due to the requirements of the optimising procedure rather than the 

original variables, although in practice they are not completely independent (Hyvarinen et 

al 2001). 

Projection pursuit has been taken further by Cook et al. (1993, 1995) and 

incorporated into the visualisation tools XGobi (Swayne et al. 1998) and GGobi (Swayne 

et al. 2001). Cook et al. (1993) noticed that different projection pursuit indices could be 

used to find different attributes of the data. In addition the order of the index can also be 

used to find a varying amount of detail in the data. Rather than trying different projection 

pursuit indices on the data, one general index was devised and truncated so that the order 

of each index could be observed. Indices of zero order have optima at projections either at 

a central mass or a hole in the data. Indices of the first order have optima on projections of 

skewed data. As the order increases the optima become more difficult to find, although 

they reveal very fine detail in the data if they are found. During optimisation the data is 
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projected onto one or two dimensions because they are the most natural for humans to 

visualise. Close human supervision of projection pursuit techniques is advised, particularly 

as difierenl optima will be revealed in each run (Cook & Buja 1997). Figure 3.19 shows 

two projections found by optimising different indices that look very similar. 
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Figure 3.19: Projection Pursuit on the Iris Data using the GGobi interface (Swayne et 
oL 2001). The data is rotated searching for both Central Mass (a) and Holes (b) in the 
data, another option is to search for skewed data. Screen shots used with permission. 

3.4.6 Other Optimisation Routines (MM, E M and MDS) 

Similar to ICA, mixture models (MM) attempt to match the data directly to mixtures of 

Gaussian shapes. The number of Gaussians that match the data need to be estimated, then 

the parameters, mean and variance of the Gaussian are optimised to match the data. This 

method assumes the data can be modelled using Gaussian distributions. Expectation 

maximisation (EM) can be used to optimise the algorithm by computing the likelihood that 

the data can be modelled by a certain number of Gaussians. 
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Multidimensional scaling (MDS) is another optimisation routine used to depict high 

dimensional data in lower dimensions. SAMMON mapping by Sammon (1969) was one of 

the first techniques developed that attempts to map the Euclidean distance between all data 

points to a two-dimensional view. SAMMON mapping is closely linked to Self-Organising 

Maps (SOMs) that is a neural inspired method to cluster and visualise relationships 

between data or attributes of objects; indeed Kohonen (1997) suggested using SAMMON 

mapping as a preliminary step before using SOMs or to quickly check the result. 

Dimensionality reduction can be computationally expensive for a large number of data 

points, but the low-dimensional representation is very popular and has lead to a number of 

applications (Konig 2001, Buja et al. 2001). 

3.4.7 Summary 

The fastest methods to get some understanding of high dimensional data are statistical tests 

and their derivatives such as principal component analysis (PCA). Usually the first two 

principal components are displayed so the projection onto the vectors of largest variance 

can be inspected. Independent component analysis (ICA) is a special case of projection 

pursuit that has been shown to be a successful approach to finding clusters in the Iris Data 

set. It is worth considering other approaches to projection pursuit that optimise specific 

characteristics of a data set a user is interested in, particularly data containing a hole, 

central mass or skewed data. The main problem with using projections from PCA or ICA is 

that the data has been transformed to abstract variables that show interesting attributes of 

the data but the relationship with the original variables may be unclear. High-dimensional 

data can even be represented on a two-dimensional picture by optimising the mapping of 

the distance between points (for example multidimensional scaling (Buja ei al. 2001)) but 

this does not help the user understand which variables form the clusters. Expectation 

maximisation and Gaussian mixture models can also be used to guess the shape of the data. 
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3.5 Clustering 

3.5.1 Introduction 

Clustering is the art of grouping data into subsets due to some predefined criteria, usually 

without any preconceptions about the data. Classifying usually means the process has been 

supervised (Gnanadesikan 1997), so that data is put into a group that has already been 

labelled. A general clustering algorithm cannot do labelling, as it requires input by a user 

or domain knowledge; this input may be contrary to the 'natural' clustering of the 

algorithm. 

To start using a clustering algorithm, a pattern representation and the distance 

metric between patterns need to be chosen. The best pattern representation is one that 

closely resembles the data to be classified, for example an attribute such as colour, shape 

or position in space. If the engineering design data is given in the form of continuous 

Cartesian data then the distance matrix can be constructed fix)m the Euclidean distance 

between the points. However this may not be the best representation to choose, for 

example curvilinear clusters may be best represented in polar coordinates (Jain et al. 1999). 

The shared nearest neighbour technique (see Section 3.5.4) uses the number of nearest 

neighbours as a distance metric and this works very well. However engineering design data 

is often of a discrete or discontinuous nature, so a different definition of distance may be 

needed. Additionally the objective(s) may have more importance than other attributes of 

the data so further information may be required such as using the distance from the fittest 

point or giving a larger weight to the objective attribute(s). 

The main part of the clustering algorithm is the grouping process; there are two 

main approaches: partitional and hierarchical methods. Partitional algorithms assimie a 

certain number of clusters and attempts to find an optimal partition that agrees with the 

number of clusters, on the other hand hierarchical clustering generates links between data 
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points according to some criterion and leaves the grouping process to the user, usually by 

way of some visualisation technique. 

3.5.2 Hierarchical Clusteriog 

The philosophy behind hierarchical algorithms is that data points are not assigned to 

clusters during the process, but after clustering the number of clusters can be chosen by the 

user by splitting the output al a certain 'level'. Thus a cluster is composed of smaller 

clusters and can be continually decomposed until each cluster is singleton. Often a 

"dendogram" is used to view the hierarchical output in a tree-like manner, sometimes 

enabling interaction with the user. An example of a dendogram after clustering on the Iris 

Data is shown in Figure 3.20 (see Jang (2003) for M A T L A B code to generate the cluster 

and the dendogram). Usually the clustering is done agglomeratively such that all the points 

are initially in separate clusters and the two 'closest' sets are merged, continuing until all 

the data points are assigned to one cluster. The opposite, divisive, method is to start with 

all the data in one cluster and continually break the cluster at the point of largest separation 

until the number of clusters is the same as the total number of items. 

The criterion for merging two points during agglomerative clustering can affect the 

look of a dendogram in quite a big way. At any stage in the clustering, the 'distance' 

between one cluster to another is calculated and the two with the minimum distance are 

merged. This distance could be the minimum distance between individual points in each 

cluster (single-link), the largest distance between individual points (complete-link) or other 

criteria (Jain et al. 1999). Figure 3.20a is a dendogram generated using the single-link 

algorithm while Figure 3.20b shows output from the complete-link algorithm on the same 

data. Both dendograms split the Iris Setosa data fi-om the rest of the data, but the clustering 

looks very different. The single-link algorithm will return chain-like clusters, while the 

complete-link algorithm finds more compact and spherical clusters. 
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Dendogram of single-link hierarchical clustenng Dendogram of connplete-link hierarchical clustenng 

setosa(^) . versicolor^). virginia(x) setosa(-*-). versicolor^). vHginia(x) 

(a) (b) 

Figure 3.20: Dendograms of clustered data. The actual data labels are shown at the 
bottom. Single-link (a) and complete-link (b) hierarchical clustering is shown. See 
Jang (2003) for M A T L A B code to generate the dendogram, used with permission. 

This representation may be useful in engineering design applications as all the 

points can be presented at different levels of clustering and the user could choose which 

level to look at. Hierarchical clustering using a dendogram gives a good visual 

representation of the data, although for large data sets the computation time is prohibitive 

(Jain et al. 1999) and the picture becomes very heavy with lines (Gilbert et al. 2000), 

mirroring the problems with parallel coordinates. 

3.5.3 Partitional Clustering 

The most popular clustering algorithm is the k-means algorithm, originally devised by 

MacQueen (1967), because of its efficiency, easy implementation and understandability. It 

is a partitional algorithm so that partitions are made and tested during the algorithm. 

Initially the number of clusters A: of a data set X is estimated either by prior knowledge or 

randomly. The k centroids of each cluster c, € X (/-I,...,A:) are chosen at random and the 
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rest of the data is assigned to the cluster represented by its nearest centroid. The next set of 

centroids is then chosen by finding the point in each cluster that is nearest the centre of that 

cluster. In Cartesian data the centroid (mean value in each variable of the data) within each 

cluster could be used, but if only the distance metric is available then one of the actual 

points has to be chosen. One of many options is to use the minimax criterion; that is for all 

elements of a cluster, make a list of the maximum distance to the other points and choose 

the minimum value of that list. This will be the point nearest the centre of the cluster. The 

algorithm is repeated until the same cluster centres are found in subsequent iterations or a 

maximum number of iterations is reached. It is possible that the algorithm will oscillate 

between two cluster configurations and not converge, especially if the initial number of 

clusters does not match the data (Levinson et al. 1979). Figure 3.21 shows the result of k-

means clustering on the Iris Data assuming the number of clusters is three. The number of 

misclassified points is relatively low (around 9), however this method was told there were 

three clusters at the start; the algorithm would require some pre-processing or repeated 

iteration with different parameter settings to compute the number of clusters automatically. 
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Figure 3.21: Clustering using the A-means algorithm, with A=3. The Setosa class is 
correctly classified, but there are misclassifications in the other two classes. 
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Levinson et al. (1979) used the chainmap algorithm in their interactive system to 

estimate the initial number of clusters. The chainmap algorithm simply picks an arbitrary 

point, finds its nearest neighbour and lists the other points according to the nearest 

neighbour to the previous one. Each member k of the chain is associated with the distance 

between k and k-l : djt. The initial output of the chaiimiap is the plot djt against k. Spikes in 

the plot reveal cluster boundaries. Well-separated boundaries usually show up in the plot, 

the algorithm is sensitive to starting point but is computationally inexpensive so multiple 

rrins are possible. Other versions of partitional algorithms are density-based clustering and 

similarity graphs that assign dense or similar regions to the same cluster if they are 

connected to each other (Fasulo 1999). 

3.5.4 Shared Nearest Neighbour Clustering 

Clustering algorithms return the type of clusters they are asked to look for. Like many 

algorithms, the ^-means will find spherical clusters if the Euclidean distance metric is used. 

Conversely the single-link hierarchical algorithm will find chain-like clusters. The shared 

nearest neighbour algorithm by Jarvis & Patrick (1973) clusters a data point due to its 

proximity or similarity to other points in the data. So points that are very close will be 

clustered together, but a number of sparse points may also be clustered if they have similar 

attributes. The algorithm uses two parameters. The first parameter is k, the number of 

nearest neighbours, that are listed for each point in the data set. Two points are assigned to 

the same cluster if the number of shared nearest neighbours in k exceeds a threshold kt, the 

second parameter. A visual output of the clustering results is useful because a kind of 

hierarchy of clusters can be discovered using different input parameters. As k increases the 

number of clusters found decreases because the size of each neighbourhood is growing, 

however increasing kt causes the clusters to become tighter and smaller because the 

number of shared nearest neighbours required to put the points into the same cluster is 

higher. Levinson et al (1979) modified the technique so that overlapping clusters could be 
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identified. This algorithm can represent any type of cluster because the clustering criterion 

is based on similarity with other points rather than the actual distance metric used. 

Therefore it is more versatile than ^-means, but the versatility can only be exploited by 

changing parameters and viewing the results. Figure 3.22 shows the result of shared 

nearest neighbour clustering with ^ 1 0 and ,̂=4, again about 9 points are misclassified -

although different to those misclassified by /:-means. It is difficult to find a set of 

parameters that returns three clusters for this data. 
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Figure 3.22: Clustering using shared nearest neighbour technique, k=10, k,=^. 

3.5.5 Hybrid Clustering 

The k-mcsins algorithm is better at dealing with large data sets because of efTiciency but the 

number of clusters needs to be estimated beforehand, also outliers can cause A:-means 

problems if they are not identified and removed or added to the correct cluster. Levinson et 

al. (1979) suggested using the chainmap and modified shared nearest neighbour to estimate 

the number of clusters before A:-means was used in the ISODATA environment. ISODATA 

is an interactive clustering process where the human gets involved in identifying outliers 

and refining the clusters. Clusters are merged or split according to parameters input by the 
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user, there are a number of parameters to change but the increased flexibility results in very 

good clustering according to Levinson et al. (1979). Some of the properties of clustering 

identified by Levinson et al. (1979) for speech recognition are applicable to engineering 

design, namely a method that detects overlap among clusters, identifies outliers and allows 

interaction. To measure the amount of overlap between clusters they used the ratio of 

average intercluster to average intracluster distance. 

Cluster presentation is important especially when considering data in high 

dimensions. Hinneburg et al. (1999) used a multidimensional grid (OptiGrid) to cluster 

data. Then visual techniques are used to find and display separators in data. Clusters are 

presented using colour and shape to represent their size and amount of separation from 

other clusters. The cluster separators are found by looking at the projections o f the data 

onto one or two dimensions. A technique by Agrawal et al. (1998) described in Fasiilo 

(1999) also breaks the data down into subspaces, the algorithm complexity is thus 

exponential with the number o f dimensions. These techniques can only serve as a starting 

point for finding true clusters in the data as the user wi l l need to combine the knowledge 

fix)m each subspace to discover whether the data breaks down fimher. Ng & Han (1994) 

introduced CLARANS to cluster very large data sets, mainly by sampling the space and 

clustering the samples. 

3.5.6 Summary 

Clustering techniques give a more refined view of the data at some computational expense. 

The main computational expense is in computing the distance matrix between all points in 

the data to be clustered. For a large number of points calculating all the distances becomes 

prohibitive. It may be necessary to choose a subset of solutions found during a GA run to 

efficiently cluster the data. Once the distance matrix has been found the clustering 

techniques are usually relatively fast. The choice o f a particular algorithm depends on the 
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application. Hierarchical algorithms have no parameters and can be quickly viewed in the 

form of a dendogram for further user interaction. However for a large number of data 

points dendograms have been found to be less useful. Partitional clustering algorithms and 

shared nearest neighbour technique need parameters such as number of clusters to work 

efficiently. Some of these parameters could be found off-line by repeated iteration of the 

algorithms and comparison with some error from the original data (Sierra & Corbacho 

(2000) did this with the it-means algorithm). 

The brief experiments described in this section shows that the algorithms have only 

partial success in separating non-linear clusters. It can be concluded that any clustering 

algorithm may require parameter changes or user input to successfully partition arbitrary 

data, therefore speed and adaptability to engineering design data and the wishes of the user 

would be the main requirements of a clustering algorithm in an interactive system. 

3.6 Relevant Work (State of the art) 

This section investigates state of the art systems that have been built for or are ^plicable 

to visualisation and interaction with engineering design data. The main questions are what 

do these tools have and what do they lack, in particular with regard to visualisation of data 

provided by evolutionary computation. 

Long experience in human computer interaction for engineering design led to the 

development of "Attribute Explorer" (Spence & Tweedie 1998) that allows change in 

output attributes as well as input of a problem. Colour is used to show interaction between 

attributes in the spirit of a brushing tool. A slider can be used to choose the required 

attribute in one graph and then elements in other graphs that satisfy the attribute are 

highlighted. The other elements are coloured depending on how many attributes they 

satisfy, see Figure 3.23. Attribute Explorer was designed to help users choose between 
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products lo buy. The "Influence Explorer'' (Tweedie et al. 1996a) is for making a product 

and is even more related to engineering design and the choices an engineer will have to 

make. Figure 3.24 shows the display of matching data concerning parameters and 

performance values grouped separately. This technique mixes parallel coordinates, 

histograms, brushing with colours and allows multiobjective satisfaction in a similar way 

to the Attribute Explorer. Again colour is used to identify which solutions satisfy the 

performance criteria and those that fail. Tolerances can be identified by changing the input 

parameters until the solutions change colour. 

b H i l r o o i i i s 

U Tupe_of_Mous#» 

Figure 3.23: Attribute Explorer display, colour indicates the extent to which solutions 
satisfy the requirements. Reproduced from Spence (2003) with permissioD. 

r 
Figure 3.24: Influence Explorer display, Input parameters and output performances 

shown, again colour indicates satisfaction of performances, toleraace on each 
performance can be seen. Reproduced f r o m Spence (2003) with permission. 
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A further interactive scheme by Spence is the "Prosection Matrix" described along 

with the other tools in his webpage (Spence 2003) and book (Spence 2001). The Prosection 

Matrix is a scatterplot matrix of 'parameters' (or variables) with an interactive box that 

enables the user to specify tolerances in each parameter. Figure 3.25 shows the scatterplot 

with designs coloured according to the number of 'performances' (or objectives) they 

satisfy. The solutions that satisfy all customer requirements are coloured green, while the 

overlaying yellow box is the tolerance allowed in each variable. Larger tolerances usually 

result in decreasing manufacturing cost (Phadke 1989, pp. 33-34), so the task for the user is 

to change the position and size of the yellow box so that the green area is covered as much 

as possible without catching too many infeasible solutions (Spence 2003). The trade off 

between reducing manufacturing cost and increasing the yield of feasible solutions can 

then be optimised. This tool again exploits a number of multidimensional visualisation 

techniques: scatterplot matrices, interactive brushing and colour coding in a similar way to 

Hyperslice (Section 3.3.2). 

Figure 3.25: Prosection Matrix of parameter space (variables). Solutions that satisfy 
performances (objectives) are shown in green, the manufacturing tolerances are 
represented by yellow boxes. Reproduced f rom Spence (2003) with permission. 
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The Influence Explorer and Prosection Matrix were combined in an effective 

visualisation and engineering design tool with the result that "...these tools transform a 

very difficult cognitive problem into a much easier perceptual task." (Tweedie et al 1996b, 

CONCLUSIONS). A limitation of these systems is that solutions are generated randomly in 

specified regions which may result in missing information; without proper investigation an 

incorrect assumption of robustness could be formed, as mentioned in Section 2.2.4. 

Andreas Buja and the teams at A T & T Labs have introduced a number of tools such 

as XGobi (Swayne et al. 1998), XGvis (Buja et ai 2001) and GGobi (Swayne et al. 2001). 

XGobi is the predecessor to GGobi, both of which contain a number o f visualisation and 

interaction possibilities. Scatterplot matrices, parallel coordinates, brushing and changing 

colours are all supported. More sophisticated tools include the ability to compute and view 

the principal components and perform projection pursuit together with a grand tour as 

described in Section 3.4.5. During projection pursuit each variable is shown in the form of 

a 'widget' so that how much a certain variable (or principal component) contributes to the 

current projection can be evaluated. GGobi was updated with a familiar windows system 

that can be run on PCs. A number of windows displaying the same data in different ways 

can be opened and points between windows linked using brushing. Jittering, smoothing 

and many other features are present, subsets o f variables can be viewed in parallel 

coordinate mode. The designers of GGobi initially over-designed the interface while they 

built up an understanding of various tools and data, it was then simplified as experience in 

the techniques was gained. 

Gilbert et al. (2000) introduced Space Explorer that combines the use of a 

dendogram with PCA or multidimensional scaling. Various problems with clustering were 

identified such as poor scalability, possible misclassification and the difficulty with 

understanding dendograms of large data sets. Hence the PCA output was used alongside 
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the dendogram to identify clusters and view them in each display. A V R M L display 

(virtual reality markup language) was also used to allow three-dimensional interaction 

around the data. Again this display suffers from not linking the abstract clustered view to 

the original variables. Subsequently Signature Explorer was formed (Noy & Schroeder 

2001). The idea is to let the user interact with the data and tell the algorithm how they 

would cluster a subset of the data. The algorithm then matches the user's clustering 

preference to well-known clustering techniques and parameters. The project is in initial 

stages but the combination of visualisation and feedback seems a powerful way to cluster 

data using the human perception of similarity. 

Harri Siirtola has extended two well-known techniques by adding interaction to 

parallel coordinates (Siirtola 2000) and allowing reordering o f a matrix o f data (Siirtola 

1999). The parallel coordinate system implemented brushing but limited the update rate to 

0.1 second so that an almost continuous feedback reveals aspects o f the data that an 

immediate response does not. Alternative colours were used to highlight different clusters 

but a large number o f polylines can occlude a parallel coordinate display, so interaction by 

zooming in on each variable was also implemented to reduce the amount o f information. 

Furthermore instead of implementing hierarchical clustering which is computationally 

intensive, quick clustering techniques based on the user's input were used to replace a 

number of lines with the average line and 1 standard deviation bars shown on each 

dimension. Two subsets can also be compared by examining the polylines joining two 

variables. Different coloured bars on the display can represent positive and negative 

correlation. The "Reorderable Matrix" example allows the user to move variables whilst 

comparing individual solutions. This technique was used on tabular data, which is not 

relevant to engineering design, but allowing the user to change the order o f a scatterplot 

matrix may help to understand the relationship between variables. Siirtola (2003) reports 

on a successful experiment combining parallel coordinates and the Reorderable Matrix 
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showing that coordinated views using different representations can enhance understanding 

of a problem. 

3.7 Conclusions 

Most systems designed to aid the visualisation of data and interactive engineering design 

are based on the traditional techniques of scatterplot matrices, parallel coordinates and 

linked brushing tools. Sometimes simple clustering techniques are also incorporated, with 

hierarchical clustering providing a useful visualisation alternative, although the 

dendogram, like parallel coordinates, can suffer from too many data points. PCA is often 

used to give a dimensionally reduced version of the data, resulting in nicely defined 

clusters but the relation between the clusters and the original variables is unclear. Other 

multidimensional scaling techniques such as SAMMON mapping (Sammon 1969) suffer 

from the same problem and can be computationally prohibitive. Engineering design 

applications demand that a design and the tolerances for the design are given in variable 

space, or at least related to the original variable space, so it is important that any clustering 

technique relates the clusters found to the original variables. 

There is a delicate trade of f to be found between providing complex clustering 

method that partitions data as required ( i f such an algorithm exists) and the speed of the 

method as well as understandability and loss o f involvement by the user. The latter point is 

particularly important as data can be clustered in different ways depending on the task in 

hand; users with different requirements wi l l interpret the same data in different ways, 

expert users would like to try specific algorithms and change parameter settings i f required. 

However it cannot be assumed that clustering experts with knowledge o f all algorithms 

wi l l be using the system. A general clustering algorithm that returns the main clusters 

whose definitions can be modified would be more useful for novice users. Details of 
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parameter settings and how the clustering results were derived should be available for 

those interested. 

Statistical analysis techniques such as PCA wi l l quickly return a specific projection 

of a data set but altemative projections may offer more interesting partitions in the data as 

demonstrated by GGobi (Cook et al. 1993, 1995) and could be exploited using ICA. Again 

the clusters returned by projection techniques need to be presented to the user 

automatically in a fast way. Clustering for engineering design applications also needs to 

take into account considerations such as the fitness of the design or give more importance 

to the objective values than the variable values. Therefore it is proposed that fast clustering 

is performed in the original variables or an altemative coordinate system (such as PCA and 

ICA), but allow the user to edit the results and relate the results to the original variables. A 

fast clustering method based on kernel density estimation adapted for engineering design 

data is proposed in Chapter 4. 

Guidelines fi^m the human computer interaction literature suggest supplying an 

overview and allowing zooming and details of individual data points i f required 

(Shneiderman 1998), in engineering design scenarios the ability to generate new data and 

delete unneeded data would also be advantageous. The interface should be kept simple but 

flexible enough to be able to manipulate and analyse complex data (Hutchins et al. 1986). 

More sophisticated commands can be made available to remove fioistration for 

knowledgeable users as it is important to keep the needs o f the user at the centre of 

interface design (Norman 1986, 1998). Intensity of colour, controlled by luminance or 

brightness and saturation, is the best attribute of colour to use to emulate continuous 

change, but the number o f colours that can be used is limited especially for colour deficient 

users. Colour would be particularly useful to highlight the important clusters in the data 

returned by the clustering algorithm or defined by the user, helping to improve perceptual 
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understanding of the search space. The relative fitness o f the solution (in terms of an 

objective or combination of objectives) can be represented by the brightness of the data 

item, so that two pieces o f information are provided by the colour. The relative merits of 

regions of the search space in terms o f fitness (engineering performance) and robustness 

can then be assessed visually, as well as using some statistical measurements of those 

regions. 

The mix of visualisation techniques such as parallel coordinates and scatterplot 

matrices all kept consistent by the linking of colours can provide a rich combination of 

views that helps understand multidimensional data as experienced by Tweedie et aL 

(1996b). During the interaction process new data wi l l be generated using the genetic 

algorithm (GA) providing new views, these views need to relate to the original views but 

have the option to be discarded i f necessary. For an interactive engineering system this 

review recommends combining standard visualisation techniques with advanced clustering 

procedures, an easy to use interface should provide flexible interaction with a GA for the 

generation of data as required by the user. Such an architecture wi l l support the iterative 

process of engineering design (Eckert et aL 1999, Dym 1994. Parmee et al. 2000. SchQn & 

Wiggins 1992) and is described in detail in Chapter 5. 
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Chapter 4: Discovering and Characterising Possible Regions of 
Interest 

4.1 Introduction 

The review of the literature given in the last two chapters identified that a technique is 

needed to extract the kind of information a user wi l l require during engineering design 

tasks. To find this information a number of techniques need to be combined in a novel 

way. This chapter describes an iterative technique that identifies possible regions of 

interest that a user may wish to investigate fiirther; regions o f interest are characterised by: 

1. High density. I f a genetic algorithm or other optimisation routine produces the 

data, regions of high density wi l l usually imply a converged state o f the algorithm, 

and thus good solutions. 

2. High fitness. In some cases high fitness solutions may be found in a region of low 

density. This may indicate a non-robust or sensitive region o f the search space, but 

the user should be given the opportunity to investigate the region fiirther. 

3. Large relative width of region. Increased width implies higher robustness, so an 

idea of the relative size of the region investigated would be usefiil to the designer. 

The algorithm should also have the following characteristics: 

1. Fast The speed of the algorithm should not slow down significantly due to the 

number of points or number o f variables in the data. This means that sampling the 

data may be necessary. 

2. Non-parametric or very few parameters. To avoid confixsion and over-

complication, it would be preferable that the user does not have to customise the 

parameters of the algorithm for each problem encountered. I f parameters are 
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present an automatic parameter selection routine would be preferable. However 

more knowledgeable users may like to have some control over parameters i f 

possible. 

3. Reliable/robust results. The algorithm should be predictable in that expected 

results wi l l be returned and repeated executions wi l l give the same answers. The 

fact that as the number o f dimensions increases the number o f solutions required to 

accurately reflect reality increases also needs to be taken into account. 

4. Suggest other regions of interest As well as finding the main clusters in the data 

for analysis, the algorithm should also suggest further regions that may be worth 

investigation. 

5. Easy to visualise and understand results. The output o f the algorithm should be 

easy to understand and interpret. Visualisation o f high dimensional output is needed 

in any coordinate system, but it should be possible to relate the output to the 

original coordinate system. 

The algorithm is based on kernel density estimation (KDE) and can be applied in 

any coordinate system, the next section explains the idea using the his Data and by 

comparing with the clustering results fix)m Chapter 3. The ful l algorithm is then described 

and demonstrated on high dimensional test functions showing how clusters can be 

identified in any coordinate system and related to the original variables. 

4.2 Application of Kernel Density Estimation (KDE) to the Iris Data 

In Sections 3.4.3 and 3.4.4 it was shown that principal component analysis and 

independent component analysis can find interesting projections in data that could be used 

to cluster and classify different regions o f the data. However in that section, in a similar 

way to most literature, the classification was done visually. The aim of this system is to 

automatically identify the main clusters in the data and suggest other regions to look into. 
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Univariate kernel density estimation is a way of analysing the projected data along each 

vector of the search space, either torn the point o f view o f the original variables or natural 

variables such as the principal or independent components. Univariate kemel density 

estimation gives an idea of the maximal and minimal regions o f density along each 

dimension. A multidimensional cluster can be deduced by integrating the univariate 

information from each dimension. 

Kemel density estimation (KDE) could be described as a smooth version of the 

histogram, see Silverman (1986) for an excellent overview and Beardah & Baxter (1996) 

for a useful M A T L A B toolbox. Consider a univariate data set x with true density funct ion/ 

and a set of n arbitrary points Xi chosen along the range of x. The kemel AT is a smooth 

function that is placed over each point Xi, then each original data point in the vicinity oTXi 

is given a weight according to K, The kemel function is usually a symmetric probability 

density function with well-behaved properties and definitely satisfies the condition: 

jK{x)dx = \, Equation 4.] 

The density estimate is calculated by summing all the individual kernels using a 

window width A, also known as the smoothing parameter, producing a smooth density 

estimate of the original datax: 

^ x-Xf 
h 

Equation 4.2 

where jc = the data set 

A'= an arbitrary subset of points along the range o f jc 

w = the number of data points in X 

K=3. kemel function 

/ i = the window width or smoothing parameter 

/ = the density estimate. 
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Sepal Length. h=0 32 

irisdata 
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local max 
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— some kernels 
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Figure 4.1: Two examples of univariate kernel density estimation (KDE) taken f rom 
the Iris Data. Some examples of the individual kernels are shown as dashed lines, the 
sum of these kernels make up the solid red density estimate/(jc). The minimum and 

maximum of this line can be computed to give an indication of the position of clusters 
in each dimension. Note the different values of h in (a) and (b) because they are based 

on the standard deviation of the data. The kernel density estimate is found using a 
M A T L A B toolbox (Beardah & Baxter 1996). Used with permission. 
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Figure 4.1 shows a graphical output of the density estimate on two variables of the 

Iris Data. Choosing the kernel K and the value h are critical in changing the shape of the 

density estimate. The choice of h is the most important part of the density estimate, as it 

wil l strongly influence the result of the estimate. An optimal value of h is derived by 

minimising the mean-squared-error o f the density estimate from the actual density; 

unfortunately this optimal value still depends on knowing the actual density. However the 

optimal kernel can be deduced by calculus and is called the Epanechnikov kernel. The 

well-known normal or Gaussian kemel is similar to the Epanechnikov; it is not as efficient 

but is ofien used because it is common practice to assume data has a normal distribution in 

the first instance. For normally distributed data with true variance the optimal smoothing 

parameter for the Gaussian kemel is given by: 

h^., = 1.06ow""^. Equation 4.3 'opt 

Thus the sample standard deviation could be used to estimate a. But i f the data is 

multimodal this estimate wi l l oversmooth the data and Silverman (1986, p. 47) suggests a 

more suitable estimator should replace a. 

There are multivariate versions of KDE (Silverman 1986; Scott 1992) that could be 

applied to high dimensional data generated by engineering design applications. However 

the research into muldvariate density estimation is limited, the calculation of h becomes 

more difficult and the computation time slows down. The other option is to use the 

univariate estimates of h and combine the density estimate from individual variables in 

some way to cluster the data (Beardah 1999). The latter option was more desirable for 

engineering design data for two main reasons; firstly the univariate density estimation is a 

lot faster than multivariate, secondly the reason for using density estimation was to identify 

regions of high density using the local maxima and minima (this is difficult to do when 
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considering multivariate estimates because the density may fall away at different rates in 

different directions). So this altemative strategy was chosen: multivariate clusters are 

formed by integrating the information fix)m the local minima and maxima of univariate 

kernel density estimates as described in the following paragraph. Once this decision was 

taken it became apparent that oversmoothing the univariate density estimate was desirable 

since the integration of univariate estimates usually results in smaller clusters. 

Investigation with various kernels showed that the Gaussian kernel returns more general 

clusters than the more accurate Epanechnikov kernel and the value of hopt given previously 

with the sample standard deviation used to estimate a were chosen to achieve a large value 

for h. These parameters are the default settings for the density estimates used in most of the 

examples given in this thesis. 

Figure 4.2 shows the idea working on the four dimensions o f the Iris Data. The 

univariate density estimate is computed for each variable. The local minima and maxima of 

this estimate are trivial to compute by listing the densities in order and comparing 

neighbouring values. It can be seen that there is just one maximum in the upper two plots 

of Figure 4.2a - the Sepal Length and Width variables (var 1 and var 2), but the Petal 

Length and Width variables show two distinctive maxima at around 4.8 (var 3) and 1.5 

(var 4) respectively. The bounds of the cluster corresponding to the largest density are 

defined by locating the minima either side of the global maximum in each variable (the 

lower bounds are identified by the green triangles at variable values {4.3,2, 2.8, 0.8}, with 

the upper bounds at {7.9, 4.4, 7, 2.5}). The first cluster is the subset o f data such that each 

variable value falls inside its corresponding bounds. So clusters are defined by integrating 

the local maxima and minima information from the density estimate of each variable. 

The next cluster is found by temporarily removing the first cluster and performing 

another iteration of the procedure described in the previous paragraph on the remaining 
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data. The new analysis in Figure 4.2b shows that nearly all of this data is inside the region 

defined by the local minima next to the global maximum of the kernel density estimate. So 

this algorithm has split the Iris Setosa class from the rest of the data (Figure 4.2c), except 

for one data point that may be a recording error in the original data (see variable 2). 

Analysis of onginal data, iteration 1 

var 1 <jj> 0 2 

irisdata 
1 dim kde 
local max 
local mm 

var 4 

Figure 4.2a: Univariate KDE analysis of the Iris Data. Variables 3 and 4 clearly 
separate the data. The region of highest density is identified and removed (i.e. f rom 

2.8<var3<7 and 0.8<var4<2.5). 

var 1 

Analysis of onginal data, iteration 2 * irisdata 
1 dim kde 

O local max 
local mm 

* irisdata 
1 dim kde 

O local max 
local mm 

• i . i « — i . i 7 

outlier 

0 1 0.15 0 2 0 25 0 3 0 35 0 4 0 45 0 5 0 56 0 6 

Figure 4.2b: The remaining data is analysed, leaving just one data point (var2=2.3) as 
unclassified. 
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Iter 1 
Iter 2 
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K virg. 

Iter 1 JBK BBB H 
rter2 

• • • 

3 4 5 
Petal Length 

Figure 4.2c: The classification results. The actual classes are Setosa{-^)^ Versicolori,) 
and Virginica(\)^ the algorithm separates the data into two clusters shown by the red 

squares and the green circles which are nearly all Iris Setosa, 

Univariate KDE can be performed on any vector through the data. For example 

using principal components analysis (PCA) reveals a similar result as seen in Figure 4.3. 

The first principal component clearly separates the Iris Setosa class from the rest of the 

data (Figures 4.3a and 4.3b). The result after two iterations shown in the original variables 

(Figure 4.3c) is similar to Figure 4.2c but this time the outlying p>oint is classified correctly 

as Iris Setosa. Separation in the first principal component is sufficient to identify two 

clusters in the Iris Data. This feat should be achieved by any linear clustering method, 

indeed A:-means and shared nearest neighbour clustering (see Sections 3.5.3 and 3.5.4) 

achieved this and were partly successfully in separating the other two classes. 

97 



Analysis of pea data, iteration 1 

pc2 

pc 1 

02 
S 

^ 0 1 

0 

1 0 --^ * pcasig 
1 dim kde 

O local max 
local mm 

02 
S 

^ 0 1 

0 
-3 -2 -1 0 

J o • » 
1 2 3 

-0 5 -0 4 -0.3 -0 2 -0 1 0 0.1 0 2 0 3 0 4 0.5 

Figure 4.3a: Univariate KDE analysis on the principal components of the Iris Data 
gives similar results. 
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Figure 4.3b: The first principal component easily separates the Ir is Data. 
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Figure 4.3c: Clustering using PCA and KDE, ver\ similar to the results f rom the 
original variables in Figure 4.2c. 

Independent components analysis (ICA) of the whole Iris Data gives a similar 

result. However i f the user is interested in doing a further analysis of the main cluster, then 

the independent components give an interesting result. Figure 4.4 shows analysis of the Iris 

Data with Setosa removed. The first independent component (searching for 

"nongaussianity") indicates a separation in the data (Figure 4.4a top plot and Figure 4.4b). 

The next iteration clusters most of the rest of the data together. When the chosen clusters 

are mapped back to the original variables it is seen that they correspond to the Virginica 

and Versicolor clusters up to around five exceptions. This result is better than the results 

given by the clustering algorithms in Section 3.5, albeit working on the data with Iris 

Setosa removed. 

These results demonstrate that clustering with univariate density estimation does 

locate the main clusters in the data and can identify subtle clusters using certain coordinate 

systems with results that are no worse than partitional clustering algorithms. The speed of 

the density estimate is very fast and does not require any expensive calculation of the 
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distance matrix between all solutions in the data set. To identify useful clusters in 

engineering design data, the fitness or objective values of the data need to be taken into 

account, the next section shows how this clustering method can be easily adapted to 

include such information. 

i c l <s» 

Analysis of ica data, iteration 1 icasig 
1 dim kde 
local max 
local mm 

1 5 -1 -0 5 0 0 5 1 15 2 

-2 -1 5 -1 -0 5 0 0.5 1 1 5 2 2 5 

Figure 4.4a: Univariate KDF analysis of ICA working on the Iris Data with Setosa 
removed. Here clear separation is identified in the first independent component ( ic l ) . 
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Figure 4.4b: Solutions identified from iteration 1 using the independent components. 
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Figure 4.4c: The clustering results using ICA on the Iris Data, separating Virginica 
f rom Versicolor up to a few exceptions (some data is not classified at all). 

4.3 A Cluster ing Algorithm based on K e r n e l Density Est imation 

4.3.1 Engineering Design and Genetic Algorithm Considerations 

The univariate KDE method finds natural clusters in the data, but for engineering 

applications the data also has objective values or a fitness value associated with each data 

point. The location of high fitness information is important; i f it is inside the region of high 

density then the user can be confident oflooking in a good region. I f high fitness is outside 

the region of high density then further investigation is required into the high fitness region. 

From an engineering design point of view the regions containing the fittest points are most 

interesting at first; after examination the user may wish to study other regions of high 

density with relatively low fitness, but by default the algorithm wi l l identify the cluster 

containing the highest fitness at each iteration. 

When a genetic algorithm (GA) converges, even over a short run, many copies of 

individuals wil l be created and saved. I f this is ignored the density in converged regions 

wil l be even higher due to repeated data. One solution would be to remove the repeated 
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data before analysis. However it would be more efficient not to create the same data during 

the GA. Therefore any solution that (after selection, crossover and mutation) has the same 

genotype as one saved previously, wi l l be further mutated until a unique genotype occurs. 

For a relatively low number of generations and chromosome length this ^proach can be 

unplemented at negligible computational cost compared to the calculation o f a real-world 

engineering function. The advantage of this method, over sharing and crowding for 

example, is that no parameters are required. The new solution is still related to the original 

so the evolutionary concept is not lost. However, i f the chromosome length and number of 

generations is very large the savings on computation cost may not be so favourable. 

Another question that arises during the design of the algorithm is whether the 

univariate KDE should be performed on the original variables, the principal components or 

independent components. The advantage of using independent components when applied 

to the Lis Data was shown in the previous section. However for engineering design data 

the advantages are not so clear. The reasons are best explained by a visual example that 

wi l l be given in Section 4.4 after the algorithm has been explained in a step by step 

example. 

4.3.2 The Algorithm with Example 

To show the idea on data where fitness is involved, the modified Himmelblau function wi l l 

be used. Beasley et al. (1993) used a version o f the Himmelblau function to test 

multimodal optimisation techniques. Here the Himmelblau function is modified so that the 

function is maximised and the global maximum is zero. The two-dimensional version is 

given by: 

f{x„x^) = - (x , ' + JCj -11)^ - ( x , + ^ 2 ' - l y Equation 4.4 
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A surface plot of the ftmction is shown in Figure 4.5 in its usual domain: -5 < xi, X2 < 5. In 

this case the fitness or objective function is given b y / There are four optimal regions of 

similar fitness but one is more sensitive and isolated than the others, so the GA is less 

likely to converge on that region. This function is more interesting in four dimensions as it 

has 16 local optima and is more difficult to visualise and understand: 

f(x,,x,,x,,xj = -{x' ^x, -\\y -{X, ^x,' - I f -(X,' ^x, -(X, ^ x , ' - l f 

Equation 4.5 

f —obJ1 403 

X2 — var 2 •5 -6 
Xi — var 1 

Figure 4.5: The modified Himmelblau function - two dimensions. 

From this point onwards a notation change is used, reflecting the assumption that 

the data is of an engineering rather than mathematical nature: xi, jc ,̂ x^, X4 are known as 

variables - hence renamed *var \ \ 'var 2 \ *var 3', War 4'; the objective valuey(jc/,A:2, • •) is 

renamed *obj V (see Figures 4.5 and 4.7). For some engineering problems there may be a 

number of objectives, in this case the objectives wi l l need to be combined in some way to 

form the fitness. For simplicity one objective is assumed and is interchangeable with the 

fitness, so a solution to the four dimensional Himmelblau problem is therefore made up of 

the values 'var \ \ 'var 2', 'var 3', 'var 4' and 'obj W This assumption is also made in the 

description of the clustering algorithm (Figure 4.6): the fitness / is the same as a single 

objective 'obj \ \ 
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Generate data set D with n solutions each 
containing v variables and fitness/ 

Transform x to chosen coordinate system 

Perform univariate KDE on / 

P«s-i \ h ) 

Find local minima o f each k 

^Qjj = ̂ QjJ = cardinalityCe^) V J e {l.. .v} 

where c {l.. .p}s.t.^g^.,^ >kQ^ j <kQ^^,j 

Find solution with max / 

g v = { ' ^ } s . t . / ^ = m a x ( / ) 

Find values of /n above and below g 

Uj =xmn{m^^j)sX.m^^j >gj V y e { l . . . v } 

IJ = mdxim^^j) s.t. m^^j < e {1 ...v} 

Cluster a is subset of {tj} inside u and / 

= {ttyJi) where / c {1..JJ} s.t. 
{t^<u,)nit^>ij)\/Je{\...v} 

Remove cluster a from [tj] 

r= {1 .../a} - / . / j '= cardinality{r} 

n = n\t„,=t\^,f„=f\. 

Save limits of cluster a, inform user by 
colouring data in chosen coordinate system 

or original variables 

where*: 
z = number of iterations 
D = original data set 
X = variable values o f D 
V = no. o f variables in x 
T= transformation matrix 
/ = transformed values of jc 
n = no. o f solutions in / 
f = fitness values of / 
k = kernel density estimate of 

each t 
/ ' = values along range of each t 

used to generate k 
p = no o f values in each P and k 
h = window width used in k 
K = Kernel function used in k 
m = local minima o f each k 
q = no. o f local minima in each k 
Q = indices of minima in each k 
F = index of maximum fitness 
g = t values o f maximum fitness 
u = local minima of k above g 
i = local minima of k below g 
I = indices of t between « and / 
C° - cluster found at iteration a 
r = complement of / in { 1 . . . / j} 
t' = remainder in / after / removedj 
r - remainder in / after / removed 
w' = no o f solutions left in / \ f 

f o r f l = { l . . . z } 

or until n small 

•N.B. Subscript notation used: 

f,t, x„v - Non-capitals indicate 
vector or matrix dimension 
xu - C^itals indicate an 
index or indices of a vector 
or matrix 

Figure 4.6: The univariate KDE-based clustering algorithm for data including 
objective value information (assuming 1 objective is the same as the fitness). 
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The clustering algorithm based on KDE for data generated by a genetic algorithm is 

summarised in Figure 4.6 whilst a practical example is shown in Figure 4.7. Figure 4.7a 

shows some data generated by a simple genetic algorithm running on the four dimensional 

Hiramelblau function for twenty generations using the mutation o f repeated chromosomes 

(as described in Section 4.3.1). Assuming that clustering is to be performed in the original 

variables, so no transformation of the variables is required, the result o f the univariate KDE 

analysis is shown in Figure 4.7b. The solution with maximum fitness is shown as a red 

circle in each variable. The local minima of the density estimate either side of the 

maximum fitness are at approximately the middle and top range of each variable, this is 

also the region of maximum density. This region is chosen as the first interesting region 

and any data falling inside the limits o f all variables is defined as the first cluster. Figure 

4.7c highlights this data as red squares. 

Once the region has been defined, that data is removed and the second iteration of 

the algorithm continues on the remaining data. KDE analysis of the second iteration 

(Figure 4.7d) is similar to the first, but this time the lower range o f variable 2 contains the 

maximum fitness. Again the data inside the limits identified by the local minima is defined 

as cluster 2 and removed fiom the data set (large green circles in Figure 4.7e). The third 

iteration shows that in some cases the maximum fitness solution is not contained in the 

region of maximum density (Figure 4.7f, 'var 2'). This fact can be brought to the user's 

attention, but in the current implementation the region containing the maximum fitness is 

chosen. Figure 4.7g shows the clustering results on all the data after four iterations, four 

clusters (red, green, blue and yellow) have been found indicating four distinct local optima. 

The user could choose to find more clusters in the same way. 
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•600 J 

-8orj -

Figure 4.7a: Result of genetic algorithm: 100 individuals, 20 generations, so 2100 
unique data points (including original random individuals). Note variable names have 

changed to reflect engineering design scenario: 'var V=X]... 'var 4' = j c ^ , 'obj V=f. 

Analysis of remaining data - producing Cluster 1 

varl 
h=0 594 

var2 
h=0 492 

var3 
h=0 641 

h=0 450 

J A 

' A - - : ^ 

normalised fitness 
O maximum fitness 
— normalised density 
^ local max density 
V local mm density 
O global max density 

Figure 4.7b: Density analysis of Himmelblau data. The dashed red line is the density 
estimate, the green downward pointing triangles are local minima and the blue 

diamond represents the global maximum of the densit> estimate. The black dots 
indicate the relative fitness of the data points (normalised and scaled to compare with 

the densit\ information). The maximum fitness point shown as a red circle, in this 
case it is inside the region of maximum density. 
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Figure 4.7c: Red squares depict the cluster identified by the first iteration of the 
algorithm, only data that falls inside the upper half of every variable is included. 

Analysis of remaining data • producing Cluster 2 
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h=0 664 
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Figure 4.7d: Iteration 2 - analysis of data with cluster found in iteration 1 removed, 
region containing maximum fitness the same as region of maximum density again. 
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Figure 4.7e: Second region to be removed, this shows that only ^var 2' splits the first 
and second cluster. 

Analysis of remaining data - producing Cluster 3 

varl 
h=0 778 

var2 
h=0 602 

vara 
h=0 724 
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Figure 4.7f: Result of the third iteration. Maximum fitness (red circle is not contained 
in the region of maximum density (blue diamond); separated by variable 2. 
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Originol Vo/iobles 

var 2 var 1 

Figure 4.7g: Result after four iterations, four distinct clusters corresponding to four 
local optima; there are sixteen optima present in this function. 

As the algorithm is iterative there is so no particular starting or stopping criteria. 

Partitional clustering algorithms require the number of clusters to be given or found by 

repeated iteration of the algorithm and minimising of some error function (Sierra & 

Corbacho 2000). At each iteration the kernel density estimate wi l l return a fixed cluster, so 

the algorithm can continue until all the data has been assigned to a cluster. Therefore the 

user can ask for a certain number of clusters to be found, the algorithm w i l l continue for 

that number of iterations unless the number of points becomes low (say 10% of the 

original). The user can then ask to find more clusters i f needed, but is more likely to be 

interested in investigating the clusters already returned. 

The relative fitness and size (in terms of hypervolume in variable space) of the 

clusters can be assessed by the user who may decide whether further investigation is 

warranted. The size of the cluster may be related to the robustness of the region; i f the 

minimum fitness of solutions in the cluster is not too low then a larger cluster is more 
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attractive because the manufacturing tolerances wi l l be larger. However a definitive value 

for robustness cannot be given because the space has only been partially sampled by the 

genetic algorithm and fiuther search may be required to validate the robustness 

assumption. For this reason the difference between a region of the search space and a set of 

solutions found inside it is critical; in this thesis the word 'cluster' refers to a set of data 

points found, whilst the volume of variable space the cluster encompasses is termed the 

'region' of space. 

4.4 Application of Alternative Coordinate Systems 

One choice that needs to be made before running the clustering algorithm is whether to use 

the original variables or other, possibly more natural, coordinate systems such as the 

principal or independent components. It was hypothesised that natural vectors would show 

up the main clusters in the data because they are being analysed from the point of view of 

the actual shape of the data. So a 'PCA fiiendly' fimction was devised to test this 

hypothesis. The fimction has diagonal ridges across the search space so that the 'natural 

vectors' wi l l be at 45 degrees to the original ones (Figure 4.8). The ridge is formed by a 

number of peaks along the diagonal using the formula based on fimctions by Fonseca & 

Fleming (1993) described in Chapter 6. The same configuration is repeated in two more 

variables to give a four-dimensional version o f this fimction. 

Figure 4.9a shows some data generated by a GA spread out somewhat along each 

ridge. The univariate KDE analysis of this data in the original variables (Figure 4.9b) 

shows how the GA converges on certain parts of the search space (in fact two separate GA 

runs were combined to form this data). The data is partitioned by variables 1 and 3 and 

partially by variable 2. The clustering algorithm successfiilly identifies two clusters in this 

data as shown as red squares and green dots in Figure 4.9c, in these two-dimensional views 

the diagonal nature of the ridges are clear, note that higher fitness is indicated by a daricer 
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colour (see *obj T values below the *var 3' versus 'var 4' plot). Some of the data (next to 

the red cluster) is not clustered because of the partition in variable two. The cluster 

definitions are of course at 45 degrees to the natural clusters, so do not reflect the clusters 

as a human would perceive them. 

Figure 4.8: Special function that should be advantageous to PCA: wide variance 
along diagonal. 

Onginal Vonoble 
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Figure 4.9a: GA generated data in the original variables 
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Analysis of remaining data • producing Cluster 1 
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Figure 4.9b: KDE analysis of the original variables. 
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Figure 4.9c: First two clusters found after analysis of the original variables. Both 
ridges identified, but defined at 45 degrees to perceptual clusters. 
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Figure 4.10a shows the univariate K.DE analysis of the principal components of this 

data. This time the data is partitioned in the first principal component only, although 

viewing the result in two dimensions makes the nature of the partition clearer (Figure 

4.10b). The clustering algorithm again finds two clusters (blue and yellow). The yellow 

cluster is drawn after the blue, so may obscures any duplicate information. Visualising 

these clusters in the original variables shows that all the data has been assigned to one or 

other of the clusters (Figure 4.10c). The two ridges are mostly defined by one or other 

cluster, but there is some overlap; in particular low fitness information is assigned to the 

*wrong' cluster. This visualisation is more in line with how the user perceives the data, 

especially for the higher fitness material. The definitions of the cluster limits can be given 

in terms of the original variables using the transformation matrix (in this case the 

eigenvectors) and the mean of the data (see Section 3.4.3). 

Analysis of remaining data - producing Cluster 3 

h=0 721 

pc2 
>̂=0 358 

pc3 
h=0 340 

pc4 
h=0 318 

normalised fitness 
O maximum fitness 

— - normalised density 
A local max density 
V local mm density 
O global max density 

Figure 4.10a: KDE analysis of the principal components. Two peaks identified in first 
principal component (pel). 
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Figure 4.10b: Visualisation of two dusters in the principal components, blue and 
yellow. 
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Figure 4.10c: PC A deflned clusters shown in the original variables. Both ridges are 
now identifled although there is some unwanted overlap. The yellow cluster is drawn 

last so mav obscure some blue data. 
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In the same way ICA can be applied to univariate KDE; the analysis shows that 

most of the data is also partitioned by the first independent component (Figure 4.11a). 

Some structure is also seen in the third and fourth independent components, which is due 

to ICA searching for vectors in the data that maximise **nongaussianity" as opposed to 

variance in the case of PCA. The optimisation algorithm chooses each independent 

component so the order is more arbitrary than for PCA (where the order is defined by the 

magnitude of the eigenvalues). Often the ICA result is similar to PCA, but the independent 

components do not have to be orthogonal so can return different vectors to PCA. Figure 

4.1 lb shows that the second iteration of the algorithm (details not shown) does not assign 

all the data to the second cluster (cyan). This is due to separation of the data that becomes 

more apparent when the data from the first iteration is removed. The result visualised in the 

original variables shows one ridge is well defined as in the PCA result, but only part of the 

other ridge has been identified (Figure 4.1 Ic). 

Analysis of remaining data - producing Clusters 

h JUL 
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Figure 4.11a: KDE analysis of the independent components. 
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Independent Components 
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Figure 4.11b: Clusters identified in the independent component representation. 
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Figure 4.11c: Clusters identified using independent components, visualised in the 
original variables. Similar to principal component result, but not all the data has been 

classified. 
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The natural clusters are quickly identified by both PCA and ICA, usually in a single 

component. This can give a better partition o f the whole data than the original variables 

that partition the data in a number of variables and often return parts o f required clusters as 

perceived by a human. It should be noted that clustering using PCA and ICA on the 

Himmelblau data given in Section 4.3.2 returns almost identical results as the original 

variables, because the original variables are the natural vectors for the Himmelblau 

function (see Section 5.5). In general clustering in alternative coordinate systems can 

reveal different details of the data, although sometimes unexpected and maybe unwanted 

results wi l l occur. However reasons for anomalies can be easily seen through the 

visualisation of the details; comparing resuh in the original variables is particularly 

instructive. 

4.5 Conclusions 

The univariate kemel density clustering algorithm can help to identify the main clusters in 

high dimensional data, the clusters are well defined in terms of the original or natural 

coordinate systems. In general as the number o f dimensions increases the number of 

clusters identified wi l l increase and the regions w i l l become smaller. The G A converges on 

localised regions of the search space so the clusters produced by the GA are often spherical 

in nature even i f the original fitness function is designed to be at an angle to the original 

data variables. This wi l l be a problem for any clustering algorithm - the converging GA 

forms regions of high density that the KDE analysis is attracted towards. For some 

functions different GA runs wil l come up with very different data so it would be advisable 

to generate as much diverse information as possible. 

Removing outliers fiom identified regions may also be beneficial, especially i f they 

are of very low fitness or do not help to define the region very well. A lot o f time could be 

invested in finding the right technique to cluster the data in terms of which outliers to 
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remove and which transformation vectors to use. More complicated criteria could be used 

to partition the data and to decide which views to show the user. However the motivation 

for the clustering algorithm was to provide the main clusters relating to engineering design 

data as quickly as possible, then allow the user to evaluate those clusters comparing fitness 

and robustness information. Rather than assuming the clustering algorithm is correct the 

user should be fiee to edit any clusters formed after analysis. The details inside clusters 

returned by the algorithm may be interesting or the user may wish to generate more data to 

fill in missing gaps. 

A related question to ask is: when should the independent or principal components 

be used instead of the original coordinate system? The univariate KDE technique working 

on the original vectors often produces clusters that are too small and wrongly defined 

according to human perception. The natural coordinate systems usually produce large 

clusters that partition the whole data, but often misclassifies low fitness information, 

however it has been shown that i f the low fitness infomiation is removed the clusters do 

defme the perceived regions well (Packham & Denham 2003). The independent 

components can provide different information fiom the principal components, although the 

result is less predictable. One of the goals of the clustering algorithm was to produce 

regions that were easy to define in terms of the original variables for engineering or 

manufacturing requirements. In alternative coordinate systems the definition of the region 

is related to the original coordinate system, but it remains to be seen whether this definition 

can be used to manufacture engineering design components. There may also be a problem 

with novice users understanding the new concept of clustering in alternative coordinate 

systems; presenting such infomiation as default may make the user feel detached from the 

mteractive process. However the superiority of the clustering using principal components 

(or less predictably the independent components) on some data suggests this technique 

should be retained in the overall system. Therefore it is proposed that the clustering 

118 



algorithm should work in the original variables by default and the use of PCA/ICA is left 

to the user. 

It could be argued that the KDE-based technique described in this chapter is not a 

true clustering algorithm in the sense of one that naturally allocates all data due to the 

distance matrix between points, instead it uses coordinate systems that may or may not 

reveal the 'true' clusters in the data. It is acknowledged that traditional clustering 

algorithms could be adapted to take into account engineering type data in a similar way to 

that given in Section 4.3, but even the 'true' clustering algorithms wi l l return different 

answers to a problem, as discussed in Section 3.S. Another criticism is the iterative nature 

o f the algorithm, in particular removing data and recomputing the kernel density estimate 

at each iteration; clusters could be assigned immediately from the first iteration of the 

algorithm. Both of these criticisms are answered by arguing that the system is to be 

controlled by the user as opposed to generating many 'accurate' clusters and displaying 

them all or even choosing some to show. The philosophy of this system is to enable the 

user (especially novice users) to slowly assimilate the data presented in an understandable 

way related to the original variables. They can then decide whether to undertake fixrther 

analysis of clusters already found, search for more clusters with the iterative algorithm or 

generate more data. The following chapter explains how the novel clustering procedure 

was successftilly incorporated into an interactive design system for this purpose and 

subsequent chapters document how users responded to the system. 
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Chapter 5: Design of Interactive System 

5.1 Introduction 

Previous chapters have reviewed the requirements of an interactive evolutionary design 

system applied to engineering design and the human computer interaction techniques that 

are available to make such information available to the user. The main requirement of an 

engineering design system is to allow the free flow of information between the human and 

computer. The user should be provided with tools to guide the system about the search 

space, while the information coming out of the system should provide further 

understanding of the design space. The dual role o f the human and computer means that 

the user can manipulate the information discovered and direct the search while at the same 

time the computer continues to generate new information based on the users' preferences 

by performing tedious tasks including quick statistical analysis. 

This chapter wi l l describe the tools chosen to support the dual requirement of the 

interactive system, summarised as follows: 

1. High dimensional visualisation 

2. Flexible, understandable and easy to use interface 

3. Fast exploration of the search space 

4. Identifying clusters and searching for further data and clusters 

5. Evaluating regions of high performance for robustness 

A system with these attributes wi l l also support the kind o f dual interaction proposed by 

Lund (2000, 2001) combining direct manipulation and interactive evolution. Lund (2001) 

concludes that direct manipulation by the user allows investigation in an intuitive and 

reliable way while interactive evolution is more likely to provide surprising solutions to the 
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problem (Lund used narrow interactive evolution as opposed to the broad interactive 

evolutionary system described here, however both methods can produce surprising and 

novel results). The tools implemented in the system are described in the order given above 

with reference to the literature. The actual interface, written in N4ATLAB ®, is presented at 

each stage with examples to show how the system is used in practice. 

5.2 High Dimensional Visualisation 

5.2.1 Choice of View Types 

Engineering design problems are usually multidimensional, so it is important to be able to 

visualise all (or at least a subset) of variables and objectives so they can be seen in relation 

to each other. The visualisation techniques that do not distort the data and are most 

accessible to any user are variants of the scatterplot matrix (Chambers et al. 1983) and 

parallel coordinates (Inselberg & Dimsdale 1994a, 1994b) as concluded in chapter three of 

this thesis. A number of view options are available because it is often useful to see the 

same data from different points of view. In sunmiary the available 'View types" are: 

1. Scatterplot Matrix 

2. 2D Scatter (complete variable set in 2D plots with one enlarged to see details) 

3. 2D+Fitness in Z-axis (as view 2 with the objective value shown in the z-axis) 

4. 3D Scatter (three dimensional scatter plots with one enlarged to see details) 

5. Parallel Coordinates 

An example of the scatterplot matrix showing data from the four-dimensional 

Himmelblau function (see Section 4.3.2 and Figure 4.5) is shovm in Figure 5.1. The 

coloured data points are clusters defined by the clustering algorithm described in Chapter 

4. This view shows all the possible two-dimensional combinations, for example the first 

plot down in the first column is variable 1 against variable 2 (see enlarged version in 
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Figure 5.2), its mirror image is shown in the first plot on the first row: variable 2 against 

variable 1. Each variable is also plotted against the corresponding objective value (far right 

column and bottom row). It is a useful view, but details o f each plot are difficult to see 

because of their small size and can take a long time to draw, this problem wil l be 

compounded as the number of variables increases. 

Onqinal Voriobles 

i 

Figure 5.1: View 1 - the scatterplot matrix showing the four dimensional Himmelblau 
data. Variables ('var 1' to *var 4') and objective ( 'obj T ) values shown. 

The second view is similar to the scatterplot matrix but each variable is shown just 

once and two of the variables are shown in a larger plot so that details can be seen more 

clearly. In Figure 5.2 variables 1 and 2 are shown in the detailed plot, variables 3 and 4 on 

a smaller plot for reference. The objective values are shown in the second plot down on the 

right, the points drawn against a single value (arbitrarily zero) because there are no other 

parameters to show. It is possible to choose which variables are shown on the larger plot. 

The third view (Figure 5.3) shows essentially the same information as the second 

view except that the corresponding fitness or objective value of each point is shown in the 

z-axis. This view is a substitute for surface diagrams that are often used in evolutionary 
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and engineering design literature; representing the fitness of each solution as a point in the 

third dimension was found to convey the same information whilst the colour of the points 

remains consistent with the other view types in the system. 

Original Voriobles 
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Figure 5.2: View 2 - 2D scatter diagrams with variables 1 and 2 in the enlarged plot, 
variables 3 and 4 top right and objective (*obj V) alone. Fitness is also represented by 

the darkness of the data point 

Figure 5.3: View 3 - 2D scatter diagrams + fitness in z-axis. The fitness or objective 
value (^obj V) is shown on all plots. 

123 



View four is a set of three-dimensional scatter diagrams such that any combination 

of variables can be viewed in each plot (differing from view three where fitness is always 

shown in the z-axes). Again one of the plots is enlarged for detail (Figure 5.4). The three-

dimensional views (3 and 4) are supplied because they are very accessible to humans who 

live in a three-dimensional world. However the exact position of a data point is uncertain 

when looking at the flat screen because it is not clear whether the point is at the 'front' or 

'back' of the image, only the user's perceptual system interprets that information (rightly 

or wrongly) from all the data points. Because of this ambiguity the ability to select a region 

or number of data points with the mouse was not provided in the three-dimensional view 

types, but the user can select a region on any two-dimensional plot (view types 1, 2 or 5) 

and zoom in, then return to a three-dimensional view to help understand how solutions are 

related in variable and objective space. 

Original Variables 

•Ir 

Figure 5.4: View 4 - 3D scatter diagrams, variables 1, 2 3 shown in detailed view. 
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The final view type is parallel coordinates (Figure 5.5, see also Section 3.3.5). A l l 

the variables and the objective can theoretically be viewed in one plot, the colour of each 

line is the same as the corresponding data point in the other views. The main problem with 

parallel coordinates is that the plot is still difficult to understand with a large number of 

variables and data, however in this system it is possible to change the order of variables, 

allowing different combinations to be compared, or choose subsets of variables or data 

lines to view as suggested by Swayne et al. (1998) and Siirtola (2000). 

Original Variables 

-821 49 
obj 1 

Figure 5.5: View 5 - Parallel Coordinates, each variable is given on a vertical axis, 
each is a solution, the colour of the lines corresponds to the data points in views 1 to 4. 

5.2.2 Colour of Data 

Colour is used to emphasise important clusters in the data and is also a good way to 

compare views of data, as the colours of each point wi l l be the same in any view. In this 

way the colour coding is similar to brushing (Becker & Cleveland 1987, Section 3.3.2). 
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Every data point is initially drawn as a grey-black (colourless) dot or line to provide a 

neutral background, then a colour hue can be chosen for any new cluster identified by the 

system or user. Pure, or saturated, colours were not used because they can be overpowering 

when combined and cause eyestrain; so almost saturated versions of the spectral hues were 

used as base colours (red, green, blue, yellow, magenta, cyan etc.). Within each cluster the 

change in fitness is represented by change in brightness and saturation, tiie attributes of 

colour that most people can differentiate (Section 3.2.4 and Figure 3.2d). Saturation and 

brightness are varied simultaneously so that a light, unsaturated, coloiu- is used for low 

fitness and a dark, almost pure, colour for high fitness, providing a uniform scale for any 

hue. 

A l l the plots in this section use colour to indicate the clusters that were found by the 

system. The clusters that were identified by the clustering algorithm based on kernel 

density estimation (KDE), as described in Section 4.3.2. The complete data set ( 'A l l Data') 

generated by the GA is depicted as grey-black. The red cluster is the subset of ' A l l Data' 

that was identified by the KDE algorithm containing the solution of maximum fitness. The 

green cluster is the subset identified by the algorithm in the remaining data ( 'A l l Data' 

with red cluster removed) containing the solution o f maximum fitness. More clusters could 

be identified in this way. The user is also fi^e to create new coloured clusters or change the 

definition of clusters. 

Clusters can overlap each other so each point may have a number o f different 

colour hues associated with it. The display wi l l also be affected by the order that colours 

are drawn on each plot as later colours wi l l obscure any data drawn in the same place, 

however the order that colours are drawn can be changed (see Section 5.3.3 and Figure 

5.11a). There are only a limited number o f truly diverse colours that were chosen as 

default. For colour blind people the choice o f red and green may not be suitable as the first 
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two colours, but it is also possible for the user to change the base colours. Relative 

difference in fitness, the most important attribute, should be apparent to most viewers. 

5.2.3 Alternative Coordinate Systems 

The variables of the data can also be viewed in natural coordinate systems such as the 

principal and independent components (Section 3.4 and Chapter 4). Figure 5.6 shows the 

principal components using the second view type. The coloured clusters have been mapped 

onto the principal components, but the objective value of each solution is unchanged 

allowing direct comparison of the views. The independent components can also be viewed 

in the same way (Figure 5.7 see Hyv^nen (2003) for FastlCA code). Again any 

combination of these ^natural' variables can be viewed in each plot. 

Principal Components 

•»5 % 09 

Figure 5.6: Principal components 1 to 4 (*pc 1' to *pc 4') of data, coloured clusters 
correspond to the same data points given in original variables (Figures 5.1-5.5), 

objective value is unchanged. 
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Independent Components 
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Figure 5.7: Independent components ('ic V to 4'), of the Himmelblau data, 
objective (*obj 1') unchanged. Computed using the FastICA algorithm (HyvMrinen 

2003) supplied under the GNU licence (GNU 2003). 

A two dimensional representation of the clustering is also available to see how 

clusters relate to each other in terms of Euclidean distance. The dimensionality reduction 

technique SAMMON mapping (Sammon 1969) is used to generate a two-dimensional 

output optimised such that the distance between points in the output are as close as 

possible to the original distance matrix. The actual distance between points can be assessed 

using this technique. The drawback of multidimensional scaling (MDS) techniques is the 

time taken to compute the distance matrix, so in this system a subset of data points is used 

to find the mapping. The result of SAMMON mapping is also unpredictable because it is 

an optimisation routine; given an initial data set, a number of results could be found using 

the same parameters. The routine terminates when the error between the true Euclidean 

distance and the output is below a certain threshold, but the error for individual data points 

may be quite high. 
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Figure 5.8: Two runs of the SAMMON mapping routine using the same initial data. A 
subset of 250 Points is used to reduce computation cost. Two multidimensionally 

scaled v ariables (^mdv V and *mdv 2^) and the objective value of each point is shown. 
Computed using code supplied to the SOM toolbox (Vesanto et aL 2000) published 

under the GNU (2003) licence. 
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Figure 5.8 shows two results of running the SAMMON mapping routine on a 

subset o f the Himmelblau data (see the SOM Toolbox (Vesanto et al. 2000) for code). 

Note that the two results are different although the structure of the data is retained in both. 

In each figure, the two multidimensionally scaled variables ('mdv 1' and 'mdv 2') are 

shown in the main plot, with the corresponding fitness of each point given in the other plot 

('obj 1'). The data could be visualised using any of the view types mentioned earlier. 

Again users can select clusters seen on the SAMMON map display and see the 

corresponding solutions in the original variables. 

5.2.4 Summary 

To summarise this section, the system has successfully employed a number of traditional 

techniques for the difficult task o f high dimensional visualisation. Two and three 

dimensional scatter plots and parallel coordinates can be manipulated as the user wishes. 

The hue of colour is used to highlight important clusters in the data and variation in 

brightness and saturation of colour is used to indicate the relative fitness o f solutions. The 

data can also be viewed from alternative coordinate systems such as the principal or 

independent components or a 2D multidimensionally scaled SAMMON map. The 

alternative coordinate systems can show clustering that the original variables do not reveal; 

colour coding and comparing different views or coordinate systems provides a powerful 

way to learn more about the data. 

5.3 Flexible, Understandable and E a s y to Use Interface 

5.3.1 Introduction 

For any novice users learning a new interactive visualisation system the interface should be 

as simple as possible and self-explanatory (Shneiderman 1998, p. 68). However for the 

system to be truly interactive and to allow the user to manipulate the data as much as 

possible, a large amount of functionality is needed in the system. The design of the 
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interface was inspired by the mantra: Overview, Zoom and Details on Demand 

(paraphrasing Shneiderman 1998, pp. 523) and evolved as new ideas and algorithms were 

added (in a similar way to how the GGOBI system (Swayne et aL 2001) was developed). 

The system was aimed at intelligent novice users and knowledgeable users, so 

common tasks are available as buttons whilst further detailed commands are found in 

window menus and dedicated dialog boxes. Ideally the interface would be designed by the 

intended users using the participative approach (Mumford 2003). However an interactive 

system combining evolutionary computing and engineering design has never been 

designed before, so there were no users to consult. Therefore the interface evolved 

following the visualisation guidelines given in Chapter 3 and modified as problems were 

encountered and solved. The interface was evaluated by novice users and engineers 

working on their own design problems as described in Chapters 6-8. 

5^.2 Navigator, Overview and Moreview Windows 

The main controller of the system is called the Navigator Window whilst the overall view 

or map of the search space is called the Overview Window. Figure 5.9 shows these 

windows after the user has chosen to start the system on the four dimensional Himmelblau 

function, after 20 generations of the genetic algorithm (GA) the Overview Window 

displays the familiar result in the default view (view type 2). The user can select a region 

o f any two dimensional view on the Overview Window and choose a command from the 

Navigator such as 'Run OA', 'Find Clusters', 'Zoom In' or 'Delete' (the data). 

Alternatively the user could choose to view the data using a different view type or 

coordinate system by selecting from the menus on the Overview Window. The AxesOrder 

menu brings up the dialog (right of the Overview Window in Figure 5.9) that allows the 

user to choose the order o f variables (objectives) or deselect specific variables (objectives) 

to display. 
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Figure 5.9: Navigator Window and Overview Window. Order of variables can be 
changed or variables temporarily removed using the 'Axes Order^ dialog. 

New windows are necessary either to view new data generated by further GA runs 

or to view data from different points of views. In Figure 5.10 the user has chosen a region 

of data with the mouse in the Overview window and opened a new window using the New 

View menu on the Navigator. The new view is called Moreview2 and shows the data using 

the '2D-»-Fitness in Z-axis' view type. Alternative coordinate systems can also be chosen 

from the New View menu. Individual details of specific solutions can be displayed by 

pressing the right mouse button. Details of individual solutions, statistics o f clusters and a 

summary of all the data can be accessed and are displayed in the M A T L A B command 

window. Other menus on the Navigator Window allow the user to change the parameters 

of algorithms and select which window is to be the Current View. Hence the Overview, 

Zoom and Details on Demand concept is strongly followed with this interface. 
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In order to prevent errors dialog boxes are used to confirm important commands 

(such as save, delete, run GA at new limits). Backtracking with undo and redo commands 

would be desirable but this requires a lot of memory so these are only incorporated into the 

important save and delete commands. Status messages tell the user what actions the system 

is performing when busy and keep the user informed of what the algorithms have 

discovered (see box next to Navigator in Figure 5.10). Help files are available on all 

windows and context specific help is available when the mouse is held over a button or 

part of a dialog box. 

Onq.ra) Va rab ies 
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Figure 5.10: New views supported to provide Zoom and Details on Demand. Region 
selected by the mouse in the Overview, zoomed in version displayed in Moreview2, 

note the fu l l range of variables 3 and 4 remain, but there is no green data. Details of 3 
data item can be viewed by clicking the right mouse button over a point. 
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The Save/Delete panel on the Navigator (see Figure 5.9) controls how information 

is added and removed from the Overview Window. The user can select a number of 

solutions in the Overview Window using the mouse and choose to delete them 

permanently, alternatively the user can choose all or a subset o f the data in a Moreview 

Window and add the information to the Overview Window. An 'Undo' button is available 

i f the user has mistakenly added or deleted data. By default all the information generated 

by each GA is kept for the user to consider and analyse, but after a while the user may 

decide certain information is not needed or helpftil (particularly low fitness information). It 

is also possible to save data to file using the traditional File menu on the Navigator and to 

load previously saved data. 

533 Dialogs to View or Edit Clusters, Relevant Statistics Included 

As mentioned in Section 5.2.2, the colour coding of clusters is similar to brushing; the use 

of colour is fully exploited in this system by allowing the user to change the definition of 

clusters or add new ones manually. The 'Edit Clusters' button on the Navigator Window 

brings up the Summary of Clusters dialog box (Figure 5.1 la) that shows a sununary of all 

clusters including their colour, icon and general statistics. The user can choose which 

clusters definitions to 'Show', when not checked the colour wi l l be temporarily removed 

from the display. Cluster definitions can be added and removed fi*om the list (see button 

panel bottom right of Figure 11a). The clusters are drawn in the order shown in the 

Summary Window, so some colours may be obscured by those drawn later on i f cluster 

definitions overlap; so the drawing order of the clusters can also be changed. The 

'Objective Filter' checkbox is used to automatically change the definition of clusters; the 

definition of clusters (and whether to 'show' them) is crucial to the fimctionality of the 

system as the GA and clustering technique can be controlled using these definitions, as 

explained fiulher in Section 5.5 and 5.6. 
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Figure 5.11: (a) Summary of Clusters dialog and (b)View/Edit Clusters dialog. 
Important statistics are shown in (a), the user can choose to ^Show\ change the 

drawing order, filter or permanently delete clusters or add a new one. The 'Edit* 
button brings up the individual cluster information (b) allowing changes to the 

variable limits, colour and shape of the icon, and access to more detailed statistics. 

The statistics shown in Figure 5.11a are intended to help the user make informed 

decisions about the quality and potential robustness of each cluster. The maximum and 

minimum fitness inside each cluster are given and the fitness ratio ('Fit Ratio%') between 

them is computed with reference to the overall data, given as a percentage: 
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- m i n ( / ) - min(F) *, ^ . , . 
max(/) - m m ( r ) 

where = fitness ratio of a cluster 

/ = objective values of solutions in a cluster 

F = objective values of all the data in the figure 

The relative hypervolume ('Rel Vol%' ) in variable space of each cluster is also given, 

again with reference to the overall data and as a percentage: 

Yl[max{x,)-vam(xi)] 
= ^ •100 Equation 5.2 

n[max(X,)-min(Jf,)] 
1=1 

where VR = relative volume of the region defined by a cluster 

V = number o f variables/components 

X = variable/component values of solutions in a cluster 

X= variable/component values of overall data in the figure 

The values of jc and X could be given in the original variables or some alternative 

coordinate system ('Coord Sys'), found using principal or independent component analysis 

(PCA/ICA), for example. It could be argued that the generalised variance (Section 3.4.3) of 

the cluster should be used to estimate the volume, but this value depends on the number of 

data points and assumes the data is normalised so is not comparable between different sets 

of data. Instead the relative volume of the 'region' encompassed by the cluster allows 

comparison between different data sets that may be generated for the same problem. 

The relative volume of the region tells the user how large it is, while the fitness 

ratio informs how much the fitness changes inside the cluster compared to the overall data. 

By comparing relative volume and fitness ratio the user can estimate the likely robustness 

of the region, but should be aware that more solutions may be needed to confirm the 
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estimate. Maximum fitness and 'robustness' of each region can then be compared and 

opinions about the relative merits of each region formed. 

Details of individual clusters can be viewed and edited by pressing the 'Edit' button 

in the Summary bringing up the View/Edit Clusters dialog in which the limits, colour and 

type of icon can be checked and changed. Colour deficient viewers could choose any 

suitable colours using this dialog box and different shapes of data points can also help to 

differentiate between clusters ( 'Mkr' Figure 5.11b) as well as alternative 'Line' types for 

the parallel coordinate display. Limits of the cluster can be edited using this dialog (even i f 

the cluster is defined in another coordinate system such as the principal components). 

Details and statistics of the cluster can also be displayed in the M A T L A B Command 

Window. 

5.3.4 Summary 

An easy to use interface has been designed that includes a Navigator Window, an 

Overview Window that keeps all data saved by the user and Moreview Windows that 

contain data from new searches requested by the user or are clones o f other windows. The 

data can be saved to file and warning messages wi l l prevent the accidental loss of data. 

Clusters o f solutions are identified by different colours and icon shapes and represented 

consistently in each cloned window. The user is free to change the definition, colour and 

icon of clusters. A summary of the clusters shows statistics that help the user make 

informed design decisions and allows details and limits of the clusters to be changed. This 

design is a combination of many well-known techniques put together to help engineers 

understand the information found. The rest o f the chapter explains how the GA is used to 

generate diverse data and how the system can be used to exploit that information to further 

understand the engineering design problem. 
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5.4 Fast Exploration of the Search Space 

For many engineering design problems the calculation of the objective ftmction wi l l be 

very time consuming and the number of calls to this fimction should be minimised. A 

genetic algorithm (GA) that is run for a low number of generations in specific regions 

chosen by the user is a fast, powerftil exploratory tool. This method exploits the OA's 

power of quick convergence as Louis & Tang (1999) did by breaking the travelling 

salesperson problem up into a number of sub-problems. Another advantage for quick GA 

runs is that they are not so dependent on getting the parameter values right first time (Ross 

& Come 1994). Conversely this approach removes the fiill evolutionary theory from the 

system, the GA becomes a tool rather than an ongoing algorithm that wi l l eventually find 

new solutions. Nevertheless the whole system wi l l allow extended exploration of the 

search space because of the combination of the user with the GA. The GA code used in the 

system was modified fiora the GA Toolbox for Matlab (Chipperfield et ai 2002), 

published under the GNU General Public Licence (GNU 2003). 

As mentioned in the previous chapter it is important to keep the diversity of the GA 

high to improve exploration of the search space. Sharing (Deb & Goldberg 1989) and 

Crowding (De Jong 1975) as described in Section 2.3.3 are the classical techniques 

designed to improve diversity, but both need careful tuning o f the parameters (Miller & 

Shaw 1996). A person with knowledge of GAs may want to adjust the GA parameters and 

diversity operators and these have been made available (Figure 5.12), but this activity is 

time consuming especially i f the fitness fimction is very expensive. Most engineers have 

little knowledge of GAs, but would like to see many diverse solutions to their problem 

generated as quickly as possible without duplication, although good regions of the search 

space should also be exploited and sampled as much as possible. So the parameters of the 

GA were chosen carefiilly to allow as much diversity as possible without affecting speed 

whilst exploiting the good regions found. 
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Figure 5.12: GA Parameters (a) and Diversity Operators (b). 

The default parameters shown in Figure 5.12a could be described as those found in 

a 'simple' GA. The crossover and mutation rates are those suggested in the GA toolbox for 

binary representation (Chipperfield et al. 2002, pp. 2-15, 2-46). Mutation rate is given as 

the expected number of mutations per individual, which can be converted to the probability 

of mutating a bit by dividing the rate by chromosome length - that is the number of bits per 

variable (nbits) multiplied by the number of variables (nvar). Most researchers suggest the 

probability of mutation should be in the range 0.001 to 0.01 per bit (Ochoa et al. 1999, 

Back 1993, Hesser & Manner 1990), so assuming chromosome length is between 70 and 

700 the given mutation rate of 0.7 is reasonable. The selection technique used is stochastic 

universal sampling (Baker 1987) because it reduces stochastic error and selects individuals 

closer to the true rate deserved by fitness than most other selection routines (Pohlheim 

1996), therefore producing a more accurate interpretation of the fitness landscape. 

The main departure from the simple GA is the introduction of the scheme to mutate 

chromosomes that are identical to those already found (as described in Section 4.3.1), 

ensuring that no duplicate solutions are generated during the GA run. Checks for 
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duplication are performed at the chromosome level. The level o f mutation on duplicated 

solutions wi l l have a significant effect on the results of the GA. A low mutation rate makes 

solutions stay near to the original solution, probably moving along peaks, while a high 

mutation rate would result in almost random search. A 'moderately high' mutation rate has 

been chosen as a trade-off, increasing the probability of discovering new high performance 

regions whilst assuring that the search space near to the original solution wi l l be further 

sampled. The default mutation rate in duplicated individuals is 5 (the expected number of 

mutated bits); that is the probability of mutation per bit is 5 divided by chromosome length 

(Figure 5.12b). This is moderately high assuming the length o f the chromosome is between 

70 and 700. For very long or short chromosomes this mutation rate should be adjusted; in 

particular the rate is impossibly high i f the chromosome length is less than 5. 

In summary fast exploration o f the search space is achieved by running a GA for a 

low number of generations with default parameters and mutation o f duplicate solutions. 

Dialog boxes are available to allow changes to the GA parameters and include diversity 

operators such as crowding and sharing for GA interested users. A mutation scheme is 

included in the default parameters that retains the exploitative power o f the GA, returning a 

diverse set of solutions to the problem whilst ensuring a nimiber of solutions are likely to 

be generated in high performing regions. This system should give engineers a number of 

design options with enough information to evaluate those options in terms of robustness. 

The user may wish to further analyse a region or explicitly avoid a region of the search 

space that has aheady been found, this requirement is discussed in the next section. 

5.5 Identifying Clusters and Searching for Further Data and Clusters 

In an interactive environment the obvious clusters should be presented to the user without 

undue delay; refinement of clustering or classification of ambiguous points can be 

performed by the human or computer at a later time (as suggested by Levinson et al (1979) 
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in the ISODATA environment). It is not viable to show all the different possible 

projections or cluster combinations; ideally a user would have the option to demand 

specific techniques to cluster the data, but this requires familiarity with clustering 

techniques and domain knowledge. Discovering and identifying robust regions was 

covered in Chapter 4, values for the relative volume and fitness ratio w i l l help the user 

decide which clusters are worth investigating. Clusters that have low hypervolume but 

relatively high fitness are also worth looking into because they could turn out to be robust 

regions that the GA has not sampled properly or of very high fitness. 

By default the kernel density estimation (KDE) based clustering analysis is 

performed on the original variables because they wi l l be most familiar to the user and easy 

to understand; analysis on the principal and independent components may reveal more 

natural clusters, but could confuse the novice user so is available on demand as explained 

in the conclusions to Chapter 4. Default parameters for the clustering technique wil l be 

supplied and the basic parameters can be changed by the knowledgeable user allowing 

alternative results (Figure 5.13), the user can also choose to see exactly how the clustering 

algorithm came to its conclusion by checking the 'Show clustering details' check box. 

Der.siJy 

Figure 5.13: Basic Kernel Density Estimation Parameters for Clustering 
(see Chapter 4 for details). 
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After an initial GA run and the first KDE analysis there are a number of possible 

actions the user could take. The user could change the definition of clusters (using the 'Edit 

Clusters' button and dialog. Figure 5.1 lb) found by the original KDE analysis or choose a 

region of the search space with the mouse and perform a further clustering analysis. Figure 

5.14a shows the dialog that appears when the 'Find Clusters' button is pressed on the 

Navigator window. The user can choose whether to find clusters 'inside' limits of the 

current focus, 'outside' those limits, 'avoiding' all highlighted clusters already discovered 

or search for more clusters inside each individual ' highlighted cluster already found. 

'Highlighted' clusters are those whose 'show' option is checked (Figure 5.11a) allowing 

the user to choose regions of the data to work on without permanently deleting cluster 

definitions. The maximum number of clusters to be generated is also under the user's 

control, unless the clustering algorithm runs out of data before that number is reached. The 

user can also choose which coordinate system to perform the clustering in (bottom of 

dialog. Figure 5.14a). 
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Figure 5.14: Dialog boxes to give user control of future events. Options to choose: 
(a) where to find new clusters with KDE analysis, (b) where to search with GA. 

Similarly the user could decide to perform another GA run either inside or outside 

limits defined by the user or inside/avoiding clusters already defined (Figure 5.14b). The 
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clusters have been defined by the clustering technique either in terms o f the original limits 

or the transformation matrix o f an alternative coordinate system and corresponding 

boundaries. The GA and Clustering dialog boxes (Figure 5.14) also contain buttons to 

'Edit Clusters' and the opportunity to change algorithm parameters. The 'Run Negative 

GA' and 'Negative Search' are innovative additions to the system that help to evaluate the 

robustness of regions of the search space, explained further in Section 5.6. 

Figure 5.15 shows the clustering analysis performed on the principal components of 

the 4D Himmelblau data using the option to 'avoid' other highlighted clusters. The option 

to show clustering details was checked from the 'Parameters' menu and the additional plot 

shows how partitioning the data along each principal component formed the blue cluster. 

The blue and yellow clusters shown here are different to those shown in Figure 4.7 because 

these are found using the principal components. As described in the previous chapter, 

clusters are defined by analysing the densities along each variable and the cluster 

containing the highest fitness is identified, assigned a colour (blue) and temporarily 

removed Grom the data so the next cluster can be found (yellow). Note that despite the 

difference in KDE analysis these clusters are very similar to those found in the original 

variables (compare left-hand window in Figure 5.16 with Figure 4.7g). 

I f the user chooses to nm the GA whilst excluding certain clusters, the solutions 

that fall into that cluster can be given a reduced fitness or death penalty to stop them being 

selected in the next generation (in a similar way to the sequential niche technique (Beasley 

ei aL 1993)). I f the search space is sparse the GA may have trouble finding other peaks and 

wi l l probably be drawn towards the outskirts o f the original peak (as Mahfoud (1995) 

described in his criticism of Beasley et aL (1993)). Therefore it may be necessary to 

expand the cluster that the GA should ignore, currently this is left to the user to assess and 

change manually but some automatic technique could be devised. 

143 



Pnnopw Components 

mm 
Acflon ot Focut Sov* to/Delet« 

Overvietiw horn Ovefviw* 

8 - 6 - 4 2 0 2 4 

pc2 
h 0 872 

pc3 
h=C596 

pci 
r>=0 62D 

3] 

normafcMd flrwas 
O maaimum itnatt 

^ local m«i dvntrty 
7 local mm (J.r>«ly 

0 ^ m u M y 

" . • .--^ -..^^^.t.^^ • • 

Figure 5.15: Further clustering performed on the 4D Himmelblau data. Options used; 
^Avoiding other highlighted clusters', 'Principal Components' (Figure 5.14a) and 

'Show clustering details' (Figure 5.13). 
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Figure 5.16: GA avoiding highlighted clusters (output in Moreview3), more grey-
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Figure 5.16 shows the output of a GA running with the option to avoid the four 

regions defined by the clusters found previously. The regions defined by the principal 

components are mapped back to the original coordinates using the transformation matrix 

and limits whilst the GA is running. Moreview3 in Figure 5.16 shows how solutions still 

appear in those avoided regions because they were evaluated during early generations of 

the GA before being given the death penalty, in later generations solutions outside the 

avoided regions are more likely to survive. 

5.6 Evaluating Regions of High Performance for Robustness 

The visual display of clusters and the available statistics give an indication of the relative 

robustness of those regions defined by the extent of the clusters. However for most 

problems the GA wil l have only sampled a proportion o f the available solutions in each 

region - for a problem with continuous attributes there wi l l be an infinite number of 

possibilities. A region may contain some very bad solutions that the GA has not identified 

but could lead to many product failures i f manufacturing tolerances were set at the limits 

defined by the cluster. In order to more accurately evaluate the true robustness of a region, 

some idea of the value and location of the 'worst case scenario' would be usefiil 

(Parkinson et ai 1993). Using the concept o f a 'negative' GA this system provides a novel 

mechanism to evaluate the robustness of regions and automatically change the definition of 

clusters so that they are more likely to contain good solutions. 

I f a GA is run inside a region defined by a cluster in a negative way (that is 

minimise i f the primary goal is to maximise) then the value and location o f the worst value 

in the region wi l l be searched for and the user can evaluate the robustness o f this region. I f 

it is not good enough then the location of that minimum value (found using 'negative' 

search with the clustering algorithm) may indicate how limits need to be altered in order to 

improve the situation. Although many GA and engineering design systems allow 
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maximisation or minimisation of objectives, none of them appears to explicitly evaluate 

the quality and location of 'worst case' solutions. The negative GA will take as long as the 

original GA run which may be a long time (depending on the complexity of the fitness 

function) so it should be used sparingly. Figure 5.17 shows the result of running negative 

GAs inside the red (original variables) and blue (principal component) clusters. The 

window named MoreviewS shows the new low fitness data found inside the blue cluster, 

the grey-black data is that found outside the former fitness limits defined for the blue 

cluster. When saved to the Overview, the limits of the objective values for each cluster 

have been recomputed, as recommended by the warning box seen in Figure 5.17. All the 

data, including that found in the previous run (avoiding highlighted regions) has been 

saved to the Overview Window. 

' R f C C M M E N l E D 

Z « » O u I 

Figure 5.17: Negative GA search performed within red and blue clusters. Data can be 
saved to Overview Window and limits of objective values of clusters are recomputed 

i f requested. 
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An important part of engineering design is the amount o f tolerance that is allowed 

during the manufacturing process. The relative volume statistic ('Rel V o l % ' ) can be used 

to compare the size of each cluster, but the difference in fitness ('Fit Ratio%') and the 

minimum fitness should be taken into account when evaluating the robustness of a region. 

In a manufacturing process there is likely to be a lower bound on the performance or 

objective value below which a design is not acceptable, this could be either an absolute 

lower bound or relative to the best solution in the cluster (local maximum). Thus it would 

be usefiil for the user to see how far away Grom the best solution they need to go before the 

fitness of the solution falls below this value. A very usefiil and novel part of the design 

system is the use of the 'Objective Filter' in the Suimnary of Clusters dialog box (Figure 

5.18). In this example the user has set the filter at 40% of the maximum objective value 

found so far. When the 'Apply' button is pressed the system recomputes the limits of the 

highlighted regions (those with the 'Show' box checked) so that only the top 40% of the 

fittest solutions remain. This is reflected in the fitness ratio ('Fit Ratio%') statistic shown 

in the Summary of Clusters dialog; all of the values are above 60% (some more than 60% 

because their minimum fitness was above the global minimum before the filter was used). 

Further negative GAs can be performed within these new regions to see i f there is fiirther 

degradation of fitness, which is likely as the GA system has so far sampled a relatively 

small number of solutions in this continuous search space. This method is a more complete 

test of robustness than that of Tweedie et al. (1996b) (generating random solutions, then 

setting tolerance parameters in variable space) because bad solutions are deliberately 

searched for. 

Clustering can also be performed negatively (see Figure 5.14a) so that the clusters 

containing the worst solution are chosen to show the location o f the bad solutions. The user 

can then make a judgement on the robustness o f a region by comparing the location o f the 

fittest solution with the worst solution and adjust the limits o f the region accordingly for 
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manufacturing purposes. Worst case analysis is a conservative way to evaluate robustness 

(Du & Chen 2000), so if the location or value of the worst solution compared to the best 

solution is such that the probability of creating the bad solution is small, then the user 

could choose to leave the limits as they are. An experienced engineer with extensive 

knowledge of the problem would make this decision, but this system allows such decisions 

to be made. 
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Figure 5.18: Clusters can be edited automatically using the 'Objective Filter' box (set 
to 40%). Only highlighted ('Shown') clusters are affected. 

All the techniques described in this section will generate more data; the user can 

decide how much of that data shall be saved and added to the original set of solutions (any 

duplicated solutions will be ignored). Then recalculation of robustness can be performed to 

assist in further computational analysis and the user can consider the next action in the 

continuous design and exploration loop. The system is designed to let the user initiate 

148 



actions but to remove tedious tasks by finding obvious clusters as the search progresses. In 

a perfected system this would be like a cockpit design system (Spence 2003) where the 

system continually calculates and suggests new clusters to explore based on the user's 

preferences (Noy & Schroeder 2001). A novice user may not understand or want all the 

information produced by the computer, so this prototype system works one step at a time to 

avoid confusion. 

The KDE-based clustering algorithm and the statistics are initially used to identify 

high performance regions. The user then has a choice for further exploration, either using 

the clustering technique to identify further clusters or running GAs to generate more data 

in promising regions. The negative GA helps to evaluate the noisiness o f a region and 

locate the position of the worst solution. The objective filter lets the user define a tolerance 

on the allowed fitness of solutions, together with further negative runs o f the GA this 

improves confidence in the robustness and quality of a region. 

5.7 Conclusions 

An easy to use and understandable interface has been implemented to help in the 

identification of robust regions in a mathematical or engineering design enviromnent. The 

design o f the interactive system follows the philosophy of Shneiderman (1998): Overview, 

2^om and Details on Demand. Multivariate data can be displayed and compared using 

view types based on the scatterplot matrix and parallel coordinates that are easy to 

understand and do not distort the information. The flexible interface allows the user to 

manipulate the data and move around the search space, with the option to create new data 

and save it to the 'Overview' window i f required, giving the user an overall impression of 

the design space. Interesting regions o f the search space can either be defined using the 

bespoke clustering algorithm or by the user; the relevant solutions are highlighted by 

colour enhancing the perceived partitions in the data. The fitness (or objective value) of the 
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solutions is given importance by changing the perceived brightness o f the data item as well 

as supplying a view with the fitness given in the third dimension (2D+Fitness in Z-axis). 

The system successfully incorporates most of the suggestions given in the literature and 

summarised in Chapter 3. 

The automatic clustering algorithm is a novel analytical tool based on kernel 

density estimation (Silverman 1986) that can find the main clusters in a variety o f 

coordinate systems. The algorithm achieves its goal of quickly supplying the main clusters 

in the data using very few parameters that the user does not need to know about. Clusters 

can be defined in the original variables or in an alternative coordinate system such as PCA 

and ICA that is related to the original variables. Clusters defined in altemative coordinate 

systems can be viewed in the original variables for comparison; again the Overview 

window is very handy for comparison purposes. The clustering algorithm is fairly 

successful on most data supplied, sometimes the results depend on the coordinate system 

used and eccentricities of the data (particularly small, high fitness clusters), however the 

user can easily change the definition o f clusters i f necessary. The algorithm is sufficient for 

the puiposes described in Chapter 4, particularly for this prototype system written in 

M A T L A B for novice users. However the technique may need enhancing to be comparable 

with more sophisticated clustering algorithms when knowledgeable users start to use the 

system. 

The genetic algorithm can be used in a very flexible way, using limits defined by 

the user (either in original vector space or altemative coordinate systems) or the clustering 

algorithm to search inside and outside specified regions o f the search space. The novel 

'negative GA' option also lets the user check the worst case scenario inside a cluster which 

together with the objective filtering mechanism allows the user to set manufacturing 

tolerances and confirm the robustness of the region. Clusters o f solutions can be compared 
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visually or using statistics such as the fitness ratio and relative volume enabling the user to 

evaluate the relative merits of regions in terms of robustness and quality. Such detailed 

evaluation of robustness has not been seen in before in an engineering design system based 

on genetic algorithms. This work extends the excellent visualisation and analysis tools of 

Tweedie et ai (1996b) by checking the worst case scenario within a region using the 

negative GA. 

This innovative combination o f genetic algorithm and clustering technique 

highlighted by the colouring of important clusters allows detailed exploration and 

exploitation of information. The use of visualisation to enhance the understanding of 

genetic algorithm data for engineering design is designed to allow the user to control the 

search process and explicitly impose their preferences on the system rather than merely 

waiting for the system to return 'optimal' solutions. Thus the system extends the proposals 

suggested by Parmee et al. (2000) and advocated by Mathews & Rafiq (1994); namely to 

support engineering design by allowing knowledge discovery through visualisation and 

extensive user interaction with the problem. The usefulness and success o f such a system 

can only be confirmed with testing by human users, the following chapters describe the 

results of evaluation by novice users working on simulated problems and comments given 

by experienced engineers seeing the system at work on their own design problems. 
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Chapter 6: Testing Methodology: Test Functions, Evaluation of 
Users and Benchmark Algorithms 

6.1 Introduction 

This chapter describes the methodology used to examine to what extent the system helps 

users understand data and potentially solve engineering design problems. This preliminary 

investigation was designed to test the useftibiess and applicability o f as many features o f 

the system as possible and compare the performance of users with GA-based 'benchmark' 

algorithms working on the same problems. Therefore a specific robust design task was 

simulated on artificial test fimctions allowing the system to be tested in a controlled 

environment; consequently the people used in the experiments were new to the problem as 

well as the system. In real world design the engineers may have immense knowledge of the 

problem and use many different ways to evaluate robustness and choose between designs 

(see Chapter 8). However the experimental results and critical analysis of the users 

working on the specific design task (Chapter 7) were instructive in assessing the usability 

o f the system and its applicability to a general design task. This methodology provided a 

compromise between fiill psychological tests on each aspect o f the system and the lengthy 

training of experienced engineers in using the system, both of which were outside the 

scope of this research. 

The artificial objective functions used to simulate engineering design scenarios are 

described in Section 6.2. A small number of novice users tested the system's capabilities 

by attempting to analyse and understand those test fimctions using the tools on the 

interface. The users were asked to complete the 'engineering design task', given in Section 

6.3, that involves defining robust regions of the search space according to some minimum 

performance level (tolerance). By comparing the hypervolume and maximum fitness of 

regions found they were asked to assess the relative quality o f each region and provide an 
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order o f preference. Because the relative size and shapes o f peaks in the test functions were 

known it was possible to define the regions the user should be looking for and the relative 

quality of those regions according to the robustness criteria. 

Section 6.4 describes the various measures that were introduced, some adapted 

fiom the evolutionary computing literature, to evaluate how well the users had understood 

and defined the search space. The users' quantitative assessment of regions found in each 

test function was obtained fi'om a questionnaire, along with a qualitative assessment of the 

system and test experience. The questionnaire and further ways to assess the behaviour of 

the users are described in Section 6.5. The performance o f the users was also evaluated by 

comparing their results with that achieved by three benchmaric algorithms. The algorithms 

are traditional techniques fiom the multimodal evolutionary computing literature: the 

simple GA, GA with sharing and deterministic crowding. The relative merits and predicted 

performance of these algorithms are discussed in Section 6.6. The chapter concludes by 

highlighting the difficulty of comparing users that are attempting to complete the robust 

design task and algorithms that have different internal optimisation strategies. 

6.2 Design of Test Functions 

Test functions were designed to simulate some of the problems encountered during 

engineering design. The bi-objective fimction given in Fonseca & Fleming (1995) was 

converted to a multimodal function so that pertinent characteristics such as the width, 

height and amount of noise in each peak (or optimum) can be controlled. The 

characteristics of the peaks can also be defined in another coordinate system using a linear 

transformation matrix, this means peaks whose dimensions are correlated at an angle to the 

original variables can be described. Non-linear transformations are not considered here. A 

test function including discrete and discontinuous variables, also commonly found in 

engineering problems, was designed but discarded to reduce the burden on the testers; the 
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performance of the system working on discrete and discontinuous functions is analysed in 

Chapter 8. 

There are two forms of the function, the first produces sparse peaks (Figure 6.1) in 

the search space and the second combines the definitions o f peaks so that they overlap 

(Figure 6.2). The first f i inction/j is given by: 

( 
exp - z 

p 

( ^ \ \ 

Equation 6.1 

where: i = (number of variables) 

p = 1,... (number of peaks) 

Xi = variable values given to function 

dp = centre ofp '^ peak in the variable 

hp = height of peak (fitness) 

Wip - width of/?* peak in i*** variable 

Tip = transformation matrix 

Aip = amplitude of noise 

Fip = fi^uency of noise 

Domain: 0<=jCi<=10 

0<=/a<-1 

The exponential term defines the overall shape o f the function whilst the second term 

represents noise that can be added to the function. Figure 6.1 shows the function 

Example_l with the parameters given in Table 6.1. 

The second function^B is only a shght modification to the equation: 

f 

-
P 1 

Vl f ^ 

/ J ^ > 

Equation 6.2 
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Moving the sum outside the exponential term gives very different results; the peaks are 

much more likely to interact with each other generating lots o f data that is difficult to 

understand. Example_2 in Figure 6.2 has very similar parameters to Example_l, but 

because o f the interaction, 16 peaks are generated from the two initial peaks. The exact 

location and width of these peaks are difticult to calculate because of the interaction (this is 

also true to a lesser extent for / ( ) , but they can be found numerically because the 

construction o f the functions is known. The height of^e is sometimes bigger than one (the 

maximum height o f an individual peak) because o f the interaction between peaks. 

Test functions based on these constructions were given to the users for evaluation; 

Table 6.1 shows the parameters used (see Appendix B for transformation matrices used in 

Test_2). Figures 6.3 - 6.5 show the test functions with each peak coloured down to 

approximately 50% of the local optimum. The test functions vary in complexity and 

difficulty of locating peaks. 

Function No. 
Vars. 

Func. 
Type 

No. 
Peaks 

Centre 
(per var.) Height Width 

(per var.) 
Noise 

Amp./Freq. 
Alt. 

Coord. 
Ex 1 

(Fig 6.1) 
4 fA 2 [3 3 3 3] 

[7 7 7 71 
1 
.5 

[.5 .5 .5 .5] 
[ 1 1 1 1 ] 

[ 5 ] / [ l ] 
[101/[11 

No 

Ex 2 
(Fig 6.2) 

4 fa 2(16) [3 3 3 3] 
[7 7 7 7] 

1 
.5 

[.5 .5 .5 .5] 
[ 1 1 1 1 ] 

No No 

Test 1 
(Fig 6.3) 

5 fA 4 [ 3 3 3 7 7 ] 
[7 73 3 3] 
[2 5 2 5 2 ] 
[8 5 8 5 8] 

1 
.75 
.5 

.25 

[1.5 1.5...] 
[ 3 3 3 3 3 ] 

[1.5 1.5...] 
[3 3 3 3 3] 

[ 5 ] / [ l ] 
[ 5 ] / [ l ] 
[ 5 ] / [ l ] 
[51/[1] 

No 

Test 2 
(Fig 6.4) 

4 fA 3 [3 3 3 3] 
[7 7 7 7] 
[2 8 2 8] 

0.5 
1 

.3333 

[3 13 1] 
[3 13 1] 
[3 13 1] 

No No 
45deg 
30deg? 

Test 3 
(Fig 6.5) 

4 f s 2(16) [3.3.3,3] 
[7.7.7,7] 

0.25 
1 

[3 3 3 3] 
[1.5 1.5...] 

No No 

Table 6.1: Parameters for examples and test functions (see also Appendix B). 
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Figure 6.1: Example l (function type/<): peaks with difTerent widths/height/noise. 

*»»2 

Aclior el Focut 

• GA Zoomi 

Saw toA^eiste 
Iron-. O/efvww 

TrxjOuitert Zoor» Ô i 
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Figure 6.2: Example_2 (function type fs): many possible peaks, d i f f icul t to 
understand. 
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Original Variables 

Original Variables 

Figure 6.3: Test_l, peaks defined in original coordinate system with some noise, two 
of the peaks small and very hard to find. The scatterplot matrix (above) and 2D with 

fitness in the z-axis (below) views are shown. 
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Original Variables 

Original Vanables 

Figure 6.4: Test_2, two of the peaks defined in alternative coordinate systems, easier 
to find but difficult to define boundaries. 
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Original Variables 

Original vanables 

Figure 6.5: Test_3, defined using f s in the original coordinate system. Five of the 
sixteen peaks highlighted in colour. 
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6.3 Robustness and Quality of Regions Found 

To simulate an engineering design scenario using the system a definition of high 

performance regions and the quality o f those regions was needed. Such a definition would 

enable the user to evaluate the relative quality of regions and thus clarify their goals during 

the engineering design task, it would also enable the construction o f 'ideal' regions to 

evaluate user performance and validate their conclusions. 

For most engineering design problems the quality is individually defined, so the 

exact definition o f robustness and quality cannot be defined across problems. However the 

definition o f quality is usually related to some performance value (such as minimising cost 

or attaining a target value) whilst ensuring that the design meets some manufacturing 

specifications (Taguchi 1986, pp. 13-21). The definition of the problem wil l determine 

whether these manufactiuing specifications are given in the form o f a tolerance on the 

performance (objective), parameters (variables) values or both. Either set of tolerances 

could be given in the form of a hard constraint (for example 'definitely not more than') or 

soft constraint ('as close as possible to'). Tweedie et aL (1996b) define the tolerances in 

variable space and iteratively change them to agree with objective criteria. Phadke (1989) 

gives examples of trying to meet different types of manufacturing tolerances set in 

objective space {ibid. pp. 15-16) and changing parameters simultaneously to achieve 

tolerances set in both variable and objective spaces {ibid. pp. 28-29). Either approach wi l l 

achieve the aim of defining robust or non-sensitive regions that are as wide as possible in 

variable space but cause minimal changes in objective space, although they may return 

different answers. 

In these user evaluation experiments the robust design task was set up to use as 

many of the features currently available on the system as possible. Therefore the tolerance 

was set in objective space and the users were encouraged to find regions in variable space 
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that agree with the tolerance. The regions can then be evaluated and compared in terms of 

maximum objective value and size of the acceptable region in variable space, encouraging 

decision making that is a major part of engineering design. 

For an objective function f(x), the quality o f an optimum is given by: 

where Q = Quality o f region, 
M - Relative value o f optimum, 
V = Relative hypervoiume o f shape at tolerance 
level r 

For simplicity V is defined thus: 

where n 
I f m, 
and T 

then ti 

Number o f variables. 
Position o f optimum in variable 
Tolerance level, f ind largest 2*n sided shape 

containing m such \hMf(x) > 
Length o f the side of the shape. 

In the following example o f two variables the tolerance required Tis 50% o f the optimum. 
The line defining the tolerated region is a circle, so the largest 4-sided shape that fits 
inside the circle is a square. (A/ ' and V are actual values o f optimum and hyjjervolume; 
normalise to find A/and K relative to overall limits). 

M' = 0 r = -25 V' = Volume 

Figure 6.6: Definition of Qualit> given in engineering design task. 

The definition of quality including robustness based on tolerance in objective space 

is illustrated in Figure 6.6. For any given optimum found in the search space, the aim is to 

find a region such that all solutions inside the region have a value within a certain tolerance 

level of the local optimum. For simplicity the region of acceptability (or robust region) is 
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defined as the largest 2'*'n sided shape that fits inside the tolerated region. The quality is 

then found by multiplying the fitness value of the local optimum by the hypervolume o f 

that region. A tolerance level of 50% from the local optimum was set in objective space as 

acceptable; here the word tolerance was used to define the amount o f change in objective 

space, that in turn defines the tolerated (feasible) region in variable space. The coloured 

regions shown in Figures 6.3-6.5 are the nearly ideal regions that obey this definition. The 

fitness and volume of the regions found by the users were compared against these ideal 

regions. 

Table 6.2 shows the quality measure for each ideal region derived from the actual 

fitness and hypervolume values and their corresponding normalised values, Appendix B 

gives details of how these regions were numerically defined taking the interaction of peaks 

into account. Quality values for the third test function are particularly intriguing; the height 

and hypervolumes for the peaks are inversely proportional, but this quality value gives 

more importance to the volume. This is possibly the opposite to how the function is 

perceived by an observer - the difference in height is more apparent than the difference in 

width. Test_2 also implies that the hypervolume o f peak 3 is the highest, which does not 

appear so when viewing Figure 6.4, however these regions are defined in alternative 

coordinate systems, so their true volume is different to that perceived in original 

coordinates. The normalised quality value is used to give an approximate rank for each 

peak related to the other peaks in that function, where 1 is low quality and 5 is high quality 

(last column in Table 6.2). 
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Func. Peak No. 
(colour) 

Height 
(actual) 

Hypervol 
(actual) 

Quality 
(actual) 

Height 
(norm) 

Hypervol 
(norm) 

Quality 
(norm) 

Rank 
(1-5) 

Test 1 
(Fig 
6.3) 

1 (blue) 1.001 .000012 .000012 .398 .011 .022 2 Test 1 
(Fig 
6.3) 

2 (green) 
3 (yellow) 

.750 

.516 
.000538 
.000011 

.000404 

.000006 
.298 
.205 

.510 

.010 
.740 
.010 

5 
1 

Test 1 
(Fig 
6.3) 

4 (cyan) .251 .000495 .000124 .099 .469 .228 3 
Test 2 1 (green) .500 .000432 .000216 .273 .278 .246 1 

(Fig 2 (red) 1.000 .000432 .000432 .545 .278 .492 5 
6.4) 3 (blue) .333 .000693 .000231 .182 .444 .262 2 

1 (blue) ,251 .0151 .00362 .0242 .1123 .0482 1 
2 (yellow) .449 .0109 .00471 .0434 .0816 .0627 4 

Test 3 
(Fig 
6.5) 

3-5 
6 (magenta) 

7-11 

II 
.647 

II 

II 
,0080 

It 

II 
.00494 

II 

II 
.0625 

II 

II 
.0594 

II 

II 
.0658 

n 
5 

Test 3 
(Fig 
6.5) 12 (green) .845 .0058 .00471 .0816 .0432 .0626 3 

13-15 II n II II II II 
16 (red) 1.043 .0042 .00422 .1008 .0315 .0563 2 

Table 6.2: Actual Fitness, hypervolume and quality measures for each test function, 
with normalised values. The colour of the peak is that shown in the relevant figure 

number. The rank for each peak is related to the normalised quality value; 
1 is low and 515 hieh. In Test_3 there are 16 peaks of five different types, Figure 6.5 

highlights an example of one at each level. See also Tables B . l and B.2 in Appendix B. 

The definition given in Figure 6.6 provides a quality measure for every peak in the 

test functions. However when a user is using the system some data may look more robust 

than it actually is because not all the search space has been sampled, therefore there is an 

issue with apparent robustness of a region due to the shape of a peak and its true robustness 

found by sampling the whole region and analysing noise inside the peak. Although this 

statistic gives an absolute value, the quality of a peak from a user or engineer's point o f 

view depends on the relative importance given to the fitness or hypervolume of the region. 

For an engineering problem the person who designed the fimction can assess this, but in 

the testing process it was left to the perception o f the user. 

The ful l engineering design task given to the user before the experiments is 

supplied in Appendix C.2. The users were asked to achieve a tolerance level of 50% of 

fitness of a local optimum, however to fully complete the engineering design task the users 
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needed to compare regions by defining their width in all variables as wide as possible 

without including infeasible individuals (with fitness less than 50% of the local optimum). 

So the implied engineering design task is to meet a hard constraint on the edge o f that 

constraint which is a very difficult problem. To evaluate the extent users have understood 

the search space and engineering design task they are asked to give a rank for the relative 

quality of regions they have found. It is likely the users wi l l not find all the peaks, so 

cannot be expected to duplicate the exact rank, but their results should reflect the order o f 

the ranks given here. 

6.4 Measuring Criteria 

6.4.1 Methodology 

McGraw (1992) suggests the testing of an interface should investigate the features the 

system was designed for, so the aim o f the experiments was to assess the effectiveness of 

the system in helping users perform the engineering design task. This involves combining 

optimisation and clustering techniques, so the effectiveness of those techniques was 

assessed as well. 

The aim of the experiments was to give an indication of how the system aids 

decision making, as well as the exploration attributes of the joint GA and clustering 

techniques. Given the definitions of height and hypervolume o f each peak, can the users 

find the correct regions and use the system to make a choice about the comparative quality 

o f each region? As the quality of a region is given as a trade-off between the height and 

width, they can only give subjective answers. Measures are needed to check i f the correct 

regions have been found and defined, has the user searched for good fitness solutions and 

checked the robustness? Do they check that a region is robust before going onto the next? 

Have they spent too much time searching in bad areas o f the search space? 
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The results need to be compared against the benchmark techniques from the 

evolutionary computation literature that are used to solve the problem o f multimodal 

fitness functions. Advantages and disadvantages of the benchmaHc algorithms are well 

known (see Sections 2.3.3 and 6.6) so are ideal for comparing with a new system and 

drawing conclusions. However most GA-based methods are designed to just find local and 

global optima within a function, whereas the engineering design task requires users to 

assess the size and robustness of the region around each local optimum. GAs wi l l find local 

optima but not necessarily define the region without outside help. To solve the problem of 

comparing very different types of algorithm working on the same problem a compromise 

between the engineering design and evolutionary computing approaches was needed. 

In the same way that the definition of quality and robustness wi l l be different for 

most engineering problems, there are also no definitive guidelines on how to evaluate a 

system for engineering design because they are mostly designed to solve individual 

problems. The evaluation of how well a decision maker has performed is also undertaken 

on a case by case basis and no generic testing procedure has been produced. In the 

evolutionary literature most researchers suggest a new system and show the results on low 

dimensional test functions then give some new results to a complicated engineering design 

problem, without understanding the problem there is no way o f knowing i f better or more 

robust solutions exist. No obvious testing procedure has been put forward for more 

complicated artificial test functions. 

Therefore metrics fi*om the evolutionary literature are adapted to assess how closely 

users and algorithms define the desired regions o f the search space given in Section 6.3 

(Table 6.2). Two sets of quite similar measures are described in the next sub-section: the 

first assess how close the definition supplied by the user is to the true definition; the second 

set of measures compares the actual data produced by users and algorithms with the 
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correctly defined regions. The second set of measures allows comparison between the 

users and algorithms and indicates occasions when users have found desired regions 

without realising it. 

6.4.2 Analysis of User-Defined Regions 

Three metrics have been implemented to compare the regions defined by the user to the 

ideal regions. They are independent and in the range 0-1, so the product of the three gives 

an overall quality measure for each experiment. 

Metric 1: Correct Ratio C* 

This measure assesses the number of peaks found by the user and correctly identified by 

the user. The most common statistic in multimodal optimisation experiments is the success 

rate o f optima found in a function (Beasley et aL 1993), which can be expressed as a ratio 

o f the number of correctly identified peaks to the number of actual peaks. But when users 

are defining regions themselves they may identify two clusters on a single peak; this 

behaviour is penalised by including the ratio o f number o f correctly identified peaks to the 

total number of regions identified by the user. So the Correct Ratio is given by: 

C = Equation 6.3 

where Na = number of actual peaks in the search space 

Nc = number of correctly identified peaks 

Nd = total number of regions identified by the user as peaks 

Metric 2: Fitness Accuracy 

The second metric is also commonly used in multimodal optimisation experiments; the 

accuracy of the best fitness found by the user to the nearest true local optimum. This is 

given as a ratio of the best fitness to the actual fitness: 
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Equation 6.4 

where r^\,...J^d (number of regions identified by user) 

/ = a member of 1,... (number o f actual peaks in the search space) 

Br = best fitness in each region r identified 

Fi = fitness of the closest true local optimum / to region r 

Metric 3: Hypervolume Accuracy f f ^ 

The third metric is similar to the second but measures the accuracy o f the volume of the 

region defined by the user. The hypervolume defined by the user for each identified region 

can be compared with the hypervolume of the nearest robust region (the ideal region that 

satisfies the tolerance requirement given for each peak in a function): 

N, r 
J Equation 6,5 

U 

where r = 1,. ..^Nd (number of regions identified by user) 

/ = a member o{\,,..J^a (number of actual peaks in the search space) 

Ur = hypervolume o f each identified region: 

C/, = J~J [max(x^ ) - min(jc^) (pc^ is the space defined by r in each variable v) 
V 

and Ri = hypervolume of the ideal region / closest to each r: 

Ri =Y\ ^^i^'v) ~ nun(jr')] is the space defined by / in each variable v) 

When the actual peaks are defined in an alternative coordinate system the hypervolume 

wi l l be defined in this system. For fair comparison the data identified by the user (in any 

coordinate system) is transformed to the actual peak coordinates and the resulting 

hypervolume compared to the volume of the nearest robust region. 
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The hypervolume accuracy metric compares the actual size o f the regions defined 

to the size of the nearest local optimum, the location o f the regions is not defined. It is 

possible that the user may define a region that does not correspond to the true local 

optimum and yet happens to have the same hypervolume as the required region. In most 

cases the fitness accuracy statistic wi l l be worse in this case, so in combination the fitness 

and robustness accuracy statistics gives a good indication of how well the user has defined 

the region. 

Combined User Metric: 

The overall metric for user definitions of regions is a product o f the three metrics defined 

here: 

The product of these terms means that all three metrics need to be high (where 1 is the 

maximum) to give a good overall value of O^. 

6.4.3 Analysis of AU Data Found During Session 

In this section metrics to evaluate the data generated by the user or an algorithm are 

described. The definition of regions set by the user are ignored, instead the sampling o f 

ideal regions defined by the true peaks are assessed. These metrics allow any algorithm or 

user/algorithm combination to be compared. The values are again given in the range 0-1 

and can be combined in an overall metric for each problem. 

Metnc 4: Maximum Peak Ratio 

The success and accuracy of peaks found by the algorithm are defined in one metric called 

"maximum peak ratio" (Miller & Shaw 1996). For each peak the best (fittest) solution that 

falls inside an actual peak region (that is defined at 50% of each local maximum) is 
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compared against the local maximum. The maximum peak ratio for all peaks is the average 

of each local peak ratio: 

1 B 
* = —— ^ —f- Equation 6.7 

^ a i 

where / = 1,.. .^a (number of actual peaks in the search space) 

Bi = best fitness found by user in each region / ( i f none found Bi = 0) 

Fj = actual optimal value o f each peak i 

I f no solution is foimd within the peak region, that peak wi l l have a 'zero peak ratio, 

conversely i f maximum peak ratio = 1, all peaks and their exact local optima have been 

found. 

Metric 5: Inner Hypervolume Accuracy 1* 

Metric 5 is the hypervolume of all solutions that have been found inside each ideal region 

compared to the actual hypervolume. For each peak this value wi l l always be less than or 

equal to 1. The average of the hypervolume ratio for all peaks identified gives the inner 

hypervolume accuracy: 

I"" = V " Equation 6.8 

where j=\,...jsfc (number of correctly identified peaks) 

/ = a member of 1,... (number of actual peaks in the search space) 

Uj = hypervolume of data inside each correctly identified region j: 

Uj = P[[max(jc;;) - min(jc/)] (V is the space defined by region j in each variable v) 

and Ri = hypervolume of the local region / closest to each region J: 

Ri =Y\ ["^^(-^v) ~ niin(x')] ( j / is the space defined by region / in each variable v) 
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Again for actual peaks defined in alternative coordinate systems all the data wi l l be 

transformed to that definition and the subset o f data that falls inside the peak definition wi l l 

be compared with the true definition. 

Metric 6: Productivity Ratio 

This metric calculates how much search has been concentrated in the desired regions. Any 

solutions that fall outside those regions are deemed as redundant. However solutions at the 

bottom of a peak may have been used to find the good solutions, therefore it is not 

expected that this metric wi l l achieve a value of 1, but wi l l tend towards it. The amount o f 

productive search is defined as the ratio of solutions found inside actual regions to the total 

number of all solutions found by user or algorithm: 

= Equation 6.9 

where I = l,...,A/fl (number of actual peaks in the search space) 

/ I , - = number of solutions found inside each actual region / 

/ i ^= total number of solutions found during an experiment 

Combined Data Metric: 

The overall metric for the quality of the data produced by an algorithm or system is again 

the product of the three metrics defined above: 

O"" = M V \ P ' ' Equation 610 

Metrics 5 and 6 together give an indication o f how well the true regions have been 

sampled. For each region i f the inner hypervolume accuracy is large and the number o f 

solutions is large it is assumed that the sampling across the region is good. I f the inner 

hypervolume metric is large but the number o f solutions is small, the sampling is not good, 

but this wil l be reflected in the productivity metric. I f the size of the inner hypervolume 
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metric is small this indicates that only a small part of the region has been sampled anyway. 

These metrics do not indicate the efficiency of the sampling, for example i f nearly the 

whole region has been identified but most of the solutions are concentrated in one part of 

the region, the metrics wi l l be unchanged. Additionally measuring the sampling efficiency 

is not fair on multimodal algorithms that are not designed to search around local optima, 

they just try to find individual peaks. For a restricted set o f experiments these metrics are 

sufficient as a compromise that measures the ability to find and define regions but no more. 

6.4.4 General Measures and Discussion 

Other measures to enable comparison between runs are the number o f evaluations and time 

spent on each problem. 

Metric 7: Number of Evaluations 

For all experiments a maximum number of evaluations o f 30 000 was set. This is not a 

very high number, although could take a significant amount o f time i f the evaluation 

function was very complex. For the benchmark algorithms this number o f evaluations is 

always used. But the users were told to use as many of these evaluations as they wanted 

and oflen they were happy enough with their work to finish before using them all, or 

became tired and disinterested so finished early. Comparisons can still be made despite this 

anomaly. 

Metric 8: Time 

The amoimt of time spent by the users and for different algorithms on each problem is 

given. The time includes CPU time by the genetic algorithm and clustering technique as 

well as thinking time by the user. The thinking and interaction time (including redrawing 

of figures) spent by the humans overshadows the CPU time o f the algorithms, but is 

instructive nevertheless. 
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One measure often used during multimodal experiments that has not been 

mentioned is the chi-squared measure used by Deb & Goldberg (1989) to test the sharing 

algorithm. They asserted that the number of solutions generated on each peak should be 

proportional to the fitness of the peak and used a chi-squared like measure to ensure the 

distribution is correct. In contrast to traditional functions, the fimctions used in these 

experiments have additional characteristics such as varied hypervoluihe of peaks and 

amount of noise, so an alternative proposal could be used such as generating the number o f 

solutions proportional to the hypervolume or even the quality measure defined in Section 

6.3. Such a proposal could be seen as matching the 'relative effort' o f the user (number o f 

solutions generated) to the size or quality of the peak. However this was not an explicit aim 

of the engineering design task set for the users, nor is it the aim o f all multimodal 

algorithms, so it is unfair to set such a target. 

These measures show how many peaks have been found and to what extent they 

have been explored without going into too much detail. The combined effect of the overall 

measures allows this evaluation without biasing the results towards engineering specific 

tasks or multimodal optimisation algorithms. The number of peaks found and accuracy o f 

fitness and robustness is expected to be higher for the user driven experiments. Another 

subjective element of the testing is to ask whether the user has leamt more about the search 

space whilst interacting with the data. This can be partially answered by statistically 

comparing their evaluation of the search space with the theoretically ideal definition o f 

quality, the users also need to be asked i f they understood the engineering design task and 

found the system useful in attempting to solve it. 
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6.5 User Evaluation and Questionnaire 

A small group of four people volunteered to undertake this preliminary evaluation of the 

system without recompense, they were peers of the author with varying amounts of 

knowledge of engineering design and evolutionary algorithms, none o f them had used the 

system before but all were given a demonstration o f the system during a seminar and a 

further demonstration at the start of the test. The users were novices with the system and 

the problem with limited time available so the author was on hand to answer any technical 

questions and to provide assistance for the more complicated operations. Users were 

encouraged to discuss the system and explain how they were solving the problems 

verbally, the author recorded their conunents and their actions were recorded to a data file 

by the system. Participants were given the following materials that are shown in the 

Appendix C: 

1. Introduction to the System and Tests (C. 1) 

2. The Engineering Design Task (C.2) 

3. Picture of the two-dimensional Hinunelblau Function (C.3) 

4. Questioimaire for each Test Function (C.4) 

The questiormaire was designed for participants to fill in at the end o f each session 

(Appendix C.4). They were encouraged to identify the regions of the search space they 

considered important and label them as coloured clusters using the features o f the interface. 

In Question 1 they are asked to rank the regions by giving a quality or preference measure, 

this allows a comparison between the actual quality o f regions found and the perceived 

quality by the user, it was not expected that they should give the exact rank but give an 

order that reflects the true quality given in Table 6.2. They were then asked to rate their 

confidence in the quality measures given to get some indication o f how happy they are 

with the answers they have given and work done. Question 3 asks how certain they were 
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that all peaks were found and in Question 4 the users were asked to rate the usefulness of 

the system. Questions 1-4 were answered with a number between 1 (low) and 5 (high). 

Finally Question 5 was an open question to encourage comments and constructive criticism 

about the system. 

As well as the formal feedback from the questionnaire it was possible to extract 

information about how users tackled the task and what features they used to complete the 

tasks through their comments and the recorded actions. O f particular interest in this study 

were the following algorithms and features: 

Preferred view type (e.g. 2D Scatter / Parallel Coordinates...) 

Use of alternative coordinate systems (PCA/ICA...) 

Zoom and multiple views used and understood? 

Order of axes changed (AxesOrder dialog) to compare different variables? 

GA parameters changed or diversity algorithms used? 

Use of'negative' GA 

Clustering algorithm parameters changed? 

Clustering algorithm used or clusters defined manually? 

Use of 'negative' clustering search 

Objective Filter used or another procedure followed to redefine regions? 

Use o f colours to identify regions o f the search space 

Exploratory behaviour - how did users balance the trade-off between 

concentrating on particular regions and searching for new regions 

Save to Overview used? 

Summary of clusters used to differentiate between regions? 
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This preliminary investigation was used to evaluate the system as a whole and get 

general feedback on the usefuhiess o f the features in helping to solve the engineering 

design problem. A lot of information was gained from the users in the discussions during 

the tests, however it is accepted that more formal methods are needed to evaluate particular 

attributes of the system. These experiments were designed to allow the users to make 

decisions with fewer restrictions by simulating an engineering design environment. The 

definition of quality and resulting 'ideal* regions of the search space also allows an 

evaluation of the influence of the user on the genetic algorithm search. 

6.6 Comparison of User Performance with Evolutionary Algorithms 

Having identified the peaks in each objective function and determined the characteristics of 

each associated high performance region, it is possible to evaluate the performance of 

traditional evolutionary algorithms and diversity techniques and compare with user 

performance. These algorithms do not MabeP regions so Metrics 1-3 o f Section 6.4.2 

cannot be used, but the other metrics allow comparison o f the number of peaks found and 

how much they have been investigated. The algorithms chosen were well known 

benchmark algorithms and tested diversity techniques: 

1. The simple GA 

2. GA with Sharing (Deb & Goldberg 1989) 

3. Deterministic Crowding (Mahfoud 1992) 

Parameters for these algorithms are shown in Table 6.3. The simple GA uses 

crossover and mutation to both explore the search space and exploit any good solutions 

that are found. However the simple GA wi l l soon converge on a good solution and the 

power of selection w i l l encourage the population to be almost identical, the only way to a 

new peak is by random mutation to a very good individual, which is unlikely. The default 
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system parameters used by the participants in the experiment are the simple GA nmning 

for 20 generations with the mutation scheme added to ensure no duplicate solutions 

(Section 4.3.1 and Figure 5.12b); the mutation scheme slows down the algorithm 

(especially as number of generations increases) but ensures some local diversity. 

The sharing algorithm encourages diversity by reducing the fitness of solutions that 

are close to other solutions according to some pre-defined notion of 'closeness' (Section 

2.3.3). Sharing will have an advantage over the users because the number of peaks will be 

given to it, but the peaks are not evenly spaced in Tests 1 and 2 so this advantage may be 

cancelled out. Another disadvantage of the sharing algorithm is the time complexity 

incurred during the distance comparison between individuals. 

Algorithm Parameter Name Parameter Value / Type 

Simple GA 

Number of Generations 300 

Simple GA 

Populations Size 100 

Simple GA 

Number of Bits per Variable 16 

Simple GA 
Elitism None (100% replacement) 

Simple GA 
Selection Type Stochastic Universal 

Sampling 
Simple GA 

Crossover Type Double Point 

Simple GA 

Crossover Rate .7 

Simple GA 

Mutation Rate .7 (/nbits/nvar)** 

Sharing* 
(reduce fitness) 

Sharing Parameter a^hare Depends on number of peaks, 
and size of search space 

Sharing* 
(reduce fitness) 

Alpha 1 

Deterministic Crowding* 
(DC) Selection Type Replacement Selection 

(used in DC algorithm) 

Default System in 
User Experiments* 

Number of Generations 20 Default System in 
User Experiments* Duplicate Mutation Rate 5 (/nbits/nvar)** 

*As simple GA parameters unless otherwise specified 
**nvar=number of variables, nbits = number of bits per variable 

Table 6.3: Benchmark algorUhm parameters. See Section 233 for further details of 
the Sharing and DC algorithms. 
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Mahfoud (1992) developed deterministic crowding (DC) that does not use any 

parameters (beyond those used by the simple GA) and has no extra computational cost 

(Section 2.3.3). Diversity is maintained by only keeping offspring i f they are similar to 

their parents, so DC tends to maintain peaks at a rate proportional to their width (or 

hypervolume) although dominated peaks will be lost (Mahfoud 1994). Mahfoud (1995) 

devised an important set of experiments that compared the sequential niche and sharing 

techniques to parallel diversity algorithms such as DC. He showed that on most problems 

the crowding technique was more likely to be successful because multiple optima can be 

maintained naturally in the population. 

It is acknowledged that other multimodal techniques such as CHC (Eshelman 

1991), the ECO GA (Davidor 1991), the sequential niche technique (Beasley 1993). 

dynamic sharing (Miller & Shaw 1996) and multi-population GAs such as the forking GA 

(Tsutsui & Fujimoto 1993) are more successful on certain functions than the traditional 

diversity techniques described here. All these algorithms achieve differing results on 

different functions because of the characteristics of the algorithm and an in-depth empirical 

study could be followed to show the best set of techniques on these particular functions. 

However this thesis is an investigation of the benefit of human-computer interaction in 

evolutionary computation and the visualisation and analysis of the output. So the basic 

algorithms are used for comparison here knowing that more informative information could 

be generated using algorithms that are better designed. 

To allow comparison with the user evaluations, each stand alone benchmark 

algorithm was allowed 30 000 function evaluations per experiment, the average of 10 

experiments are reported. There are four participants in the user experiments who can only 

perform each test once to avoid domain knowledge improving results. The results of the 

user experiments will naturally have a much higher variance than the algorithms; they may 
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also choose not to use all the evaluations available to them. Experiments in the literature 

usually present the results of the final generation to see i f the algorithm has maintained all 

peaks, even though many of the peaks can be seen in some functions by just viewing a 

random selection of data points in the search space. By default the system keeps all the 

data found during a GA run in the user experiments, so to be fair all the data was kept and 

analysed for the comparison algorithms also, meaning that peaks lost by the algorithm are 

kept in the final analysis. 

6 J Conclusions 

The experiments described in this chapter differ from traditional multimodal comparisons 

in a number of ways. Most researchers use test functions that are either simple, low 

dimensional problems (Deb & Goldberg 1989) or multidimensional problems with 

regularly spaced peaks such as the Griewangk and Rastrigin functions (Gordon & Whitley 

1993). Instead special artificial functions have been created to simulate data found in 

engineering design scenarios; multidimensional and difficult to understand, the peaks are 

not evenly spaced and have different widths and heights with noise that makes the 

robustness of regions even more unclear. Many engineering design problems contain 

discrete variables or discontinuities in the fitness function; such characteristics were not 

included in these theoretical experiments to reduce the complexity for the users, but they 

are considered in the real world case studies of Chapter 8. 

To evaluate the performance of users and algorithms the number, height and width 

of the peaks in each test function was found. The robustness of a peak was defined as the 

hypervolume at 50% fitness firom the local optima. Combining the hypervolume and 

fitness statistic gives a good trade-ofif value for the quality of a region. Measuring criteria 

were easily formed based on the hypervolume and fitness to evaluate the number of real 

peaks found and how well a user defines the high performing regions using the interface 
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provided. The performance of multimodal benchmark algorithms can also be compared 

with user results by analysing the data produced using similar statistics as well as assessing 

the productivity of the user or algorithm (the number of solutions found in good regions). 

The system evaluators were also asked to f i l l in a feedback questionnaire to 

discover their perception of the search space. They were asked to give a rank for the 

quality or relative importance of regions found, this information can be compared with the 

theoretical ranking based on the quality statistic. Such a comparison between the users' 

perception and reality will clarify how much the system helped the participants understand 

the problem. The subjects were also asked an open question to return their criticisms and 

suggestions about the system. The author recorded verbal comments and actions made 

during the tests were recorded by the system providing additional feedback. Users' 

behaviour such as interface features used and ways of tackling the problem were of 

interest, although the complexity of the task and system meant that not all features would 

be used. 

These experiments are concerned with evaluating the quality of each peak and to 

encourage the user to explore as much as possible and compare with the behaviour of 

benchmark algorithms. For multimodal algorithms the most important criterion is a 100% 

success rate, that is find all the peaks in the search space, but the algorithms try to solve the 

problem using different characteristics of the data; sharing will distribute solutions in 

relation to the fitness of peaks found whilst DC uses the proportionate width of the base of 

peaks. However the goal of the engineering design task set for these experiment is to allow 

the user to evaluate both the fitness and width of peaks, so it is hypothesised that the users 

will achieve the most consistent results in all metrics. Chapter 7 documents the results of 

the user evaluation and benchmark comparison experiments and analyses the behaviour 

and comments returned by the users. 

179 



The system was designed for novice users with knowledge of the problem who will 

become expert users as their understanding of the system improves (Section 3.2.3), whilst 

expanding their knowledge of the problem. The quantitative evaluation of such a system 

working on a general engineering design problem is difficult because of the individual 

requirements of the problem and the many different ways robustness can be defined (some 

of these difficulties are revealed in the initial case studies of Chapter 8). As a compromise 

these experiments provide some insight into the success of combining the genetic 

algorithm with novice users on a specific task they are not familiar with, a critical analysis 

of the experiments will reveal the potential of combining the human and evolutionary 

computing to general design situations. The analysis will also indicate the clarity and 

usefulness of the engineering design task that will provide further understanding of how to 

define robustness. 
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Chapter 7: Results of Evaluation of System by Users and 
Algorithms 

7.1 Introduction 

This chapter presents results of the preliminary experiments performed on the artificial test 

functions presented in Chapter 6. The chapter is organised as follows: Section 7.2 reports 

on the performance of users in defining the correct regions defined in Chapter 6 and the 

results fit)m the actual data returned compared to the true regions. The diversity of 

educational background and experience of the participants is highlighted in Appendix D 

(Table D.l). With such a small number of testers it is impossible to make definite 

conclusions from their performance, the complexity of the system and task to be completed 

also makes a purely statistical analysis even more difficult. Therefore in Section 7.3 an 

empirical analysis of questionnaire results about the tests is followed by a descriptive 

analysis and discussion of individual comments made by the users. The participants' 

results are compared with the benchmark algorithms fix)m the evolutionary literature in 

Section 7.4. Again statistical analysis of this comparison was very difficult due to the small 

number of users and complexity of the problem. This preliminary study was not designed 

to provide statistical proof of the relative performance of the system, but the results are 

used to make comments on how characteristics of the algorithms affect the search 

compared to user behaviour. A qualitative assessment of user actions and feedback 

provided more illuminative and constructive conclusions. A critical analysis of the 

quantitative and qualitative results, the engineering design task, the experimental set up 

and the system itself is given in Section 7.5. Lessons learned from the analysis suggested 

some automatic procedures and alternative ways to define robustness that are described in 

Section 7.6. Conclusions are drawn in Section 7.7. 
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7.2 Summary of Online User Results 

7.2.1 Introduction 

Two sets of results are presented for the user evaluation, the first set evaluates the actual 

regions defined by the users, the second set evaluates the data generated by the user 

compared to the target regions as described in Chapter 6 (Tables 6.1 and 6.2). The author 

(known as User_0) having expertise of the system and domain knowledge is included as a 

reference to compare with the performance of the novice participants (Users 1 to 4). The 

statistics derived for User_0 are taken fi^m the data and regions displayed in Figures 6.3 to 

6.5 (note that five regions were identified in Test_3 for clarity). Some visual examples of 

the results returned by the participants are shown in Figures 7.1 to 7.4 at the end of Section 

7.2, these are referred to later in the text. 

7.2.2 User Metric Results 

Table 7.1 shows the analysis of the user-defined regions compared with the true regions. It 

is immediately obvious from the "correct ratio" statistic that the number of peaks identified 

varies a lot from function to function, indicating the diverse nature of user behaviour and 

background. However once a peak has been identified, the best fitness is usually found 

fairly close to the true best (''fitness accuracy"). Some users spent more time and energy 

trying to find the correct width (reflected in the "hypervolume accuracy" measure) than 

others who may have misunderstood the problem or did not find the width to be an 

important part of the decision making process. User_2 correctly identified all three peaks 

for Test_2, but did not identify the size of them very well, conversely User_3 was the 

worst at finding peaks in each test function, but was generally better at defining the size of 

the regions. This is reflected in the "combined user metric" for Test_l; because the product 

is used, a much higher hypervolume accuracy for User_3 results in a higher combined 

metric. The fact that other users found more regions should perhaps be given more weight 

in the combined metric. 
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Function 
(Num. Orig. 

Peaks) 

User 
Name 

No. Peaks 
Identified | 

Correct 

Correct 
Ratio 

Fitness 
Accuracy 

Hypervol. 
Accuracy 

Combined 
User 

Metric 

Test 1 
(4) 

User 1 3 |2 .333 .938 .078 .024 
Test 1 

(4) 
User 2 2 |2 .5 .987 .109 .054 Test 1 

(4) User 3 111 .25 .985 .533 .131 
Test 1 

(4) 
User 4 3 |2 .333 .988 .108 .036 

Test 1 
(4) 

User 0 4 | 4 1.000 .996 .912 .909 

Test 2 
(3) 

User 1 512 .267 .723 .323 .062 
Test 2 

(3) 
User 2 3 |3 1.000 .997 .053 .053 Test 2 

(3) User 3 3 | 1 .111 .948 .239 .025 
Test 2 

(3) 
User 4 2 |2 .667 .987 .266 .175 

Test 2 
(3) 

User 0 3 |3 1.000 .997 .380 .379 

Test 3 
(16) 

User 1 615 .260 .966 .421 .106 Test 3 
(16) User 2 4 | 2 .063 .924 ,677 .039 

Test 3 
(16) 

User 4 414 .25 .999 .187 .047 

Test 3 
(16) 

User 0 5 5 .313 .999 .967 .302 

Table 7.1: Analysis of regions defined by Users 1 to 4. For each user the number of 
Identified Peaks and of those the number of Correct Peaks is given. The resulting 
Correct Ratio, Fitness and Hypervolume Accuracy, and the Combined Metric are 
given as defined in Section 6.4.2. *User_0* is the author using domain knowledge. 

Generally the combined user metric indicates the difficulty of the test functions. 

Test function two is the easiest to solve, especially in identifying the right number of 

peaks, because there are only three peaks and each one is easily seen in the search space (in 

fact the bottoms of all peaks are available after the first run of the GA, but there is no 

evidence that any of the users spotted this). Their width is defined in alternative coordinate 

systems and cannot be correctly specified in the original coordinate system, as evidenced 

by the low hypervolume accuracy relative to fitness accuracy for Test_2. Tests 1 and 3 

appear to be equally difficult, although for different reasons. Test_l has few peaks but two 

of them are particularly difficult to find because they are so small or 'hidden' by other 

peaks (the location of the peaks are similar in some parameters). Test_3 has many peaks 

that are easy to find and users do define the ones they find very well, but they do not bother 

to identify more than about five, the other peaks are not considered important. 
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7.2.3 Data Metric Results 

Table 7.2 shows the analysis of the actual data produced by the user during each 

experiment revealing some different results to the analysis of the user-defined regions. The 

metrics also differ from those shown in Table 7.1. The "maximum peak ratio" takes into 

account both the number of peaks and accuracy of the maximum fitness of the peaks. 

"Inner hypervolume accuracy" is measured on any data found inside the true regions as 

defined in Table 6.2. "Productivity Ratio" is the number of solutions found inside the true 

regions compared to the total number of solutions generated; the users were not explicitly 

asked to improve this characteristic, but generally get a good value as the nature of the task 

required the users to generate solutions in good regions. User_4 in particular spent more 

time producing solutions within the true regions, improving the productivity ratio and thus 

the "combined data metric" compared to the explicit analysis of Table 7.1. 

In many cases users actually found peaks without identifying them during the 

session (compare number of peaks found in Table 7.2 with number of peaks correctly 

identified in Table 7.1). This reveals that a lot of the important information is found by the 

system, but there is a failure by the user to realise the importance of that information and 

failure by the system to report it. Test_3 appears to have the worst results in this regard; on 

average less than 4 peaks were correctly identified out of almost all 16 peaks available. 

However many of the peak-defined regions contained a small number of solutions that 

would be difficult to spot due to the complex and difficult to understand nature of the 

search space. Most of the users identified the fittest peak in Test_3 and up to four of the 

next fittest peaks that are of equal fitness, then considered all the rest of the data as noise. 

This is a perfectly reasonable assumption to make i f the user has an absolute level of 

fitness in mind below which solutions should not be considered and for all fimctions the 

users appeared to use this assumption, despite the design task asking them to consider local 

fitness and hypervolume to define quality. 
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Function 
(Num. Orig. 

Peaks) 

User 
Name 

No. Peaks 
Found 

Maximimi 
Peak Ratio 

Iimer 
Hypervol. 
Accuracy 

Product. 
Ratio 

Combined 
Data Metric 

Test 1 
(4) 

User 1 2 .474 .455 .112 .024 
Test 1 

(4) 
User 2 4 .936 .556 .099 .052 Test 1 

(4) User 3 2 .478 .741 .158 .060 
Test 1 

(4) 
User 4 2 .495 .735 .589 .215 

Test 1 
(4) 

User 0 4 .996 .876 .214 .186 

Test 2 
(3) 

User 1 3 .814 .262 .363 .077 
Test 2 

(3) 
User 2 3 .998 ,972 .289 .280 Test 2 

(3) User 3 3 .869 .338 .287 .084 
Test 2 

(3) 
User 4 3 .929 .500 .298 .139 

Test 2 
(3) 

User 0 3 .997 .967 .254 .245 

Test 3 
(16) 

User 1 15 .898 .336 .555 .167 Test 3 
(16) User 2 16 .987 .800 .587 .463 

Test 3 
(16) 

User 4 16 .971 .698 .758 .514 

Test 3 
(16) 

User 0 16 .964 .498 .463 .222 

Table 7.2: Analysis of the data produced by the users. The number of actual peaks 
found is given along with the Maximum Peak Ratio (combining number of peaks with 

maximum fitness of peaks), Inner Hypervolume Accuracy and Productivity Ratio. 
The Combined Data Metric defined in Section 6.43 is the product of the latter three. 

'User_0' is the author using domain knowledge. 

Function (Num. 
Orig. Peaks) User Name No. 

Evaluations Real Time (s) 

User 1 31500 3353 
Test 1 User 2 31500 4693 

(4) User 3 25200 2026 
User 4 18900 3766 
User 0 33600 1516 
User 1 31500 3013 

Test 2 User 2 31500 2870 
(3) User 3 14700 200O 

User 4 16800 1851 
User 0 25200 5735 

Test 3 
(16) 

User 1 31500 2837 
Test 3 
(16) User 2 21000 1647 Test 3 
(16) 

User 4 23100 2250 
User 0 35700 6100 

Table 7.3: Number of evaluations used and time in seconds (s) spent by each user on 
the test functions. 'User_0' is the author using domain knowledge 
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All users found all peaks in Test_2, but obviously produced a better irmer 

hypervolume accuracy i f they knew they had found them. However User_2, who identified 

all the peaks, had a low productivity ratio. This is because a lot of the solutions were only 

defined correctly in two of the variables indicating that this user concentrated on just two 

dimensions and did not take into account the other two dimensions. These factors mean 

that many solutions were generated outside the true regions, although the true regions were 

identified well. Solutions outside the true regions help to define the peaks, so it is desirable 

that this happens (a productivity ratio of 1 would indicate less exploration). 

User_4 produced very good overall metrics for all test functions and seemed to 

learn how to solve the problem the best (defining regions and generating solutions inside 

them to check) despite knowing little about engineering design. User_l had the worst 

overall performance which was surprising for the author as this participant was known to 

understand the engineering design problem very well and spent a long time on each 

function (on average around 52 minutes). This participant often identified two or more 

regions on the same true peak and spent a long time analysing those regions and generating 

low fitness solutions to ensure the definitions were correct. There was noise present within 

the true peaks, so it could be argued that a number of regions exist on each peak; this 

behaviour was maybe closer to that of true engineers, although worse results were obtained 

because the ideal regions were wider than those identified. 

7.2.4 General Metrics 

These results indicate varying success by the users in understanding the problem and using 

the system to solve the problem. A large amount of variation is due to the complexity of 

the problem and difTerent ways the engineering design task and quality measure was 

interpreted. The time taken to complete the tasks and number of evaluations used also have 

a large variance (Table 7.3), although the participants completed the tasks faster as they 
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learned the system. Not all users used all the 30 000 evaluations available to them, they 

were either satisfied with the results achieved or did not want to continue out of tiredness 

or boredom. I f anything there is an inverse correlation between the amount of time or 

evaluations used and the results obtained, indicating that more time spent does not 

necessarily mean finding new regions or obtaining better statistics, hideed the author 

(User_0) spent the most amount of time trying to define the exact regions in Test_3, 

obtaining worse results than most of the other users. The author's results indicate the 

difficulty of the task even with domain knowledge. 

Due to the small number of participants available to undertake these experiments, 

no conclusions can be made fit)m a statistical analysis of the results. However a qualitative 

or reflective analysis of the users' actions and conunents made during the tests is much 

more useful (Bucciarelli 1984, Sch6n 1984). The following sections include such analysis. 
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7.3 Summary o f Questionnaire Results and User Comments 

7.3.1 Empirical Results 

A number of interesting findings were obtained from the formal feedback of the 

questionnaire. The users were asked to give a quality or preference measure by ranking the 

regions they have defined in the search space. The regions could be derived from the 

clustering algorithm and other tools such as the objective filter or defined manually by the 

user. Table 7.4 shows the raw results provided by the users in the questionnaires (see 

Appendix D), for each cluster identified by the user, the "peak number" of the closest ideal 

region (Table 6.2) is given here. To evaluate the accuracy of the "user rank" it is necessary 

to compare with the derived actual ranks, however these ranks were defined with full 

knowledge of the search space, while the participants only use the information they have 

found. Therefore the order of the ranks should be compared rather than the absolute value. 

Function 
User Name 
(No. Peaks 
Identified) 

Peak 
Number 

User 
Rank 

Confidence 
in Rank 

Certainty 
all Found 

Usefulness 
of System 

User 1 (3) 2|2* 3 4 5 |2 5|5 5 1 5 

Test_l User 2 (2) 1 2 314 315 3 4 Test_l 
User 3 (1) 2 4 4 3 4 
User 4 (3) 2 1 2*1 4 4 | 3 | 1 4 | 4 | 5 3 4 

User_l (5) 1|1*|2| 
2*1 2* 

4 | 3 | 2 | 
113 

5 | 5 | 5 | 
512 3 5 

Test 2 User 2 (3) 21113 41212 21314 5 4 
User 3 (3) 212* 2* 31212 31212 2 3 
User 4 (2) 2 | 1 312 4 | 4 5 4 

User_l (6) 16| 15| 14| 
12113 115 

5 | 2 | 5 | 
41314 

5 | 5 | 5 | 
51515 4 5 

Test_3 User_2 (4) 16 116*116* 
115 

4 | 4 | 3 
13 

3 | 4 | 3 
13 4 4 

User_4 (4) 16| 15| 14| 
13 

4 | 3 | 3 | 
2 

4 | 4 | 4 | 
2 4 4 

*=duplicate 

Table 7.4: Questionnaire feedback results (see Appendix D). For each identified 
regions the closest actual Peak Number (see Table 6.2) is shown and duplicate peaks 
are highlighted. The Rank provided by the users for each region and Confidence in 

that rank is given. Ratings for the Certainty that all regions have been found and the 
Usefulness of the system are also shown. For all ranks 1 is low and 5 is hieh. 
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Column 3 of Table 7.5 shows the actual quality rank of the peaks found by the 

participants (including duplicates), in the next column these ranks are normalised between 

the maximum and minimum values of the user rank (copied fix>m Table 7.4). The sixth 

column then shows the difference between the normalised and user rank of peaks giving a 

fair comparison, the mean of the differences for each test is shown in the final column. 

Function User Name 
C^l i ty 
Rank of 
Peaks 

Normalised 
Quality 
Rank 

User 
Rank 

Difference 
in Rank 

[Norm-User| 

Mean 
Difference 

Test_l 

User 1 5 15*11 5 512 4 5 | 2 l l O l O .333 
Test_l User 2 2 5 3 4 3 4 0 0 0 Test_l 

User 3 5 4 4 0 0 
Test_l 

User 4 515*13 4 | 4 | 1 4 | 3 | 1 O H I O .333 

Test 2 

User_l 1|1*|5| 
5*1 5* 

1 | 1 | 4 | 
4 | 4 

4 | 3 | 2 | 
1|3 

3 | 2 | 2 | 
311 

2.2 

Test 2 User 2 5 | 1 2 4 2 2.5 4 2 2 0 | 0 .5 .167 Test 2 
User 3 5 5*15* 3 3 3 3 2 2 0 | 1 1 .667 

Test 2 

User 4 511 3 |2 3 2 0 | 0 0 

Test_3 

User_l 2 | 3 | 3 | 
31313 

2 | 5 | 5 | 
51515 

5 | 2 | 5 | 
41314 

3 | 3 | 0 
1 |2 |1 1.667 

Test_3 User_2 2 12*12* 
13 

3 | 3 | 3 
14 

4 | 4 | 3 
13 

1 |1 |0 
11 

.75 Test_3 

User_4 2 | 3 | 3 | 
3 

2 | 4 | 4 | 
4 

4 | 3 | 3 | 
2 

2 | 1 | 1 | 
2 1.5 

*=duplicate 

Table 7.5: Actual Quality Rank of identified peaks are given (see Table 6.2) and 
normalised to compare with User Rank (Table 7.4). The absolute difference between 

these ranks is used to evaluate the disagreement between User Rank and actual 
quality. 

Table 7.5 indicates that the difference between the order of user rank and actual 

quality rank is generally low for Tests 1 and 2. The outlier is User_l who ranked almost all 

regions incorrectly for Test_2 because of conservative behaviour, this user focussed on 

small regions of each peak, so receiving an untrue perception of the problem. The mean 

differences for Test_3 are a lot higher, this is because the quality rank was very different to 

that perceived by the users; the height of the peaks take on more importance for the users 

than the width (or hypervolume). The trade-off between height and hypervolume is 
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problem-dependent, it may be the case that the absolute quality of the product is more 

important than ensuring a robust design, therefore the users could argue that they were 

basing their conclusions on the purely visual information rather than the absolute 

mathematical value, which was all they had to go on in the absence of any more substantial 

design guidelines. 

In many cases the same peak was identified a number of times by the same user as 

separate regions. Again the users are not necessarily wrong in making such a judgement, it 

is often difficult to tell whether two close regions are separate or part of the same region 

especially i f they are at different fitness levels. Most "confidence in rank" values are over 3 

(Table 7.4), so most people were conservatively happy with their answers. Some peaks 

received a "confidence in rank" of 2, these were usually peaks that the user did not have 

time or inclination to evaluate properly. In contrast User_l seemed very sure of the rating 

but unfortunately was not correct. Nevertheless there is no overall correlation between 

"difference in rank" (Table 7.5) and "confidence in rank" for this small sample. 

It is also instructive to examine the "certainty all found" and "usefulness of system" 

measures (Table 7.4). Users were least certain they had found all the important regions for 

Test_l, possibly because it was the first test they were presented with but it is also more 

difficult than the others to solve. Test_3 received a certainty value of 4 from all users 

when, in fact, they had not identified many of the peaks. This indicates that users thought 

they understood the search space better than they did; they ignored some of the desired 

regions (defined in Table 6.2) because the solutions were of low fitness and regarded as 

noise. Again a better explanation or definition of engineering design may improve this, but 

the psychological effects of the visualisation on decision making are apparent. Most users 

gave the system a high usefuhiess value (4 or 5) and were impressed with the tools 

provided for solving the problems. User_3 struggled to find any more information on 
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Test_2 and gave the system a 3 for usefulness, this user had the least experience and 

understanding of engineering design and evolutionary algorithms. 

7.3.2 User Feedback and Comments 

User_l 

During the tests User_l was very much in favour of using the scatterplot matrix where all 

2D graphs are displayed at once and therefore never changed the order of axes shown. This 

participant used the clustering tool to find good regions and then attempted to find the 

con^ct tolerance using the objective filter mechanism at increasingly more stringent rates. 

The user rarely changed the clustering definitions supplied by the system and performed 

detailed analysis of those regions using a number of negative GAs. This resulted in a 

number of small regions being defined on the same peak and not much time was left for 

exploratory search (Figure 7.1). This user used the statistics on the summary of clusters 

dialog box to differentiate between regions as well as the visual interpretation on the 

screen. The behaviour of this user could be described as conservative and unquestioning of 

the clusters produced by the system, resulting in low success in terms of the statistical 

measures. However the participant enjoyed the tasks and gave a lot of constructive 

feedback. In subsequent discussions User_l referred to the tolerance definition as an 

engineering 'constraint' and was more concerned with ensuring the feasibility of solutions 

found rather than maximising the size of the robust regions. 

Direct feedback on the questionnaire from User_l can be found in Appendix D . l . 

The comments given in Test_l relate to a feature of the system that automatically redefines 

the fitness of regions when new data is added to the Overview Window (see Section 5.6 

and Figure 5.18). This mechanism was confusing at first but then understood on the second 

test, other users mirrored this behaviour so a better explanation for this feature is required. 

User_l also suggested automatically expanding the definitions of regions until they are 
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acceptable by the tolerance value (the opposite of the filter supplied in the interface), 

which is a good idea as long as users realise that, these new definitions are not the 

'definite' answers (more data will be needed to confirm). The user also confirmed 

preference for the scatterplot matrix in the feedback for Test_3 and suggested finding the 

centre of regions to ease the zooming mechanism, however the definition of 'centre' is an 

ambiguous term - some users may consider the global maximum as the centre, while 

others the centre of mass in variable space and still others the midpoint of the ranges. 

User_2 

User_2 spent little time on the example fimctions but soon started on Test_l and learnt 

how to use the system using this fimction, spending the longest amount o f time out of all 

the experiments run. Aiter investigating all the dlfTerent available views User_2 settled on 

switching between the 2D Scatter and 2I>t-Fitness views. This participant used the 'Find 

Clusters' mechanism sparingly but then refined the clusters or created new ones manually 

using the 'Summary of Clusters' dialog (Figure 5.11) after some help was given. User_2 

used the negative GA sparingly on Test_l, but afterwards preferred to make decisions and 

evaluate robustness using the visualisations rather than statistics. This user favoured the 

view types with the first two axes enlarged enabling detailed views of these axes, with the 

adverse result that little or no attention was paid to the other axes. Indeed on Tests 2 and 3 

the 'AxesOrder' facility (Figure 5.9) was not used at all indicating that only dimension 1,2 

and fitness were used to make decisions and define the regions of interest (see Figure 7.2). 

The participant's behaviour can be describe as more exploratory resulting in a good 

success rate of finding new peaks and a good spread of solutions inside those peaks (high 

maximum peak ratio and inner hypervolume accuracy) but the dependence on visual 

information to evaluate robustness and lack of understanding of the tolerance and filter 

mechanism caused a low inner hypervolume accuracy and productivity ratio. User_2 gave 

values for the quality of regions found close to the required order (Table 7.5) indicating a 
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good understanding of the robustness criteria although the behaviour and online results 

indicate that defining the exact size of region was not considered important. This may be 

due to misunderstanding and lack of clarity of the initial instructions. 

Formal feedback from User_2 was sunmiarised on just one questionnaire 

(Appendix D.2). This participant noted that the data points were large on each plot 

meaning that very close solutions may appear as one solution and was concerned that 

points on the three-dimensional views were not given perspective; that is points 'further 

away' should be smaller. User_2 was the only participant to complain about this aspect of 

the interface, but an option to change the size of data points would be desirable, especially 

as the number of solutions increases. User_2 also asked for selectable zones in the three-

dimensional plots to be implemented, however this is not a simple issue because the 

location of a cursor on the two-dimensional computer screen can mean an infinite number 

of positions on the three dimensional graphic. The participant also made a verbal comment 

that the zoom box on two-dimensional plots was sometimes difficult to see; it can 

'disappear' behind lots of dark data. 

User_3 

User_3 performed just two evaluations on Tests 1 and 2. The participant used mainly the 

2D Scatter and 2I>+Fitness views, although the scatterplot matrix and 3D scatter were also 

briefly used. This participant used the clustering system to generate clusters, then refined 

them manually or by using the filtering mechanism. The negative GA was used to generate 

more data, then the user spent a long time editing and reviewing regions on the peaks 

already found. This is why three regions were identified for Test_2 that all relate to the 

same peak. More than one true peak was clearly visible, but the user preferred to define 

regions at the top of the tallest peak (Figure 7.3). The user was attempting to find a trade

off between the height and size of each region and used the statistic on the Summary of 
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Clusters to make decisions about the regions but sometimes got confiised with the statistics 

and may not have understood the problem enough. User_3 fixated on the data generated in 

the first few GA runs and was not motivated to find more data by running a GA elsewhere. 

This participant liked to return to the Overview and did not change the axes order. 

From the feedback on the questionnaires (Appendix D.3) it is clear that User_3 got 

lost when looking at different views, maybe because the data generated did not look like 

the Overview data, and saved the data to the Overview as soon as possible. The complaint 

about the volume on the Summary was due to a bug in the code that was rectified. This 

user enjoyed learning some parts of the interface and felt it was easy to familiarise with the 

system. 

User_4 

User_4 also used the 2D Scatter and 2D+Fimess views in the tests. After the initial 

learning period and explanation of the features this user exploited the negative GA and 

filter mechanism to assess the robustaess of regions to good effect. The regions defined by 

the clustering algorithm were also used and edited although the user also defined regions 

manually in Test_2. This participant chose to ignore some regions and kept the useful ones 

after analysing them using the summary statistics and frequently changed the order of axes 

to check and define the clusters in each dimension. The user's behaviour was moderately 

exploratory discovering new peaks and analysing low fitness regions (Figure 7.4) resulting 

in a high productivity ratio, but the hypervolume statistic is poor because the regions were 

defined too small for Tests 1 and 2 and too high for Test_3. The conservative estimates 

were because the user was content to define the regions inside the tolerance, rather than to 

achieve the 50% tolerance exactly. Conversely in Test_3 the user became tired and 

finished the experiment without refining the size of the regions. 
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In the formal feedback (Appendix D.4) the user noted that the system crashed at the 

end of a session due to the bug in the statistical calculations. User_4 also said that the 

system was useful to solve these particular problems but some of the processes involved in 

the task could be grouped, such as a 'check robustness routine* that in the current 

implementation involves a certain set of button clicks. This would speed up the process 

and avoid the boredom problem. Verbally the participant suggested a number of 

modifications to the interface that could be implemented in a future version, these are 

summarised in Section 7.5.1. 

733 Overall Summary 

A number of features were not used by any of the users in these experiments. Viewing in 

alternative coordinate systems was demonstrated to the users but not immediately 

understood, so ignored in the tests. Similarly the parallel coordinate view was not used due 

to lack of familiarity with this representation of data. Very little changing of genetic 

algorithm and clustering parameters also took place, in some cases due to lack of 

understanding of the parameters. Those who had knowledge of genetic algorithms were 

dissuaded from changing parameters because of the limitation on number of evaluations 

allowed, they were content to allow the simple GA (with mutation scheme to avoid 

duplicated chromosomes) create new solutions i f possible. The users were not encouraged 

to change parameters when they were introduced to the tests, as the evaluation was more 

concerned with visualisation and interaction aspects than the algorithms used. 

The use of colours to label and edit clusters was a very accessible component of the 

system. The regions had to be defined by the users for results purposes but, after the initial 

difficulty of learning how to edit the clusters, the colouring system proved to be easy to 

understand and essential to "orientate" in the search space (Appendix D.3, Test_2). 

Unfortunately once a user has carefully refined clusters it is difficult to find new data by 
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'avoiding all highlighted clusters' as the GA will just find the lower part of the peaks 

already identified. Some mechanism to enable the easy duplication of clusters and to 

"expand the scope of every veuiable" (Appendix D. l , Test_2) is required to aid this process 

(although the amount of expansion will be crucial to fixrther GA runs). 

The participants would have struggled to learn all the different features of the 

system without the author there to guide them and answer questions. There was a variance 

in how much users understood the problem due to differences in their educational 

background and experience of relevant knowledge (see Table D. l of Appendix D). 

However those with less experience were sometimes able to successfully interpret 

guidance from the author and tackle the problem as a visual puzzle to solve rather than as 

an engineering design task; this was confirmed in subsequent discussions with the 

participants. The 'puzzle' can be reduced to: locating regions, defining tight boundaries 

and trying to find a local fitness ratio of 50% by trial and error using the objective filter 

and negative GA mechanism. Some users tried to do the problem visually or with 

alternative strategies but quite often were not sure what to do next and needed prompting 

to 'look inside' a region or 'try outside'. 

As reported, there were dififerences in how users interpreted the definition of 

quality and tolerance. User_l was more concerned with 'beating the constraint' (tolerance) 

than 'meeting the constraint', others tried to meet the constraint while User_2 considered 

the constraint of little importance. All participants used the height of the peaks as the most 

important decision factor as the results on Test_3 testify, low fitness data (below 50% of 

the global maximum) was considered as noise by most users. Much of this 'noisy' data 

defined regions of the search space that satisfied the tolerance guideline (within 50% of a 

local optimum). The fact that many users were not aware of this indicates firstly that the 

system was not highlighting the relevant information, secondly that this definition of 
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robustness and quality was not well explained before the tests and thirdly the definition 

does not reflect how people generally interpret robustness and is possibly insufficient to be 

used on a general engineering design problem. All these issues are discussed ftirther in 

Section 7.5. 

Nevertheless the system facilitated the solving of this particular task, once the users 

understood it. The system also encouraged many different ways to solve the problems 

varying fix)m purely visual to very analytical with varying results. The users studied here 

were very much novices on the system and the problem, although they were becoming 

comfortable with the system after a few hours use. This implies the system will be helpftil 

when applied to a known problem, after the initial learning period. 

7.4 Benchmark Algorithms Results 

The benchmark algorithms: simple GA. sharing and deterministic crowding (DC) were run 

on the same three test fimctions. Table 7.6 and 7.7 shows the mean and standard deviation 

of the user experiment results (taken from Tables 7.2 and 7.3) compared with the mean of 

10 experiments for each benchmark algorithm using 10 different random number seeds. 

These comparisons are made for interest only; they cannot be used to give a statistically 

confident analysis as more users (and algorithm runs) would be required. 

Again the comparative difficulty of each test ftmction and the characteristics of the 

peaks is reflected in the results; the algorithms generally agree that Test_l is the most 

difficult to solve and Test_3 the easiest (although more difficult to understand than users 

realised, see Table 7.1). The results reveal the various strengths of the different paradigms, 

with no single algorithm dominating the others on all metrics. The users metrics are rarely 

the best, but also rarely the worst. 
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Function 
(No. Orig. 

Peaks) 
Algorithm No. Correct Maximum 

Peak Ratio 

Inner 
Hypervol. 
Accuracy 

Product. 
Ratio 

Combined 
Data 

Metric 

Test 1 
(4) 

Users 2.5(1.00) .596 (.227) .622 (.140) .240 (.234) .088 (.086) 
Test 1 

(4) 
SGA 1.5 (.527) .348 (.104) .589 (.229) .846 (.005) .156 (.019) Test 1 

(4) Sharing 3.2 (.632) .773 (.133) .752 (.123) .160 (.063) .090 (.033) 
Test 1 

(4) 
DC 3.6 (.516) .884 (.128) .287 (.054) .394 (.025) .099 (.018) 

Test 2 
(3) 

Users 3.0 (0.00) .903 (.079) .518 (.319) .309 (.036) .145 (.094) 
Test 2 

(3) 
SGA 2.6 (.516) .761 (.130) .376 (.088) .770 (.020) .216 (.043) Test 2 

(3) Sharing 3.0 (0.00) .981 (.007) .895 (.045) .068 (.007) .060 (.007) 
Test 2 

(3) 
DC 3.0 (0.00) .996 (.003) .638 (.063) .350 (.023) .223 (.033) 

Test 3 
(16) 

Users 15.7 (.577) .952 (.047) .611 (,244) .633 (.109) .381 (.187) 
Test 3 

(16) 
SGA 15.3(1.16) .923 (.063) .226 (.036) .919 (.002) .192 (.036) Test 3 

(16) Sharing 16.0 (0.00) .999 (.002) .566 (.023) .815 (.010) .461 (.025) 
Test 3 

(16) 
DC 15.5 (.850) .923 (.049) .266 (.048) .705 (.024) .173 (.030) 

Table 7.6: Comparison of algorithms against user performance; mean (standard 
deviation). The mean results from Users 1 to 4 given in Table 7.2 are shown (not 

including User_0). For the algorithms the mean results from 10 runs are shown. The 
combined data metric is the product of the previous three metrics. 

Function Algorithm Num Evals Time (s) 

Test_l 

Users 26800 (6030) 3460(1110) 
Test_l SGA 30100 (0) 106 (9) Test_l 

Sharing 30100 (0) 252(12) 
Test_l 

DC 30100(0) 87(15) 

Test_2 

Users 23600 (9130) 2430(592) 

Test_2 SGA 30100 (0) 90(9) Test_2 
Sharing 30100(0) 228(11) 

Test_2 

DC 30100 (0) 72 (16) 

Test__3 

Users 25200 (5560) 2240 (595) 

Test__3 SGA 30100 (0) 93(4) Test__3 
Sharing 30100 (0) 233 (25) 

Test__3 

DC 30100(0) 69(10) 

Table 7.7: Mean (standard deviation) of time taken and number of evaluations. 

In general DC had the best maximum peak ratio because once it finds a peak the 

algorithm performs local hill climbing to the top and does not lose the peak (in Test_3 

however, the peaks are very close and it is possible that the small peaks are ignored once 

bigger peaks nearby are found, hence a lower maximum peak ratio). This local search 

means there are many duplicate solutions in the same place before the algorithm gets to the 
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top of the peak, therefore the desired region is sparsely populated causing a low inner 

hypervolume accuracy and productivity ratio. DC achieves the best overall data metric on 

Test_2; this objective function has peaks separated by a long way in the search space thus 

allowing each peak to be maintained in the whole population without disruption. 

The sharing algorithm generally achieved good inner hypervolume accuracy 

because it is forced to find alternative solutions away fix)m the good ones already found, so 

gradually extending to the edge of the required region but then extending beyond to the 

bottom of the peaks, thus reducing the productivity metric. Overall sharing performs best 

on Test_3 with a near perfect maximum peak ratio. This is because the peaks in Test_3 are 

evenly distributed throughout the search space and not separated by low fitness regions. 

Maximum peak ratio values for the other functions are less good because the search space 

is sparse and the few peaks are not evenly distributed, the sharing algorithm fails to find 

some of the peaks of Test_l and is forced away fi"om the local maxima of Test_2. 

The simple GA is not very exploratory producing a low maximum peak ratio and 

generating a lot of solutions at the top of each peak causing low inner hypervolume 

accuracy but the best productivity ratio. In fact the convergence causes such high 

productivity ratio that the overall data metric is good for the simple GA on all test 

functions and the best on Test_l. 

Compared with the GA results, the users achieved average results in all metrics 

with no particular metric good or bad; the standard deviation between users is high because 

of the small number of participants so it is impossible to draw any firm conclusions. Their 

exploration was better than the simple GA, as was hoped, but the maximum peak ratio for 

sharing (using domain knowledge) and crowding is generally higher than the users. They 

achieved good inner hypervolume accuracy on all functions because of the engineering 
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design task requirement, although were beaten by sharing on two of the functions. 

Productivity was less than average although this was not a characteristic they were asked to 

search for, indeed a productivity that is too high shows less exploration, as is the case for 

the simple GA. The users had the worst results compared to other algorithms on Test_l 

because two of the peaks were very low and hard to find, possibly even ignored by some of 

the users. Their results were average on Test_2 although brought down by inner 

hypervolume accuracy because of the difficult in pinning down the size of the region in 

alternative coordinate system. The users achieved their best metrics on Test_3 even though 

there were a number of peaks not formally identified by them. The identified peaks were 

easy to define and lots of data was generated inside the regions improving hypervolume 

accuracy and productivity ratio. The mutation scheme (used by users only) also increases 

the diversity of data in local regions, potentially improving robustness. 

Table 7.7 shows that the users used less evaluations in the experiments as they had 

the choice to finish when they wanted to although their time taken was a lot larger than the 

algorithms. This is to be expected as the users were thinking about the problem, comparing 

clusters and making informed decisions about regions whilst the algorithms did not. Of the 

algorithms, sharing was 2.5 times slower than the simple GA because of the similarity 

comparison, although crowding was faster than the simple GA because of the simpler 

selection function. The algorithm times could be greatly improved i f they were mn on a 

devoted machine in a low level language and are only given for comparison purposes. 

In sununary it is difficult to compare the user performance with the benchmark 

evolutionary algorithms because of the difference in goals and domain knowledge they 

have. Sharing and niche techniques are given knowledge that may not be present in real 

worid engineering design problems. I f the niche radius and location of optima are already 

known then the problem is ab̂ eady solved, however i f some knowledge of the search space 
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is present (and patience to try different parameters), sharing can generate a number of 

diverse solutions. Without domain knowledge deterministic crowding is probably the 

better option to search for local and global optima, its reduced computational cost is also 

an advantage factor. The users had a specific goal that none of these algorithms were 

designed to do. The metrics give some idea of how the users performed, but with such a 

small sample it is impossible to make any conclusions. Even with a suitable number of 

testers and algorithm runs, a comparison may be impossible to undertake because of the 

differences described above. Therefore this quantitative analysis gave some instructive 

results but no real indication of the relative performance of the system; further work is 

required to assess how the system maybe assessed quantitatively. The qualitative analysis 

of the users feedback on the system is more valuable as it shows that the system has 

potential for solving the engineering design task and possibly encouraging creative design. 

7.5 Critical Analysis 

7.5.1 Interface Improvements 

A number of interface improvements were suggested by the users and noticed by the 

author during testing. In particular the summary of clusters dialog is too big and contains a 

lot of functionality including listing the clusters as well as allowing editing and changes to 

the list. The 'Add Clusters' checkbox is also here, but should be in a more accessible place. 

User_4 suggested having a summary on each window so the user can quickly choose 

which clusters to view. Easy duplication and editing of identified clusters would aid and 

speed up the exploration and exploitation process, for example i f a cluster definition can be 

easily expanded to cover a known peak in the search space, new peaks would more likely 

be found by the clustering procedure or a new genetic algorithm nm. 

I f changes are made to the clusters then all windows should be updated 

immediately rather than waiting for a redraw in each window, such a feature would be 
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possible to implement i f the system was written in a language that supported fast graphics. 

Recent coordinated view systems recommend that up to three multiple plots are given in a 

single window rather than a number of different, overlapping windows (Jem et al. 2003, 

Brodbeck & Girardin 2003); such an implementation may be ideal i f the data is static, but 

may not be possible i f various types of new data need to be compared with previously 

found data, as is the case after a new GA run. However most of the users preferred not to 

have too many windows open at the same time and closed them as soon as possible (after 

saving the data to the Overview Window i f required). Therefore a review of the 

employment of windows and design of dialogs is required. 

The system was not immediately accessible and some features were present that 

seemed unnatural when initially presented to the users. For example the system does not 

immediately zoom in on a region given by the mouse pointer but waits for an action that 

will cause a redraw, the *Zoom In' button will do this, but also closing the 'Summary of 

Clusters' and 'Run GA' dialogs will have the same effect. This behaviour is convenient i f 

multiple functionality is required, but was not immediately intuitive and may not be 

wanted in some scenarios. Features that were mentioned as badly designed by some users 

were not mentioned by others, for example the criticism by User_2 about the size of the 

points (Section 7.3.2) in three dimensional displays was not seen as a problem by the other 

users. Options to customise the behaviours described in this paragraph and other user-

fiiendly details would need to be tested and included i f the system is to be more widely 

used. Generally the users did become accustomed to the display and learned to use unusual 

features fairly quickly. 

7.5.2 Reporting of Relevant Information 

The first important outcome of the experiments is the difference between the users' 

definition of important or interesting regions in the search space and the ideal regions 

204 



given in Chapter 6, as the difference between "number of peaks identified" (Table 7.1) and 

"number of p>eaks found" (Table 7.2) testifies, particularly for Test_3. This can be partly 

explained by difficulties in understanding the task as is discussed further in the following 

sub-sections. However the discrepancy also indicates that infonnation relevant to the task 

was either not noticed by the user or not brought to their attention. To solve this particular 

task the user needs to be aware of all local optima in the search space, even those of very 

low fitness, so that their robustness and quality can be evaluated. The clustering algorithm 

based on kemel density estimation (KDE) was designed to slowly reveal high fitness peaks 

for the user to consider (see conclusions to Chapter 4). In theory the tool will reveal all the 

peaks in a set of data i f left to run indefinitely, for general data it is likely that low peaks 

will be at the end of a very long list. So the clustering tool in its present fiom was not 

sufficient to provide the required information. This could imply that more sophisticated 

tools are needed to highhght the relevant data, either more advanced clustering algorithms 

or intelligent ways of choosing between clusters that have been found. 

It is likely that more sophisticated clustering algorithms, such as those described in 

Section 3.5, would return more accurate clusters in terms of this task i f the parameters 

were set correctly. To set the parameters correctly or to provide more intelligent ways of 

choosing between clusters, either domain knowledge is required or a representation of 

users' preference needs to be incorporated into the clustering routine. For a given set of 

data, i f the definition of the design task such as robustness or constraint requirements 

changes, then different clustering results may be required. Incorporating the preference 

information implicitly would be desirable, but this is difficult to implement and is the 

subject of other dedicated research (Noy & Schroeder 2001, see Section 3.6). Explicit 

representation of preferences is easier to implement and will return clusters closer to user 

specification (Levinson et al. 1979), although may require knowledge of specific clustering 

algorithms. 
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Therefore a more complete version of the current clustering tool is required 

(whether based on KDE or not) that allow users to input explicit preference information for 

specific tasks. Options should allow the user to search for clusters containing high density 

rather than high fitness, set bounds on the fitness or size of clusters to be returned 

(allowing only low fitness peaks to be returned, for example) and search for skewed or 

other non-uniform shapes of data. The current implementation of the clustering tool also 

allows cluster definitions to overlap each other, sometimes this is desirable but often the 

two clusters are describing virtually the same region of the search space; a mechanism to 

temporarily remove this behaviour should also be available. An even more flexible 

clustering tool will mean desired information will be brought to the users' attention and 

allow data to be interpreted correctly. 

7.5.3 Experimental Set Up 

Chie of the most prominent lessons of the user experiments was the length of time taken to 

complete the tasks; this was due to the number of system featiu^s the users needed to learn 

and their difficulty in understanding the engineering design task. Al l users needed help 

fipom the author to perform complicated operations and have certain features explained a 

number of times, suggesting it will take days to understand the whole system rather than 

hours. The author also provided hints on how to complete tasks, users interpreted the 

comments differently and some asked more questions and may have benefited fiom the 

help more than others. It was difficult for the author to be objective and give everyone the 

same advice as they were obviously struggling to assimilate the unfamiliar system and new 

task. These observations indicate that the tests were very ambitious, which was necessary 

to test as many features as possible with limited time and resources. 

This preliminary evaluation was undertaken by subjects with limited amount of 

engineering design knowledge, although many of them have an educational background 
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connected with psychology (see Appendix D), so possessed at least a theoretical 

understanding of the cognitive process involved in problem solving and design. In 

discussions most of the participants confirmed that they considered the task as primarily 

visual problem solving. This reflects the conclusions of Tweedie et al (1996b), that visual 

tools can transform a dif^cult cognitive (or engineering design) task into a simpler 

perceptual task. However the obvious misunderstanding of the engineering design task 

(possibly due to interpretation of the initial instructions) made the problem even more 

difficult to grasp. The psychological literature acknowledges that users have difficulty 

solving ill-defined problems with a large search space; lack of knowledge and poor 

understanding of the problem definition compounds the difficulty (Eysenck & Keane 2000, 

p. 409). So these experiments could be interpreted as an observation of cognitive and 

perceptual problem solving, suggesting another use for the interactive system. 

In theory Test_l was the easiest problem to solve, as the peaks were all defined in 

the original coordinate system without interaction. In retrospect the users probably had the 

most difficulty with Test_l because new peaks were difficult to find. In the other fimctions 

most of the relevant data could be seen in the first run of the GA, although the users did not 

^preciate that most of the clusters that could be highlighted and evaluated for robustness. 

This indicates again that the tests were over ambitious in trying to test too many features at 

the same time. Preferably this system would be tested a number of times by participants 

learning and testing individual features, building up knowledge of the system and 

problems, until more complicated tasks can be attempted. Tweedie et aL (1996b) confirm 

that the design of "interactive visualisation artifacts" is difficult and revealed that a number 

of changes to their design were required after intensive testing of the system. 

It would be instructive to see i f an expert woricing on their problem would form the 

same strategies as reported here. It is likely that the strategies used to solve this task by 
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novice users would be very different to experts solving there own problem, as experts 

encode the problem in a different way to novices (Eysenck & Keane 200O, pp. 393-426). 

Engineering design experts may have a very different idea of what robustness is and how 

to evaluate it. In addition different tools may be required to solve a particular engineering 

design task. Therefore this theoretical analysis can provide conclusions on the usability of 

the system in general, but their applicability can only be tested in real world scenarios. 

Comparing the user results with the results of the unsupervised benchmark 

algorithm experiments was also very difficult to analyse as the different paradigms are all 

attempting to optimise or achieve very different goals. The multimodal evolutionary 

algorithms achieved results as good as or better than the users on some test functions, but 

this does not imply that interaction and visualisation should be discarded. Indeed the 

previous analysis implies that even if the perfect result was returned to the user, they would 

not realise it unless they knew exactly what they were looking for in the first place. The 

fact that the system encourages search and enables knowledge discovery, as seen in the 

users' results and comments, indicates the strength and potential of the tool. 

7.5.4 Description of Engineering Design Task and Robustness 

The description of the engineering design task was clearly difEicult to understand. In future 

experiments a simpler task and clearer explanation is definitely required. Nevertheless 

feedback from User_4 confirmed that "some fimctions/processes could be automated or 

grouped in some way" (Appendix D.4, Test_l) indicating some appreciation of the task 

and the tools needed to solve it. Such a grouping can only be implemented once the 

sequence of steps has become known, so it is recommended that the low level features are 

kept but an advanced feature that allows the user to choose and edit multiple actions is 

made available. Two such prototype routines are described in Sections 7.6.1 and 7.6.2. 

Further analysis of the use of alternative coordinate systems is also given in Section 7.6.3. 
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As stated previously the engineering design task (in particular the definition of 

quality based on tolerances in objective space) was chosen to encourage exploration and 

decision making between regions of the search space by evaluating their relative fitness 

and robustness. The advice to evaluate regions in terms of local optima was misunderstood 

or ignored by some users; most concentrated on peaks whose maximum fitness was more 

than 50% of the global optimum. This may be a reasonable strategy for some engineering 

design problems, for example if there is an absolute minimum value of performance that 

should be achieved. However, in general the Taguchi design methodology would advocate 

minimising sensitivity to noise before changing tolerances to meet manufacturing 

specifications (Phadke 1989, pp. 33-34). In fact the description of quality given in the tests 

defmes any region of the search space as *robust' as long as the fitness of the solutions is 

within 50% of the local optimum. User_l noticed this fact resulting in the definition of 

small regions as seen in Figure 7.1, these regions satisfy the tolerance constraint but would 

be combined or enlarged if the whole fitness landscape was known. It could be argued that 

this definition is too loose as an infinite number of regions could be defined for 

comparison at a later stage. 

Instead of defining tolerance in relative terms in objective space, given as a 

percentage in these experiment, it may be more practical to provide absolute bounds for 

tolerance in terms of design parameters (variables) or manufacturing specifications. In this 

scenario regions of similar size in variable space would be defined and their minimum 

performance value compared with other regions; this suggestion is fiirther elaborated in 

Section 7.6.4. This alternative evaluation of robustness may be more relevant to real world 

design situations where the limitations of specific materials and the absolute constraints on 

specifications or cost are known. 
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Again it is acknowledged that the evaluation of robustness and the perceived 

quality of a product is very much problem specific and may be impossible to express 

explicitly. However the original definition revealed insights into how people interpret 

robustness and assess quahty as a trade-off between robustness and fitness. This analysis 

has also provided further understanding of the different definitions of robustness. 

7.5.5 Future Work 

The limited testing did show some learning and usability by the users that suggests 

optimism for the future potential of the system. How much the system enhances the search 

process is hard to evaluate and requires extensive testing with a number of users that are 

willing to learn the system over a long period of time, preferably working on a problem 

they are interested in. Once users (preferably engineers) have become familiar with the 

system they will then be able to perform the tasks using well-grounded skills and 

engineering knowledge, instead of just trying to solve the problem as a puzzle; the design 

task may be very different but the results should be much improved. This has been partially 

achieved in the case studies presented in Chapter 8; the system is shown to engineers 

working on their problem, admittedly the author was operating the system rather than the 

engineers themselves, but a lot of positive feedback was gained in this way. 

For future tests it would also be desirable to measure the number of mistakes or 

identical runs a user (or algorithm) has made, to discover truly redundant and confused 

behaviour. Currently the user's actions are all saved to a data file, but these were only used 

in a limited way in this analysis. More extensive interaction information could easily be 

made available for analysis to evaluate specific cognitive behaviour (as in Convertino et al 

2003) and could be used to warn a user that they are about to generate duplicate 

information. It is possible that the system could use the actions of the user to build up 

knowledge of the current task (Moore et al. 1997) or make choices about future searches, 
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perhaps using a neural network like Takagi (1996). Even more ambitiously an attempt to 

c£q}ture the design process (Reffat & Gero 2000, Burge & Brown 2000) could be made by 

analysing the actions of the user to suggest how new designs were found. 

7.6 Modifications Suggested by Evaluation Experiments 

7.6.1 Check Robustness Procedure 

Extensive investigations with the system by the author and discussions with the users 

suggested that an automatic procedure could be implemented to assess the robustness of 

regions. This process currently involves the following steps: 

Check robustness procedure: 

1. Choose a coloured cluster to be checked or define one using the zooming and 'edit 

clusters' facility 

2. Optional: run a positive GA to ensure the best local optima has been found 

3. Choose an amount to filter the region by using the Summary of Clusters within the 

tolerance guideline (but need to guess how much) 

4. Run a negative GA on the redefined region (usually in a new window) 

5. Save the data back to the Overview window, this will automatically redefine the 

region again when combining the new and old data. 

REPEAT 2-5 until level of minimum fitness and fitness ratio is acceptable 

All these actions could be made into one simple task (with a few parameters) 

reducing the repetitiveness of the procedure (suggested by User_4). I f the resulting 

minimum fitness level is outside requirement the procedure can be repeated again with 

another parameter guess. This also becomes tedious, but it is difficult to pin down the exact 

filter level required because it depends on data that has not yet been generated. The other 

possible outcome is that the resulting minimum fitness is too high and the region will need 
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expanding to find a less conservative result. Such a process is diHicuIt in the current 

system, in fact redefining the region is probably the simplest process, but should be made 

possible if required (as suggested by User_l). 

7.6.2 Find Robust Regions Procedure 

The procedure described in the previous section could be extended to letting the system 

search for robust regions as defined in the engineering design task automatically. Such a 

'default methodology' can be easily implemented in the current version by continually 

searching inside and outside regions found. Such a methodology is similar to the sequential 

niche procedure of Beasley et al. (1993) where discovered peaks are "derated" by a sharing 

like fimess parameter allowing fiuther peaks to be found. Similarly the system can choose 

regions to avoid using the clustering technique and avoid them using the built in 'death 

penalty' process (see Section 5.5). Such a procedure could be defined in the following 

steps: 

Find robust regions procedure: 

Start conditions: Number of Clusters to find NR and tolerance level J% 

End conditions: Maximum number of evaluations: Cmax 

1. Run GA with default parameters and limits 

2. Find NR new clusters (avoiding those already found) 

3. Run Positive GA in clusters found - save to Overview Window 

4. Find 1 cluster within each cluster found in step 2 

5. Filter each new cluster toy% 

6. Run negative GA in new clusters defined in step 4 - save to Overview 

7. Run positive GA avoiding all clusters found - save to Overview 

REPEAT 2-7 until run out of evaluations e^ax 

8. Delete clusters defined in step 2, keep clusters defined in step 4 
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The clustering procedure is used twice in each iteration - once in step 2 to discover 

broad clusters that the algorithm can avoid at a later stage and then in steps 4 and 5 these 

clusters are refined to assess the robustness of the region. The broad definitions are deleted 

at the end of the experiment and the refmed clusters kept for measuring purposes. 

The results* of such a procedure for two parameter settings on each test fimction is 

shown in Tables 7.8 and 7.9 and compared to the mean of the user results from Tables 7.1 

and 7.2. In these experiments the 'user' metrics can be applied because the algorithm is 

attempting to define a robust region. The results of the user metric (Table 7.8) for the 

algorithms are not much better than those found by the users but the data metrics given in 

Table 7.9 are much improved (and beat most of the algorithm results of Table 7.5). The 

most improved results occur when the filter/is 20%, because more solutions fall inside the 

correct region so productivity and iimer hypervolume accuracy is improved (see Figure 

7.6), however the algorithm finds it easier to find more peaks when / is 40% (Figure 7.5). 

These results show the dif^iculty of setting parameters for general problems, in a similar 

way to the problems with the sequential niche procedure acknowledged by Beasley et al. 

(1993); the likelihood of finding new clusters from a current data set is very much 

dependent on the parameters put into the algorithm and in particular the size of the clusters 

defined by the system. If the cluster is too small, the next GA run 'avoiding other 

highlighted clusters' will find the bottom of a peak already identified, if it is too big, much 

of the search space will be ignored. 

So a devoted 'find robust regions' algorithm can improve on the performance of the 

users and benchmark algorithms to some extent, although the improvement is still 

problem-dependent. Figures 7.5 and 7.6 shows this devoted algorithm still gets stuck and 

* The results of these preliminary experiments, as in rest of the chapter, are included for interest only. A 
statistical analysis of many more trials would be required to make any firm conclusions. 
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generates too many regions on the same peak. The number of identified peaks is always 6 

in these experiments because two new regions are found at every iteration of the 

procedure, but some heuristics to stop the algorithm if many regions are defined in the 

same place is required. A user using this methodology would hopefully correct this 

problem and delete unwanted clusters or merge them with others. The clustering algorithm 

or automatic procedure can be made increasingly more sophisticated, but at some point a 

user is needed to make decisions during or after the procedure to refine, delete clusters or 

start the clustering process in a completely new region. 

Function 
(Num. Orig. 

Peaks) 
Parameters 

No. Peaks 
Identified | 

Correct 

Correct 
Ratio 

Fitness 
Accuracy 

Hypervol. 
Accuracy 

Combined 
User Metric 

Test 1 
(4) 

613 .375 .855 .312 .100 Test 1 
(4) Ar^2,^20 6 |2 .167 .834 .196 .027 

Test 1 
(4) 

Mean Users 2.25 \ 1,75 .354 .975 .207 .061 

Test 2 
(3) 

612 .222 .962 .455 .097 Test 2 
(3) Njf=2,f=20 6 |2 222 .899 .267 .053 

Test 2 
(3) 

Mean Users 3.25 1 2.00 .511 .914 .220 ,079 

Test 3 
(16) 

N/r2,M0 6|3 .094 .943 .342 .030 Test 3 
(16) Nin2,M0 615 .260 1.00 .153 .040 

Test 3 
(16) 

Mean Users 4.67 1 3.67 .191 .963 .428 .064 

Table 7.8: User metrics for single results of 'Find Robust Regions Procedure'. 31500 
evaluations used. Mean of Users* results (from Table 7.1) also given for comparison. 

Function / 
(No. Orig. 

Peaks) 
Algorithm No. Correct Maximum 

Peak Ratio 

Inner 
Hypervol. 
Accuracy 

Product. 
Ratio 

Combined 
Data Metric 

Test I 
(4) 

Nj^2,M0 4 .959 .699 .181 .121 Test I 
(4) NR=2,M0 3 .735 .875 .350 .225 

Test I 
(4) 

Mean Users 2.5 .596 .622 .240 .088 

Test 2 
(3) 

N,r=2,M0 3 .984 .901 .218 .193 Test 2 
(3) N^2,f^20 3 .992 .833 .298 .246 

Test 2 
(3) 

Mean Users 3.0 .903 .518 .309 .145 

Test 3 
(16) 

Nin2,M0 16 .982 .753 .607 .449 
Test 3 

(16) Njr=2,f^20 16 .986 .734 .802 .581 
Test 3 

(16) 
Mean Users 15.7 .952 .611 .633 .381 

Table 7.9: Data metrics for single results of 'Find Robust Regions Procedure'. 31500 
evaluations used. Mean of Users* results (from Table 7.2) also given for comparison. 
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Figure 7.5: Test l regions found using N/t=2 and/=40%. 

Original Variables 

Figure 7.6: Test_l regions found using N/t=2 and f^lOVo. 
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7.6.3 Defining Volume in Alternative Coordinate Systems 

None of the users performed clustering in an alternative coordinate system. This is mainly 

because the concepts were difficult to appreciate on top of all the other features in the 

system. The question remains whether defining regions in an alternative coordinate system 

results in a closer definition to the true regions, particularly those regions defined naturally 

in another coordinate system. Test_2 contains two such regions so it is hypothesised that 

defining regions in the principal components and generating data in those regions will give 

a better fit. The 'Find Robust Regions Procedure' (Section 7.6.2) can be modified in the 

following way: 

2a. Find principal component representation OTNR new clusters (additional step) 

4. Find 1 cluster in the principal components of each cluster found in step 2 

Tables 7.10 and 7.11 show the results^ of a single run of the procedure on Test_2 

using the same parameters as before (top two lines of each table). These resulu show no 

significant difference to the results fiom the experiments run in the original coordinate 

system (Tables 7.8 and 7.9). There is possibly a slight improvement for/=20%, at this level 

the cluster will be smaller and should define the true region more accurately, however 

fiuther results are needed to prove the statistical significance of this. Another experiment is 

shown in Figure 7.7, illustrating search undertaken by the author on Test_2 using the 

principal components definition of regions at every opportunity, attempting to improve on 

the performance of Figure 6.4. The results are given as User_0_alt in Table 7.10 and 7.11, 

when compared with User_0 in Tables 7.1 and 7.2 there is an improvement on the user-

defined statistics, particularly in the iimer hypervolume accuracy metric, but the data 

metrics are almost the same. 

^ The results of these preliminary experiments, as in rest of the chapter, are included for interest only. A 
statistical analysis of many more trials would be required to make any firm conclusions. 
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There is also a question mark over the definition of 'relative volume' when applied 

to regions created in an alternative coordinate system. This value is found by transforming 

the overall data to the alternative system, then the hypervolume of the region in question is 

compared to the overall hypervolume. If regions are defined in a mixture of coordinate 

systems the relative hypervolumes may be incomparable. 

From these limited experiments it is impossible to conclude whether defining 

regions in alternative coordinate systems is beneficial, although there may be some 

improvement on the user definition of regions. At the very least the alternative views can 

reveal new insight into the data and assorted clustering definitions that are sometimes 

useful. The technique is certainly interesting and deserves fixrther investigation. More 

intensive experiments Uke those suggested in this section and analysis of the results will 

confirm the use and applicability of defining regions in alternative coordinate systems. 

Function 
(Num. Orig. 

Peaks) 
Parameters 

No. Peaks 
Identified | 

Correct 

Correct 
Ratio 

Fitness 
Accuracy 

Hypervol. 
Accuracy 

Combined 
User Metric 

Test 2 
(3) 

6 I .056 .980 .213 .012 
Test 2 

(3) 
6 2 .222 .904 .274 .055 Test 2 

(3) Mean Users 3.25 2.00 .511 .914 .220 .079 
Test 2 

(3) 
User 0 alt 3 |3 1.00 .999 .556 .555 

Table 7.10: User metric statistics from single experiments searching in the principal 
components for 31500 evaluations. Compare with Table 7.8 (Test_2). User_0_alt is 

the statistics generated by the author using domain knowledge, shown in Figure 7.7. 

Function / 
(No. Orig. 

Peaks) 
Algorithm No. Correct Maximum 

Peak Ratio 

Inner 
Hypervol. 
Accuracy 

Product. 
Ratio 

Combined 
Data Metric 

Test 2 
(3) 

Nir=2,M0 3 .968 .868 .134 .113 
Test 2 

(3) 
NR=2,f^20 3 .993 .953 .198 .188 Test 2 

(3) Mean Users 3.0 .903 .518 309 .145 
Test 2 

(3) 
User 0 alt 3 .999 .978 .254 .248 

Table 7.11: Data metric statistics from single experiments searching in the principal 
componenU for 31500 evaluations. Compare with Table 7.9 (Test_2). User_0_alt is 

the statistics generated by the author using domain knowledge, shown in Figure 7.7. 
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Figure 7.7: Regions of Test_2 defined in principal components, found using 
knowledge of the search space by the author. Compare with Figure 6.4. 

7.6.4 Alternative Way to Define Robustness 

The procedures described in previous sub-sections are relevant to the engineering design 

task in the user experiments but may not be suitable for certain objective functions or other 

engineering design tasks. The main problem with the definition of robustness used in the 

engineering design task is the need to find the tolerance in terms of a local optimum and 

compare minimum and maximum fitness locally. An alternative suggestion is to simulate 

absolute tolerances in variable space and compare the absolute values of minimum and 

maximum fitness between regions. This can be modelled by defining regions around 

interesting peaks with equal volume and performing a negative GA search to find the worst 

fitness in each region. Then the local maximum of each region can be compared with local 

minima of other regions. 
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Figure 7.8 shows the idea on Test l . Each peak is identified by a cluster defined 

using very similar tolerances or variable widths. The green cluster (known as 'Cluster 2') 

has the best minimum fitness despite not containing the best overall maximum. This 

minimum fitness beats most of the other clusters' maximum fitness apart from the blue 

cluster ('Cluster 3'), which has a very low minimum fitness. The users all correctly gave 

the green peak a higher quality rank than the blue, despite having lower maximum fitness. 

But any ambiguity is removed by comparing minimum fitness of similar sized clusters 

instead of needing to evaluate a trade-off between size and fitness. A similar procedure is 

shown on Test_3 in Figure 7.9, with the result that almost all peaks have a very similar 

minimum fitness, so the quality of a region can be simply determined by maximum fitness 

alone. Using this definition the quality ranking returned by the users rather than those 

given in Chapter 6 are more appropriate. The results will change depending on the size of 

variable tolerance chosen, although wider tolerances are preferred to reduce manufacturing 

costs. 
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Figure 7.8: Alternative version of robustness: Test_l. Peaks are highlighted by 
clusters of similar size, negative GA used to evaluate robustness. 
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Figure 7.9: Alternative robustness definition: Test_3. The sizes of the clusters on 
peaks are almost identical; the minimum fitness of the clusters are also very similar. 

However if the volume of each cluster w ere reduced, the minimum fitness would 
reflect the order of the maximum fitness shown here. 

7.7 Conclusions 

The quantitative analysis was only partially useful due to the lack of users and time to 

conduct the experiments, statistically significant conclusions could not be drawn but some 

instructive results were found. The users were asked to complete an engineering design 

task; by manipulating the data and performing simple GA searches the users achieved 

some success. The test functions and metrics revealed differences in the behaviour of the 

benchmark algorithms and the users. The engineering design task could not be completed 

by any of the benchmark algorithms in its entirety; indeed it was shown that even a 

devoted hybrid algorithm would have difficulty solving the problem. These preliminary 

results imply that while a multimodal genetic algorithm will find data and information that 

is not directly relevant to a task, interaction with the simple genetic algorithm allows the 

user to search as desired and evaluate regions of the search space to their own 
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specifications. So the tests did show that the system achieved one of its requirements of 

allowing the user to guide the search and interact with the search space. However these 

tests were too ambitious to quantitatively show the advantages of interaction, suggestions 

on how to provide more reliable results are given later in these conclusions. 

A reflective assessment of the users actions and feedback during the evaluation 

exercises provided a more reliable analysis of the system and tests than the quantitative 

results (Bucciarelli 1984, Schdn 1984). The participants often enjoyed using the system 

and solving 'the puzzle' even if they did not fiilly understand the engineering design task. 

The visual displays helped them understand the problem; the many interactive features and 

different ways to view the data allowed them to get alternative perspectives on the data. 

The users were happy to generate new data and liked the clustering tool (sometimes 

preferring to define the clusters themselves) after the initial learning period. Individual 

comments and the interesting behavioiu- of users showed enough promise to continue. 

A critical analysis of the user experiments taught some valuable lessons about the 

system, engineering design task and experimental set up itself. The system highlighted 

regions of high fitness and allowed the user to evaluate their robustness, but some 

information that was vital to solve the task was not apparent to the user and not made 

obvious by the system. According to the design task the users should not have ignored low 

fitness regions, so to some extent the system failed to achieve its other requirement of 

identifying potentially high performing regions. However the information required to solve 

this particular task may not be relevant to another engineering design tasks or different 

type of data. This suggests a more complete clustering tool is required that would allow the 

user to specify the range and type of data required. Better initial cluster definitions may be 

possible with more sophisticated techniques such as ^-means clustering (that requires the 

computation of distances between data), Gaussian mixture models and projection pursuit. 
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Intensive study and comparisons between algorithms is required and could be undertaken 

in the future if the system, or algorithms, were written in a lower level programming 

language than MATLAB. Personal clustering preferences could then be incorporated into 

the system and analysis of the users' actions could be used to automate future searches and 

ultimately lead to further understanding of the engineering design processes. 

Suggestions that some parts of the system could be automated were investigated in 

Section 7.6. It was shown that a procedure to check the robustness of regions and a default 

system methodology to find robust regions could be incorporated into the system. It has 

been shown that the filtering mechanism does work in alternative coordinate systems 

(Packham & Denham 2003). An experimental method to evaluate the accuracy of 

explicitly defining regions in this way was outlined in Section 7.6.3. I f shown to be 

successful, the system would require testing by people familiar with the concepts. 

The fact that the users failed to understand some aspects of the engineering design 

task prompted a review of the experimental set up itself The task was designed to 

encourage decision making, but this led to uncertainty for the participants in deciding what 

actions to take and how to solve the task. The other main problem was the number of new 

features the users needed to assimilate even before attempting the problem. It was 

suggested that for fiitiu-e experiments, when more time is available, a number of users 

should be given the opportunity to learn and test each feature (see also Mumford 2003). 

Then they can be asked to solve explicit but increasingly more difficult tasks. Objective 

functions containing discrete variables, multiple objectives and discontinuous behaviour 

should also be included to more accurately simulate real engineering design problems. 

The critical analysis of the engineering design task also improved understanding of 

the different definitions of robustness and use of tolerances. To evaluate the robustness of 
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regions in the search space it was necessary to find regions that satisfied a relative 

tolerance value set in objective space, then make some subjective decisions on the trade-off 

between maximum fitness and size or hypervolume of the region. An alternative way to 

evaluate robustness was suggested by ^plying fixed tolerances in the variables and then 

comparing the minimum and maximum fitness of the regions. This method allows direct 

comparison of robustness between regions and will be more applicable to engineering 

problems where limitations on materials and design parameters are known. The flexibihty 

of the robust design methodology (Taguchi 1986) is retained as different regions of the 

search space can be evaluated for sensitivity and their objective values compared. This 

method is also similar to the setting of tolerances and analysis recommended by Tweedie et 

aL (1996) but is improved by the ability to check robustness using negative search. 

In general there are many different ways of interpreting robustness and setting 

tolerances in engineering design (see Section 6.3). The system should be designed to allow 

tolerances defined in the design variables or in objectives. Both hard and soft constraints 

should also be supported so that engineers can evaluate whether designs are merely 

feasible or superior in terms of an objective value, whilst remaining robust It is likely that 

each engineering problem needs to be solved with different tools and definitions, so a 

general engineering design system may be impossible to achieve, however the introduction 

of low level features and tools to set tolerances and constraint values will help. 

These experiments involved users working on artificial test functions that they were 

not familiar with, they could be continued to help understand how people solve problems 

using cognitive analysis (Eysenck & Keane 2000). Although informative the procedure 

was very different to true engineering design behaviour (Norman 1986). The following 

chapter reports the comments and reaction of experienced engineers during the initial 

introduction of the system working on their design problems. 
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Chapter 8: Real World Case Studies 

8.1 Introduction 

This chapter describes the implementation of real world engineering design problems to 

validate the usefulness and effectiveness of the system; in particular to investigate the 

extent to which the interactive system helps engineers explore and understand the search 

space in real problems and whether new, robust solutions can be found. Such visuahsation 

of the search space and the ability to compare the details of individual solutions is rarely 

available for practicing engineers. However real world engineering design problems bring 

a new set of challenges that need to be overcome. Some of the features in the system were 

less useful or needed modification to be applied in real world situations, in particular to 

multiobjective problems with conflicting criteria, 

8.2 Goss Moor Rainfall Runoff Model 

8.2.1 Description 

This problem concerns the calibration of a model for the transformation of rainfall to 

stream flow. A number of procedures have been proposed to automatically calibrate such 

models (Sorooshian & Gupta 199S) and optimisation techniques have been used to find 

suitable parameter sets, for example genetic algorithms (Wang 1991) and genetic 

programming (Savic et al. 1999). The application of visualisation to this problem is 

particularly relevant as it has been acknowledged that many diverse parameter sets could 

return an equally good answer to the given problem (Beven & Binley 1992). 

Mr. Martin Borthwick of the School of Engineering, University of Plymouth, 

developed the model given here from a time series approach given by Tsykin (1985). The 

aim is to find parameters for a conceptual model of river flow using the recent history of 

rainfall and previous day's river flow only, using the following equation: 
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= R,.,e'" + v/>"/^.,'/^.//^_3' Equation 8.1 

where / = time (in days), e = exponential constant (base of the natural logarithm) 

R = predicted daily stream flow (mm over catchment area) 

P = recorded daily precipitation (mm) 

u, V, X, y and z are dimensionless parameters (variables). 

The units of the daily mean river flow (R) have been converted from discharge rate 

(mVs) to the equivalent daily runoff depth over the catchment area to be consistent with the 

rainfall units. A plot showing the measured daily rainfall on Goss Moor in Cornwall (UK) 

and the flow into the nearby River Fal is given in Figure 8.1. It is known that the river flow 

is modelled by more than just the previous few days' river flow and rainfall, other factors 

such as geology, vegetation and variation across the catchment should be taken into 

account, but a lot of the behaviour can be described by this model if the parameters are 

chosen carefully. A genetic algorithm (GA) can be used to find the best fit of the model by 

varying the parameters u, v, w, x, y, z and minimising the error between the predicted and 

actual river flow. The objective of the GA is thus to minimise the error between the 

predicted and observed river flow, given in terms of efficiency (/^) according to the 

fomiula (Nash & Sutcliffe 1970): 

= - 2 — Equation 8.2 

s.t. F,'=t{R^-R^y and F'=j:{R^-R^y 
1=1 1=1 

where: FQ^ = variance of the observed river flow 

F^ = describes the difference between predicted and observed river flow 

Robs = the observed river flow given daily (mm over catchment area) 

Rpred = predicted daily river flow (mm over catchment area) 

N = number of days (365), / = time (in days), = efficiency. 
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A perfect fit for this model would return an value o f 1. Many o f the recorded 

values for the precipitation data (Pi) were given as zero values, which wil l force the 

corresponding predicted values (/?, or Rpred) to be zero. To overcome this discrepancy zero 

values were replaced by very small values (10''^), thus allowing a much smoother model to 

be formed. This procedure is acceptable because it is likely very small amounts of rain wi l l 

have been recorded as zero. The three initial entries in the predicted flow were assumed to 

be the same as the first three observed values. 

(•o»ft Moor 

River Flow (outflow over catchment area) 

Rainfall (over catchment area) 

' s * 

Figure 8.1: Goss Moor riverflow and rainfall data. 

In practice, the results of such a process would usually be validated in order to 

check that a set of parameters holds for more than one set of data over the same catchment. 

Typically a long set of data is split into two, the first to calibrate (train) the model and the 

second to validate (test) it. In this study a single set of data (Figure 8.1) is presented and 

the model is used as a single objective optimisation problem with the intention of exploring 

the potential for visualisation and interaction in rainfall runoff modelling only. In future 

work it would be necessary to validate the results in some way (Davidson et al. 2000). 
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8.2.2 Expert Evaluation 

The author of this thesis and the contributor of the model spent some time discussing the 

model and the results produced by the interactive visualisation system. The contributor 

already knew good parameter values and the limitations of the model due to his knowledge 

of the problem. However he found the system to be useful in confirming what he already 

knew and was impressed by the array of alternative results that could be accessed and 

visualised. Figure 8.2 shows an example of the initial data generated by the system using 

the default system parameters (running for 20 generations) with the variables w, v, w, jc, z 

allowed to vary between 0 and 1. The best solution is shown giving an value of 0.663. 

Visualisation of individual results was implemented and shown to the contributor on the 

second time of meeting and noted as a significant aid towards understanding those results. 

Very small clusters were returned by the clustering algorithm indicating that the search 

space is very noisy but flat; there are a few very bad solutions with an o f around -10"^ 

but also many diverse solutions in the more acceptable range 0 < < 1. 

uO 196, vK) 175.^1^)778 »=0aBO. ŷ OOOS. r«0 036 

I D S 

Action «>tf-ocui SO v«tQ / D « l «S 

Figure 8.2: Result of a GA run on the rainfall runoff model. The search space appears 
flat except for very low fitness solutions. Individual details of the best found is shown. 
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The contributor used local search to find the best solution in the region suggested 

by the clustering algorithm. Running a GA inside the clusters was found to improve the 

error rate up to 0.768 (Figure 8.3). It can be seen that for both clusters found, jc, z take 

very small values (0.1 or less). This suggests that the model should not include some of the 

older days rainfall as it has probably nearly all passed through on the same and possibly 

previous day. Therefore the last two terms (involving the y and z exponents) were removed 

from the model by manually changing the objective function. 

X vanables 

y, z vanables 

FftRaBcV. R»iVo<v. 0«fco«dBy Show 

0000 100 ^'^ir^wt r 

Figure 8.3: Local search suggests the high performance regions contain low values of 
jc,>^, z variables. 

The result of a GA run on the revised model is shown in Figure 8.4. The search 

space is smaller so it should be easier to find an optimum solution. Af\er two further local 

searches an efficiency of r^=0.773 was found. These results suggest different regions give 

similarly good results or different parameters sets can give similar values of efficiency 

(0.773 and 0.772, Figure 8.4). The contributor used these results to seed a local search 
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method in Excel and achieved a result of r^=0.803 with variable values w=0.153, v=0.105, 

w = l , x=0.020. This result is on the edge of the search space, particularly in w and x so may 

be difficult for the GA to find. 

r ^ 7 7 
F/NKJ066 

Figure 8.4: Model changed by removing unnecessary variables (in objective function) 
and run with four variables. After local searches in the two best regions, best error 

factors of 0.773 and 0.772 found. 

A number of observations can be made about these initial results, mostly known to 

the contributor beforehand but confirmed by the system and visualisations. An efficiency 

of 0.8 is the best that will be achieved with this particular model. This implies that there 

are a number of factors missing in the model. A lack in the robustness of the model is 

suggested by the fact that many different parameter sets provide the same answer and each 

of the sets is quite sensitive to changes in parameter settings. In fact Figure 8.4 indicates 

that parameters m, v, X need to be constrained whilst parameter w could take on a variety of 

values and in fact may benefit fi"om takmg values larger than 1. Figure 8.5 shows the result 

of such a search and reveals a number of local optima in the search space. The best with an 
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efficiency of 0.801 has w>l, whilst the value of v has reduced to compensate (v and w both 

control the effect of the first day's precipitation in the model (Equation 8.1) and are 

therefore related). This is the best solution found so far, but how robust is it? The 

contributor used the visualisation to assess the robustness; the red region is small and 

isolated compared to the green, so is probably less robust. This example shows the amount 

of knowledge discovered from simple interactions and visualising a small number of 

figures is vast; without the visualisations such knowledge can only be obtained from 

painstaking analysis of results and inteipretation by experienced engineers using their 

intuition. 

The robustness of the regions can be confirmed using the tools on the interface, A 

positive GA was nm inside each defined cluster (Figure 8.6), improving the best fitness 

inside the red cluster to 0.805, but showing some solutions in its vicinity are as low as -20, 

which is unacceptably low. To enable fair comparison the variable definitions of the red 

and green clusters were changed slightly so that they were about the same size (as 

suggested in Section 7.5.4 and 7.6.4). Strict filtering (less than 1% of the original) and 

negative GA search in both regions revealed that the red region contains worse solutions 

than the green region (Figure 8.7), thus the green is more robust than the red. Here the 

system has provided a piece of knowledge that could only be assumed by previous 

visualisations and would be very time consuming to confirm by iterative search. 

The difference in robustness is confirmed in Figure 8.8, however the robustness of 

the green region is still questionable - a change of 0.02 in any parameter will result in a 

loss in efficiency. Figure 8.8 also shows the individual details of the best solutions. It can 

be clearly seen which parts of the data have not been well modelled by any of the solutions 

found, at around 50-80, 230, 270-300 and 34(>̂ - days (November, end of April, June and 

August) - possibly at times of unusual or changeable weather patterns. 
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Figure 8.5: Variable limits changed due to analysis of Figure 8.4: 0<ii,v,jc<0.5; 0<w<2. 
Better solutions found around h'>], but how robust are those solutions? 

Nam* Icon MaxFn MmFn FuRafcoV. R « l V o l V . • • l m » d D y Show 
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Figure 8.6: Positive GA run in each high performance region improving the 
maximum fitness further, but some low fitness solutions also present 
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Figure 8.7: Check robustness by equalising volume of regions, filtering and running a 
negative GA. Analysis suggests the green region has better Min Fit so is more robust. 
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Figure 8.8: Two alternative solutions and regions with similar fitness, but the relative 
robustness is still not good; a change in variables by -.02 will 'fall ofT either peak. 

232 



8.2.3 Conclusions and Further Work Potential 

Feedback from the contributor was positive in stating that the system helped to confirm 

results and understanding of the model (see questionnaire given in Appendix E . l ) . Being 

able to investigate interesting regions of the search space using visualisation tools within 

the system was particularly usefiil to assess alternative variable settings and then optimise 

using a local search method. The system helped to confirm that the later terms in the model 

were not necessary because rainfall from two or three days before has little affect on the 

river flow, verifying this was not possible without proper visualisation. This enabled a 

more detailed search of the reduced model (after manual modification of the objective 

function) with only four parameters. Feasible solutions were also found outside the original 

search limits, although this had the potential to change the model somewhat. The best 

solutions had very different values in those parameters that correspond to the first day's 

precipitation (v and w in Equation 8.1), revealing the amount of interaction between these 

parameters (see Figure 8.8). So creative design was supported by the system. 

A number of different parameter settings can be found in the system that return 

similar fitness, but none improve on an efficiency of around 0.8, showing that the model is 

insufficient to fully describe river flow. The analysis could easily be further extended by 

reducing the number of parameters still further or by adding parameters to the objective 

function; for example in the exponential terms to model more precisely a certain day's 

rain. However the practitioner knows that geological factors such as the types of soil and 

vegetation that affect the drain rate of different parts of the catchment should be taken into 

account, as well as the effect of evaporation. Extended models such as those described in 

Davidson et al (2000) could be quickly tried and tested using this system. 

The visualisation of individual solutions was also noted as a significant 

improvement on the original display of just showing parameter settings, as they lead to a 
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better understanding of the search space and problem. The individual solutions show where 

the predicted data diverges from the observed data, suggesting that if seasonal changes and 

long term weather could be incorporated into the model the quality of the prediction would 

be improved. Alternatively the badly modelled parts of the data could be isolated and a 

different parameter set found using the current model, reducing the sensitivity of the 

landscape and presumably providing more distinct robust regions. 

It was suggested that fiulher work could be undertaken with the system. Because 

the objective function can be easily changed in MATLAB, it would be instructive to find 

the optimal number of parameters needed to model the data. However the model actually 

changes when parameters are added or removed (because difTerent raw data is being used), 

but this is a valid form of testing the model; traditional engineering sensitivity checking 

involves fixing all parameters but one and optimising each one separately until the best is 

found. This is uimecessary when using the GA and within the system as described in the 

previous sub-section where wide initial limits were set and then interesting regions were 

'homed in' on. Comparing the results of the two strategies would be instructive for this 

problem and general engineering design practice. 

The system partially answered the robustness question by the visualisations and 

negative GA experiments. The conclusions were that changes in parameter settings will 

significantly affect some if not all solutions to the problem. From these results the lack of 

robustness of the model and sensitivity to variables would indicate that a parameter set 

from one year would not correctly predict the flow for another year. Normally the split 

records approach or another technique (Davidson et al. 2000) is used to determine the 

optimal number of parameters to achieve the most consistent results; this study shows that 

visuahsation could be used to speed up these validation processes. 
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8 J Biaxial Column Design 1 

8.3.1 Overview of Biaxial Column Design Problem 

Rafiq & Southcombe (1998) introduced an approach to find configurations of 

reinforcement bar placement in a biaxial column using a genetic algorithm. The goal is to 

place reinforcement steel bars efficiently in concrete so that the column will efficiently 

resist an applied axial load and bi-axial bending whilst minimising the amount of steel 

used. For some columns the bending moment is about a single axis (the uniaxial case) but 

for others the bending moment is about both axes (biaxial). This situation needs to be taken 

into account when designing the column. The British Codes of Practice (BS8110 1985) 

recommend a method of biaxial column design by simplifying it to ^proximate a uniaxial 

column. This method is only suitable for small columns and may lead to unsafe designs for 

larger columns where more reinforcement bars are needed. 

To accurately predict whether a larger column will v^thstand an applied loading it 

is necessary to calculate the resisting capacity of both moments in a biaxial column for a 

given reinforcement bar configuration and check whether they satisfy the required 

conditions. Rafiq and Southcombe (1998) used a genetic algorithm to evolve solutions that 

satisfy the conditions whilst also minimising the amount of reinforced steel used. This 

problem is multiobjective with conflicting criteria (minimise the amount of steel and 

maximise the resisting capacity of the column). A number of designs will be produced by 

this method, but the engineer has a decision to make in the trade off between the two 

objectives. The system described in this thesis is an ideal tool to explore the search space 

for a variety of feasible solutions and visualise different configurations to compare their 

performance and suitability, but the discrete nature of the inputs and multiple outputs to the 

problem was such that not all of the features could be used and some modifications to the 

system were required to find better results. The objective function was kindly contributed 

for analysis by Dr. Yaqub Rafiq of the School of Engineering, University of Plymouth. 
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The inputs to the model are shown in Figure 8.9. They are the ultimate axial load N 

and the applied design moments Mx and My about the x and y axes that are to be achieved. 

For a given design the reinforcement bars will be positioned by the column detailer; to 

ensure "buildability" of the column there is a minimum spacing requirement for the bars so 

that concrete can easily be placed between them. The bars are also manufactured at 

predetermined diameters. These constraints were designed directly into the objective 

function with the result that the decision variables (x, y position and diameter d of each 

reinforcement bar) take on discrete values using the GA. 

The outputs torn the model, shown in Figure 8.10 are the maximum uniaxial 

moment capacities Mux and Muy of the section (concrete and bars) due to the ultimate axial 

load N. A method to determine whether the designed column will withstand the applied 

load, taking into account biaxial bending, was suggested by Bresler (1961). It was adopted 

by the British Codes of Practice (CPl 10 1972) and is based on satisfying the load contour 

equation: 

M 

M. 
2 5N 

£ 1 where or = t + t t ; " • Equation 8.3 
3 3/v„ 

Table 8.1 gives definitions of all symbols and values used in this equation and the 

following text. Nuz is the ultimate resistance to pure axial load; the maximum load the 

column will take before breaking in any direction, a takes ranges between 1 and 2, these 

values depend on the design of each column. When the load contour constraint is 

maximised (L^ = 1) an "adequate" approximation of the required relationship between the 

moments in the x and y direction is achieved (Beeby 1978), although the design will be 

conservative particularly when N/Nux and the relative amount of steel used is low. and 

a are dependent on the design of the column, but are not optimised as objectives, so are 

known as 'dependent variables' in Table 8.1. Mux and Muy are the uniaxial capacities but to 
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be certain that the configuration will meet the design specifications the biaxial resistive 

bending capacities {MRx and MRy) should be greater than the design moments (A/, and My). 

In the absence of software to detemiine the resistive capacities exactly (as is the case in 

this study) Raflq & Southcombe (1998) state that the load contour method is a satisfactory 

method for checking the validity of a given column design. 

Mr 

ii 
di 

Figure 8.9: Inputs to the Biaxial Column problem: A^- ultimate axial load, 
My applied design moments due to depth h and breadth b of the column. 
Decision variables: the position and diameter of each reinforcement bar i in 

the model: x^yi and di. See Table 8.1 for a definition of each symbol. 

-4s=Area of all bars 

%Area: A*'' 
b.h 

Load Contour Equation (LCegn) 
a 

y 

2 5N 
a =—+ 

3 3N 

Figure 8.10: Outputs to Biaxial Column problem: Mux Muy uniaxial maximum 
moment capacity of section under action of the ultimate axial load Â . The load 

contour constraint (£^=1 is optimal) is computed to estimate the suitability of the 
design according to CPllO (1972). a is found using JVuz (the ultimate resistance to 
pure axial load). The total cross-sectional area of reinforcement bars is also an 

output, given as a percentage of colunu cross-section area (A^. 
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The other important output from the model is the total cross sectional area A^ of the 

reinforcement bars used; for comparison and simplicity this is given as a percentage 

{%Area) of the total column area: A^=\00*As^b/h). A good solution to this problem will 

produce a result of the load contour equation (LCeqh) as close to 1 as possible with As as 

low as possible. The fitness value used in the genetic algorithm could be any one of these 

outputs (objectives) or a combination of them. 

Parameter Name Symbol / 
System Name Type 

Axial load N Fixed input 
Applied moment in x dir. Fixed input 
Applied moment in 3̂  dir. My Fixed input 

Breadth of column b (smaller size) Fixed input 
Depth of column h (larger size) Fixed input 

Number of possible bars nbar Depends on b and h 
Diameter of bar i=],...,nbar di/diam Decision variable 

Position of bar in x dir. Xi /xpos Decision variable 
Position of bar in y dir. yi/ypos Decision variable 

Alpha a Dependent variable 
Ultimate resistance to pure axial 

load Dependent variable 

Maximum capacity in x Mux 1 CapX Objective (max.) 
Maximum capacity in y Muy 1 CapY Objective (max.) 

Result of load contour equation V^l LCeqn Objective (max.) with 
constraint; V < 1 

Total cross-sectional area of 
reinforced steel bars As/ Area Objective (min.) 

Percentage of used steel to 
column cross-sectional area 

A^=\QO*A^/h 
VoArea Objective (min.) 

Table 8.1: Characteristics of parameters used in first biaxial column experiment 
Note difference between dependent variables and decision variables. 

Column 
Type 

Axial load 
(kN) 

Moment in x 
(kNm) 

Moment in y 
(kNm) 

Breadth 
(mm) 

Depth 
(mm) 

Small 950 95 65 400 300 
Large 5000 2124 1000 1100 550 

Table 8.2: The two sets of fixed input parameters used in the first biaxial column 
design problem. 
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83.2 Modifications Required to the System 

In the first form of the biaxial colunm design experiment the breadth /», depth J , ultimate 

axial load Â , and design moments Mjt, My were all fixed. Two sets of fixed input 

parameters are considered (Table 8.2), the first set describe a small column with low axial 

load to be applied whilst the second set describes a larger column required to support a 

larger load (the parameters are taken from Rafiq & Southcombe (1998), known as columns 

1 and 4 respectively). 

In this problem the only decision variables were the positions and diameter of the 

reinforcement bars (see Table 8.1). The maximum number of reinforcement bars in each 

solution depends on the size of the colunm; the cross-sectional area of steel used should 

not exceed 6% of the total area of the column. The possible positions of the bars are also 

determined by the minimum spacing allowed between bars. So the number, diameter and 

possible position of bars can only take certain values that were hard-coded into the 

chromosome using design knowledge. The advantage of this approach is that valid 

configurations are generated automatically in the chromosome; the disadvantage is that the 

flexibility of design variables required to benefit from the interactive genetic algorithm 

system and clustering technique is not available. Evaluation of robustness of a solution in 

variable space is also difficult because there is no obvious distance metric between 

solutions. 

The problem with trying to visualise ail the variables of every design is shown in 

Figure 8.11. As the column is syirmietrical the design can be specified as a quarter section; 

the other sections will be mirror images of the first. For the relatively small column (400 x 

300mm) up to five bars can be placed in the quarter section due to the constraint on 

percentage of steel allowed, each bar has three parameters (diameter d and x, y position 

from the centre of the column) so there are 3*5 = 15 decision variables to be displayed. 
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Some of the bars have a zero diameter and so wi l l not contribute to the objective function, 

but they are shown on this plot. It is difficult to pinpoint the nature of an individual as 

multiple designs become confused with each other. Because every third input relates to a 

similar parameter it is possible to duplicate them on the same plot; in Figure 8.12 the bars 

with zero diameter are removed and the x, y position of all the bars are shown in the main 

axes. The outputs (or objectives) can now be seen more clearly but this view still does not 

help the user determine the best configurations in terms of the fitness of the solution. 

Clustering in variable space returns a single solution because o f the discrete variables. It is 

also highly likely that solutions will be duplicated because the same configuration can be 

described by reordering the decision variables. 

ZomO-J 

Figure 8.11: Visualisation of the first biaxial column design. There are many discrete 
input variables so it is not easy to visualise single designs or group of designs. 
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Figure 8.12: Combining similar inputs {xpos.ypos and diam of each bar). The 
understanding of solutions has not been improved. 

The contributing engineer suggested it would be more instructive to visualise the 

solutions in objective space and have the opportunity to visualise individual designs; a 

number of modifications to the system were necessary to enable this. Figure 8.13 shows 

just the objectives in the Overview Window and another window displaying the 

configuration of an individual solution (available by clicking the right button near a 

solution). The x and y values are the positions of each bar in the quarter section from the 

centre of the column, the number next to the bar is the diameter of the bar d. For this 

column the three possible bar sizes are 16, 20 or 25mm, determined using domain 

knowledge (Rafiq & Southcombe 1998). 

In this case the GA could use any objective or combination o f objectives to 

generate the data. In Figures 8.11 to 8.14 the 'objective to optimise' is to force the load 

contour equation (LCeqn) as close to 1 as possible, this is achieved by maximising LCeqn 

but penalising individuals whose load contour value exceeds 1. I f clustering is performed 

in variable space a single solution will normally be returned because the variable space is 

discrete; this is the solution with maximum fitness. As it is more instructive to visualise the 
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outputs of this objective function, features of the system were extended so that clustering 

and search was available in objective space and along the principal components in that 

space. Here the term 'clustering in objective space' means all dependent variables and 

objectives are used in the clustering algorithm, 'clustering in variable space' refers to just 

decision variables. In future it would be desirable to let the user choose exactly which 

variables or objectives contribute to the clustering algorithm, but for these experiments the 

procedure was simplified so that only decision variables or objectives with dependent 

variables could be used. 

The rest of the clustering procedure operates as before; clusters are defined in 

objective parameters using kernel density estimation and the clusters containing the highest 

fitness are highlighted. The first two clusters found in this way are highlighted in red and 

green in Figures 8.13 and 8.14. The %Area objective takes discrete values but there are 

enough of them to simulate a continuous parameter so the clustering algorithm is not 

disrupted. Figure 8.14 shows a unimodal ridge centred around LCeqn = I as would be 

expected. 

L » p i 157 66 Cap* 125 23, LC»<jn 1 000 
% A / t a . 6B. T o l i ^ . a 1?2D 13 

Figure 8.13: Viewing and clustering in objective space, a quarter section of an 
individual design is displayed by clicking right mouse button in the Overview 

Window. Solution of highest fitness {LCeqn=\) show n indicating positions (x,y) and 
diameter of bars. The size of the column and objective values are also given at the top. 
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% A r e . 3 

Figure 8.14: 2D+Fitness view of the objectives where fitness is maximising LCeqn 
with the constraint - a unimodal fitness landscape is revealed along the ridge of 

LCeqn=\, This time LCeqn versus yoArea in main plot. Coloured clusters formed in 
objective space, containing solutions of maximum fitness. 

Running a GA inside regions was not desirable in variable space because of the 

duplication of variables and redundancy in those with a diameter of zero. In this case the 

user is viewing the objective space and trying to find solutions that wi l l fall inside desired 

regions of objective space. As stated before the main aim for the engineer in this problem 

is to find solutions with LCeqn as close to 1 as possible and %Area as low as possible. 

Figure 8.15 shows a blue cluster highlighting such solutions in the relevant two-

dimensional slice of the objective space. Having highlighted this region the user can 

choose to run a GA inside' the blue region; this means that solutions falling outside this 

region in objective space will be penalised. Because the search space is very large it is 

unlikely solutions wil l be found inside this region by random initialisation, so solutions 

found inside the cluster from the previous GA run are used to initialise the next GA 

population. 
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Figure 8.15: Engineer is concentrating on designs with LCeqn as close to 1 as possible 
and %Area minimised, the design shown is the bottom of the blue cluster -

LCeqn=\,M just fails constraint 

Figure 8.16 shows the result of running the GA inside' the blue region of Figure 

8.15; many solutions have been generated outside the desired region due to the action of 

crossover and mutation inside the GA, however some new solutions (blue) have been 

discovered inside the desired region. A solution that satisfies the constraint almost 

perfectly {LCeqn=.99) has been discovered that improves on the adjacent solution found in 

the original GA run (LCe^n=.97) and reported as the optimal solution in Rafiq & 

Southcombe (1998). A more accurate calculation of the biaxial design moments is needed 

to confirm that this design meets specification; furthermore engineers may have other 

reasons for choosing the original design. This example shows how multiple solutions can 

be viewed and generated by the system, allowing the engineer to consider the pros and 

cons of design alternatives. 
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Figure 8.16: New solutions found by looking 'inside' blue region, 
(a) GA initialised with solutions f rom Overview window and any solution falling 

outside blue region is penalised. Solution (c) {LCeqn= .99) improves on solution 
(b) found in original GA run, although both have higher %Area than the 

solution indicated in Figure 8.15. 

The use of alternative coordinate systems was also considered for this problem. 

Viewing and clustering the decision variables in alternative coordinates is possible, but the 

information is not informative because of the large number of similar variables. Moreover 

running the GA in an alternative coordinate system would require further modifications to 

the system; in the current implementation it is assumed that the alternative coordinate 

systems are a continuous domain, so new solutions wi l l be generated that have no 
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corresponding solution in the original variable space. To solve this problem a repair 

mechanism or mapping function would need to be carefully designed. This work was left 

for a future implementation of the system. 

As the objective space is more relevant to this problem and has fewer dimensions, 

viewing in this domain using an alternative coordinate system is potentially more 

informative. Figure 8.17 shows the result after combining the two lots o f data shown in 

Figure 8.16 and clustering in the principal components. The corresponding clusters in the 

original variables, particularly the unusual hole in the magenta cluster, may be worth 

investigating. However some directly useful information is revealed by the sharp edge in 

the fourth principal component ('pcobj 4'). Figure 8.18 shows that this component is 

related to the fitness information (LCeqn<\); i f the sharp edge is coloured cyan by the user 

(^Cluster 6'), the corresponding cluster in the objective space is concentrated around 

LCeqn=\. The 'Summary of Clusters' dialog was modified to indicate in which domain 

each cluster was formed (variable, objective space or by the user). 

Principal Components 

100 -50 0 so 
P C O t t 3 

- O X J 2 0 0 2 ) O f f i 8 

-4000 -2000 

Figure 8.17: Principal component view of the combined data in objective space, 
natural clusters shown. 
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Figure 8.18: Principal component clusters viewed in objective space, cyan cluster is 
user-defined in fourth principal component. Summary indicates how each cluster was 

defined. 

The sensitivity and robustness question cannot be easily solved for this problem 

because the inputs are discrete and the number o f bars or variables contributing to the 

solution can vary. Therefore a distance metric between solutions is difficult to formulate, 

although with some thought such a metric could be designed. Even i f each variable were 

independently tested for sensitivity, the difference in performance o f neighbouring 

solutions would be quite large because of the discrete inputs. In theory checking the 

robustness of a solution is equivalent to analysing the effect of very small changes in bar 

position and diameter (this could possibly occur due to human influence at the detailing 

stage or deviations in the exact diameter of manufactured bars). The contributor and other 

experts did not consider such factors significant, so it can be assumed that any slight 

deviations are already accounted for in the model. So checking the robustness of solutions 

was not practical for the first biaxial column problem. 
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8^.3 Large Column Design 

As the size of the column grows the number o f available bars and thus design choices 

increases, making the problem more interesting but more difficult to find the optimal 

design. The engineer who supplied the problem was particularly interested in comparing 

solutions that were on the edge o f the feasible design boundary and viewing their 

configuration. As well as confirming the validity of the objective function to describe 

colunm design the system could also be used as a teaching tool to explain how different 

configurations affect the various design objectives. 

Figure 8.19 shows the result after the initial 20 generational GA run for the 1100 x 

550mm column. For this relatively large column, bars o f larger diameter are used: 25, 32 

or 40nmi. Again domain knowledge is used to ensure "buildability" o f the column by 

determining the possible discrete positions of the bars so that concrete can be placed 

between them. When optimising LCeqn a single cluster is identified in objective space. By 

viewing the trade-off plot between LCeqn and %Area the different possibilities can be 

compared. The configuration displayed is just feasible according to the LCeqn value but 

%Area is rather high. Such a configuration would not be used in practice, a column 

designer would know that better solutions exists with less bars located in the comer o f the 

colunm. In Figure 8.20 a region of interest has been identified and highlighted in green, 

then a GA run 'inside' this region. Because the region is defined in objective space, green 

solutions from the Overview window are used to initialise the new GA and any solution 

that falls outside the green region is penalised. The result is shown in the Moreview3 

window o f Figure 8.20 - more solutions have been generated in the important region. A 

zoomed in version o f the combined results (Figure 8.21) shows two solutions that have low 

%Area - the solution on the left could be improved further by moving the 25mm bar to the 

right. 

248 



Capx 3479 86. Capy 1844 42. LCaqr 1 02 
% A « a 2 75 T«aiAr»a 16641 OB 

EdiCluiai»| Zaomtit 

Figure 8.19: Larger column 1100 x 550mm, up to 9 reinforcement bars possible. 
The GA uses LCeqn to optimise, this solution is just acceptable at 1.02. 

Figure 8.20: Run GA 'inside' green region, more solutions appear, increasing the 
choice for the user. 
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Figure 8.21: Combining the results, two good solutions found. The left solution could 
still be improved by moving the 25mm bar to the right. 

Optimising with a different objective can give very different initial results. Figure 

8.22 shows the result of minimising %Area, the optimal result in this case is no 

reinforcement bars, but this result is outside the range of the constraint. Again it is possible 

to highlight a region of objective space (around LCeqn=\) and trying to force a genetic 

algorithm to find solutions inside the regions. There are not many feasible solutions from 

the initial run, but more solutions have been generated in the desired blue region in Figure 

8.23. Figure 8.24 shows the best solution after two genetic algorithm runs, this is similar to 

the solution found by optimising LCeqn (Figure 8.21); a knowledgeable engineer would 

rearrange the bars to achieve an optimal layout. This example shows that choice of the 

optimised objective has a large impact on the efficiency o f the system to find solutions that 

satisfy the engineer's specification. 
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Figure 8.22: Run GA by minimising %Area - best solution has no reinforcement bars, 
but is obviously not feasible. There are not many feasible solutions available. 

Figure 8.23: Choose a region around LCeqn=l^ again the GA can be forced to find 
new solutions in the feasible region. 
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Figure 8.24: Solution shown is diff icult to improve on when optimising %Area -
converged on a similar solution to that in Figure 8.21 (left); a better solution could be 

found by rearranging the bars manually. 

8.3.4 Multiobjective Visualisation and Optimisation 

There would be an obvious benefit of viewing the data and clustering results from different 

objectives on the same plots, viewing multiple runs has not yet been implemented in the 

system, but is simulated in Figure 8.25. The trade o f f between the %Area (Figure 8.19) and 

LCeqn (Figure 8.22) objectives can be clearly seen in this figure. The relative fitness of the 

objectives have been normalised to aid comparison, but could be scaled to reflect the 

preference of the engineer. As before the user could highlight the relevant region and force 

the GA to search there using either objective. 

However a more efficient approach is to combine the objectives in some way so 

that the GA converges directly on the region of interest. The two most popular techniques 

used in multiobjective optimisation are the 'weighted sum' approach and Pareto ranking. 

The weighted sum approach involves summing the objectives using weights supplied by 

the user. In this approach the search will concentrate on a particular part of the trade-ofT 
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curve (or response surface); this may produce undesirable results i f the weights have not 

been chosen correctly. Another major drawback of the weighted sum approach is that it 

cannot resolve non-convex parts of the response surface (see Fonseca & Fleming 1995). 

Parelo ranking solves this problem by evolving non-dominated solutions (Goldberg 1989 

p. 198, Deb et al. 20(X)) to produce the complete response surface. 

%Araa 

Figure 8.25: Showing two GA runs on the same plot. The data tipped by red 
generated by minimising %Area^ the data tipped in blue is generated by maximising 
LCeqn<\, Each data set has been normalised for visualisation purposes; the 'height' 

of each data set could be changed according to importance of each objective. 

In the case of the biaxial column design problem the trade-off curve between the 

pertinent LCeqn and %Area objectives was known to be convex; this is confirmed by the 

visualisations (Figures 8.22, 8.23, 8.25 and others). Therefore the weighted sum approach 

was deemed to be sufficient as this problem has a well-defined region of interest. The 

fitness was given as: 

Fitness = a±^ bA^ Equation 8.4 

where a and are constants, L^ = LCeqn and A'^ = %Area (see Table 8.1). 
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With a suitable choice of a and h the GA wil l attempt to minimise %Area whilst finding 

solutions with LCeqn as close to 1 as possible. Figure 8.26 shows the result of a GA using 

the combined fitness with weightings suggested by the contributor. This result and the 

result given in the right-hand side o f Figure 8.21 are both superior to the results given in 

Rafiq & Southcombe (1998) and Rafiq (2000) in terms of steel used, although their ability 

to withstand the applied load needs to be confirmed. 

C«p« 3590 46. C»py 1752 49. LCeqr l 02 
5 _ % A n a 2 52 TtHaiAn* 15233 SB 

Figure 8.26: Optimising both LCeqn and %Area gives a result that improves on the 
interaction led results of Figure 8.21. 

Figure 8.27 shows how smooth the fitness landscape is, almost guaranteeing a 

solution in the desired region; the green cluster contains the fittest solutions highlighted by 

the user in the parallel coordinate plot. Some of the solutions in the green region violate the 

constraint LCeqn<\. Rafiq & Southcombe (1998) tried to avoid this problem by initially 

giving more weight to the constraint to ensure feasible solutions before minimising yoArea. 

Alternatively infeasible solutions could be further penalised or removed altogether from 

the visualisation. However for this prototype system it is preferred to keep all the 
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information for the user to deal with at a later stage and thus avoid hard coding domain 

knowledge. This time highlighting the desired region (LCeqn^X - blue region in Figure 

8.28) and running the GA inside returns many interesting results. The black dot on the 

edge of the green region (details given to the left) is the result that was missing from 

Figure 8.21, this may be the optimal configuration in terms of minimising steel area, 

although the feasibility of the solution needs to be corroborated. 

The engineer may have other criteria for choosing between columns; the number of 

different configurations and design options reveals the true benefit of the visualisation 

system. The designs shown at the top of Figure 8.28 were chosen in preference to other 

options because all the bars are at the edge of the column, maximising the moment effect 

of each bar. This picture is informative, but an experienced engineer would choose designs 

with the largest bars in the comer of the column (Rafiq 2000). In practice bars sizes are not 

mixed in individual designs, so the other solution shown in Figure 8.21 (right hand side) 

could be optimal in this case. Further filtering of design choices could be performed 

manually on this plot or by manipulating the variable space. 

Onq.nQiVa/io£)le» 
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Figure 8.27: Fitness landscape view of combined objective LCeqn and %Area. Fittest 
solutions highlighted using the parallel coordinate view. 
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Figure 8.28: Another GA run inside the blue region generates many feasible solutions. 

Another possible application of the system is as a teaching or descriptive tool. The 

two moment objectives Mux and Myy (CapX and CapY in figures) contribute directly to the 

load contour equation (LCeqn) and interesting, but intuitive, conclusions can be drawn 

from studying this trade off. Figure 8.29 shows the moment trade-off for the combined data 

found in Figure 8.28. The contributing engineer was impressed by the knowledge 

discovery available when interacting with this plot. Ideally both moments should be 

maximised but within the LCeqn constraint. I f CapX is increased only, then the bars are 

arranged horizontally at the top of the column (Figure 8.29 right), conversely a high CapY 

is produced by arranging bars vertically (left). Low CapX and CapY result from bars being 

placed too close to the centre of the column (Figure 8.29 bottom), whilst an LCeqn value of 

1 is achieved by placing the bars at the comers of the column. However finding the blue 

optimal solutions that minimise cross-sectional area would be a case of trial and error using 

this visual-interactive method alone. 
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Figure 8.29: Looking in CapX against Cap Y is also instructive - conflgurations change 
as the user moves around the trade-off picture. This will confirm the robustness of 

the system and objective function to an experienced engineer and is valuable 
knowledge discovery for a novice user. 
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S3.5 Conclusions 

The first biaxial column design problem presented a number of challenges to the system, 

underlining the fact that real world problems are usually not well-behaved, predictable 

functions. The main problem was that the inputs to the model were the size and position of 

each reinforcement bar, some of which could take on zero diameter. Visualisation of 

individual solutions and groups of solutions were difBcult and the clustering algorithm 

tends to return just a single solution because of the discrete nature of the inputs. The 

system was modified by overlaying all the bar inputs onto three variables and ignoring the 

bars with zero diameter, but differentiating between individuals and clusters of solutions 

was still a problem. Instead the solutions were viewed in objective space and the clustering 

and GA behaviour modified to work in this space using a penalty function. Such 

modification is not an ideal approach; a better method would be to find a smooth mapping 

so that feasible solutions would be more easily generated. 

For this function the automatic clustering in objective space highlights the fact that 

each objective is unimodal. The principal component view again showed interesting 

behaviour in the data that requires further investigation. However allowing the user to 

define a region in objective space and then force the GA to search inside this region was 

immediately successful. Best results were found by initialising the GA with solutions 

akeady found inside a region and penalising solutions that fall outside the region. Looking 

at the configurations of neighbouring solutions in objective space encourages knowledge 

discovery and understanding of the problem. 

Optimising different objectives with the GA concentrates solutions at either end of 

the trade-off spectrum. Another natural extension to the system was simulated by allowing 

comparison of results from different objectives on the same plot, the user could define a 

region that all objectives should try to satisfy. Interaction can help to force the GA to 
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search in the desired region, but alternative techniques such as weighted sum or Pareto 

ranking are more efBcient. A combination of the weighted sum ^proach and user 

interaction indicated the large number of design alternatives generated by the system. 

Nevertheless the use of the Pareto firont is at the forefront of multiobjective optimisation 

research (Fonseca & Fleming 1995, Deb 2000, Rafiq 2000) and would be the subject of 

future research for the system. In particular optimising and viewing the fitness landsc^e in 

temis of the 'Pareto rank' would be interesting as more designs should be generated along 

the desired trade-off between objectives and relevant feasible designs would be more 

efficiently found. 

There is no advantage in using the negative GA in objective space as the positions 

of degraded solutions can ab-eady be seen and such a search will not provide any 

information about the sensitivity and robustness of solutions. Evaluating sensitivity in 

variable space is problematic because it is necessary to know the neighbourhood of 

solutions in variable space. Each design choice is distinct and because of the representation 

it is difficult to relate designs. This situation could be improved by pre-processing the 

order of variables for each individual so that solutions can more easily grouped in terms of 

numbers of bars or maximum diameter of bars. In practice an engineer would look at a 

design generated in the feasible region of the objective space and evaluate its robustness 

using domain knowledge. Given a configuration of mixed 40mm and 25mm bars, for 

example, the engineer would have a feel for the effect of moving or swapping bars and 

know that the larger bars should end up in the comer to improve the efficiency of the 

design. As many infeasible or impractical designs are generated by this function it may be 

worth introducing further domain knowledge into the problem. 

As mentioned at the end of Section 8.3.2 the robustness issue is not significant for 

individual designs as sensitivity due to the exact positions and size of bars is already 
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accounted for. This was confirmed when the contributing engineer received feedback fit)m 

experts in the column design field; they stated that in practice a column is over-designed to 

ensure it complies with building and safety issues. These issues were seen as so 

fundamental to column design that the contributing engineer designed an alternative 

objective function. As the problem seemed more suitable for the interactive system, further 

research was carried out on the modified function as described in the following section. 

8.4 Biaxial Column Design 2 

8.4.1 The Need for Another Biaxial Column Design 

In theory the columns found in the first biaxial colunm experiment (Section 8.3) are the 

most efficient and will withstand the applied load with minimal amount of material used. 

But in practice column design experts will ensure safety by simplifying the manufacturing 

process (called bar detailing), using one bar size and reducing the possible choices for 

placing the bars. The default design is to place reinforcement bars around the edge of the 

column, including the sides, to stop it 'exploding* due to a large axial load. These safety 

factors on column design are highly recommended by practitioners and common practice 

in the UK and elsewhere, so the contributor coded the constraints directly into the 

objective function. 

Thus domain knowledge was increased and design options decreased in the new 

problem. However the designer still has a number of decisions to make due to the 

'"buildability" of the column. The columns are built using a fomi and the bars are held in 

place by shear links. The arrangement of the bars has an impact on the ease of detailing the 

column and keeping the bars in place with the links. Optimal arrangements are difficult to 

describe and depend on size and number of bars present in the column, so the more design 

choices that can be generated the more likely an experienced engineer would be able to 

choose a safe and easy to build colurrm. 
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The axial load N and design moments Mx and My are fixed in this model, but the 

column depth (h) and breadth (b) are allowed to take certain discrete values. The other 

variable inputs are the number of reinforcement bars (whose positions are determined by 

the depth and breadth of the column) and the diameter of all bars (12, 16, 20, 25, 32 or 

40mm). As well as the objectives listed for the first biaxial column design, the cost of 

making the column is also an objective. The cost is a sum of the cost of concrete, steel and 

form used to build the column. The required links between reinforcement bars are also 

returned as dependent variables (see Table 8.3 for details) and are used in the calculation of 

cost. Fixed input parameters for the column design problem discussed in this section are 

given in Table 8.4. 

Parameter Name Symbol/System 
Name Type 

Axial load N Fixed input 
Applied moment in jc dir. Mx Fixed input 
Applied moment in y dir. My Fixed input 

Concrete cost per m. length ConcCost Fixed input 
Steel cost per m. length SteelCost Fixed input 

Formwork cost per m. length FormCost Fixed input 
Breadth of column b / breadth-col Decision variable 
Depth of column h /depth-col Decision variable 
Number of bars nbar / num-bar Decision variable 
Diameter of bar d / bar~diam Decision variable 

Space between bars JC dir. space-x Dependent variable 
Space between bars y dir. space-y Dependent variable 

Diameter of links link-diam Dependent variable 
Space between links link-space Dependent variable 

Alpha a Dependent variable 
Ultimate resistance to pure axial 

load Dependent variable 

Maximum capacity in JC Mux 1 CapX Objective (max.) 
Maximum capacity iny Muv 1 CapY Objective (max.) 

Result of load contour equation LCeqn Objective < 1 
Total cross sectional area of 

reinforcement bars 
4"^= m*As/b/h 

%Area Objective (min.) 

Cost of column per m. length CostofCol Objective (min.) 

Table 8 J : Parameters used in second biaxial column experiment 

261 



Column 
Type 

Axial load 
(kN) 

Moment in 
x(kNm) 

Moment in 
3;{kNm) 

Cost of 
Concrete 

Cost o f 
Steel 

Cost of 
Formwork 

Large 5000 2100 1000 60 750 20 

Table 8.4: Fixed input parameters used in the second biaxial column design problem. 

There are fewer, more general, decision variables for the new function that should 

respond more readily to the clustering procedure, in particular column depth and breadth. 

In theory it should be possible to form and view clusters described in both the variable and 

objective space or transform to a new coordinate system in both spaces and define clusters 

from there. 

8.4.2 Objective Robustness 

Although robustness of an individual column is catered for by over-designing of practical 

designs, it was hypothesised that some theoretical comparison about the robustness of 

objectives due to changes in decision variables could be made in this new function because 

clustering in variable space is more realistic than the first biaxial column design function. 

Figure 8.30 shows the design and objective space whilst optimising LCeqn (maximising 

but < 1) in the second biaxial column function. Two clusters have been found in variable 

space partitioned most obviously by the bar-diam variable (top right hand plot). Attempts 

to evaluate robust regions reveal that the green region is a lot more robust than the red 

(Figure 8.31). The red region is made up of solutions with large bars (32mm diameter), 

whilst the green designs contain small bars (16 or 25mm) and is more robust in terms of 

LCeqn (Figure 8.31). This implies that large columns with small bars may be more robust 

than small columns with large bars. In theory i f the diameter of the bar is large, changing 

the number of bars will affect the solution a lot, although this is not likely to happen in 

practice. 
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Figure 8.30: Optimising LCeqn<\. Best regions found - either small colunm with 
large reinforcement bars (red), or large column with small reinforcement bars 

(green). 
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Figure 8.31: Choosing top 10% and running negative GA, large column with small 
bars seem to be more robust, although an individual solution in the red region may be 

acceptable. 
263 



Clustering in objective space reveals a number of solutions with LCeqn value 

between 0.5 and 1 (blue and yellow clusters in Figure 8.32) but the solutions cover a large 

portion of the variable space. A negative GA in these regions would show that there are 

many bad solutions because the design space is very flat although noisy (Figure 8.32). 

Conversely there are a number of diverse design options that produce good solutions. 

Clustering can again be performed in the principal component version of the variable or 

objectives (Figure 8.33). Analysis of these results may reveal some interesting features of 

the data, but a major hindrance to this analysis is the difficulty in explaining the results to 

engineers without knowledge of principal component analysis. 
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Figure 8.32: Clustering in objective space, blue and yellow solutions all have 
LCeqn>0,5, A lot of good designs found with a variety of different variable values. 
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Figure 8.33: Clustering and Run GA available in variable space or objective space 
and principal component version of both spaces. 

8.4.3 Optimising Column Cost and Evaluating Feasibility Robustness 

In this function the main objective is to minimise the cost of building the column. The cost 

is a function of the cost of concrete, reinforcement steel and formwork, so is slightly 

different to the yoArea objective used in the previous function; yoArea was only concerned 

with the relative amount of steel used in each column. Because the column can have any 

size the cost is a fairer way to compare columns. Obviously the small columns will have 

very small cost but they violate the load contour equation constraint. Again there are 

alternative ways of tackling this problem, either constrain the search space in the system 

and try to force the GA into finding feasible solutions or change the objective function 

directly so that infeasible solutions are given low fitness. The second option is easier to 

visualise because good solutions are at the 'top' of the design space surface and the 

clustering algorithm will return the best clusters taking the constraint into account. 
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Figure 8.34 shows the result of optimising the cost of column but penalising 

infeasible solutions {LCeqn=l.02 is just feasible), the penalised solutions have low fitness 

so are of light colour. Clustering in variable space reveals the 'best' solutions are those of 

average size with few, large sized reinforcement bars (note the complete column is shown 

in the individual view). This reflects a trade-off between the amount of concrete and steel 

used that both contribute to the cost of the column, however the fact that all the highlighted 

designs use 40mm bar sizes is also an anomaly of the clustering algorithm working in 

discrete space. The algorithm splits the designs into diameter size, finds the best solution 

(in this case a column with 40mm bars), and thus returns a cluster with only 40mm bars. 

An engineer may have reasons for discounting the solutions with large, but fewer, bars, 

especially i f a certain number of bars are needed to stop the column exploding. 

The trade-off graph in objective space shows the amount of discontinuity present in 

this version (Figure 8.35 left). Automatic clustering in objective space again reveals the 

diversity of design options available (Figure 8.35 right), although the slightly different 

clustering results from Figure 8.34 indicate the complexity of the mapping between the two 

domains. It is worth bearing in mind that the clusters are computed using the 'dependent 

variables', not shown on these plots, which may discount some useful results. Further GA 

search 'inside' a manually created cluster in objective space shows the variety of solutions 

that could be used formed to make 'good' solutions (Figure 8.36); designs have been 

colour coded according to the reinforcement bar diameter. 
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Figure 8.35: Clustering in objective space, note the discontinuous effect in the 
objective space trade-off graph (infeasible solutions have light colour). 
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Analysing the robustness of solutions is made more complex with the inclusion of 

the constraint. As well as evaluating the sensitivity of variables due to the change in cost of 

the solution, it is also necessary to ensure that changes in variables do not cause the 

solution to become infeasible. This form of investigation is known as "feasibility 

robustness*' (Parkinson et al. 1993, Du & Chen 2000). The system can be used to assess 

robustness in the usual way using the filtering mechanism. Figure 8.37 shows the result of 

filtering the clusters found in vanable space (Figure 8.34); very strict filtering is used (less 

than 1% of the fittest solutions are kept) with the result that any one solution remains in the 

red cluster. There are a small number of solutions remaining in the green cluster, all of 

fairiy low cost, however some of the solutions are also infeasible. In fact a slight change in 

the column size of a near-optimal solution (Figure 8.37a) has resulted in an infeasible 

solution (Figure 8.37b). Lx>oking at the constraint boundary on this figure shows that there 

are many solutions between the green solutions of different column sizes, so neighbouring 

solutions in variable space do not map to neighbouring solutions in objective space (as is 
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generally the case). It is easier to analyse robustness of solutions for this problem than the 

first biaxial column design problem, but the same difficulties with discrete inputs still 

arise. 
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8.4.4 Expert Evaluation 

As well as the contributor, two other civil engineering design experts from the University 

of Plymouth were invited to evaluate the system woridng on both biaxial column design 

problems. The author demonstrated the system and showed views of the search space as 

required while their comments were recorded. They were also asked to f i l l in an evaluation 

questioimaire at the end of the session, reproduced in Appendix E. 

They were impressed by the variety of solutions that were displayed and compared. 

Again the ability to see the details of each solution was remarked on as particularly useful 

to get a feel for the designs being produced. They also liked the facility to zoom in on 

regions of objective space and generate further designs in the pertinent regions using the 

genetic algorithm. There was very positive feedback about the visualisation of solutions 

and the ability to see good and bad solutions together (Appendices E.2 and E.3). 

A lot of discussion was provoked by such interaction with the system and looking 

at individual designs, for example those shown in Figure 8.38; the experts confirmed that 

they could make their own design decisions from this information. From this picture it is 

clear that there are a variety of solutions around LCeqn^l with different bar sizes. 

However the cheapest designs use a reinforcement bar size of 40mm; although these bars 

are larger, less of them are needed to ensure feasible solutions, thus reducing the cost (steel 

is the most expensive material - see Table 8.4). When the columns are made in practice, 

more bars are required to improve the "buildability" of the colunm and to stop the column 

exploding. The two intermediate designs (25 and 32nmi) may be better design options for 

this, although they are more expensive to build. The best 20mm design (top) is by 

necessity large and has high cost, confirming that 20mm bars are not practical to support 

loads of this magnitude. Some concept of "buildability" may be included in the objective 

function by restricting the distance between bars, but much of the concept is subjective. 
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The experts confimied that design decisions are made due to external causes that 

are dependent on the individual job in hand. For example the size of the column may be 

constrained by the size of slabs of formworic that has been supplied on site - to reduce 

wastage only certain sizes can be cut from the slab. There may be other constraints on the 

size of the column such as the size of cladding used, to ensure net floor space is maximised 

in a building or the dimensions of horizontal beams that the column should complement for 

aesthetic reasons. Also the diameter of available bars may be limited by the supplier due to 

ease of transport or manufacture - often smaller bars are cheaper to buy (presumably 

because there is less wastage involved during manufacture). Al l these scenarios are known 

to the engineer during the decision making process but are not present in the objective 

function, so more design options generated by the system will enable the subjective 

constraints to be met. I f time for further analysis is available or a more detailed study is 

required, some of these constraints could be coded into the objective function, reducing but 

concentrating the design choices available. 

Feedback about the robustness of solutions also confirmed that once a design has 

been chosen it will be built without much modification and is over-designed anyway for 

safety reasons, so the number and size of bars will not affect robustness nor will the exact 

location of the bars. In Appendix E.2 the evaluator reported that the system did not help to 

evaluate the robustness of solutions and conmiented: '"As a practitioner I was making 

observations for myself. This is another example of domain knowledge being used in the 

decision making process; the expert used his experience to evaluate whether a solution was 

likely to withstand the load, knowing the likely variations and tolerances on design 

variables. However in further discussions this evaluator confirmed that the display such as 

that given in Figure 8.38 does help to understand the objective function and analyse the 

behaviour of similar column designs. 
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During the demonstration the concept of using the negative GA to 'solve' the 

engineering design problem was introduced. The feedback in Appendix E.3 (questions 3 

and 6) indicates that the procedure was not understood and other functions in the system 

needed clarification. As documented the evaluation of robustness is not easy to 

demonstrate on this problem, so contributed to fiirther confusion. Nevertheless both 

evaluators confirmed that the system showed that the second biaxial problem was robust 

(behaved as expected) and produced a number of designs that could be potential solutions 

to varying scenarios. 

Following this feedback some alternative design scenarios were implemented in the 

system to investigate further potential of understanding the problem. It was suggested that 

different designs could be discovered i f the cost of the materials used to build the colunm 

were to vary. For example in some countries steel is very difRcult to obtain and thus the 

relative cost is much higher. This scenario can be simulated by halving the cost of concrete 

and leaving all the other input parameters unchanged. Figure 8.39 shows a similar trade-off 

picture to that given for the original scenario in Figure 8.38. The cost of all columns is 

obviously reduced, but optimal columns (in terms of cost) are a lot larger with more 

concrete used to fulfil the design constraint (compare size of the best columns with 32mm 

bars, details shown to the left of the figures). Columns with 20mm bars are more 

successful in this scenario, but a lot of small bars are needed to support this size of column, 

increasing the cost. However the best columns in terms of cost are again those containing a 

small number of 40mm bars. The amount of steel used is relatively low for these designs, 

but the larger bars have just enough moment affect in the comer of the column. Another 

reason why the best designs contain large bars may be due to the representation of the 

column in the GA; the depth of the column can be a certain fraction of its breadth so there 

are many more small column sizes available than large sizes (see depth-col against bread-

col trade off in figures). In this scenario, where larger columns with less steel are 
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theoretically optimal, there are less design choices available. But for smaller columns with 

fewer (larger) bars there are more design choices, so these are more likely to be found by 

the GA. An alternative representation of the problem is advised for future investigation. 
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Conversely i f the cost of concrete is increased relative to the original parameters, 

much smaller columns with more steel reinforcement are optimal (Figure 8.40). There is a 

complete absence of columns with 20mm bars amongst these good designs because there is 

not enough room in the small columns to contain the required number of small bars. In this 

case the columns with 32mm are optimal in terms of cost; they beat the columns 

containing 40mm bars because a change in the number of bars causes less change in 

fitness, so they have more chance of being an optimal design. However there may be other 

reasons for all these effects, including convergence to sub-optimal designs by the GA. 

In summary the knowledge discovery aspects and potential for visualising more 

complicated engineering design problems most impressed the experts. The variety of 

design options are very useful for the engineer who may have other constraints to fulfil that 

are not explicitly expressed in the objective function. The evaluators also agreed that such 

a system was novel in engineering design and optimisation processes. They suggested the 

system would be even more beneficial in more complicated civil engineering design 

projects such as conceptual design of whole buildings or construction of football stadiums. 

For these projects even more design variables and uncertainty exists, so visualisation tools 

would improve understanding and increase the number of choices considered. I f a better 

design is found the potential savings on costs and material used is considerable. 

8.4.5 Conclusions 

The second biaxial column design contained more domain knowledge and returned 

solutions that could be used in practical situations. Many design options could be obtained 

by concentrating search in the desired region of objective space, allowing the engineer to 

make choices between designs based on feasibility, cost and more subjective constraints 

such as "buildability" and ease of manufacture. The problem was more suited to theoretical 

evaluation of objective robustness due to fewer decision variables and a more continuous 
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search space. Some conclusions on the robustness of relative bar and column sizes could 

be drawn from the analysis. Optimising column cost whilst penalising solutions that violate 

the design constraint demonstrated that the system could be used to evaluate the feasibility 

robustness of solutions. It was shown that changes in the discrete variables caused 

relatively large changes in the objective space so that designs on the edge of the constraint 

boundary easily become unfeasible. Further analysis could be undertaken to assess the 

robustness of feasible designs away from the constraint boundary. However it was 

concluded that the representation of solutions was still too coarse grained to enable 

realistic analysis of robustness for this problem. 

Feedback from expert evaluators confirmed that the system succeeds in its goal of 

presenting solutions to engineering design problems, provoking discussion and helping 

users imderstand the search space and confirm the knowledge of experienced engineers. 

The visualisation of individual solutions and comparison of solutions in relevant regions of 

objective space were particularly praised (Appendices E.2 and E.3). The system's ability to 

generate more good solutions in the regions also impressed. The visualisation of solutions 

in alternative coordinate systems was not presented to these practitioners, but a lot of 

discussion was generated from a small number of two and three dimensional plots and 

demonstration of simple interactions as shown in the this section and Section 8.3. 

From the discussion and feedback it is clear that not all the displays and functions 

of the system were understood at first viewing (Appendix E.3), particularly the use of the 

negative GA and robustness evaluation. In reality columns are over-designed to ensure the 

specifications and safety requirements are met, so for individual designs the robustness 

issue has already been satisfied. For this problem the engineers evaluated robustness using 

their intuition and experience, this may be true in many engineering problems, particularly 

those with discrete variables. Nevertheless conclusions on the behaviour and robustness of 
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the objective function itself could still be drawn from assessing the relationship between 

neighbouring solutions. It was suggested that alternative design scenarios could be 

demonstrated with the system, further simulation confirmed the varying emphasis on 

column sizes and amount of reinforcement needed to satisfy different environmental and 

financial conditions. From the discussions it became clear the evaluators used their 

knowledge and experience in the decision making process, supported by the visual 

information rather than driven by it. 

8.5 Overall Conclusions 

The case studies described in this chapter reveal the diverse nature of real world 

applications and the consequent difficulties that need to be overcome by an interactive 

engineering design system. The rainfall runoff case study exhibited continuous decision 

variables and a single objective that was related to minimising an error function. This 

function was most similar to the test functions presented in Chapters 6 and 7, responding 

well to the clustering algorithm and the use of negative GA search. In contrast the two 

biaxial column problems had discrete inputs and multiple objectives exhibiting 

discontinuities because of hard constraints; the automatic clustering and evaluation of 

robustness procedures were less successful here. A large amount of domain knowledge 

was encoded into the latter fimctions, although choosing solutions that solve the problem 

depends on the particular design scenario and subjective constraints known only to 

experienced engineers. The system helped to support the decision making process by 

providing access to multiple design options. The biaxial column design problems are really 

detailed design scenarios, however the notion of moving objects around discrete space is 

not very different to whole building design. The need to make choices in a multiobjective, 

subjective search space is also comparable to such a conceptual design problem. 
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The visualisation of the search space helped the experienced contributors confirm 

the behaviour of their problems and suggested new solutions. For the rainfall runoff 

problem removing redundant input parameters was suggested by the visualisation system 

and, after implementation, new feasible solutions with similar fitness values were found 

outside the original search limits. These actions essentially changed the model, but they 

revealed how the input parameters to the problem interact. For the biaxial column design 

problems the system needed to be modified to allow clustering in objective space and force 

the GA to search inside defined regions of objective space by penalising the fitness of 

solutions found outside. This method generated solutions at the constraint boundary in 

objective space, provoking a lot of discussion amongst engineers. Some new design 

options were found that improved on previously published work in terms of individual 

objectives. 

The true strength of the system is its ability to provide a number of different 

designs allowing the experts to choose between them using their knowledge of the design 

situation. The representation of individual solutions was seen as particularly useful to 

support this knowledge, providing immediate visual feedback of a prototype design instead 

of a set of figures that are difficult to decipher. Visualisation of individual solutions helped 

the engineers choose a "buildable" design in the biaxial column problem, whilst in the 

rainfall runoff model comparisons between the predicted and observed solutions could be 

made and areas of mismatch identified. 

Using the system to evaluate robustness was successful for the continuous model 

but less so where discrete inputs are involved. The rainfall runoff model proved to be very 

sensitive to input variables, the negative GA could be used to analyse the robustness of 

similar sized regions and determine the more robust parameters to some extent, but the 

overall conclusion is that the model itself was not sufficient to model the complicated 
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relationship. The contributor knew this lack of robustness of the model, but the tools on the 

system confirmed the facts and showed that the robustness of future models could be 

assessed in the same way. For the first biaxial colunm problem the low level representation 

of the decision variables resulted in repeated and redundant solutions, so that determining a 

relationship between individuals was very difficult to determine. Selecting regions of 

variable space and using a negative GA was not practical in this case. However for the 

second biaxial design problem fewer variables were used that responded better to 

clustering and theoretical robustness evaluation; in this case feasibility robustness could 

also be evaluated. Use of the negative GA gave some indication as to which designs are 

robust, but even for small clusters an infeasible solution is not far away. This analysis 

showed that the relationship between variables and objectives is very complicated. In 

practice an individual solution will be over-designed so robustness is rarely an issue, but 

the analysis showed the potential of the system to investigate the robustness of feasible 

solutions. When viewing the system, engineering experts also confirmed that both biaxial 

colunm problems were robust. 

Feedback from expert evaluators was very positive, most views and processes were 

generally imderstood, but it takes time to explain some of the concepts of the system and a 

significant amount of time would be required to train people in using the system to its full 

potential. Use of the negative GA in the discrete problems was not always understood and 

further work is needed to clarify the potential and applicability of the idea in such domains. 

Clustering in alternative coordinate systems has the potential for providing a lot more 

information about the natural clusters in a data set or problem. However in future work a 

clear understanding of the results returned is necessary so that users have the incentive to 

learn and confidence to view and manipulate the data in these alternative ways. 
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For this and many problems the clustering technique sometimes returns clusters 

that are too small to be of use or interest. Although they do contain the 'best' solution, the 

rest of the information is not useful. Clustering in objective space is sometimes useful but 

usually more informative results were found by manual clustering. This phenomenon is 

closely linked to the curse of dimensionality; as the number of dimensions increases less 

solutions are 'neighbouring' each other. One solution is to let the user choose which 

variables or objectives are used in the clustering algorithm, so that irrelevant dependent 

variables and discrete variables that cause problems can be ignored. A more flexible 

clustering tool would also allow controlled evaluation of robustness by constraining 

decision variables (similar to the ^proach of Tweedie et al. (1996b)) whilst filing the 

objectives to discover the worst case situation. 

Another avenue for future work is to incorporate Pareto ranking and optimisation 

into the system, providing further design options at the trade-off boundary between 

objectives and constraints instead of specific regions found using the weighted sum 

approach. The system would then generate solutions even more relevant to the design 

problem whilst allowing an engineer to further guide the search, filter the results and make 

choices between those designs, as advocated by Parmee et al. (2000) and Rafiq (2000). 

These case studies have also revealed some major differences between theoretical 

concepts of engineering design that the system was intended to solve and the methods used 

by practicing engineers in real world problems. Theories to evaluate robustness are usually 

based on the assumption that the problem contains continuous variables and the function is 

well behaved with many loose design parameters. Some problems like this do exist, so the 

statistics and worst case evaluation as implemented in the system should be retained. 

However the civil engineering design problems presented in this chapter contained a lot of 

domain knowledge so the function is guided towards the desired region of the search space 
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and the need for robustness evaluation is virtually eliminated. Discrete decision variables 

and objective functions with discontinuities caused by constraints are much more difficult 

to visualise and analyse. Evaluation of robustness and feasibility robustness seems to be 

performed internally by the engineer, although visualisation can help to confirm the 

intuitive answer. Furthermore the subjective constraints that were not coded into the 

objective functions allow many different scenarios to be considered by changing a few 

input parameters. In the cases where the engineer has so much knowledge of the problem, 

it is less important to provide sophisticated clustering and robustness evaluation tools, but 

more important to allow visualisation of multiple results. Rather than reacting to new 

information and being guided by the system, practical engineers would use the system to 

confirm design solutions and could explain the reasoning behind the choices to less 

experienced engineers. 
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Chapter 9: Conclusions 

9.1 Outcome of Research 

9.1.1 Summary of System Developed 

A visualisation system designed to help engineers solve engineering design tasks using 

evolutionary computing was created following extensive research into the requirements for 

such a system (Chapter 2) and the tools needed to achieve those requirements (Chapter 3). 

An innovative clustering algorithm based on kernel density estimation (KDE) was 

introduced to quickly identify the main clusters pertinent to engineering design; clustering 

in alternative coordinate systems such as the principal or independent components is also 

possible, often revealing the natural partitions in the data (Chapter 4). Standard 

multivariate visualisation techniques that do not distort the data were incorporated into the 

system (Wong & Bergeron 1997, Spence 2003) and colour is used to highlight clusters 

defined by the user or clustering algorithm (Section 5.2). To encourage user interaction a 

flexible, easy to use interface was introduced that presents information in an 

understandable way (Section 5.3). Users have the opportunity to define their own clusters, 

change the definition of previously defined clusters and view useful statistical measures. 

The interface allows the user to generate data and search for clusters inside or outside 

previously defined regions (Section 5.5). Clusters defined in alternative coordinate systems 

can easily be related to the original design variables. 

It was found that a lot of information could be returned using a simple genetic 

algorithm (GA) with a low number of generations. Diversity was encouraged by mutating 

duplicated individuals (Section 5.4) in the binary string; this scheme will remain effective 

providing the number of generations and string length are relatively low. Robustness of 

regions of the data can be confirmed by an inventive technique of filtering the data in terms 

of objective value and using 'negative' GA search (Section 5.6). 
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Following the introduction of real world problems, the system was modified to take 

into account multiple objectives and discrete variables. The clustering algorithm was 

extended for use in objective space; new solutions can be generated in regions of objective 

space by penalising solutions that fall outside the required region (Section 8.3.2). This 

enabled a designer to conduct a concentrated search in a particular region of interest, 

creating more knowledge and helping the decision making process. Individual details of 

designs generated by the system can also be viewed separately, allowing direct comparison 

between the different artefacts. 

The system and clustering algorithm were originally developed for continuous 

problems and tested using continuous test functions; they were then tested on real-world, 

discrete problems with mixed results (as summarised in the following sub-sections). For 

the approach to fully exploit the advantages of evolutionary computing for the majority of 

engineering design problems, further development and testing is needed to take into 

account discrete variables and combinatorial functions. Suggestions on how to proceed in 

this direction are given in Section 9.2. 

9.1.2 User Evaluation Experiments, Results and Conclusions 

To evaluate whether the system achieves the philosophy of promoting collaboration 

between the human and computer (thus helping to understand engineering design 

problems), the system was initially tested using novice subjects with varying experience of 

engineering design. This preliminary evaluation was designed to assess the usefulness and 

applicability of as many features of the system as possible without the need to train 

experienced engineers in how to use the system. Unique test functions were designed to 

simulate engineering design problems; unevenly distributed optima with varying height, 

width and amount of noise present (Section 6.2). The participants were asked to complete 
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an engineering design task that required them to locate robust regions of the search space 

and evaluate the relative quality of each defined region (Section 6.3). A region was defined 

as robust i f the fitness of solutions found inside the region were above a minimum 

tolerance level of the local optimum. The quality of the region was defined as the product 

of the size of that region in variable space (hypervolume) and the fitness value of the local 

optimum. Statistical measures were introduced to compare the accuracy of the user-defined 

regions to theoretically 'ideal' regions (Section 6.4). Another set of statistical measures 

analysed the sampling of the ideal regions by the user-generated data, this second set of 

metrics were compared with results from three benchmark multimodal genetic algorithms: 

the simple GA, GA with sharing and GA with deterministic crowding (Section 6.6). 

It was impossible to make any firm conclusions from the statistical results due to 

the small number of participants used, but analysis of individual results revealed the 

differences in behaviour of the users due to their level of understanding of the system and 

the problem (Section 7.2). Individual algorithms achieved better results than the users on 

specific measures; this confirmed the behaviour of those algorithms and their usefulness to 

solve specific tasks (Section 7.4). Nevertheless none of the algorithms outperformed the 

users on all measures for the complete engineering design task. It was shown that even a 

devoted hybrid algorithm would need help to solve the task, so the need for incorporating a 

human user into the exploration and design process was once again confirmed. 

Feedback from the participants after the experiments confirmed that they found the 

system useful and enjoyed the flexibility of interacting with the data (Section 7.3 and 

Appendix D). The ability to generate and view clusters of the data using colour and 

confmn the robustness of those regions of the search space using a 'negative' GA were 

seen as particularly beneficial. The feedback suggested certain features of the system that 

could be changed and improved (Section 7.5.1), especially combining processes to remove 
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repetitive actions such as to check the robustness of regions (Section 7.6.1) and 

automatically find robust regions (Section 7.6.2 - this is similar to the sharing-based 

sequential niche technique of Beasley et al. (1993)). Clustering in alternative coordinate 

systems was not used by any of the evaluators; brief experiments on the test fimctions were 

inconclusive as to the usefiihiess of the technique (Section 7.6.3), but further investigation 

is warranted (see Section 9.2). 

The main objective of the research was that the system should fulfil a dual 

requirement (Section 1.2). Firstly, the computer should generate data and identify robust, 

high quality regions of the search space. Secondly, the user should be allowed to interact 

with the data and guide the search as required. Both system requirements appeared to have 

been achieved, however further examination of the users' results revealed that some 

regions defined as high quality in the engineering design task were not identified by the 

user or made obvious by the system. So in some cases the system failed to identify 

potentially high performing regions. 

A critical analysis of the user experiments highlighted three main factors that 

caused the participants to miss important data and fail to identify robust regions. The first 

reason for this failure is that the clustering tool did not look for relatively low fitness 

regions that could potentially be robust and of high quality (Section 7.5.2). This suggests 

that the clustering tool needs to be modified to allow the user to specify the range and type 

of data required and possibly more sophisticated clustering techniques are needed to locate 

this information. However, the fact that the users did not realise that they should be 

looking for such low fitness information suggests further reasons for failure: they did not 

fully understand the engineering design task and the definition of robustness. 
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The engineering design task was very ambitious and asked a lot of novice users 

working on an unfamiliar system (Section 7.5.3). The participants all had varying 

theoretical knowledge of engineering design; in fact some of those with less knowledge 

had more success because they considered the task as visual problem solving. This fact 

suggests that the system could also have further application in cognitive analysis and 

problem solving. For further testing of the system as an engineering design tool it was 

recommended that specific features are formally tested by giving the users simpler tasks 

and slowly building up their knowledge of the system until more complicated problems 

can be tried. More realistic problems that involve discrete variables, multiple objectives 

and even real world problems would also be advantageous. 

The engineering design task and definition of robustness were designed to 

encourage decision making, Grom the feedback it is clear that the system helped to support 

this. However, the critical analysis suggested that the definition of robustness was 

incomplete because the tolerance level was set relative to the objective (or fitness) value of 

the local optimum. Users needed to make subjective comparisons between regions using 

the statistics provided on the interface (Section 7.5.4). An alternative technique for 

evaluating the robustness of regions of the search space was suggested by setting the 

tolerance level in variable space and comparing the absolute values of maximum and 

minimum objective (or fitness) found in the region (Section 7.6.4). This simpler method 

removes a lot of the uncertainty and is more directly related to real world design problems 

where tolerances are set due to limitations on materials and target specifications according 

to Taguchi (1986) and Tweedie et aL (1996b). So the experiments and analysis facilitated 

understanding of the theoretical evaluation of robustness. 
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9.1.3 Case Studies: Results and Conclusions 

After the evaluation of the system working on artificial test functions (using theoretical 

concepts of engineering design and robustness), its usefulness and effectiveness was tested 

on real world problems. The system was shown to engineering design experts and 

demonstrated working on problems they designed or were very familiar with. 

The first case study entailed finding parameters to model daily river flow using the 

history of recent rainfall and river flow only (Section 8.2). The problem had continuous 

variables and a single objective related to minimising the error function between the model 

and observed values; this function was the most similar to the test functions employed in 

the user experiments. The contributor was able to confirm some attributes of the model 

through the visualisations. The noisiness of the model was apparent due to the variety of 

parameter configurations that returned similar values. It could be seen that some factors 

that relate to older days rainfall were very small and could be discarded from the model. 

More good results were discovered by widening the range of parameters in this revised 

model, confirming the relationship between some of the parameters in the model (Section 

8.2.2). However, the use of negative GA search revealed the lack of robustness of these 

results and thus the lack of robustness of the model; this suggests other parameters may be 

required, such as those that describe the geology and vegetation of the catchment area. 

Additionally visualisation of individual results indicated where the model differs fix)m the 

required output; these parts of the data may require a different model to simulate the data, 

suggesting that multiobjective optimisation could be applied to the problem. Traditionally 

rainfall rtmofT models are tested on multiple data sets with the aim of finding the optimal 

number of parameters to achieve the most accurate and consistent results (Davidson et al. 

2000). This study indicates that the system could be used to evaluate more sophisticated 

models and speed up the validation process. 
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The other two case studies were forms of the biaxial column problem that exhibited 

very different characteristics torn the first study: multiple objectives and discrete decision 

variables. For the first biaxial column problem the decision variables were the diameter 

and position of each reinforcement bar in the column, there were two main conflicting 

objectives: to ensure the column would v^thstand the applied load and to minimise the 

amount of steel used in the column (Section 8.3.1). It was virtually impossible to visualise 

all the decision variables and make conclusions fi-om the clustering analysis in this discrete 

domain (Section 8.3.2). However clustering in the required regions of objective space and 

generating new solutions here produced new designs that used less steel than those 

published by the contributor (Rafiq & Southcombe 1998), although the feasibility of these 

designs needed verifying (Section 8.3.3). Principal component analysis of the objective 

space appeared to highlight solutions along the trade-off curve or Pareto fix)nt, indicating a 

possible application of visualising and clustering in alternative coordinate systems. The 

robustness of this model was confirmed by viewing the change in construction of 

individual designs, however the robustness of individual solutions was impossible to 

evaluate due to the discrete nature of the diverse inputs. The real advantage of the system 

was seen in its ability to produce a number of different designs in the pertinent region of 

objective space that an experienced engineer could modify, taking advantage of domain 

knowledge (Section 8.3.4). 

The second biaxial column problem contained a lot more domain knowledge than 

the first; the number of variables was reduced because the number and diameter of the bars 

could describe the configuration of the whole column (Section 8.4.1), although the depth 

and breadth of the column were allowed to vary. The system could be used to theoretically 

evaluate robustness of solutions (Section 8.4.2). These decision variables were also 

discrete, so only general conclusions could be drawn about the most robust configuration. 

Evaluating robustness in altemative coordinate systems was also possible but further 
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understanding of the results is required. For this problem one of the objectives was the cost 

of the column, whilst the solutions were considered infeasible i f they did not satisfy the 

design constraint of resisting the required toad and biaxial bending moments. So analysis 

of the "feasibility robustness" of solutions could be made (Parkinson et ai 1993, Du & 

Chen 2000). Again the discreteness of the variables caused the solutions to easily become 

infeasible, but interesting relationships between the variables and objectives were revealed 

(Section 8.4.3). Further extensions to the clustering tool and system were suggested for 

application in real world domains: as well as allowing the user to choose which variables 

and objectives contribute to the clustering analysis, it should be possible to specify known 

constraints and tolerance ranges for the specific problem. 

The system working on the biaxial column problems was shown to civil 

engineering design experts. The feedback was very positive indicating that visualisation of 

the search space and the ability to focus and generate new data as required was extremely 

useful (Appendix E). It is clear that some parts of the system were not understood and 

some training would be required for users to become comfortable with the system; the 

evaluation of robustness procedure caused particular confusion. For this model, however, 

experienced engineers over-design the column to ensure safety and to make it easy to 

build; so individual robustness evaluation has already been undertaken (Section 8.4.4). 

Further analysis of the problem revealed that the system could be used to generate many 

solutions to different design scenarios, confirming the robustness of the model and 

usefuhiess of the system. 

The ability to visualise and compare individual designs was also seen as very 

informative by the evaluators (Appendix E.l and £.2). This shows the importance of 

relating abstract designs (in terms of mathematical numbers and equations) to the physical 

artefact that will be manufactured; this is similar to the importance of creating prototypes 
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during software development (Boehm 1988, Mumford 2003 p. 162). A drawing or 

computer image can inform designing (Schon & Wiggins 1992) but it should be 

remembered that the artefact is a context dependent representation of the design 

(Bucciarelli 1988) and the final design may differ somewhat to the drawing. 

9.1.4 Overall Conclusions: Involve the Human and Computer in Engineering Design 

From the discussion and conclusions of Chapters 7 and 8 it is clear that there is a marked 

difference between theoretical and practical concepts of engineering design. Solving the 

engineering design task in the evaluation experiments required subjective comparison 

between regions of the search space. Although the definition of robustness was explicitly 

given and easy to evaluate using the tools on the interface, the decision making process 

was based on ill-defined guidelines that were not related to a physical problem so were 

difficult to resolve. The system was design^ to help in the conceptual stage of engineering 

design, but this amount of uncertainty is unlikely to occur in practice. The real world case 

studies demonstrated the improved results of increasing domain knowledge in the objective 

functions and the modifications to the system needed to exploit the results. The first case 

study contained continuous variables allowing the theoretical evaluation of robustness, 

such as that used in Taguchi analysis (Phadke 1989). In the final case study the evaluation 

of robustness and feasibility of solutions was performed internally by the engineers, so it 

was not considered necessary to assess robustness with the system. This was partly due to 

the discreteness of the design variables but also due to the subjective knowledge of the 

engineers - based on experience and solid facts. For these experts the visual information 

alone is enough to confirm good solutions and explain the design process to less 

experienced engineers. 

The final case study was in fact a detailed design problem, this observation leads to 

the question: is the system capable of supporting the independent stages of design -
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conceptual, embodiment and detailed design (French 1999)? This question is answered by 

considering the various design methodologies introduced in Section 2.2.2. Visualisation of 

the genetic algorithm output allows many combination of parameter settings and their 

efTect on objective space to be assessed, supporting the systematic approach to engineering 

design where the required variables have been detennined (Jones 1992, p. 104). The 

generation of a large number of solutions promotes discussion and encourages group 

decision making, thus the ethnographic process of design is also supported (Bucciarelli 

1988, Baird et al, 2000). Visualisation of alternative artefacts could lead to creativity by 

'moving' and 'seeing' new designs using reflective practice (Bucciarelli 1984, Schdn & 

Wiggins 1992). In the current system domain knowledge is encoded directly into the 

objective function, but engineers may need to use subjective knowledge to identify truly 

feasible designs. Indeed the abihty to generate new designs at the boundary of either 

explicit or implicit constraints is one of the major advantages of this system. The 

interactive capabilities of the approach would also be invaluable as a teaching tool, 

enabling less experienced engineers to analyse the interaction between parameters in a real 

world problem and immediately visualise the effect of those changes on the artefact. So 

systematic, reflective and ethnographic design methodologies can all be accommodated 

using the proposed system or a similar interactive approach, providing the problem can be 

formulated in a mathematical way. These methodologies are edl used, to varying degrees, 

during the different stages of engineering design, so such an approach could be adapted to 

facilitate the complete design process. 

The system was designed to promote collaboration between the human and 

computer; feedback from the case studies suggests the proposed approach was successful. 

The importance of incorporating the human into a design system (Jo 1998) has been 

underlined by this work. Human input is particularly relevant between stages of the design 

process where risks need to be evaluated and goals possibly modified, niirroring the spiral 
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model of software development proposed by Boehm (1988). Nevertheless the system needs 

a lot more features to cope with the various stages of design and provide a smooth 

transition between them; recommendations given in next the section suggest how this can 

be achieved. 

The proposed system could be used as a tool in the modem practice of 

multidisciplinary design activity (Jagodzinski e( al. 2000, Mumford 2003). It is possible 

that analysing the interaction processes within the system and between designers could 

provide hints on how design is undertaken and some of these processes could be saved in a 

database to aid a connectionist model of design (Coyne 1990) or automated and added to 

an artificial intelligence model of design (Maher 1990, Gero & Maher 1993, see Section 

2.2.3). However the complexity of each design problem is so large that computers can play 

only a supporting role for the foreseeable future. Thus during the development of systems 

for design, emphasis should be placed on the users and the different perspectives of the 

users (Bucciarelli 1988, Norman 1998, Baird et al. 2000, Mumford 2003). 

9.2 Future Research Directions 

The system supports some of the reconunendations given by Parmee et al. (2000) for the 

implementation of an interactive engineering design system using evolutionary computing, 

however fiuther recommendations such as the easy addition and removal of objectives and 

constraints would permit an even more flexible system, increasing the likelihood of finding 

"innovative or even creative solutions" {ibid. p. 198). These recommendations could be 

practically implemented in the system by choosing which objectives contribute to the 

overall fitness (and how they are combined) and avoiding the generation of data outside the 

constraint boundaries. Such a mechanism would allow the user to input domain knowledge 

without having to change the objective fimction code. The clustering procedure could also 

be modified to include specific variables or objectives, removing the problems that discrete 

292 



variables and unimportant dependent variables bring to the results; the evaluation of 

robustness and feasibility robustness within those regions would also be improved. 

To avoid the problem of the user missing important information in the data, the 

clustering technique based on kernel density estimation (KDE) should be extended to take 

into account domain knowledge such as limits on variable values (tolerances) or objective 

values (constraints). The algorithm could be modified to bring other attributes of the data 

to the users' attention, such as regions of highest density or skewed data. However this 

KDE-based technique is not sophisticated enough to analyse complicated or non-linear 

data. Statistical and clustering techniques described in Sections 3.4 and 3.5 could all be 

adapted to find clusters in engineering design data and assessed for performance and 

usability (see Section 7.7). For a large number of parameters, it would also be useful to 

automatically identify the most sensitive variables or objectives (Packham & Parmee 

2000). 

Creating clusters in altemative coordinates systems sometimes revealed mteresting 

characteristics of the data, but the applicability of defining such regions and evaluating 

their robustness needs more investigation. As well as undertaking further work to 

understand the true meaning of the results, it is also necessary to convince engineers of 

their usefulness. Engineers will have the incentive to understand and use the technique i f it 

can be shown to assist real world problems. 

The simple GA with mutation of duplicated individuals may not be sufficient for 

more complex problems that require a high number of generations or very long string 

length; the number of comparisons required could become unfeasibly large. As many 

engineering problems are combinatorial or contain primarily discrete variables, 

modifications to the genetic algorithm, clustering algorithm and interface would be 
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required, depending on the individual problem. It would be very difficult to visualise the 

variable space of combinatorial problems such as the travelling salesperson (Louis & Tang 

1991) and design of water networks (de Schaetzen et ai 2000), as was discovered in the 

first biaxial column problem. In such cases it may only be possible to compare the fitness 

of solutions, however visualising the artefact (individual details of solutions) would enable 

the user to make subjective choices. A fiuther extension would allow interaction with the 

artefact to constrain the search space, similar to how Louis & Tang (1991) encouraged 

users to influence further search by manipulating configurations. During the multiobjective 

case studies it was very instructive to perform clustering in objective space and visualise 

individual solutions; this procedure may be the most advantageous for similar problems. 

More advanced genetic algorithms could be incorporated into the system, or given 

as options to the user, to speed up the process of fmding robust local optima. For example 

multimodal algorithms mentioned in Sections 2.3.3 and 6.6 or techniques that attempt to 

find a smooth mapping between genotypic and phenotypic space (Harvey & Thompson 

1997). These neutral mappings simulate redundancy in natural evolution (Shipman et al. 

2000). As mentioned in Section 8.3.4 the system should be extended to allow the 

visualisation of multiple runs fix)m different objectives (Parmee et al. 2001) and 

multiobjective optimisation using Pareto ranking. Pareto ranking produces a large number 

of design options along the trade-off boundary between objectives (Rafiq 2000), 

nevertheless even this approach needs human interaction and knowledge to determine the 

best designs. 

The future potential of the system was indicated by the user evaluation results, 

however individual attributes of the interface and engineering design task to test the 

interface need improving. Some interface features were not immediately obvious and failed 

to bridge the g ^ between the psychological understanding of the problem and the physical 
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processes of the system (Norman 1986. 1998), additionally a clear understanding of the 

problem to be tackled is required to enable this gap to be bridged. More realistic functions 

should be introduced to simulate an engineering design task, such as combinatorial 

problems and functions with discrete variables, multiple objectives and discontinuity or 

constraints in the objectives. Initially the tasks should be simple and short, increasing in 

complexity as the users become conifortable with the system over a number of trials. 

Analysis of this problem solving would be useful for alternative applications such as 

cognitive psychology (Eysenck & Keane 2000). The ability to record the users' actions 

should be exploited so the system can learn how the user is designing and making 

decisions (Noy & Schroeder 2001). I f the system can capture the design process and 

suggest actions that result in solutions outside the original search space then, according to 

Gero (1990), it can truly be called innovative. 

Encouragement from knowledgeable engineers suggests the system should be 

employed on as many engineering projects as possible, conversely exposiu^ of the system 

to the engineering design community would suggest further modifications that can only 

improve the system. The discussion generated in the case studies showed that the system 

would be particularly useful in a multidisciplinary conceptual design environment 

(Jagodzinski et al 2000). I f the system is to be applied to a particular problem, where an in-

house system may already be in place, a complete redesign of the system is needed so that 

interaction, visualisation of artefact and incorporation of evolutionary computing can be 

accommodated. In such a case the methodology of Mumford (1995) would advocate 

participative design so that potential users are part of the design process. The role of a 

"facilitator" is crucial to this design process, ensuring that all interested parties are 

included in the project and contrasting views can be discussed in a constructive atmosphere 

(Mumford 2003). 
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9.3 Summary of Contributions and Conclusions 

9.3.1 Contributions to Knowledge 

L The System 

The development of an interactive system that combines the research areas of 

evolutionary computing, engineering design and multivariate visualisation, featuring: 

• A unique, flexible interface that allows the generation of data with an enhanced 

genetic algorithm - inside and outside pre-defined regions of the search space 

• Parallel coordinate and scatter plot views (2D or 3D) to visualise any parameter 

combination of undistorted data, with a link to the relevant artefact 

2. The Clustering Algorithm 

Introduction of a novel clustering algorithm based on kernel density estimation that 

quickly identifies regions of the search space relevant to engineering design 

• Clustering was also implemented in multiobjective problems; new data can be 

generated in pertinent regions of objective space using penalty functions 

• The possibility of clustering and nmning a genetic algorithm in altemative 

coordinate systems (such as the principal components) was demonstrated 

i. Negative GA Search 

Novel use of 'negative* genetic algorithm search to find the worst case scenario to 

evaluate robustness and feasibility robustness 

• Combined with a filtering mechanism, this technique can be used to define 

more robust regions 

4. Test Functions and Metrics 

The creation of continuous multidimensional test functions and metrics to evaluate the 

success of people and algorithms woricing on simulated engineering design scenarios 
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9.3.2 Conclusions due to Analysis and Implementation of the Approach 

1. Decision making and knowledge discovery are supported by the many features of 

the interface, such as: multiple views, ability to visualise any combination of 

parameters, generation of data in arbitrary regions of the search space using the 

genetic algorithm, ability to automatically or manually define clusters in the data 

2. The use of colour provides an explicit definition of significant clusters and helps to 

maintain consistency between difTerent views and coordinate systems 

3. Direct manipulation and the use of penalty ftmctions in variable and objective 

spaces successfiilly enabled the generation of new solutions 

4. Empirical evaluation could not statistically prove the advantage of interaction over 

multimodal genetic algorithms, but the algorithms need external help to solve tasks 

5. Evaluating the robustness of regions and their automatic redefinition to ensure they 

contain good solutions was successfiil in continuous domains 

6. Clustering analysis and evaluation of robustness in discrete variables and 

altemative coordinate systems needs refining and requires further investigation 

7. The ability to visualise individual design solutions improves practical 

understanding of the problem 

8. Comparison of solutions promotes understanding of the interaction between 

parameters in artificial and real world problems 

9. Experienced engineers use subjective knowledge of constraints and robustness to 

solve problems and consider altemative design scenarios; they can use the 

visualisations to support a mental model of the design process 

10. The visualisation and interaction capabilities of the system would be ideal as a 

teaching tool to explain real problems to less experienced engineers 

11. The interactive nature of the approach encourages systematic, ethnogr^hic and 

reflective design that could support all stages of a multidisciplinary design project 
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9.3.3 Recommended Extensions to the Approach 

1. A practical method to evaluate the robustness of regions: apply similar tolerances in 

variable space, then compare the maximum and minimum values of fitness found 

2. The ability to set tolerances and constraints should be made available, removing the 

need to manually change the objective function 

3. Human input and domain knowledge should be incorporated into the clustering 

algorithm to ensure important information is discovered 

4. Modify the clustering algorithm to include only the required variables and 

objectives, improving the definition of clusters and evaluation of robustness for 

discrete and discontinuous functions 

5. Investigate the use of more sophisticated statistical and clustering techniques to 

inform users of sensitive variables and to discover complicated, non-linear clusters 

6. The ability to evaluate the feasibility robustness of solutions should be further 

investigated and fully exploited 

7. Investigate the use of advanced evolutionary, visualisation and clustering 

techniques to cope with discrete or combinatorial problems; introduce relevant 

artificial functions and real world problems to test the methodologies 

8. Add multiobjective techniques such as Pareto optimisation to improve 

understanding of the trade-off surface between objectives 

9. Allow users and testers to become familiar with the system by providing specific 

tasks with increasing complexity, this will ensure that the physical system matches 

the psychological understanding of the problem 

10. Employ the approach in a multidisciplinary design environment; it may be 

necessary to integrate the ideas into other commercial systems, in which case the 

prospective users should participate in the design of the new system 
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Appendix A: The Iris Data 

The Iris Data collected by Anderson (1935). Sepal and petal measurements of 150 

Iris flowers (50 each of three species) are given in Table A. I and Figure A . l . 

Iris Setosa Iris Versicolor Iris VirKinica 
S.L. S.W. P.L. P.W. S.L. S.W. P.L. P.W. S.L. S.W. P.L. P.W. 
5.1 3.5 1.4 0.2 7.0 3.2 4.7 1.4 6.3 3.3 6.0 2.5 
4.9 3.0 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9 
4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3.0 5.9 2.1 
4.6 3.1 1.5 0.2 5.5 2.3 4.0 1.3 6.3 2.9 5.6 1.8 
5.0 3.6 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3.0 5.8 2.2 
5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3.0 6.6 2.1 
4.6 3.4 1.4 0.3 6.3 3.3 4.7 1.6 4.9 2.5 4.5 1.7 
5.0 3.4 1.5 0.2 4.9 2.4 3.3 1.0 7.3 2.9 6.3 1.8 
4.4 2.9 1.4 0.2 6.6 2.9 4.6 1.3 6.7 2.5 5.8 1.8 
4.9 3.1 1.5 0.1 5.2 2.7 3.9 1.4 7.2 3.6 6.1 2.5 
5.4 3.7 1.5 0.2 5.0 2.0 3.5 1.0 6.5 3.2 5.1 2.0 
4.8 3.4 1.6 0.2 5.9 3.0 4.2 1.5 6.4 2.7 5.3 1.9 
4.8 3.0 1.4 0.1 6.0 2.2 4.0 1.0 6.8 3.0 5.5 2.1 
4.3 3.0 1.1 0.1 6.1 2.9 4.7 1.4 5.7 2.5 5.0 2.0 
5.8 4.0 1.2 0.2 5.6 2.9 3.6 1.3 5.8 2.8 5.1 2.4 
5.7 4.4 1.5 0.4 6.7 3.1 4.4 1.4 6.4 3.2 5.3 2.3 
5.4 3.9 1.3 0.4 5.6 3.0 4.5 1.5 6.5 3.0 5.5 1.8 
5.1 3.5 1.4 0.3 5.8 2.7 4.1 1.0 7.7 3.8 6.7 2.2 
5.7 3.8 1.7 0.3 6.2 2.2 4.5 1.5 7.7 2.6 6.9 2.3 
5.1 3.8 1.5 0.3 5.6 2.5 3.9 1.1 6.0 2.2 5.0 1.5 
5.4 3.4 1.7 0.2 5.9 3.2 4.8 1.8 6.9 3.2 5.7 2.3 
5.1 3.7 1.5 0.4 6.1 2.8 4.0 1.3 5.6 2.8 4.9 2.0 
4.6 3.6 1.0 0.2 6.3 2.5 4.9 1.5 7.7 2.8 6.7 2.0 
5.1 3.3 1.7 0.5 6.1 2.8 4.7 1.2 6.3 2.7 4.9 1.8 
4.8 3.4 1.9 0.2 6.4 2.9 4.3 1.3 6.7 3.3 5.7 2.1 
5.0 3.0 1.6 0.2 6.6 3.0 4.4 1.4 7.2 3.2 6.0 1.8 
5.0 3.4 1.6 0.4 6.8 2.8 4.8 1.4 6.2 2.8 4.8 1.8 
5.2 3.5 1.5 0.2 6.7 3.0 5.0 1.7 6.1 3.0 4.9 1.8 
5.2 3.4 1.4 0.2 6.0 2.9 4.5 1.5 6.4 2.8 5.6 2.1 
4.7 3.2 1.6 0.2 5.7 2.6 3.5 1.0 7.2 3.0 5.8 1.6 
4.8 3.1 1.6 0.2 5.5 2.4 3.8 1.1 7.4 2.8 6.1 1.9 
5.4 3.4 1.5 0.4 5.5 2.4 3.7 1.0 7.9 3.8 6.4 2.0 
5.2 4.1 1.5 0.1 5.8 2.7 3.9 1.2 6.4 2.8 5.6 2.2 
5.5 4.2 1.4 0.2 6.0 2.7 5.1 1.6 6.3 2.8 5.1 1.5 
4.9 3.1 1.5 0.1 5.4 3.0 4.5 1.5 6.1 2.6 5.6 1.4 
5.0 3.2 1.2 0.2 6.0 3.4 4.5 1.6 7.7 3.0 6.1 2.3 
5.5 3.5 1.3 0.2 6.7 3.1 4.7 1.5 6.3 3.4 5.6 2.4 
4.9 3.1 1.5 0.1 6.3 2.3 4.4 1.3 6.4 3.1 5.5 1.8 
4.4 3.0 1.3 0.2 5.6 3.0 4.1 1.3 6.0 3.0 4.8 1.8 
5.1 3.4 1.5 0.2 5.5 2.5 4.0 1.3 6.9 3.1 5.4 2.1 

.continued 
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5.0 3.5 1.3 0.3 5.5 2.6 4.4 1.2 6.7 3.1 5.6 2.4 
4.5 2.3 1.3 0.3 6.1 3.0 4.6 1.4 6.9 3.1 5.1 2.3 
4.4 3.2 1.3 0.2 5.8 2.6 4.0 1.2 5.8 2.7 5.1 1.9 
5.0 3.5 1.6 0.6 5.0 2.3 3.3 1.0 6.8 3.2 5.9 2.3 
5.1 3.8 1.9 0.4 5.6 2.7 4.2 1.3 6.7 3.3 5.7 2.5 
4.8 3.0 1.4 0.3 5.7 3.0 4.2 1.2 6.7 3.0 5.2 2.3 
5.1 3.8 1.6 0.2 5.7 2.9 4.2 1.3 6.3 2.5 5.0 1.9 
4.6 3.2 1.4 0.2 6.2 2.9 4.3 1.3 6.5 3.0 5.2 2.0 
5.3 3.7 1.5 0.2 5.1 2.5 3.0 1.1 6.2 3.4 5.4 2.3 
5.0 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3.0 5.1 1.8 

Table A . l : The Iris Data, 50 examples of each species are given. (S.L.) sepal length 
and sepal width (S.W.), petal length (P.L.) and petal width (P.W.) all measured in 

centimetres (continued from previous page). 
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Figure A . l : Visualisation of the Iris Data: Iris Setosa (seto.) is linearly separable from 
Iris Versicolor (vers.) and Iris Virginica (virg.). 
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Appendix B: Test Function Definitions 

Full definitions of the test functions are given in Section 6.2 and Table 6.1, apart 

from the transformation matrices in Test_2. Listed in the order given in Table 6.2, the 

matrices are: 

Peak 1 

Peak 2: 

Peak 3: 

0 degrees 

45 degrees 

30 degrees 

I 0 0 0 
0 1 0 0 
0 0 I 0 
0 0 0 1 

-0.5 0.5 0.5 0.5 
0.5 -0.5 0.5 0.5 
0.5 0.5 -0.5 0.5 
0.5 0.5 0.5 -0.5 

-0.6 0.3 0.6 0.3 
0.6 -0.3 0.6 0.3 
0.6 0.3 -0.6 0.3 
0.6 0.3 0.6 -0.3 

The definition of each peak in each test function is affected by the position of the 

other peaks in the function, because of the interaction of peaks. Section 6.3 introduced a 

definition of quality for the engineering design task; the ideal regions that users and 

algorithms were intended to identify were shown in Figures 6.3-6.5 (for Test_3 a subset 

were shown). The actual height of each desired peak and the hypervolume of each 

corresponding were given in Table 6.2. The hypervolume is the product of the width of the 

desired peak in each variable (or component of a transformed coordinate system given 

above), assumed to be symmetrical about the position of maximum fitness in each variable 

(or 'centre' of each region). The location of the actual centres and the minimum and 

maximum values of each ideal region were calculated using numerical methods in 

MATLAB; they are given in Tables B.l and B.2 
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Peak 
No. var 1 var 2 var 3 var 4 var 5 

Test_l 

1 3.0008 3.0006 3.0004 6.9993 6.9995 
Test_l 2 7.0002 6.9996 3.0010 3.0004 3.0011 Test_l 

3 2.0276 5.0110 2.0055 4.9889 2.0055 
Test_l 

4 7.9990 5.0019 7.9953 4.9980 7.9953 

Test_2 
1 3.0000 3.0000 3,0000 3.0000 

Test_2 2 7.0000 7.0000 7.0000 7.0000 Test_2 
3 2.0000 8.0000 2.0000 8.0000 

Test_3 

1 3.0646 3.0646 3.0645 3.0645 

Test_3 

2 3.0646 3.0645 3.0645 6.9565 

Test_3 

3 3.0646 3.0645 6.9565 3.0645 

Test_3 

4 3.0646 6.9565 3.0645 3.0645 

Test_3 

5 6.9565 3.0646 3.0645 3.0645 

Test_3 

6 3.0645 3.0646 6.9565 6.9565 

Test_3 

7 3.0645 6.9565 3.0646 6.9565 
Test_3 8 3.0645 6.9565 6.9565 3.0646 Test_3 

9 6.9565 3.0645 6.9565 3.0646 
Test_3 

10 6.9565 6.9565 3.0645 3.0646 

Test_3 

11 6.9565 3.0645 3.0646 6.9565 

Test_3 

12 6.9565 6.9565 6.9565 3.0645 

Test_3 

13 6.9565 6.9565 3.0645 6.9565 

Test_3 

14 6.9565 3.0645 6.9565 6.9565 

Test_3 

15 3.0645 6.9565 6.9565 6.9565 

Test_3 

16 6.9565 6.9565 6.9566 6.9566 

Table B . l : The actual centres (location of maximum fitness) of each desired region in 
the test functions, given in the original variable space. Compare with the centres used 

in the construction of the test function given in Table 6.1. 
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Peak 
No. 

var 1 var 2 var 3 var 4 var 5 Peak 
No. min max min max min max min max min max 

Test_l 

1 2.48 3.52 2.48 3.52 2.48 3.52 6.48 7.52 6.48 7.52 
Test_l 2 5.89 8.11 5.89 8.11 1.89 4.11 1.89 4.11 1.89 4.11 Test_l 

3 1.52 2.54 4.50 5.52 1.50 2.51 4.48 5.50 1.50 2.51 
Test_l 

4 6.91 9.09 3.91 6.09 6.90 9.09 3.91 6.09 6.90 9.09 

Test_2 
1 1.75 4.25 2.58 3.42 1.75 4.25 2.58 3.42 

Test_2 2* 5.75 8.25 6.58 7.42 5.75 8.25 6.58 7.42 Test_2 
3* 0.60 3.40 7.53 8.47 0.60 3.40 7.53 8.47 

Test_3 

1 1.31 4.82 1.31 4.82 1.31 4.82 1.31 4.82 

Test_3 

2 1.31 4.81 1.31 4.81 1.31 4.81 5.68 8.23 

Test_3 

3 1.31 4.81 1.31 4.81 5.68 8.23 1.31 4.81 

Test_3 

4 1.31 4.81 5.68 8.23 1,31 4.81 1.31 4.81 

Test_3 

5 5.68 8.23 1.31 4.81 1.31 4.81 1.31 4.81 

Test_3 

6 1.32 4.81 1.32 4.81 5.68 8.23 5.68 8.23 

Test_3 
7 1.32 4.81 5.68 8.23 1.32 4.81 5.68 8.23 

Test_3 8 1.32 4.81 5.68 8.23 5.68 8.23 1.32 4.81 Test_3 
9 5.68 8.23 1.32 4.81 5.68 8.23 1.32 4.81 

Test_3 

10 5,68 8.23 5.68 8.23 1.32 4.81 1.32 4.81 

Test_3 

11 5.68 8.23 1.32 4.81 1.32 4.81 5.68 8.23 

Test_3 

12 5.68 8.23 5.68 8.23 5.68 8.23 1.32 4.81 

Test_3 

13 5.68 8.23 5.68 8.23 1.32 4.81 5.68 8.23 

Test_3 

14 5.68 8.23 1.32 4.81 5.68 8.23 5.68 8.23 

Test_3 

15 1.32 4.81 5.68 8.23 5.68 8.23 5.68 8.23 

Test_3 

16 5.68 8.23 5.68 8.23 5.68 8.23 5.68 8.23 
limits deflned in transfomied coordinate system 

Table B.2: Maximum and minimum limits of the desired regions. Each region is 
assumed to be symmetrical in each variable around the centres given in Table B. l . 

For Test_2 the values are given in the transformed coordinate system after 
translating the original variables to the corresponding centre (see previous page). 
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Appendix C: Materials given to Users before Evaluation 
Experiments 

c.i 

C 2 

C.3 

C.4 

Introduction to the System and Tests 

The Engineering Design Task 

Picture of the Two-Dimensional Himmelblau Function 

Questionnaire for each Test Function 
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Appendix C. l Page 1 of 2 

Interactive Genetic Algorithm System (IGAS) 
A Graphical User Interface (GUI) designed for visualisation of multivariate data and to help solve 
engineering design tasks. 

The system can be started by typing 'startigas' or 'navigator' in the Matlab Command Window at any 
time. All the functionality of the system can be accessed through the GUI because the Command 
Window is used only to display help and statistical information. Help is also available on all 
windows within the IGAS and is given in this html format, there is a useful Find in page facility at 
the top of the help file. 

The first screen you will see is the Navigator Window. To start a session you will need to choose an 
objective function to optimise from the Test Function popupmenu. When Test Function' is visible 
in the popupmenu, pressing the Start/Reset button (also on the File menu) will run the first 
objective function in the list. During a session the Start/Reset button will close all windows and 
restart using the objective shown in the Test Function popupmenu. 

Once a session has been started the data will be shown on the Overview Window. Further 
information and data can be accessed and displayed on Moreview Windows. The screen shot below 
shows a typical display during an IGAS session. 

•> MorevtrwZ - IGAS 
tewTrpe Coc*dr^« Ai«.^(fcf L i i - ^ v ^ 

OrigiooJ Vonobtes OnginoiVorioijIes 

S 0 

.1 • ^ • • 

- 2 - 1 0 1 
varl 

-500 J 

=A9 > w v v ^ PtscPttjets 5t^/tKX VrtrwJow CCuTTwO He|E> 
J 3 

Action ft( Focus: 1 
i4orevj«niir2 

RunGA 1 Zoom In J 
1 ' 
1 

fromOveivitw 
Woin Menu 

3 

rir>i«^rwwdutmt Iioin2098nba*totftom_. 

CJck on ZiM C L a l c n button fo (tet«fc 

OK 

Any problems or questions don 7 hesitate to ask the GUI designer (Ian Packham). 
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A A- ni Page 2 Of 2 Appendix C.I 

Additional Information for those taking part in the Evaluation Experiments 

The first two objective functions are examples to give you time to get used to the system, the others 
are the test functions that will evaluate how well you and the system work together. The Engineering 
Design Task for the examples and test functions should have been handed to you in printed format, 
but is also available on screen by typing 'open engdesigntasLhtmP in the Matlab Command Window. 

For the purposes of this experiment the Start/Reset facility will become disabled after 5,000 
objective function evaluations with the genetic algorithm (GA). There is also a limit on the total 
number of function evaluations available as indicated on the Overview Window - after this the Run 
GA button will be disabled, but you can continue viewing and editting the clusters until satisfied. 
You can save the data to file yourself at any time. At the end of the session you will be asked to fill 
in a short questionnaire before starting the next one. To see a sample questionnaire, type 
'engdesignquesf in the Command Window. 

Note: the clustering tool does not evaluate the objective function so can be freely used between 
genetic algorithm runs. 
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J - Page 1 of 2 Appendix C.2 

Engineering Design Task 
For each objective function locate regions of good solutions using the genetic algorithm (GA) and 
clustering tools. Try to identify those regions with maximum objective value and low sensitivity. 

The test functions are all maxinusalion problems with a single objective value (sometimes called the 
fitness of the solution) that the GA tries to optimise. A number of solutions will be generated 
forming clusters that sample regions of the search space. When you have finished evaluating each 
objective function you will be asked to complete a questionnaire that includes ranking the clusters 
you have found in order of quality (see defmitions below). 

Using the tools on the interface, identify the main clusters within the seach space and try to 
define the variable width of each cluster such that the tolerance level is satisfied. Ignore data 
you consider unimportant 

Definition of Sensitivity or Robustness 

A region is non-sensitive (robust) if there is no dramatic change in objective value as variables are 
perturbed away from the local maximum. Thus if all the solutions inside a region cover a large area 
(or hyper volume) and the fitness of the solutions do not fall below a certain tolerance value the 
region is considered robust. 

Tolerance Guideline 

For the purposes of this experiment the minimum objective value within each region should be more 
than 50% of its local maximum. Note: the global mimimun of all test functions is zero. 

Definition of Quality 

The quality of a region is a trade off between the maximum fitness and the robustness within a 
region. A region with high fitness and low sensitivity is of the highest quality. The true quality of a 
region can be measured analytically using the following definition: 
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Appendix C.2 

For an obj cdive ftjnction;?y, the quality of an optimum is given by: 

Page 2 of 2 

vAim Q = Quality of region. 
M - Rdative value of optimum, 
V - RdalivchypervQlumc of shape at tolerance 
level r 

For simplicity Vis defined thus: 

where n « Rimber of variables. 
If mi = Position of optimum in/*" variable 
and T = Tol aancc 1 evd. find largest 2 *)i si ded diapc 

cortainingwi such that jfrj > T, 
then fi - Lengh of the/** side of the shape. 

!n the following oample oftwo variables thetoleraice required/"is 50% of the optiniira. 
The hne defining the tolerated region is a drde. so the larg^ 4-si ded shape that fits 
inside the drdeisa square. (M'and are actual \jaluesof optimumandhypeivolume, 
normalise to find A/and Krdativeto overall limts). 

r=-25 

The system provides statistics such as the 'Relative Volume in Variable Space' and 'Ratio of MinFit 
to MaxFit' to help you evaluate the quality of the clusters you have found. However the true quality 
of the corresponding regions may be different from the apparent quality of the clusters. For each test 
function the centres of the main regions are within the default limits: [0.10] for each variable. The 
minimum object value for each test functions is zero. 

Reminders (from startigas) 

There is a limit on the total number of function evaluations available; you will be warned when the 
system is about to automatically end the session and save the data to file. 

Note: the clustering tool does not evaluate the objective function so can be freely used between 
genetic algorithm runs. 

To see a sample questionnaire, type 'engdesignquest' in the Command Window. 
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Appendix C.4 

Questionnaire for Test Function Evaluation 

Your Name: 

Test Function Name: 

Write down the number of clusters you have identified; 
(This is every 'Cluster' defined except *A11 Data 0' -
use Edit Clusters now to change definition of regions) 

Answer the following questions giving a rank 1-5 where / is low and 5 is hieh: 

1. Give a quality or preference measure for each region/cluster: 

Cluster Name: 
Quality (1 -5 ) : _ 

Cluster Name: ... 
Quality(1-5): ... 

Rate your confidence in each quality measure given (e.g. low confidence implies 
more time and resources are required to confirm the measure): 

Cluster Name: 
C o n f . ( l - 5 ) : ^ _ 

Cluster Name: 
C o n f . ( l - 5 ) : 

3. How certain are you that you found all the important regions? 

Certainty (1 - 5): 

4. Rate the usefulness of the system in helping to achieve your goals: 

Usefulness (1 - 5): 

5. Use the space below to enter any comments about the system. For example which 
features were the most/least useful or suggest other tools that may have helped you 
complete the task. Did you find the experience enjoyable or frustrating? 
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Appendix D: Questionnaires Returned by Users 

D.l : Results and Feedback from User 1 

D.2 

D.3 

D.4 

Results and Feedback from User_2 

Results and Feedback from User_3 

Results and Feedback from User 4 

Note: Real names have been removed from questionnaires and substituted by those 

used in the text. 

User 
Name 

Degree / Postgraduate 
Degree Subject(s) 

Profession / 
Research Area 

Engineering 
Design* 

Evolutionary 
Algorithms* 

User_l Computer Engineering Visual Neuroscience Average High 

User_2 Psychology & Sociology / 
Computational Intelligence Computational Intelligence Average Very High 

User_3 Physiology, Pharmacology 
& Psychology / Audiology 

Audiology / 
Auditory Neuroscience Very Low Very Low 

User_4 
Cognitive Science 

(Computer Science & 
Linguistics) 

Evolution of Language Low Very High 

•Self-assessed knowledge / experience rating 

Table D. l : Participant educational background, current research area and self-
assessed experience of engineering design and evolutionary computing 
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Appendix D.l 

Questionnaire for Test Function Evaluation 

Your Name: User_l 

Test Function Name: T^sT \ 

Write down the number of regions you have identified: 
(This is every 'Cluster' defined except 'All Data 0' -
use Edit Clusters now to change definition of regions) 

Answer the following questions giving a rank 1-5 where J is low and 5 is high: 

L Give a quality or preference measure for each region/cluster: 

Cluster Name: 1, ^ 
V a l u e ( l - 5 ) : Z ^ ^ 

Additional: 
Value (1 -5) : 

2. Rate your confidence for each quality measure you have given 

Cluster Name: i ^ 
Value (1 -5 ) : S S S 

Additional: 
Value (1 - 5): 

3. How certain are you that you found all the important regions? 

Certainty (1 - 5): A 

4. Rate the usefulness of the system in helping to achieve your goals(l — 5) 

Usefulness (1 -5) : 5 

5. Use the space below (overleaf) to enter any comments about the system. Which 
features were the most/least useful or suggest other tools that may have helped 
you complete the task. 
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Appendix D.l 

Questionnaire for Test Function Evaluation 

Your Name: User_l 

Test Function Name: -tgĉ T ? 

Write down the number of regions you have identified: 
(This is every 'Cluster' defined except 'All Data 0' -
use Edit Clusters now to change defmition of regions) 

Answer the following questions giving a rank 1-5 where I is low and 5 is high: 

1. Give a quality or preference measure for each region/cluster: 

Cluster Name: 
Value (1 -5 ) : 'JL \ 7^ y 

Additional: 
Value (1 -5 ) : ... 

2. Rate your confidence for each quality measure you have given 

Cluster Name: 1 2 3 5 6 
Value (1 -5 ) : ^ *n 2_ 5 ~6~ 

Additional: 
Value (1 -5 ) : ... 

3. How certain are you that you found all the important regions? 

Certainty (1 - 5): ? 

4. Rate the usefulness of the system in helping to achieve your goals(l - 5) 

Usefulness (1 -5 ) : 5 

5. Use the space below (overleaf) to enter any comments about the system. Which 
features were the most/least useful or suggest other tools that may have helped 
you complete the task. 
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Appendix D.l 

Questionnaire for Test Function Evaluation 

Your Name: User_l 

Test Function Name: i rx\ ^ 

Write down the number of regions you have identified: C> 
(This is every 'Cluster' defined except * All Data 0' -
use Edit Clusters now to change defmilion of regions) 

Answer the following questions giving a rank 1-5 where 1 is low and 5 is high: 

1. Give a quality or preference measure for each region/cluster: 

Cluster Name: t ^ 1> ^ 5 6 
Value ( 1 - 5 ) : 2 5 3_ ^ _ 5 _ 

Additional: 
Value (1 - 5): 

2. Rate your confidence for each quality measure you have given 

Cluster Name: i ^ ^ 
Value ( 1 - 5 ) : S _ 5 S ^ S 

Additional: ... 
Value ( 1 - 5 ) : ... 

3. How certain are you that you found all the important regions? 

Certainty (1 - 5): 4 

4. Rate the usefulness of the system in helping to achieve your goals(l - 5) 

Usefulness (1 - 5): 5 

5. Use the space below (overleaf) to enter any comments about the system. Which 
features were the most/least useful or suggest other tools that may have helped 
you complete the task, . 



Appendix D.2 

Questionnaire for Test Function Evaluation 

Your Name: User_2 

Test Function Name: LiySt. 

Write down the number of regions you have identified: 
(This is every 'Cluster' defined except 'All Data 0' -
use Edit Clusters now to change definition of regions) 

Answer the following questions giving a rank 1-5 where 1 is low and 5 is high: 

1. Give a quality or preference measure for each region/cluster: 

Cluster Name: ^ ^ 
Value ( 1 - 5 ) : J± 1 3 

< . Addltiy^^l 

2. Rate your confidence for each quality measure you have given ^tj^uXtuitCVI^ ^ ^ ^ / ^ ^̂  

Cluster Name: if-
Value (1 -5 ) : _JSkS 

Additional: 
Value (1-5); 

3. How certain are you that you found all the important regions? 

Certainty (1 - 5): ^ 

4. Rate the usefulness of the system in helping to achieve your goals(l - 5) 

Usefulness (1 -5 ) : ^ 

5. Use the space below (overleaO to enter any comments about the system. Which 
features were the most/least useful or suggest other tools that may have helped 
you complete the task. 



Appendix D.2 

Questionnaire for Test Function Evaluation 

Your Name: User_2 

Test Function Name: 

Write down the number of regions you have identified: 
(This is every 'Cluster' defined except *A1I Data 0' -
use Edit Clusters now to change definition of regions) 

Answer the following questions giving a rank 1-5 where 1 is low and 5 is high: 

1, Give a quality or preference measure for each region/cluster: 

Cluster Name: 2, 3 5^ 
Value ( 1 - 5 ) : Z ^ 1 _ _ _ _ 

Additional: 
Value ( 1 - 5 ) : 

2. Rate your confidence for each quality measure you have given 

7 ^ ^ Cluster Name: Z 3 
Value ( 1 - 5 ) : 3 2 Or 

Additional: 
Value ( 1 - 5 ) : 

3. How certain are you that you found all the important regions? 

Certainty (1 - 5): 

4. Rate the usefulness of the system in helping to achieve your goals(l - 5) 

Usefulness ( 1 - 5 ) : ^ 

5. Use the space below (overleaf) to enter any comments about the system. Which 
features were the most/least useful or suggest other tools that may have helped 
you complete the task. 
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Appendix D.2 

Questionnaire for Test Function Evaluation 

Your Name: User__2 

Test Function Name: 'Tt C'/'S 

Write down the number of regions you have identifled: ^ 
(This is every 'Cluster' defined except 'All Data 0' -
use Edit Clusters now to change definition of regions) 

Answer the following quesHons giving a rank 1 - 5 where 1 is low and 5 is high 

1. Give a quality or preference measure for each region/cluster: 

Cluster Name: 
Value (1 -5 ) : <̂  Lh 3 'J 

Additional: 
Value (1 -5 ) : ... 

Rate your confidence for each quality measure you have given 

Cluster Name: 
Value (1 -5) : ^ 3 ^ 'j 

Additional: 
Value (1 -5 ) : 

3. How certain are you that you found all the important regions? 

Certainty (1 - 5): ^ 

4. Rate the usefulness of the system in helping to achieve your goals(l - 5) 

Usefulness (1 - 5): ^ 

5. Use the space below (overleaf) to enter any comments about the system. Which 
features were the most/least useful or suggest other tools that may have helped 
you complete the task. 
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Appendix D.3 

Questionnaire for Test Function Evaluation 

Your Name: User_3 

Test Function Name: - r ^ S T i , 

Write down the number of clusters you have identified: 
(This is every 'Cluster' defined except *AII Data 0* -
use Edit Clusters now to change definition of regions) 

Answer the following questions giving a rank 1 - 5 where 1 is low nnd S is hieh. 

1. Give a quality or preference measure for each region/cluster: 

Cluster Name: 3 
Quality (1 -5 ) : 

Cluster Name: 
Quality (1 -5 ) : 

2. Rate your confidence in each quality measure given (e.g. low confidence implies 
more time and resources are required to confirm the measure): 

Cluster Name: 5 
Conf. (1 -5 ) : 14-

Cluster Name: 
Conf. (1 -5 ) : 

3. How certain are you that you found all the important regions? 

Certainty (1 - 5): ^5 

4. Rate the usefulness of the system in helping to achieve your goals: 

Usefulness (1 - 5): 4-

5. Use the space below to enter any comments about the system. For example which 
features were the most/least useful or suggest other tools that may have helped you 
complete the task. Did you find the experience enjoyable or frustrating? 
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Appendix D.3 

Questionnaire for Test Function Evaluation 

Your Name: 

Test Function Name: 

User 3 

Write down the number of clusters you have identified: 
(This is every 'Cluster' defined except * All Data 0' -
use Edit Clusters now to change definition of regions) 

Answer the following questions giving a rank 1-5 where 1 is low and 5 is hieh: 

1. Give a quality or preference measure for each region/cluster: 

Cluster Name: 3 1 
Quality (1 - 5): 3 

Cluster Name: 
Quality(1 - 5 ) : ... 

2. Rate your confidence in each quality measure given (e.g. low confidence implies 
more time and resources are required to conflrm the measure): 

Cluster Name: 
Conf. ( 1 -5 ) : S 2 . 2 . 

Cluster Name: 
Conf. ( 1 -5 ) : 

3. How certain are you that you found all the important regions? 

Certainty (1 - 5): 2 

4. Rate the usefulness of the system in helping to achieve your goals: 

Usefulness (1 -5 ) : ^ 

5. Use the space below to enter any comments about the system. For example which 
features were the most/least useful or suggest other tools that may have helped you 
complete the task. Did you fmd the experience enjoyable or frustrating? 



Appendix D.4 

Questionnaire for Test Function Evaluation 
Your Name: U^^^ 4 

Test Function Name: 4-g&V ^ 

Write down the number of clusters you have identified; 
(This is every 'Cluster' defined except 'All Data 0* -
use Edit Clusters now to change definition of regions) 

Answer the following questions giving a rank 1-5 where 1 is low and 5 is hieh: 

1. Give a quality or preference measure for each region/cluster: 

Cluster Name: ^ I • ^ 
Quality (1 -5 ) : _ ± 

Cluster Name: 
Quality (1 - 5): 

2. Rate your confidence in each quality measure given (e.g. low confidence implies 
more time and resources are required to confirm the measure): 

Cluster Name: Z I 1 
Conf. (1 -5) : 4 ^ S 

Cluster Name: 
Conf. (1 -5 ) : 

3. How certain are you that you found all the important regijms? 

Certainty (1 - 5): 3 

4, Rate the usefulness of the system in helping to achieve your goals: 

Usefulness ( 1 - 5 ) : f 

5. Use the space below to enter any comments about the system. For example which 
features were the most/least useful or suggest other tools that may have helped you 
complete the task. Did you find the experience enjoyable or frustrating? 
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Appendix D.4 

Questionnaire for Test Function Evaluation 
Your Name: User_4 
Test Function Name: 4:-cs[ Z 

Write down the number of clusters you have identified: 
(This is every 'Cluster' defined except * All Data 0' -
use Edit Clusters now to change definition of regions) 

Answer the following questions giving a rank 1-5 where J is low and 5 is hieh: 

1. Give a quality or preference measure for each region/cluster: 

Cluster Name: ^ ^ 

Quality (1 - 5): I 2 _ 

Cluster Name: 
QuaUty (1 - 5): 

2. Rate your confidence in each quality measure given (e.g. low confldence implies 
more time and resources are required to confirm the measure): 

Cluster Name: ^ ^ 
C o n f . ( l - 5 ) : ^ 4^ 

Cluster Name: 
C o n f . ( l - 5 ) : 

3. How certain are you that you found all the important regions? 

Certainty (1 - 5): S 

4. Rate the usefulness of the system in helping to achieve your goals: 

Usefulness (1 - 5): 4 

5. Use the space below to enter any comments about the system. For example which 
features were the most/least useful or suggest other tools that may have helped you 
complete the task. Did you find the experience enjoyable or frustrating? 
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Appendix D.4 

Questionnaire for Test Function Evaluation 

Your Name: User__4 

Test Function Name: 4€SV ^ 

Write down the number of clusters you have identified: 4-
(This is every 'Cluster' defined except 'All Data 0' -
use Edit Clusters now to change definition of regions) 

Answer the following questions giving a rank 1-5 where 1 is low and 5 is hieh: 

1. Give a quality or preference measure for each region/cluster: 

Cluster Name: I 1 4-

Quality (1 - 5): A 3 3 e 

Cluster Name: ... 
Quality (1 - 5): ... 

Rate your confidence in each quality measure given (e.g. low confidence implies 
more time and resources arc required to confirm the measure): 

Cluster Name: 1 2 4 4 
C o n f . { l - 5 ) : 4- 4 ^ 

Cluster Name: 
C o n f . ( l - 5 ) : 

3. How certain are you that you found all the important regions? 

Certainty (1 - 5): 4 

4 . Rate the usefulness of the system in helping to achieve your goals: 

Usefulness (1 -5 ) : 4 

5. Use the space below to enter any comments about the system. For example which 
features were the most/least useful or suggest other tools that may have helped you 
complete the task. Did you find the experience enjoyable or frustrating? 



Appendix E : Feedback from Real World Case Studies 

E . l : Feedback Regarding the Goss Moor Rainfall Runoff Model from 
Mr, Martin Bortli>vick, School of Engineering, University of Plymouth 

E.2: Feedback Regarding the Biaxial Column Design Problems from 
Mr David Easterbrook, School of Engineering, University of Plymouth 

E.3: Feedback Regarding the Biaxial Column Design Problems from 
Mr Colin Southcombe, School of Engineering, University of Plymouth 
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Appendix E . l 

Questionnaire for Engineering Design System Evaluation 

Your Name: j^^-r:u^ e^^^^ 

Engineering Problem Name: /ê zt̂ ^^ ,̂,, <e<̂ ^̂ ^ 

Please answer the following questions about the system and what it taught you about the 
engineering design problem. Please include any specific comments in the space provided. 

1. Did the system provide new or novel solutions to the problem? 

Yes ^ No Maybe N/A__ 

Comments: 

2. Did the system help you evaluate the robustness of the solutions found? 

Yes ^ No Maybe N/A 

Comments: i^i^^^ 'c>ru-yf^' ^a-^ — 

3. Did the visual displays help you understand the problem? 

Yes ^ No Maybe N/A 

Comments: Pa^c^^U^ .^.t^^^cc ^^4*-—^ 

4. Were the interactive features (Run GA/Clustering/Zoom etc.) useful? 

Yes ^ No Maybe N/A 

Comments: u > « / = * - < - V - , ^ . ; O ^ ? » V ^ ^ 

5. Did the system help you achieve your goals (is it relevant to engineering design)? 

Yes ^ No Maybe N/A 

Comments: h<^>^ ccn^^^-*^v, ^ ^ - ^ r - ^^n^^^,-*^ t - ^ c w - w i ^ . ^ ^ ^ 



Appendix E . l 

Please use the space below to enter general comments about the system. For 
example which features were the most/least useful or suggest further tools are 
needed to help understand the engineering design problem. 
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Appendix E.2 

Questionnaire for Engineering Design System Evaluation 

Your Name: ^Xl)OL^^ iLO^kr h 
me: (Ic Col Engineering Problem Nai 

Please answer the following questions about the system and what it taught you about the 
engineering design problem. Please include any specific comments in the space provided. 

1. Did the system provide new or novel solutions to the problem? 

Yes No Maybe N / A _ 

Comments: ' j ^ ^ ^ f v ^ . U i ^ - ^^aVUi ^ S 

2. Did the system help you evaluate the robustness of the solutions found? 

Yes No Maybe N/A 

Comments: p r a c K h ^ 'X^^^JO^ f ^ J l w ^ 0 V)i.e.r>foJrv*-^ 

3. Did the visual displays help you understand the problem? 

Yes No Maybe N/A 

Comments: ^ p ^ u j o J W T V . ^̂ C5sAJĈ lAy> l^-^t^^s^ o - J 

4 . Were the interactive features (Run GA/Clustering/Zoom etc.) useful? 

Yes — ^ No Maybe N/A 

Comments: 

5. Did the system help you achieve your goals (is it relevant to engineering design)? 

Yes ^ No Maybe N/A 

Comments: 
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Appendix E.2 

Please use the space below to enter general comments about the system. For 
example which features were the most/least useful or suggest further tools are 
needed to help understand the engineering design problem. 
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Appendix E.3 

Questionnaire for Engineering Design System Evaluation 
Your Name: ^^^IZ^\_ L M ^ova-rv-i v^"^^ 

Engineering Problem Name: k^y^^/^ u « ^ > O ' u I ^ ^ ^ S 1<^^ 

Please answer the following questions about the system and what it taught you about the 
engineering design problem. Please include any specific comments in the space provided. 

1. Did the system provide new or novel solutions to the problem? 

Yes ^ No Maybe N/A 

Comments: . J R i O \ 
<^-- ^ A ^ ^ - C ^ ^ ^ < ^ ' 

2. Did the system help you evaluate the robustness of the solutions found? 

Yes ^ No Maybe N/A 

Comments: ^ Q 

3. Did the visual displays help you understand the problem? 

Yes X No Maybe N/A 

Comments: 

4 . Were the interactive features (Run GA/Clustering/Zoom etc.) useful? 

Yes ^ No Maybe N/A 

Comments: 

5. Did the system help you achieve your goals (is it relevant to engineering design)? 

Yes No Maybe N/A_ 

Comments: 

PTO 



Appendix E.3 

6. Please use the space below to enter general comments about the system. For 
example which features were the most/least useful or suggest further tools are 
needed to help understand the engineering design problem. 
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