75,536 research outputs found

    Single-picture reconstruction and rendering of trees for plausible vegetation synthesis

    Get PDF
    State-of-the-art approaches for tree reconstruction either put limiting constraints on the input side (requiring multiple photographs, a scanned point cloud or intensive user input) or provide a representation only suitable for front views of the tree. In this paper we present a complete pipeline for synthesizing and rendering detailed trees from a single photograph with minimal user effort. Since the overall shape and appearance of each tree is recovered from a single photograph of the tree crown, artists can benefit from georeferenced images to populate landscapes with native tree species. A key element of our approach is a compact representation of dense tree crowns through a radial distance map. Our first contribution is an automatic algorithm for generating such representations from a single exemplar image of a tree. We create a rough estimate of the crown shape by solving a thin-plate energy minimization problem, and then add detail through a simplified shape-from-shading approach. The use of seamless texture synthesis results in an image-based representation that can be rendered from arbitrary view directions at different levels of detail. Distant trees benefit from an output-sensitive algorithm inspired on relief mapping. For close-up trees we use a billboard cloud where leaflets are distributed inside the crown shape through a space colonization algorithm. In both cases our representation ensures efficient preservation of the crown shape. Major benefits of our approach include: it recovers the overall shape from a single tree image, involves no tree modeling knowledge and minimal authoring effort, and the associated image-based representation is easy to compress and thus suitable for network streaming.Peer ReviewedPostprint (author's final draft

    Interactive Vegetation Rendering with Slicing and Blending

    Get PDF
    Detailed and interactive 3D rendering of vegetation is one of the challenges of traditional polygon-oriented computer graphics, due to large geometric complexity even of simple plants. In this paper we introduce a simplified image-based rendering approach based solely on alpha-blended textured polygons. The simplification is based on the limitations of human perception of complex geometry. Our approach renders dozens of detailed trees in real-time with off-the-shelf hardware, while providing significantly improved image quality over existing real-time techniques. The method is based on using ordinary mesh-based rendering for the solid parts of a tree, its trunk and limbs. The sparse parts of a tree, its twigs and leaves, are instead represented with a set of slices, an image-based representation. A slice is a planar layer, represented with an ordinary alpha or color-keyed texture; a set of parallel slices is a slicing. Rendering from an arbitrary viewpoint in a 360 degree circle around the center of a tree is achieved by blending between the nearest two slicings. In our implementation, only 6 slicings with 5 slices each are sufficient to visualize a tree for a moving or stationary observer with the perceptually similar quality as the original model

    Soft set theory based decision support system for mining electronic government dataset

    Get PDF
    Electronic government (e-gov) is applied to support performance and create more efficient and effective public services. Grouping data in soft-set theory can be considered as a decision-making technique for determining the maturity level of e-government use. So far, the uncertainty of the data obtained through the questionnaire has not been maximally used as an appropriate reference for the government in determining the direction of future e-gov development policy. This study presents the maximum attribute relative (MAR) based on soft set theory to classify attribute options. The results show that facilitation conditions (FC) are the highest variable in influencing people to use e-government, followed by performance expectancy (PE) and system quality (SQ). The results provide useful information for decision makers to make policies about their citizens and potentially provide recommendations on how to design and develop e-government systems in improving public services
    • …
    corecore