8,175 research outputs found

    Trends and concerns in digital cartography

    Get PDF
    CISRG discussion paper ;

    Using treemaps for variable selection in spatio-temporal visualisation

    Get PDF
    We demonstrate and reflect upon the use of enhanced treemaps that incorporate spatial and temporal ordering for exploring a large multivariate spatio-temporal data set. The resulting data-dense views summarise and simultaneously present hundreds of space-, time-, and variable-constrained subsets of a large multivariate data set in a structure that facilitates their meaningful comparison and supports visual analysis. Interactive techniques allow localised patterns to be explored and subsets of interest selected and compared with the spatial aggregate. Spatial variation is considered through interactive raster maps and high-resolution local road maps. The techniques are developed in the context of 42.2 million records of vehicular activity in a 98 km(2) area of central London and informally evaluated through a design used in the exploratory visualisation of this data set. The main advantages of our technique are the means to simultaneously display hundreds of summaries of the data and to interactively browse hundreds of variable combinations with ordering and symbolism that are consistent and appropriate for space- and time- based variables. These capabilities are difficult to achieve in the case of spatio-temporal data with categorical attributes using existing geovisualisation methods. We acknowledge limitations in the treemap representation but enhance the cognitive plausibility of this popular layout through our two-dimensional ordering algorithm and interactions. Patterns that are expected (e.g. more traffic in central London), interesting (e.g. the spatial and temporal distribution of particular vehicle types) and anomalous (e.g. low speeds on particular road sections) are detected at various scales and locations using the approach. In many cases, anomalies identify biases that may have implications for future use of the data set for analyses and applications. Ordered treemaps appear to have potential as interactive interfaces for variable selection in spatio-temporal visualisation. Information Visualization (2008) 7, 210-224. doi: 10.1057/palgrave.ivs.950018

    Digital Heritage

    Get PDF

    Web-Based Visualization of Very Large Scientific Astronomy Imagery

    Full text link
    Visualizing and navigating through large astronomy images from a remote location with current astronomy display tools can be a frustrating experience in terms of speed and ergonomics, especially on mobile devices. In this paper, we present a high performance, versatile and robust client-server system for remote visualization and analysis of extremely large scientific images. Applications of this work include survey image quality control, interactive data query and exploration, citizen science, as well as public outreach. The proposed software is entirely open source and is designed to be generic and applicable to a variety of datasets. It provides access to floating point data at terabyte scales, with the ability to precisely adjust image settings in real-time. The proposed clients are light-weight, platform-independent web applications built on standard HTML5 web technologies and compatible with both touch and mouse-based devices. We put the system to the test and assess the performance of the system and show that a single server can comfortably handle more than a hundred simultaneous users accessing full precision 32 bit astronomy data.Comment: Published in Astronomy & Computing. IIPImage server available from http://iipimage.sourceforge.net . Visiomatic code and demos available from http://www.visiomatic.org

    Stereoscopic Sketchpad: 3D Digital Ink

    Get PDF
    --Context-- This project looked at the development of a stereoscopic 3D environment in which a user is able to draw freely in all three dimensions. The main focus was on the storage and manipulation of the ‘digital ink’ with which the user draws. For a drawing and sketching package to be effective it must not only have an easy to use user interface, it must be able to handle all input data quickly and efficiently so that the user is able to focus fully on their drawing. --Background-- When it comes to sketching in three dimensions the majority of applications currently available rely on vector based drawing methods. This is primarily because the applications are designed to take a users two dimensional input and transform this into a three dimensional model. Having the sketch represented as vectors makes it simpler for the program to act upon its geometry and thus convert it to a model. There are a number of methods to achieve this aim including Gesture Based Modelling, Reconstruction and Blobby Inflation. Other vector based applications focus on the creation of curves allowing the user to draw within or on existing 3D models. They also allow the user to create wire frame type models. These stroke based applications bring the user closer to traditional sketching rather than the more structured modelling methods detailed. While at present the field is inundated with vector based applications mainly focused upon sketch-based modelling there are significantly less voxel based applications. The majority of these applications focus on the deformation and sculpting of voxmaps, almost the opposite of drawing and sketching, and the creation of three dimensional voxmaps from standard two dimensional pixmaps. How to actually sketch freely within a scene represented by a voxmap has rarely been explored. This comes as a surprise when so many of the standard 2D drawing programs in use today are pixel based. --Method-- As part of this project a simple three dimensional drawing program was designed and implemented using C and C++. This tool is known as Sketch3D and was created using a Model View Controller (MVC) architecture. Due to the modular nature of Sketch3Ds system architecture it is possible to plug a range of different data structures into the program to represent the ink in a variety of ways. A series of data structures have been implemented and were tested for efficiency. These structures were a simple list, a 3D array, and an octree. They have been tested for: the time it takes to insert or remove points from the structure; how easy it is to manipulate points once they are stored; and also how the number of points stored effects the draw and rendering times. One of the key issues brought up by this project was devising a means by which a user is able to draw in three dimensions while using only two dimensional input devices. The method settled upon and implemented involves using the mouse or a digital pen to sketch as one would in a standard 2D drawing package but also linking the up and down keyboard keys to the current depth. This allows the user to move in and out of the scene as they draw. A couple of user interface tools were also developed to assist the user. A 3D cursor was implemented and also a toggle, which when on, highlights all of the points intersecting the depth plane on which the cursor currently resides. These tools allow the user to see exactly where they are drawing in relation to previously drawn lines. --Results-- The tests conducted on the data structures clearly revealed that the octree was the most effective data structure. While not the most efficient in every area, it manages to avoid the major pitfalls of the other structures. The list was extremely quick to render and draw to the screen but suffered severely when it comes to finding and manipulating points already stored. In contrast the three dimensional array was able to erase or manipulate points effectively while the draw time rendered the structure effectively useless, taking huge amounts of time to draw each frame. The focus of this research was on how a 3D sketching package would go about storing and accessing the digital ink. This is just a basis for further research in this area and many issues touched upon in this paper will require a more in depth analysis. The primary area of this future research would be the creation of an effective user interface and the introduction of regular sketching package features such as the saving and loading of images

    Task-based Adaptation of Graphical Content in Smart Visual Interfaces

    Get PDF
    To be effective visual representations must be adapted to their respective context of use, especially in so-called Smart Visual Interfaces striving to present specifically those information required for the task at hand. This thesis proposes a generic approach that facilitate the automatic generation of task-specific visual representations from suitable task descriptions. It is discussed how the approach is applied to four principal content types raster images, 2D vector and 3D graphics as well as data visualizations, and how existing display techniques can be integrated into the approach.Effektive visuelle Repräsentationen müssen an den jeweiligen Nutzungskontext angepasst sein, insbesondere in sog. Smart Visual Interfaces, welche anstreben, möglichst genau für die aktuelle Aufgabe benötigte Informationen anzubieten. Diese Arbeit entwirft einen generischen Ansatz zur automatischen Erzeugung aufgabenspezifischer Darstellungen anhand geeigneter Aufgabenbeschreibungen. Es wird gezeigt, wie dieser Ansatz auf vier grundlegende Inhaltstypen Rasterbilder, 2D-Vektor- und 3D-Grafik sowie Datenvisualisierungen anwendbar ist, und wie existierende Darstellungstechniken integrierbar sind

    GIS and urban design

    Get PDF
    Although urban planning has used computer models and information systems sincethe 1950s and architectural practice has recently restructured to the use of computeraideddesign (CAD) and computer drafting software, urban design has hardly beentouched by the digital world. This is about to change as very fine scale spatial datarelevant to such design becomes routinely available, as 2dimensional GIS(geographic information systems) become linked to 3dimensional CAD packages,and as other kinds of photorealistic media are increasingly being fused with thesesoftware. In this chapter, we present the role of GIS in urban design, outlining whatcurrent desktop software is capable of and showing how various new techniques canbe developed which make such software highly suitable as basis for urban design.We first outline the nature of urban design and then present ideas about how varioussoftware might form a tool kit to aid its process. We then look in turn at: utilisingstandard mapping capabilities within GIS relevant to urban design; buildingfunctional extensions to GIS which measure local scale accessibility; providingsketch planning capability in GIS and linking 2-d to 3-d visualisations using low costnet-enabled CAD browsers. We finally conclude with some speculations on thefuture of GIS for urban design across networks whereby a wide range of participantsmight engage in the design process digitally but remotely

    Interactive tag maps and tag clouds for the multiscale exploration of large spatio-temporal datasets

    Get PDF
    'Tag clouds' and 'tag maps' are introduced to represent geographically referenced text. In combination, these aspatial and spatial views are used to explore a large structured spatio-temporal data set by providing overviews and filtering by text and geography. Prototypes are implemented using freely available technologies including Google Earth and Yahoo! 's Tag Map applet. The interactive tag map and tag cloud techniques and the rapid prototyping method used are informally evaluated through successes and limitations encountered. Preliminary evaluation suggests that the techniques may be useful for generating insights when visualizing large data sets containing geo-referenced text strings. The rapid prototyping approach enabled the technique to be developed and evaluated, leading to geovisualization through which a number of ideas were generated. Limitations of this approach are reflected upon. Tag placement, generalisation and prominence at different scales are issues which have come to light in this study that warrant further work

    Interactive topographic web mapping using scalable vector graphics

    Get PDF
    Large scale topographic maps portray detailed information about the landscape. They are used for a wide variety o f purposes. USGS large scale topographic maps at 1:24,000 have been traditionally distributed in paper form. With the advent of the Internet, these maps can now be distributed electronically. Instead of common raster format presentation, the solution presented here is based on a vector approach. The vector format provides many advantages compared to the use of a raster-based presentation. This research shows that Scalable Vector Graphics (SVG) is a promising technology for delivering high quality interactive topographic maps via the Internet, both in terms o f graphic quality and interactivity. A possible structure for the SVG map document is proposed. Interactive features such as toggling thematic layers on and off, UTM coordinate readout for x, y, and z (elevation) were developed as well. Adding this type of interactivity can help to better extract information from a topographic map. A focus group analysis with the online SVG topographic map shows a high-level of user acceptance
    • …
    corecore