516 research outputs found

    TropeTwist: Trope-based Narrative Structure Generation

    Full text link
    Games are complex, multi-faceted systems that share common elements and underlying narratives, such as the conflict between a hero and a big bad enemy or pursuing some goal that requires overcoming challenges. However, identifying and describing these elements together is non-trivial as they might differ in certain properties and how players might encounter the narratives. Likewise, generating narratives also pose difficulties when encoding, interpreting, analyzing, and evaluating them. To address this, we present TropeTwist, a trope-based system that can describe narrative structures in games in a more abstract and generic level, allowing the definition of games' narrative structures and their generation using interconnected tropes, called narrative graphs. To demonstrate the system, we represent the narrative structure of three different games. We use MAP-Elites to generate and evaluate novel quality-diverse narrative graphs encoded as graph grammars, using these three hand-made narrative structures as targets. Both hand-made and generated narrative graphs are evaluated based on their coherence and interestingness, which are improved through evolution.Comment: submitted, 9 page

    Controllable exploration of a design space via interactive quality diversity

    Get PDF
    This paper introduces a user-driven evolutionary algorithm based on Quality Diversity (QD) search. During a design session, the user iteratively selects among presented alternatives and their selections affect the upcoming results. We implement a variation of the MAP-Elites algorithm where the presented alternatives are sampled from a small region (window) of the behavioral space. After a user selection, the window is centered on the selected individual’s behavior characterization, evolution selects parents from within this window to produce offspring, and new alternatives are sampled. Essentially we define an adaptive system of local QD search, where the user’s selections guide the search towards specific regions of the behavioral space. The system is tested on the generation of architectural layouts, a constrained optimization task, leveraging QD search through a two-archive approach.peer-reviewe

    Managing Diversity and Many Objectives in Evolutionary Design

    Get PDF
    This thesis proposes a new approach to evolving a diversity of high-quality solutions for problems having many objectives. Mouret and Clune's MAP-Elites algorithm has been proposed as a way to evolve an assortment of diverse solutions to a problem. We extend MAP-Elites in a number of ways. Firstly, we introduce a many-objective strategy called sum-of-ranks, which enables problems with many objectives (4 and more) to be considered in the MAP. Secondly, we enhance MAP-Elites by extending it with multiple solutions per "grid" cell (the original MAP-Elites saves only a single solution per cell). A few different ways of selecting cell members for reproduction are also considered. We test the new MAP-Elites strategies on the evolutionary art application of image generation. Using procedural textures, genetic programming is used with upwards of 15 lightweight image features to guide fitness. The goal is to evolve images that share image features with a given target image. Our experiments show that the new MAP-Elites algorithms produce a large number of diverse solutions of varying quality. The extended MAP-Elites algorithm is also statistically competitive compared to vanilla GP in this application domain

    The Right Variety: Improving Expressive Range Analysis with Metric Selection Methods

    Full text link
    Expressive Range Analysis (ERA), an approach for visualising the output of Procedural Content Generation (PCG) systems, is widely used within PCG research to evaluate and compare generators, often to make comparative statements about their relative performance in terms of output diversity and search space exploration. Producing a standard ERA visualisation requires the selection of two metrics which can be calculated for all generated artefacts to be visualised. However, to our knowledge there are no methodologies or heuristics for justifying the selection of a specific metric pair over alternatives. Prior work has typically either made a selection based on established but unjustified norms, designer intuition, or has produced multiple visualisations across all possible pairs. This work aims to contribute to this area by identifying valuable characteristics of metric pairings, and by demonstrating that pairings that have these characteristics have an increased probability of producing an informative ERA projection of the underlying generator. We introduce and investigate three quantifiable selection criteria for assessing metric pairs, and demonstrate how these criteria can be operationalized to rank those available. Though this is an early exploration of the concept of quantifying the utility of ERA metric pairs, we argue that the approach explored in this paper can make ERA more useful and usable for both researchers and game designers.Comment: To be published in the Proceedings of 18th International Conference on the Foundations of Digital Games, and presented at the associated conference in Lisbon, April 2023. 11 pages, 6 figures, 3 table

    Search-based system architecture development using a holistic modeling approach

    Get PDF
    This dissertation presents an innovative approach to system architecting where search algorithms are used to explore design trade space for good architecture alternatives. Such an approach is achieved by integrating certain model construction, alternative generation, simulation, and assessment processes into a coherent and automated framework. This framework is facilitated by a holistic modeling approach that combines the capabilities of Object Process Methodology (OPM), Colored Petri Net (CPN), and feature model. The resultant holistic model can not only capture the structural, behavioral, and dynamic aspects of a system, allowing simulation and strong analysis methods to be applied, it can also specify the architectural design space. Both object-oriented analysis and design (OOA/D) and domain engineering were exploited to capture design variables and their domains and define architecture generation operations. A fully realized framework (with genetic algorithms as the search algorithm) was developed. Both the proposed framework and its suggested implementation, including the proposed holistic modeling approach and architecture alternative generation operations, are generic. They are targeted at systems that can be specified using object-oriented or process-oriented paradigm. The broad applicability of the proposed approach is demonstrated on two examples. One is the configuration of reconfigurable manufacturing systems (RMSs) under multi-objective optimization and the other is the architecture design of a manned lunar landing system for the Apollo program. The test results show that the proposed approach can cover a huge number of architecture alternatives and support the assessment of several performance measures. A set of quality results was obtained after running the optimization algorithm following the proposed framework --Abstract, page iii

    Safe and Sound: Proceedings of the 27th Annual International Conference on Auditory Display

    Get PDF
    Complete proceedings of the 27th International Conference on Auditory Display (ICAD2022), June 24-27. Online virtual conference

    A survey on policy search algorithms for learning robot controllers in a handful of trials

    Get PDF
    International audienceMost policy search (PS) algorithms require thousands of training episodes to find an effective policy, which is often infeasible with a physical robot. This survey article focuses on the extreme other end of the spectrum: how can a robot adapt with only a handful of trials (a dozen) and a few minutes? By analogy with the word “big-data,” we refer to this challenge as “micro-data reinforcement learning.” In this article, we show that a first strategy is to leverage prior knowledge on the policy structure (e.g., dynamic movement primitives), on the policy parameters (e.g., demonstrations), or on the dynamics (e.g., simulators). A second strategy is to create data-driven surrogate models of the expected reward (e.g., Bayesian optimization) or the dynamical model (e.g., model-based PS), so that the policy optimizer queries the model instead of the real system. Overall, all successful micro-data algorithms combine these two strategies by varying the kind of model and prior knowledge. The current scientific challenges essentially revolve around scaling up to complex robots, designing generic priors, and optimizing the computing time
    • …
    corecore