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Abstract

This thesis proposes a new approach to evolving a diversity of high-quality so-

lutions for problems having many objectives. Mouret and Clune’s MAP-Elites al-

gorithm has been proposed as a way to evolve an assortment of diverse solutions

to a problem. We extend MAP-Elites in a number of ways. Firstly, we introduce

a many-objective strategy called sum-of-ranks, which enables problems with many

objectives (4 and more) to be considered in the MAP. Secondly, we enhance MAP-

Elites by extending it with multiple solutions per “grid” cell (the original MAP-Elites

saves only a single solution per cell). A few different ways of selecting cell members

for reproduction are also considered. We test the new MAP-Elites strategies on the

evolutionary art application of image generation. Using procedural textures, genetic

programming is used with upwards of 15 lightweight image features to guide fitness.

The goal is to evolve images that share image features with a given target image.

Our experiments show that the new MAP-Elites algorithms produce a large number

of diverse solutions of varying quality. The extended MAP-Elites algorithm is also

statistically competitive compared to vanilla GP in this application domain.
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Chapter 1

Introduction

Evolutionary art (Evo Art) uses evolutionary algorithms (EA) to create art [21]. It

is used for various art applications including computer generated images via procedu-

ral textures [21]. One of the key advantages in modern Evo Art is to generate artistic

images in an automated process without needing to have continuous user feedback,

as opposed to the original interactive systems [45].

Genetic programming (GP) is a widely used EA that has many applications,

as it can generate acceptable solutions for various types of problems. It has long been

used for image classification, for example, [24]. It has also been used for 2D image

evolution based on image features. Computer vision played a major role in automatic

Evo Art systems. Integration of computer vision algorithms with evolutionary algo-

rithms has made it possible to automate image evaluation significantly [50]. Gentropy

[91] and Genshade [52] are two examples of automatic Evo Art systems.

One of the issues with GP is that it only evolves one solution per run. Many

runs are needed to generate a number of different solutions. GP tends to converge over

multiple generations, and those solutions can often be similar. Also, GP evolution is

time and resource expensive.

Diversity search is a new area that uses special algorithms to explore a diversity

of solutions, rather than converging to one as typically the case [61, 62]. Diversity

algorithms like novelty search can help with these issues by producing diverse solutions

[61, 62].
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Algorithms that combines fitness with diversity are called quality diversity

(QD) algorithms [43]. Quality diversity algorithms solve the issues with both GP and

novelty search. Gomez et al. showed that finding quality diverse solution is possible

by combining fitness and novelty [43]. One of the recently developed QD algorithms is

MAP-Elites [72], where a MAP grid holds multiple results and each individual in the

MAP is a solution. The MAP is defined to hold an assortment of results exhibiting

different combination of features.

Multi-objective and many-objective problems are another significant part of

evolutionary computation [26]. Most real life problems have more than one objective

to optimize. Some examples of many-objective optimization algorithms can be found

in [63]. How we handle and optimize objectives determines the quality of the solu-

tion. There are various techniques to optimize multiple-objective and many-objective

problems. One of the most popular and widely used technique is Pareto ranking

[36, 74, 93, 95]. Pareto ranking faces challenges when there are more than four objec-

tives. Therefore, much research is being undertaken to extend Pareto-based analysis

towards many-objective optimization [63]. Another strategy is sum-of-ranks, which

can handle many objectives.

In this research, we have designed a system that combines MAP-Elites and GP

by introducing into it the many-objective sum-of-ranks (or averaged rank) strategy

[22, 33]. We also propose two completely new versions of MAP-Elites that use multiple

individual bins compared to the single individual bin in the original MAP-Elites [72].

We have used sum-of-ranks as fitness measure to handle many-objective problems. We

apply the new algorithms to procedural image evolution using GP. Here, we have used

up to 15 objectives in our experiments, so a many-objective approach is necessary.

To generate procedural texture images, Lombardi et al.’s [64] lightweight image

feature set is used. Salimi [81] used the same feature set to produce procedural texture

images using GP. We have used GP to generate images as a benchmark, and then

used MAP-Elites algorithm combined with GP, to generate a diversity of images.
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1.1 Goals and Motivation

This thesis is mainly inspired by the research of Mouret and Clune [72]. It extends

their work and proposes two new version of MAP-Elites algorithm. The main goal of

this research is to design a new approach to find diverse and high quality solution.

Main goals are as follows:

• Introducing many objective problems to MAP-Elites by introducing sum of

ranks.

• Extend MAP-Elites by permitting multiple solutions per MAP cell. We also

examine two different selection strategies for selecting individuals from cells

during reproduction.

• Generating a diverse number of solutions compared to GP, giving the user a

large selection to choose from.

The problem set that has been tested for this experiment is an evolutionary

art problem for which GP has been used traditionally. The main drawback of that is

GP only provides one solution after each run. Using MAP-Elites help create diverse

solutions. Lombardi et al.’s lightweight image feature sets [64] is used to define image

features as objectives, as the proposed feature set provides many features to choose

from. This approach will help create a diverse set of procedural texture images in

each single run.

1.2 Main Contributions

The main contributions of this thesis are as follows:

• Perform a literature review of some of the previous work done with many-

objective problems, different selection and fitness strategy.

• Combines sum-of-ranks fitness measure for many-objective problems with MAP-

Elites.

• Propose two new versions of the original MAP-Elites to find more diverse and

better solution than the original one.

3



• Performing detail experiment with procedural texture generation from digital

images to provide the user with a variety of choice to choose from instead of

just one provided by GP.

• Performing details performance analysis among GP, original MAP-Elites and

the two proposed algorithms.

1.3 Thesis Structure

The structure of this thesis is as follows:

• Chapter 2 contains background information about genetic programming (GP),

multi-objective and many-objective problems, procedural texture, image fea-

tures and diversity search.

• Chapter 3 presents a literature review of quality diversity algorithms, multi-

objective optimization, and evolutionary art.

• Chapter 4 discusses the system architecture including algorithms, parameters,

and evaluation functions. GP and MAP-Elites parameters are discussed. Two

new versions of the MAP-Elites algorithm are described.

• Chapter 5 describes the results of experiments and performance analysis of dif-

ferent experiments using grayscale images. Three different cases are performed.

Performance of all four algorithms used in this research, including GP, original

MAP-Elites and the two new MAP-Elites strategies, are analyzed.

• Chapter 6 describes the results of experiments and performance analysis RGB

images.

• Chapter 7 summarizes all experiments. It compares their overall performance.

• Chapter 8 concludes the thesis and discusses future work.
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Chapter 2

Background

2.1 Genetic Programming

Figure 2.1: A simple GP expression tree.

Genetic programming (GP) is a evolutionary algorithm that uses the ideas of

Darwinian evolution to generate programs that solve complex problems [59, 60, 76].

It is an evolutionary computation (EC) approach that extends genetic algorithms

(GA) [51]. It was first proposed by John Koza in 1992 [59], which introduced a way

to evolve tree-based structures. GP evolves a population over number of generations

to find better offspring and ultimately find a suitable program that solves a problem

at hand.
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Algorithm 1 Genetic Programming Algorithm.

P ← population size;
N ← maximum number of generations;
mutpb← mutation probability;
cxpb← crossover probability;

randomly initialize a population of size P;

while (! terminal condition) do
evaluate fitness of each individual;
i← 0
while (i ≤ N) do

select an operator: op;
if (mutpb % of time) then

select an individual based on its fitness;
perform mutation operation with probability mutpb;

else
if (cxpb % of time) then

select two individuals based on their fitness;
perform crossover operation with probability cxpb;

end if
end if
insert offspring into next generation population;
i++;

end while
end while
return (most fit individual);
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All of the evolved programs (individuals) are represented in a tree structure

(see Figure 2.1). Each tree contains functions as intermediate nodes and terminals as

leaf nodes. The GP language is comprised of these functions and terminal sets. These

sets are specially defined for the problem at hand. Functions can include mathemat-

ical, trigonometric, logical, or conditional operators, and terminals can simply be a

constant or some variable value. For example, in the GP individual expression (see

Figure 2.1), X and Y are terminals or leaf nodes, and / is a function meaning it is an

intermediate node, and in this example the root node. This denotes the expression

the expression X/Y.

The genetic programming algorithm is a simple one (see Algorithm 1). It first

produces a random population using the GP language provided by the user. It then

reproduces offspring over number of generations using various genetic operations to

find an acceptable solution [60].

Algorithm 1 shows the genetic programming algorithm. First user defined

number of trees are created by randomly using the functions and terminal set. It is

very unlikely that the initially generated population will be able to provide a good

solution. All the individuals in a population go through a fitness evaluation, which

helps to find with individuals with good fitness.

All individuals (trees) are assigned a fitness score after the fitness evolution.

Genetic operators (mutation and crossover) are probabilistically chosen for use. Se-

lection methods use the fitness score of individuals to select parents for reproduction:

the higher the fitness of an individual, the higher the chance it will be selected for

reproduction. Newly produced populations replace the old population during each

generation. This process continues until the terminal condition is met. At the end

of the run, the individual with the best fitness from the final generation is returned.

More details on the reproduction and selection strategy is provided in Section 2.1.1.

2.1.1 Reproduction Operation

GP uses different reproduction operations to produce offspring for next generation

of population.
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Crossover:

Figure 2.2: Crossover operation on parents.

Figure 2.3: Resulted offspring after crossover operation.

One of the key reproduction operations is crossover. It is inspired by the

biological crossover where offspring inherit features from both parents. It is the most

widely used reproduction operation in GP. To perform a crossover operation, two

parents are selected from the current generation of population based on fitness. Then

a random node from each tree is selected. The subtrees are split from those nodes

and then exchanged between trees, creating two new trees that are different than the

parents. Figure 2.2 shows the crossover operation where two subtrees are selected

from the parents. Then these subtrees are swapped creating two new offspring, as

shown in Figure 2.3.
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Mutation

Figure 2.4: Original tree (left) and mutated offspring (right).

Mutation is another reproduction operation. Though in most applications it

is not used very frequently, it helps create more diverse offspring. For mutation, only

one parent is selected based on fitness. Then a random subtree is selected from the

parent which is then replaced with a randomly generated tree. The new random

tree generation follows the same procedure as the initial population generation (see

Section 2.1). In Figure 2.4, the left tree is the original tree, and the right tree is a

mutated offspring where the randomly selected subtree in the original tree has been

replaced with a newly generated subtree.

2.1.2 Selection Strategy

There are different fitness based selection strategies that are used in GP to find

fit individual from a population for reproduction. Most commonly used strategies

include roulette selection and tournament selection. In the roulette selection, selected

individuals are assigned a percentage of the roulette wheel [42]. The bigger the fitness

value the more space it is assigned on the wheel. Then the wheel is spun to decide

which one is selected. Bigger fitness values mean higher portions on the wheel and

a higher selection probability [94]. Figure 2.5 shows a simple roulette wheel with 6

individuals. Here, Ind 4 has the highest fitness value and Ind 2 has the lowest fitness

value. So, the probability of Ind 4 being selected is higher compared to Ind 2. And

since Ind 1 and Ind 5 has similar fitness value, probability of them being selected

compared to each other is very similar.
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Figure 2.5: Roulette Wheel selection.

Tournament selection is another widely used selection strategy. N number

of individuals are selected from a population at random. The individual with the

highest fitness among those randomly chosen individuals is selected for reproduction.

Since only one individual is selected from a tournament, mutation only needs one

tournament selection, where crossover needs two tournaments to get two parents [70].

Figure 2.6 shows the fitness of N individuals that makes up the population. Four

individuals from them are chosen at random. Since Ind 1 has the highest fitness

value of 5 among the chosen individuals, it is selected for reproduction.
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Figure 2.6: Tournament selection.

2.2 Diversity Search and MAP-Elites

Diversity search algorithms consider diversity as an important factor during search.

The first diversity search algorithm is novelty search [61] which uses a measured

diversity of individual from rest of the population.

MAP-Elites is another diversity search algorithm, known as a quality diversity

(QD) algorithm, and was first proposed in 2015 by Mouret and Clune [72]. It is a new

algorithm for finding multiple high-quality solutions that exhibit different phenotype

behaviours. Each cell of the map contains the chromosome of the most fit individual

found so far exhibiting the behaviour saved in that cell. For example, a 10-by-10 2D

grid can represent a maximum of 100 possible solutions. Each dimension (X, Y) of

the grid represents identified combinations of useful behaviour measurements (X and

Y) as defined by the user. Figure 2.7 shows a 10-by-10 heat MAP of final solutions.

Empty bins mean no solution were found in that space of the MAP.
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Figure 2.7: MAP-Elites MAP (2D) [X-axis: tree depth (range: 1- 17); Y-axis: number
of nodes (range: 1- 400)].

The basic MAP-Elites algorithm is fairly simple (see Algorithm 2). First a

MAP of N-dimension is created. Each dimension has its own behaviour feature. On

the first iteration, P number of solutions are created and they are placed in different

bins on the map based on their feature values. In each iteration a new individual is

created using crossover and based on its feature values, it is assigned a bin on the

MAP. If that cell (bin) is empty then the new individual is placed in that cell. If the

cell is already occupied, the fitness value of current occupant and the new individual

is compared. If the new individual has a better fitness value than the occupant of

that cell, it replaces the current occupant and takes its place in the map. But, if

the new individual has lower fitness than the current occupant, it is discarded. This

process continues until the termination condition is met. At the end of a run all the

individuals in the bins are presented as solutions. The user can decide on the most

appropriate one.
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Algorithm 2 MAP-Elites Algorithm.

M ←MAP dimension;
N ← maximum number of iterations;
x← a random elites on the MAP ;
y ← current occupant of a cell;
p(x)← fitness of x;
f(y)← feature description of x (Used to find a cell on the MAP );

randomly initialize a P number of solutions;
place these solutions on MAP based on their features;

i← 0
while (i ≤ N) do

selects individual z from the elites of the MAP;
using crossover creates a new randomly modified version of z: z’;
checks feature description of z’: f(z’);
checks the fitness of x’: p(z’);

if (f(z’) == empty ) then
place z’ in MAP space f(z’);

else
if (p ( z’) >p (y) ) then

replace y with z’;
else

discard z’;
end if

end if
i++;

end while
return (final MAP individuals)
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2.3 Multi-objective andMany-objective Optimiza-

tion

Many modern day problems have more than one objective to be satisfied or op-

timized while finding a solution. Such problems are called multi-objective problems

(MOP). If there are more than four objectives to satisfy, then the problem is called

a many objective problem (MaOP) [38, 54]. While it can be easy to optimize a sin-

gle objective, optimizing multiple objective at once is often tricky. And when these

multi-objective problems become many-objective problems (number of objectives are

five or more), it becomes even more complicated. Optimizing one objective can lead

to bad performance in others. Balancing these issues is a major challenge in any

multi-objective problem. The goal of MOP or MaOP optimization is to satisfy all

the objectives to find a solution [26].

Many different algorithms have been proposed to better optimize many-objective

problems. There are many strategies for ranking multi-objective problems [41, 31].

Pareto ranking is one of the most used ranking method for multi-objective optimiza-

tion [36, 74, 93, 95]. But Pareto ranking fails when there is five or more objectives,

as it fails to find Pareto dominance in most case. Sum-of-ranks (also called average

rank) can help solve this issue [23, 49].
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2.3.1 Pareto Ranking

Table 2.1: Pareto ranking and sum of ranks.

Ind
Raw fitness

PR
Ranks

SOR RR
Norm.
SOR

RR
A B C D A B C D

1 1 9 5 4 1 2 1 2 2 7 1 1.47 1
2 2 30 4 8 1 3 2 1 3 9 2 2.03 2
3 10 9 9 10 2 4 1 4 4 13 4 2.60 5
4 16 30 8 4 2 5 2 3 2 12 3 2.57 4
5 16 9 40 0 1 5 1 5 1 12 3 2.37 3
6 0 50 50 50 1 1 3 6 5 15 5 3.20 6

Max rank = 5 3 6 5

(a) In this example lower value is preferred for both fitness and rank.

(b) PR: Pareto ranking; SOR: Sum-of-ranks; RR: Re-ranked.

Pareto ranking (PR) is based upon Pareto dominance [42]. If a solution is

dominating in one objective and remains undominated in others, it is given a rank

and then the process continues for the rest of the solutions until all the solutions are

assigned a rank [22]. Once a solution receives a rank it is no longer considered while

ranking the rest of the solutions. The first undominated solutions receive a rank of

one, the undominated solutions in the next iteration receives a rank of two, and so

on. This is an effective process for multi-objective problems. It work best when there

are two or three objectives [53]. But it usually fails when there are more than four

objectives [42, 74, 95].

Table 2.1 shows an example of Pareto ranking. The first column represents

6 individuals that have been assigned name 1, 2, 3, 4, 5 and 6. Raw fitness column

shows raw fitness of four objectives (A, B, C and D) of those mentioned individuals.

Column PR, shows the Pareto ranking of those individuals. We can see 4 individuals

received a rank of 1, meaning those four individuals dominate in one of the objectives

and were undominated in other three. In the second iteration the remaining two

were evaluated and as they dominate the other one in one objective and remains

undominated in other three, they both received a rank of 2.
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2.3.2 Sum Of Ranks

Sum-of-ranks (SOR, also known as average rank space) is technique for MaOP. It

helps to overcome the problem with Pareto ranking [33], since Pareto ranking usually

fails when there are four or more objectives to consider. All the individuals are ranked

for each of their objectives based on their raw fitness value for that objective. If higher

value objectives are preferred, the individual with highest fitness value is assigned a

rank of 1 for that objective, the second highest fitness value receives a rank of 2 and

so on. If a lower value is preferred then the individual with lowest fitness score for an

objective receives rank of 1 for that objective and so on. Once all the individuals are

ranked for all the objectives, the ranks for different objectives are added. This gives

all the individual a sum of their ranks [49].

Different modified version of sum-of-ranks can be used. To reduce bias with

objectives with larger rank values than others, normalized sum-of-ranks is used where

all the ranks for an objective are divided by the highest rank for that objective. If

one objective is more important and preferable, then a weighted sum of rank is used,

where a simple weight is multiplied to the normalized values.

Table 2.1 shows different ranking techniques that include Pareto ranking, sum-

of-ranks and normalized sum-of-ranks. Here, a lower value is preferred. From the

table we can see the difference between Pareto ranking (PR), sum-of-ranks (SOR)

and normalized sum-of-ranks (Norm. SOR). We can notice a difference between sum-

of-ranks and normalized sum-of-ranks. This is a result of different range of ranks

for different objectives. If not normalized, it can make the solutions biased toward

a few the objectives at the expense of others. Normalizing them ensures that the

difference in rank range will not make the solution biased towards the objective that

has a higher rank range. If we want to assign different weights to different objectives,

we can assign weights to the normalized ranks to prevent unwanted behaviour. The

fourth to last column shows the raw sum-of ranks and second to last column shows

the normalized sum-of-ranks. For normalization we divide the ranks of an objective

with the highest rank for that objective. We have re-ranked the SOR in third to last

column and normalized SOR in last column. From these two column we can see that

the rank of raw sum-of-ranks is not same as the rank of normalized sum-of-ranks.

Which shows the benefits of the normalized sum-of-ranks
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2.4 Image Features

This chapter describe different features of the images that are used in this research.

The original feature set used here is from Lombardi et al [64]. Key reasons for choosing

these features is their wide use in similar research in image retrieval, evolutionary art

for their simplicity and ease to compute [81].

2.4.1 Feature Definition

Lombardi et al. [64] used lightweight features for comparison and classification

of art work. It showed promising results as art from same artists are shown to have

closer feature characteristics in cases studied. In their research, two types of features

has been considered for the test image set: palette and canvas features. Palette

features are related to the colour space of an image, and canvas features are related

to frequency measurement of an image.

In their research, Lombardi et al. [64] have used two sets of feature derived from

the colour images. The first set is based on the RGB [13, 83] colour model, and the

second set is mainly based on the HSV [6, 30, 83] colour model. The first feature

set has 16 features, including 1 palette feature called palette scope, which is the total

number of unique RGB triplets present in an image. 15 canvas features are the min,

max, mean, median and standard deviation value of the 3 channels of the RGB model

of an image. Table 2.2 shows the first feature set used.
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Table 2.2: First preliminary feature set (RGB)

Feature Name Type Description

Palette Scope Palette
The total number of unique RGB
triples in an image.

Red Max Canvas
The maximum value in the Red
channel.

Red Min Canvas
The minimum value in the Red
channel.

Red Mean Canvas
The arithmetic mean of the values
in the Red channel.

Red Median Canvas
The median of the values in the
Red channel.

Red Std. Dev. Canvas
The standard deviation of the
values in the Red channel.

Green Max Canvas
The maximum value in the Green
channel.

Green Min Canvas
The minimum value in the Green
channel.

Green Mean Canvas
The arithmetic mean of the values
in the Green channel.

Green Median Canvas
The median of the values in the
Green channel.

Green Std. Dev. Canvas
The standard deviation of the
values in the Green channel.

Blue Max Canvas
The maximum value in the Blue
channel.

Blue Min Canvas
The minimum value in the Blue
channel.

Blue Mean Canvas
The arithmetic mean of the values
in the Blue channel.

Blue Median Canvas
The median of the values in the
Blue channel.

Blue Std. Dev. Canvas
The standard deviation of the
values in the Blue channel.
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Table 2.3: Second preliminary feature set (HSV)

Feature Name Type Description

Hue Max Canvas
The maximum value in the Hue
channel.

Hue Min Canvas
The minimum value in the Hue
channel.

Hue Mean Canvas
The arithmetic mean of the values
in the Hue channel.

Hue Median Canvas
The median of the values in the
Hue channel.

Hue Std. Dev. Canvas
The standard deviation of the
values in the Hue channel.

Saturation Max Canvas
The maximum value in the
Saturation channel.

Saturation Min Canvas
The minimum value in the
Saturation channel.

Saturation Mean Canvas
The arithmetic mean of the values
in the Saturation channel.

Saturation Median Canvas
The median of the values in the
Saturation channel.

Saturation Std. Dev. Canvas
The standard deviation of the
values in the Saturation channel.

Value Max Canvas
The maximum value in the Value
channel.

Value Min Canvas
The minimum value in the Value
channel.

Value Mean Canvas
The arithmetic mean of the values
in the Value channel.

Value Median Canvas
The median of the values in the
Value channel.

Value Std. Dev. Canvas
The standard deviation of the values
in the Value channel.

Intensity Mean Canvas The global brightness of an image.

Colour Entropy Canvas
The degree of disorder in the
frequency distribution of colours.

Line Count Canvas
The number of lines detected by
the Sobel edge detector.
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Figure 2.8: HSV colour model [6].

The Min and Max refers to the minimum and maximum value of the channel.

Mean refers to average value of a channel, and Median refers to the median value of

a channel. Std Dev refers to the standard deviation of values of the corresponding

channel in a colour model.

The second set of feature is showed in Table 2.3. This set has 18 features which

includes 15 values extracted from the HSV [30, 6] colour model of an image and

3 different features. The 15 HSV model values include the minimum, maximum,

average, median and standard deviation values of hue, saturation and value channels

of the image. Other values include the minimum intensity, colour entropy, and line

count found by Sobel edge detection [14] which is described later in this chapter.

Figure 2.8 shows a sample HSV colour model.
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2.4.2 Unique Colour Triplets

Figure 2.9: RGB colour model [13]

Unique triplets refers to the number of unique pixel value combinations in a

RGB image. In the RGB colour model, the red, green and blue channel, all can be

treated as separate grayscale image. And all pixels of each channel have their own

values. Different combinations of the pixel values in these 3 different channels create

different colours [77]. Figure 2.9 shows a sample of RGB colour model. Different

shades of colour values come from the different RGB combinations.

2.4.3 Mean Intensity

Mean intensity refers to the average intensity of a grayscale image. It can be

calculated by converting a RGB image into grayscale image and then taking the

average intensity of the grayscale image. Figure 2.10 shows the RGB and grayscale

version of the same image.
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Figure 2.10: RGB (top) and grayscale (bottom) version of the same image ( “Moun-
tain river” ©Sheikh Faishal Basher, 2016.)
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2.4.4 Image Entropy

Image entropy [4, 5] is a very useful feature of computer vision. It refers to the

statistical randomness of information content of an image [44, 16]. Shannon entropy

has been used in this research. The idea was proposed by Claude Shannon as a part

of the field of information theory in 1948 [27].

The probability of the occurrence of different grayscale values is taken into account

to calculate the entropy. Entropy can simply be described as a measure of uncertainty.

If the occurrence of different events are similar then less information can be extracted

from the probability distribution of each event. But, if the occurrence varies widely,

more information can be extracted. In first case, as little information can be received

it will have a low entropy. And in second case, entropy values will be higher as there

are is more information present [92].

Figure 2.11 shows two images with high and low entropy. From the top figure, we

can see that how rapidly varying colour and intensity can increase the entropy value.

On the other hand, the bottom image has one colour and intensity value, for which it

has a uniform probability distribution, meaning it has a very low entropy compared

to the top image.
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Figure 2.11: High (top) and low (bottom) entropy images
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2.4.5 Sobel Edge Detection

Edge detection is a technique in image processing, where boundaries are found

based on discontinuity of brightness within an image [2, 3]. Edge detection provides

valuable information about an image by detecting different edges and rapid change

of brightness in an image. It is used in digital image processing [44], and computer

vision for image segmentation [7, 8, 47]. The most common edge detection methods

include Sobel [14] , Kenny [29], Prewitt, Roberts and fuzzy edge detection [46, 84].

Sobel edge detection [14] is one of the widely used edge detection techniques.

Lombardi et al. [64] used Sobel edge detector for the line count feature of the second

preliminary feature set. Line count is interpreted as number of edges detected by the

Sobel edge detector algorithm for a user provided threshold value. The algorithm

takes a pixel as input and checks its neighbouring pixels for a measured change in

brightness.

Sobel filters use different N ×N convolution filter matrices, where each value

in the matrix is used for multiplying a same size of window pixels in the input image.

Equations 2.1 and 2.2 shows Gx and Gy, which are two matrices used for horizontal

and vertical edge detection respectively.

Gx =

−1 0 1

−2 0 2

−1 0 1

× (InputImage) (2.1)

Gy =

−1 −2 −10 0 0

−1 −2 −1

× (InputImage) (2.2)
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If we consider Im (Equation 3.2) to be a input image segment: each P repre-

sents a pixel, and (i,j) represents the coordinate. Each pixel value is multiplied with

the matrices (equations 2.1 and 2.2). This process is continued through the whole

image to find Gx, and Gy. These values are then used to calculate |G| (see Equation

2.4).

Im =

P(i−1,j−1) P(i−1,j) P(i−1,j+1)

P(i,j−1) P(i,j) P(i,j+1)

P(i+1,j−1) P(i+1,j) P(i+1,j+1)

 (2.3)

|G| =
√
Gx2 +Gy2 (2.4)

(a) Original image (b) Sobel filter with 0.1 threshold

Figure 2.12: Sobel edge detection

Figure 2.12 shows the grayscale image (a) and its Sobel-filtered version (b).

From the figure we can clearly see that some of the pixels selected as edge might not

be actual edges. Also, some edge pixels have have not been detected. This is because

of how the Sobel edge detector algorithm detects edges. We can change the threshold

value for intensity difference to detect edges. This threshold value can be changed
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based on user’s preference.
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Chapter 3

Related Work

3.1 Quality Diversity Search

Diversity search, as its name implies, focuses on increasing the diversity of solu-

tions. There are different ways to increase the diversity of a solution. Some algorithms

only focus on diversity by rewarding behaviours that help to create diverse solutions

[61]. Novelty search is one such approach, where novel behaviours are rewarded and

similar behaviours to previous solutions are penalized. This helps to increase the

diversity by promoting novel behaviours, meaning, solutions that are not similar to

previously found solutions [73]. Novelty search can be used to overcome local minima

issues in deceptive problems (for example, maze navigation problems). It can also be

used for multi-objective problems as well [71]. So, search for novelty is helpful to find

solutions more effectively. But this approach of only valuing the novel behaviours

can lead to other issues. Some problems require fitness to be considered, and only

novelty alone will produce diverse results that are useless. For these types of problems

no solution may be found if one solution reaches close to the final destination. The

future solutions may go completely opposite direction to reach the goal to increase

the novelty, thus creating useless diverse solutions.
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This issue with using just novelty can be solved by combining novelty and

fitness. By doing so, we are rewarding both behaviours. So, the algorithm will be

motivated to go towards the actual solution while increasing diversity. When we

add any fitness measurement to the diversity it becomes a quality diversity (QD)

algorithm. Gomez et al. showed how combining fitness with novelty can help to find

adequate solutions while keeping them diverse [43].

MAP-Elites [72] is a relatively new quality diversity algorithm that diversify

solution based on some selective features. One of its advantages is that the user

has full control over what features are selected and used for diversification. MAP-

Elites helps to solve some of the issues with traditional evolutionary algorithms. It has

been used for various problem sets in evolutionary computation and showed promising

results even with multiple objectives [82].

Tarapore et al. used MAP-Elites to enhance the control of robots by evolving

closed loop controller where robots uses sensors for communications [89]. Khalifa et al.

used a modified version of MAP-Elites for bullet hell games to generate instructions

for the agent [58]. Fontaine et al. used MESB (MAP-Elites with Sliding Boundaries)

for re-balancing purpose of a card game called Hearthstone [39]. In their paper they

used a sliding boundary instead of a fixed one for MAP-Elites, and the boundaries can

change over time. MAP-Elites has also been used for evolutionary dungeon design for

role-playing games by Alvarez et al. [17, 18]. Other uses of MAP-Elites include genetic

programming, deep neuroevolution, adaptive sampling for noise domains, constrain

optimization, and many more [32, 35, 37, 56].

3.2 Image Classification

In recent years, there has been a surge in digital images with the emergence of

easier ways to make digital photos. In terms of digital art work, there has also been

a boom as art from painters are being turned into digital copies, and new digital art

is being created by artists. Many new techniques are being developed to analyze and

classify digital art [87].
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Various algorithms have been developed over the years that can use visual

features of an image to retrieve and classify an image. Both supervised and unsuper-

vised training from the extracted data of available images has been used for image

classification [57]. Stricker and Orengo introduced a Colour moment system that uses

the HSV model to find similarities between images using three features [88], mean

colour value, standard deviation of colour distribution and asymmetry of colour dis-

tribution. Smith and Chang proposed a colour set, which can be as effective as colour

histogram for RGB and HSV images [86].

Another major image classification is artist identification. Johnson et al. [23]

used brush stroke characteristics of paintings on a set of grayscale scans of Van Gogh

and Kroller Muller museum paintings to identify and classify the artist [55]. Edge

detection was used to see the brush stroke pattern by each artist.

There are also various commercial image retrieval systems that use different

visual and statistical image features to retrieve or classify them. Netra by UCSB

[65], content based image retrieval system Virage [19], neural networks based system

Retrievalware [28], are to name a few. These system takes various features including

colour, shape, texture, colour brightness to classify images [67, 80].

Lombardi et al. [64] designed an image retrieval system to classify images

in a small light-weight set of image characteristics. They used two sets of features

for RGB and HSV models. The RGB model consists of 16 features that can be

classified in two groups: palette scope (total number of unique RGB triplets) and

canvas (maximum, minimum, mean, median and standard deviation of pixel values of

red, green and blue channel) (see Table 2.2). The HSV model has 18 canvas features.

This includes the maximum, minimum, mean, median and standard deviation value

of of hue, saturation and value channel as well as the mean intensity, colour entropy

and line count by Sobel edge detector (see Table 2.3). A graphical user interface

is also provided for the system that contains two different windows for comparison

and classification. It also allows users to modify feature values to see similarities or

differences between images. It has an overall accuracy rating of 56%. We have used

a slightly modified version of RGB feature set for our experiments.
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3.3 Evolutionary Art

Evolutionary algorithms have been used to create art. Dawkins was the first to

evolve 2D images of “creatures” with an interactive GA [34]. Karl Sims introduced

the concept of texture and 3D structure generation using evolutionary computation

[85]. He used genetic algorithms (GAs) to produce different textures and complex 3D

models. He proved that evolutionary algorithms (EAs) can be used to successfully

produce interesting arts.

Gentropy [91] is another GP based system that can successfully generate 2D

textures . It uses a combination of mathematical functions and image features to

generate procedural texture images. The user feeds one or multiple target images to

the system, and an image feature set along with a function set for procedural texture.

The GP system evolves a final procedural texture at the end of the run. The fitness

evaluation process includes different image analysis and statistical comparisons. The

generated image is not identical to the target image, but has very similar feature to the

target image. Weins and Ross [91] used island model evolution for their experiments.

Genshade [52] is another texture evolution system very similar to Gentropy,

and also evolves images based on the provided target image features. Where Gentropy

uses a tree-based GP, Genshade uses an acyclic directed graph for evolving texture.

Male (higher illumination scores) and Female (higher chromaticity score) shaders are

ordered accordingly and then used for reproduction operation. The texture language

for the experiments consists of float X-value and Y-value, representing the current

coordinates, an ephemeral constant, luminosity, mean of two arguments, repeating

tile patterns, texture effects, conditional function, and perform iterative processing

on vectors.
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3.3.1 Procedural Textures

Procedural texture generation [12, 15] is an important technique in computer

graphics. It helps developers to create different realistic textures for graphics ap-

plications. These textures are created using mathematical functions. They are in

contrast with bitmap texture, which are fixed in size and based on digital images.

One example for procedural texture is given below:

R = fr(x, y) (3.1)

G = fg(x, y) (3.2)

B = fb(x, y) (3.3)

RGB = (R,G,B) (3.4)

Equations 3.1, 3.2 and 3.3 represent the procedural texture generation func-

tions for red, green and blue channel. Equation 3.4 represents the final function that

combines the three channels to produce a RGB image. For grayscale image just one

single channel function is sufficient as R, G, and B themselves are grayscale images

when examined separately.

Evolutionary Art (Evo Art) is the use of evolutionary algorithms such as GA

and GP to create objectives of art. Procedural textures have been a popular topic

in Evo Art, as GP is capable of evolving procedural texture expressions [91]. Early

systems relied on interactive fitness evolution by the user. Later, automatic fitness

was studied. Such systems use image features analysis for fitness evolution [81].
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3.3.2 Procedural Textures Using MOP

When it comes to procedural textures, some algorithms are very successful in

evolving images with similar features to the target image [52, 91]. There have been

multiple examples using different genetic algorithms and genetic programming to

evolve images with similar features of a target image. Ross and Zhu [78] used multi-

objective optimization in their GP based procedural texture generation research. Us-

ing Pareto ranking with diversity, they dealt with the premature convergence prob-

lem and generated a diverse population. Their automated texture evolution approach

showed promising results for multi-objective optimization. Baniasadi also used GP

for non-photorealistic rendering [20], where the proposed system tried to evolve an

image that looks like a painting of the target image.

In her research Salimi [81] used GP to produce colour textures. She used the

two feature sets (see Table 2.2 and 2.3) proposed by Lombardi et al. [64] for RGB

and HSV images for her experiments to select image features. She also used a few

modified versions of these feature sets. Using only simple mathematical functions and

images features from target images, she was able to produce good procedural texture

images for a variety of target images. She successfully used sum-of-ranks for many

objective optimization (up to 17 objectives in their experiment).

3.4 Challenges with Existing Systems

The new proposed approaches in this thesis aim to use the advantage of MAP-

Elites to create diverse high quality solutions for multi-objective and many-objective

problems by combining MAP-Elites with the many-objective sum-of-ranks fitness

strategy. The new system can also be useful for other many-objective problems where

diverse solutions are needed.

Most existing systems for procedural texture generation using vanilla GP gen-

erate one result per run. To get a large number of diverse solutions, many runs are

needed, which are computationally expensive and time consuming. The MAP-Elites

algorithm is fairly new and has not been used in many-objective problems, can help

solve the lack of diversity problems with the traditional GP.

33



Chapter 4

System Design

This chapter describes the system design for this research. The details about sys-

tem design, system parameters, programming platform and all the external libraries

and tools are described. It also includes the GP and MAP-Elites parameters, and the

implementation of new versions of MAP-Elites.

4.1 GP System

Python-3.6 [79] has been used for the programming and system implementation.

The genetic programming system used is a Python library named DEAP [40], which

stands for Distributed Evolutionary Algorithm for Python. It is a very popular genetic

programming library that supports easy modification and system integration with

other Python libraries. Other important libraries that are used include NumPy [48],

PANDAS [68], and OpenCV [25].

Using DEAP [40] and other mentioned libraries, a system has been designed

which takes an image as input, and then through evaluation over a number of gener-

ation creates a new procedural texture image which has similar feature values as the

original input image. Figure 4.1 shows the basic design of the system, which will be

described below.
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Figure 4.1: The architecture of the system.

First, a target image is selected and provided as input for the system. The GP

system is also given the GP parameters, GP function set. The system first extracts

and saves the feature values from the target image, which is treated as the base value

against which all the feature values for evolved images will be compared. The GP

system then creates a random population which is used to evolve images and compare

their feature values with the target image feature values. To scale the original and

generated image feature values, all the feature values are normalized between 0 and

1. For example, instead of the conventional grayscale values between 0 and 255, for

each RGB channel normalized values between 0 and 1 are used.

After comparing the evolved image and target image feature values each in-

dividual is assigned a fitness value by the fitness function (see Section 2.3.2). After

generating and comparing all population, all individuals are ranked using “normal-

ized sum-of-ranks” (see Chapter 2). These ranks are used for tournament selection

while selecting parents to produce next generation of individuals. This process of

evaluation, feature comparison and rank assignment continues until the end of the

run. The best individual from the final generation is the resulting evolved image

which, if evolution was successful, has similar feature values as the original image.
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4.1.1 GP System Parameters

Table 4.1: GP system parameters

Name Description
Number of generations The total number of generations in each run.

Population size
The total number of individuals created in
each generation.

Tree initializer Method for creating a variety of random trees.

Initial min/max tree depth
Sets the minimum/maximum size of initialized
random trees.

Crossover probability Probability of using crossover for reproduction.
Mutation probability Probability of using mutation for reproduction.

Max tree depth
Maximum allowed size of a GP tree during the
run.

Tournament size
Number of individuals selected randomly for
tournament selection method.

GP needs some user supplied parameters to operate. These parameters tell GP

how to evolve a program, how to create new individual, how many individuals there

should be in each generation, or how long it needs to evolve to find a solution. User

needs to provide values for the basic GP parameters. Table 4.1 shows the required

GP parameters that needs to be provided. More information about these parameters

can be found in [76].
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4.1.2 GP Language

Table 4.2: Genetic programming function set

Name Operation
Input/ Output

Data type

add
Arithmetic sum function on two
operands. It takes two operands as
input and returns a single value.

float

sub
Arithmetic subtraction function on two
operands. It takes two operands as input
and returns a single value.

float

mul
Arithmetic multiplication function on
two operands. It takes two operands as
input and returns a single value.

float

protectedDiv

Protected arithmetic division function on
two operands. It takes two operands as
input and returns a single value. If the
divisor operand value is 0, it returns 0,
to avoid any error.

float

protectedPow

Protected power function on two
operands. It takes a single operand as
input and returns a single value. Since
the negative square root generates an
imaginary number. This function first
checks the value of the second operand.
If that value is less than 1, then it takes
the absolute value of the first operand.

float

protectedLog

Protected natural logarithm function on
a single operand. It takes one operand as
input and returns a single value. Since
the natural logarithm can not be
performed on a negative value, it takes
the absolute value of the input operand.

float

sin
Trigonometric sine function on a single
operand. It takes a single operand as
input and returns a single value.

float

cos
Trigonometric cosine function on a
single operand. It takes one operand
as input and returns a single value.

float
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Table 4.3: Genetic programming terminal set

Name Description
Input/ Output

Data type
x X-coordinate values float
y Y-coordinate values float
rand1 Ephemeral constant float

The GP language used in this research is similar to others used in procedural

texture generation. The 2D coordinate (X, Y) of an image has been used as a terminal.

These co-ordinate values are between 0 and 1 along with the actual pixel values. GP

function set includes different mathematical and trigonometric operations. Ephemeral

constant is used, which is a randomly generated floating point. A list of basic GP

functions is provided in Table 4.2. Only the Mod function from [81] has not been

used, as all the values are float and the modulus operation will never be used on float

values. Table 4.3 shows the GP terminal set.

4.2 Novel MAP-Elites Algorithm

New MAP-Elites algorithms are designed for this experiment. They are based on

the basic MAP-Elites described in Section 2.2. The new algorithms take the basic

parameter to create a MAP. Here only a 2D MAP is used for all the experiments. In-

creasing number of dimension above 2 will increase the MAP size exponentially, which

makes the system computationally expensive, resource consuming, and impractical

to use. More details are provided in the following sections.
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4.2.1 Proposed MAP-Elites Algorithms

Algorithm 3 Proposed MAP-Elites Algorithms.

M ←MAP dimension;
N ← maximum number of iterations;
X ← bin size;
P ← initial batch size;
B ← batch size;
x← a random elites on the MAP ;
y ← current occupant of a cell;
p(x)← fitness of x;
f(y)← feature description of x (Used to find a cell on the MAP );

randomly initialize a P number of solutions;
place these solutions on MAP based on their features;

i← 0
while (i ≤ N) do

j ← 0

while (j ≤ B) do
selects individual z from the elites of the MAP;
using crossover and/or mutation creates a new randomly modified version

of z: z’;

checks feature description of z’: f(z’);
checks the fitness of x’: p(z’);

if (size (f(z’)) <X ) then
place z’ in MAP space f(z’);

else
if (p ( z’) >p (y) ) then

replace y with z’;
else

discard z’;
end if

end if
j++;

end while
i++;

end while
return (final MAP individuals)
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The original MAP-Elites algorithm uses a single-individual bin, meaning it

can only hold one individual in each cell of the MAP. In this thesis we propose two

new approaches which are very similar (see Algorithm 3). Both approaches have

common characteristics, the bin size can be set by the user. Instead of having only

one individual in a bin, it is possible to have multiple individuals (N) in a bin. This

allows for N number of best solutions for that feature space of the MAP to be stored

in a single bin. When N+1 number individual for a bin arrives, its fitness is compared

to the occupants of that bin. If the new individual has a better fitness than at least

one of the occupants of the bin, it replaces the least fit individual from the bin.

Both approaches use random selection to select a bin for reproduction. But

how a individual from a bin is selected varies. The first approach uses random selec-

tion to select one of the occupants of the bin for reproduction. The second approach

uses a tournament selection of size T (set by the user), where T number of individ-

uals are chosen for a tournament and the winner of that tournament is selected for

reproduction. The multiple-individual bin is used in a hope that it will increase the

diversity by giving some of the less fit solutions a chance to be a part of reproduction.
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4.2.2 MAP-Elites System Parameters

Table 4.4: MAP-Elites system parameters

Name Description
Number of iteration The total number of iterations in each run.

Bin feature
Number of feature that is considered during the creation
of the MAP grid,

Number of bins

The dimension of the Grid (eg: 2D, 3D). It takes the
highest value for each dimension. For example, for
2D grid it will take M and N value, where M is number
of bins along X-axis and N is number of bins along
Y-axis. Total number of bins is equal to the multiplication
of M and N.

Items per bin:
Number of maximum individual that can be stored
in a single bin.

Feature domain

Feature domain refers to the range of each feature
used during the MAP creation. It takes lower and
upper range for each feature and then divides those
feature values by number of bins to assign each bin
a feature range on the feature axis.

Fitness domain
Minimum and maximum fitness that needed to
be considered while evaluating individuals.

Initial batch size Number of initially created individuals.

Batch size
Number of individuals created in each iteration
from the Elites of the MAP.

MAP-Elites [72] needs some user supplied parameters to function (see Table 4.4).

These parameters tell the system all the necessary information, including MAP di-

mension, shape and size of the MAP, the number of bins need to be created, now many

items there should be in each bin, and number of features that have to be taken into

account while creating the MAP container. The range of each feature value, number

of initial individuals, maximum number of iterations and number of new individuals

created in each iteration.
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4.3 GP and MAP-Elites System Integration

The MAP-Elites algorithm and the genetic programming system have been in-

tegrated. In the original MAP-Elites paper [72], a GA was used for the evolution

of individuals. Here, we used tree based GP for that purpose, meaning each MAP-

Elites individual is a GP tree. Both MAP-Elites parameters and GP parameters are

required for the system to work. MAP-Elites creates the initial MAP (2D grid). GP

takes the initial batch size parameter and creates specified number of random individ-

uals. Those individuals are placed in appropriate bins in the MAP. Genetic operations

are used for reproduction purposes. The number of new individuals created in each

iteration is determined by the batch size parameter of MAP-Elites.

4.4 Fitness Function

As mentioned in the earlier sections, the goal is not to create an identical copy of

the target image, but to create a new image that has similar feature characteristics

as the target. For that purpose, an automated fitness function has been created

to evaluate the fitness of each individual. For this process, the difference between

each pair of feature of the original image and each evolved image is calculated. Using

normalized sum-of-ranks (see Chapter-2) each of the differences is then assigned a rank

via sum-of-ranks (see Section 2.3.2). These ranks are used while selecting individuals

for reproduction. The feature difference values for each feature for every generation

(GP) and (every iteration for MAP-Elites) is stored for plotting and result analysis

purpose.
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4.4.1 Sum-of-ranks and MAP-Elites

In GP, the implementation is very simple as it ranks the whole population at once

and then assign them ranks. But, in the case of our three MAP-Elites algorithm it

becomes quite tricky. In each iteration when N-number of new solution is created,

they are each given a relative ranks compared to the individual(s) in the bin with

same feature space. and once the new individuals are placed in their respective

bins (if the bin is empty or they are better than the existing N-number of allowed

solution(s) in those bins) or discarded (if not better than the existing N-number

of allowed solution(s) in those bins), the whole MAP-is re-ranked again. Another

thing to remember that in single individual MAP-Elites only the best of the bins are

stored, so ranking them takes relatively smaller time compared to multi-individual

bins where all the individuals in the MAP are also ranked, but, there can be N-times

more individuals to rank.

A preliminary system testing was performed to see if the MAP-Elites algorithm

and the new proposed versions of it are working properly. Details about the system

testing is available in Appendix A (Additional Analysis).
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Chapter 5

Experiments and Results:

Grayscale Image

Our newly designed algorithms are tested and their performances are compared

with base GP. These experiments can be divided into two major groups: Grayscale

image experiments and RGB image experiments. In both cases, a target image is

provided to the system. Evolution tries to generate a procedural texture image which

has similar feature characteristics as this target image. The system tries to mini-

mize the feature difference between target image and newly created images. Four

different systems are compared: Base GP, single individual bin MAP-Elites (sym-

bol: MAP Base), multiple individual bin MAP-Elites with random selection (sym-

bol: MAP B5 R), and multiple individual bin MAP-Elites with tournament selection

(symbol: MAP B5 T2). This chapter only deals with the experiments for grayscale

images, and the following Chapter 6 will present experiments with RGB images.

Three different experiments are performed with two different target images and

3 different feature sets. Figure 5.1 shows the two target images used for the grayscale

images. The first target image (Lena) has been used for a lot of computer-vision

and image processing research. Figure 5.1 (b) is from the personal repository of the

author. Target image 1 has been used for experiments 1 and 2, and target image 2 is

used for experiment 3. Their feature values are shown in Table 5.3. We can see from

the table that the image size and their features are quite different from each other.

The second target image has been chosen because of its colour distribution, to make

the features more diverse. Table 5.4, 5.5 and 5.6 show the 3 feature sets used in the

experiments.
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Table 5.1: GP parameter for grayscale experiment

Parameter Name Value
Population Size 300
No. of Generation 50
Tree Initializer Half and Half
Initial Tree Depth Min: 2 Max: 7
Max Tree Depth 17
Crossover 100%
Mutation 20%
Selection Tournament
Tournament Size 3
Number of Runs 20 / 10 / 10

Table 5.2: MAP-Elites parameter for grayscale experiment

Parameter Name Value
MAP size 8× 8
Initial batch size 30
Batch size 15
No. of Iteration 1000
No. of features 2
Bin size 1 / 5
Evaluating algo. GP
Tree Initializer Half and Half
Initial Tree Depth Min: 2 Max: 7
Max Tree Depth 17
Crossover 100%
Mutation 20%
Selection Random / Tournament
Tournament Size 2
Number of Runs 20 / 10 / 10
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(a) Target image-1 (Lena)
(b) Target image-2 ( “Setting Sun” ©Sheikh Faishal
Basher, 2020.)

Figure 5.1: Grayscale target images

Table 5.3: Grayscale Image Features

Feature Name Target Image -1 (Lena) Target Image -2 (Setting Sun)
Size 512× 512 1024× 576
Gray Max 0.945 1.000
Gray Min 0.039 0.000
Gray Mean 0.375 0.491
Gray Median 0.380 0.592
Gray Std. Dev. 0.172 0.269
Edge 0.006 0.004
Entropy 0.904 0.894
Unique Gray 0.871 1.000
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Table 5.4: Grayscale feature set - 1

Feature Name Type Description
Gray Max Canvas The maximum grayscale value in the image.
Gray Min Canvas The minimum grayscale value in the image.

Gray Mean Canvas
The arithmetic mean of the grayscale values
in the image.

Gray Median Canvas
The median of the values in the grayscale
image.

Gray Std. Dev. Canvas
The standard deviation of the values in the
grayscale image.

Table 5.5: Grayscale feature set - 2

Feature Name Type Description
Gray Max Canvas The maximum grayscale value in the image.
Gray Min Canvas The minimum grayscale value in the image.
Entropy Canvas The entropy value of the grayscale image.

Gray Median Canvas
The median of the values in the grayscale
image.

Unique Gray Pallet
The standard deviation of the values in the
grayscale image.

Table 5.6: Grayscale feature set - 3

Feature Name Type Description
Gray Max Canvas The maximum grayscale value in the image.
Gray Min Canvas The minimum grayscale value in the image.

Gray Mean Canvas
The arithmetic mean of the grayscale values
in the image.

Gray Median Canvas
The median of the values in the grayscale
image.

Gray Std. Dev. Canvas
The standard deviation of the values in the
grayscale image.

Edge Canvas
Number of Sobel edges in the image with
0.2 threshold.
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5.1 Experiment 1

Table 5.4 shows the image features selected as objective for this experiment. For

this experiment, 20 runs are performed with the same parameters and same target

image (Target image 1), producing 20 different solutions. Different versions of the

MAP-Elites algorithm generated hundreds of solutions for each run. Each solution is

a procedural texture image.

5.1.1 Basic Genetic Programming (GP)

The base GP system parameters are in Table 5.1. Using target image 1 as the

system target, GP generated some interesting solutions. Figure 5.2 shows the best

solution of the 20 GP runs. Some of the solutions may look similar visually, for

example, images that look almost pure black or white may only have a few absolute

black or white pixels only, and the rest of the pixel values are very close to the black

or white pixel values. But they may look very similar, as there are 256 gray levels

between black and white pixel values, and for a human eye it is hard to distinguish

between the close pixel values of different pixels.

Figure 5.2 shows the 20 solutions from 20 GP runs over 50 generations. Figure

5.3 shows the average mean fitness of the GP population over 50 generations for 5

different objectives averaged over 20 GP runs. We can see that these values are not

always going down or up continuously as a single objective plots usually behave. In-

stead, the population average starts to converge quickly as is often expected with GP.

Similar behaviour can be seen in Figure 5.4, which shows the average best performing

individual’s fitness plots for 5 objectives over 50 generations and 20 runs. More on

this will be discussed in the analysis section of experiment 1 (Section 5.1.5).
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Figure 5.2: Best result of each GP run for target image 1 and grayscale feature set 1
(20 runs).
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Figure 5.3: Average mean fitness of GP population over 20 runs (lower is better).

Figure 5.4: Average best fitness of GP population over 20 runs (lower is better).
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5.1.2 Base MAP-Elites: Single Individual Bin (MAP Base)

This experiment uses the standard MAP-Elites algorithm (bin size = 1, and

parents are selected randomly from the MAP for reproduction). Other parameters

for MAP-Elites are in Table 5.2. The GP parameters are in Table 5.1. The base

GP algorithm parameter has a population size of 300, where in all the MAP-Elites

experiments for grayscale images the initial batch size (which can be compared to

initial population of GP) is set to 30 and batch size is set to 15. The GP system may

use all of the newly created individual for the next generation, where MAP-Elites

solutions compete with each other for a place on the MAP if more than one newly

created solution falls into the same feature set cell.

For this experiment, unique gray values and entropy are used as MAP features.

The number of generations in the GP experiment is set to 50, while the number of

iterations for the MAP-Elites algorithm is set to 1000. This may be confusing, but

the reason to do this is to keep the total number of evaluated individuals equivalent

between base GP and MAP-Elites algorithms. GP has a larger population, thus

evaluation evolves a very large number of individuals in just 50 generations. MAP-

Elites has a small number of new individuals created in each iteration and takes a

large number of MAP-Elites iteration to evaluate the same number of individuals as

GP.

Figure 5.5 shows the best result of 20 runs. The final MAP produced more

than 55 solutions for every single run for this experiment and only the best ranked

solution from each run is shown in Figure 5.5. This figure represents the best solution

of each MAP from 20 different runs. Each column header represent the run numbers

of the solutions. For example, the first column of the figure shows the best solutions

from run 1, 2, 3, 4 and 5 respectively.
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Figure 5.5: Best results of base MAP-Elites runs for target image- 1 and grayscale
feature set -1 (20 runs).
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Figure 5.6: Sum-of-ranks MAP of run-19 of experiment-1 (higher is better) [X-axis:
unique gray value (0-255); Y-axis: entropy (0-8)].

Figure 5.6 shows the final solution ranking of the MAP (sum-of-rank) for one

of the MAP-Elites run (run-19) of base MAP-Elites. The X-axis represents number of

unique gray values and the Y-axis represents the entropy values. In the sum-of-ranks

MAP, all the ranks are mapped between 0 and 1, and then inversed to make the one

with the best ranking value have the value of 1 and the worst ranked individual have

a value of 0. The reason for mapping them between 0 and 1 is to normalize all the

MAPs of the experiments between 0 and 1. Without this normalization some maps

may have a range of 1-64 and some may have 1-5 or even lower based on solutions.

For the objectives, our goal is to minimize the difference between feature values of

the target image and the evolved images.
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Figure 5.7: Final Solution MAP of run-19 of experiment-1 [X-axis: unique gray value
(0-255); Y-axis: entropy (0-8)].

We have also mapped the values of grayscale images between 0 and 1, where 0

represents the grayscale value 0 (black) and 1 represents grayscale value 255 (white).

The rest of the gray levels are mapped accordingly. This gives us more precise differ-

ences between our target and new image. During unique grayscale value calculations

and entropy calculations, we used unsigned integer values between 0 and 255, for

grayscale image as there are 256 unique grayscale values. Using a float in this case

can result in millions of unique grayscale values, which is not practical.
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Figure 5.8: Activity MAP of run-19 of experiment-1 (higher is better) [X-axis: unique
gray value (0-255); Y-axis: entropy (0-8)].

Figure 5.7 shows the final solution in each bins of a MAP-Elites run (run-19)

of base MAP-Elites. Here the X-axis represents number of unique gray values and

the Y-axis represents the entropy values. Figure 5.6 can be compared with Figure

5.7, as the represents the same run. The white bins in sum-of-ranks MAP and this

figure both mean that there were no solutions found for those bins (those bins never

got filled).
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Figure 5.8 shows the activity grid of the MAP. These values represents how

many times a bin has been updated. Higher value of bins mean the individuals in

those bins have been replaced more times than the bins with lower values. Bins with

0 values mean they have never been used. In these experiments we used five image

features as objectives (see Table 5.4). The closer the feature values of the new image

is to the original image, the lower the differences of those objectives. By looking at the

colour bar next to the heat MAP for activity grid, we can see how many times each

bin has been updated. Even though there were 1000 iterations with each creating 15

new individuals, we can see the total number of times bins are updated is significantly

lower.

It is easier for a newly created individual to be placed in a bin if that bin is

empty. But for the next individual with similar feature set, it becomes a bit difficult as

now the new solution needs to have a better fitness than the existing solution in that

bin. Over time, replacing the occupying individuals becomes harder as the occupying

individual may have achieved a very good fitness which is hard to beat. The black

bins are empty bins, meaning there were no solutions found for those feature values.

This is understandable, because an image with very low unique gray level values is

not very likely to have a very high entropy.

In Figure 5.9 the raw differences of between five objectives (Min, Max, Mean,

Median, Standard deviation) values are shown respectively for run-19 of experiment-

1 of the base MAP-Elites experiments. We can see the objective differences for

different solutions reach zero or very close zero, but the overall ranking may show

other solutions with better ranking. This is because, normalizing the scores increases

difference between some objectives.
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(a) Min difference (b) Max difference

(c) Mean difference (d) Median difference

(e) Std. Dev. difference

Figure 5.9: Raw feature difference of run-19 of experiment-1 (lower is better) [X-axis:
unique gray value (0-255); Y-axis: entropy (0-8)]
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Figure 5.10: Average mean fitness of base MAP-Elites MAP over 20 runs (lower is
better).

Figure 5.11: Average best fitness of base MAP-Elites MAP over 20 runs (lower is
better).
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Figure 5.10 shows the mean fitness of base MAP-Elites MAP for all five objec-

tives over 1000 iterations averaged over 20 runs. If we compare this figure to Figure

5.3, we can see some clear differences. The GP fitness (mean error) average of the

population improves rapidly for the first few generations and then the solution starts

to converge slowly. But in the case of base MAP-Elites, the average fitness (mean

error) deteriorates for first few iterations and then starts to improve over time. This

is caused by how the MAP-Elites works. GP starts with a large population and the

population size remains the same throughout the run. On the other hand, MAP-

Elites starts with a few randomly generated solutions on the MAP, which is a very

small portion of the MAP. Over time the number of solutions increase.

For first few iterations, the newly generated solutions do not necessarily become

better than existing MAP solutions. When they fall into unoccupied bins of the

MAP based on their behaviour they do not compete for that bin. That is why the

average objective value get worse for first few iterations. But later, when most bins of

the MAP are occupied, the new and better solutions replace previous solutions that

have been occupying bins with their corresponding feature space in the MAP. This

behaviour can more clearly be observed from Figure 5.11, which shows the plots of

the objectives of average best solutions over 1000 iterations and 20 runs.

Here, we can see that the solution does not get worse for first few iteration

(as was the case for average), but steeply get better. This is because if the new

solutions do not have better fitness than the existing best solution of the MAP, they

do not replace the current best, so the objective values remains unchanged. And the

objective values only change when a new solution in the MAP has better fitness than

the current best of the MAP. The value of mean and median feature of the image

improve at a faster rate compared with other objectives for the best individuals. This

behaviour is quite different from the traditional GP evolution.
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5.1.3 MAP-Elites: Multiple individuals Bin - Random Selec-

tion (MAP B5 R)

Here, all the parameters are kept the same as Section 5.1.2 except the bin size,

which is set to 5. Thus each bin can store up to 5 best solutions for that feature

set. If a bin has no solution or less than 5 solutions, a newly created individual

that will be added to that bin without competition. But if there are already 5

solutions, meaning the bin is full, the new solution is compared with the existing

solution in terms of fitness. If the new individual has a better fitness than the least

fit individual in the bin, it replaces that least fit one. But, if the new individual is

the least fit individual compared with the existing individual then it is discarded. For

reproduction, individuals are selected at random.

Figure 5.12 shows the best results of 20 runs. We can see the fitness plots of this

strategy in Figure 5.14. It shows the average mean fitness of (proposed algorithm-01)

MAP-Elites (multiple individual bin - random selection) for all five objectives over

1000 iterations for 20 runs. We can see the graph shows a different pattern here

compared with GP or base MAP-Elites. As each bin can hold 5 solutions, some of

the bins may have one very good solution, but also some mediocre solutions which

contribute to a lower fitness mean and median.

In the base version only the best solution per bin is stored and used for all

the statistical calculations over iterations. This explains the increasing average mean

and median values over time. This is not ideal to compare the overall solution quality

improvements with GP or base MAP-Elites. We can get a more accurate under-

standing of solution quality improvement through the average best individual plot,

which shows a similar behaviour as the base MAP-Elites (see Figure 5.3). In Figure

5.15, we can see a similar behaviour as the base MAP-Elites for the best fitness plots

with a slight difference that the majority of improvements for best solution of the

MAP happen in first few iterations, and the fitness values are significantly higher

(smaller mean error) in the first iterations. As each bin can have five solutions stored

in them, it has significantly more solutions compared with the base MAP-Elites. The

chances of finding a better solution at earlier iterations is higher compared with base

MAP-Elites.
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Figure 5.12: Best results of MAP-Elites (multiple individuals bin - random selection)
runs for target image- 1 and grayscale feature set -1 (20 runs).
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Figure 5.13: Sum-of-ranks MAP of run-2 of experiment-1 (higher is better) [X-axis:
unique gray value (0-255); Y-axis: entropy (0-8)].

Figure 5.13 shows the final solution ranking of the MAP (sum-of-rank) for one

of the MAP-Elites run (run-2) of MAP B5 R. The X-axis represents number of unique

gray values (range : 0 - 255) and the Y-axis represents the entropy values (range: 0 -

8). When we compare it with Figure 5.6, which represents the same type of MAP for

base MAP-Elites. We can see the number of filled bins in the map remains the same

despite the bin size. The number of bins filled of a MAP depends mainly on the type

of experiment and the feature space of the MAP; here it is unique gray and entropy

for images. The bin size does not impact how many bins of the map are going to get

filled.
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Figure 5.14: Average mean fitness of MAP-Elites (multiple individuals bin - random
selection) MAP over 20 runs (lower is better).

Figure 5.15: Average best fitness of MAP-Elites (multiple individuals bin - random
selection) MAP over 20 runs (lower is better).
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5.1.4 MAP-Elites: Multiple individuals Bin - Tournament

Selection (MAP B5 T2)

This experiment has similar parameters with Section 5.1.3. The one parameter

that is changed is the selection strategy. Instead of selecting individuals at random

for reproduction, a tournament selection is used with a tournament size of two. The

reason for having such a small bin size. As discussed before, the initial number of

individuals in the MAP is set to 30 and bin size to 5. Also, the MAP size is is

8× 8, which means each bin may not have five individuals. For reproduction, a bin is

selected at random, and then a tournament of 2 is used to select an individual from

that bin. Having a large tournament size will reduce the diversity of new individuals.

Keeping it a small size does not obstruct the diversity, while allowing for more fit

solutions to be created.

Figure 5.16 shows the best results from 20 runs and Figure 5.17 shows the

average mean fitness of (proposed algorithm-01) MAP-Elites (multiple individual bin

- tournament selection) MAP for all five objectives over 1000 iterations for 20 runs.

It shows a similar behaviour as the proposed algorithm-01 (multiple individual bin

- random selection). The overall fitness have improved compared with MAP-Elites

multiple individual bin - random selection algorithm, as we see lower mean error while

using tournament selection instead of the random selection method. Just by changing

random selection to tournament selection while keeping all the other parameters same,

we allow MAP-Elites to use one advantage of GP, where the probability of selecting

a parent with higher fitness for reproduction increases drastically and the impact can

be seen in the fitness plots (see Figure 5.14 and Figure 5.17). If we look at the best

fitness plotting in Figure 5.18, we see a similar impact in terms of lower mean error

compared with the random selection multiple individual bin algorithm.
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Figure 5.16: Best results of MAP-Elites (multiple individuals bin - tournament selec-
tion) runs for target image- 1 and grayscale feature set -1 (20 runs).
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Figure 5.17: Average mean fitness of MAP-Elites (multiple individuals bin - tourna-
ment selection) MAP over 20 runs (lower is better).

Figure 5.18: Average best fitness of MAP-Elites (multiple individuals bin - tourna-
ment selection) MAP over 20 runs (lower is better).
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5.1.5 Analysis of experiment 1

Table 5.7: P-Value table for Experiment 1

Objectives MAP Base MAP B5 R MAP B5 T2
Min 1.33E-08 ← 4.97E-07 ← 1.22E-08 ←
Max 0.156463 0.428268 0.215474
Mean 0.337507 0.070210 0.347446
Median 0.424871 0.253703 0.342428

GP

Std. Dev. 1.65E-05 ↑ 0.000507 ↑ 0.011135 ↑
Min — 0.290642 0.424949
Max — 0.030523 ← 0.019176 ←
Mean — 0.236740 0.220375
Median — 0.322586 0.357452

MAP Base

Std. Dev. — 0.010367 ← 0.001819 ←
Min — — 0.379778
Max — — 0.273779
Mean — — 0.038215 ↑
Median — — 0.139580

MAP B5 R

Std. Dev. — — 0.197085

Some analyses for different algorithms have been discussed in previous sections.

In this section we will compare them in more detail. Since the mean error values do not

show a normal distribution, non-parametric analysis has been used to calculate the P-

values. We used Mann-Whitney U test [66, 69] for the non-parametric analysis. Table

5.7 shows the statistical P-values of the comparison between the best 20 solutions

generated by 4 different algorithms. Here, mean error values between the objectives

of the original target image and the generated images are used for the analysis to get

the P-value.

From Table 5.7, we can see that while comparing the best solutions of GP

to the best solutions of three version of MAP-Elites, the mean error of two of the

features (minimum and standard deviation) shows significant statistical difference

(threshold: P<0.05). While comparing base MAP-Elites to the two proposed version

of MAP-Elites we can see two features (maximum and standard deviation) shows

significant statistical difference (threshold: P<0.05). And finally while comparing

the two proposed algorithms, we can see a significant statistical difference (threshold:

P<0.05) between them for one feature (mean). Shaded cells represents significant

statistical difference. The arrows next to the P-Values point towards the algorithm

that performed better.
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Figure 5.19: Error plot of mean minimum pixel value difference for different algo-
rithms

Figure 5.20: Error plot of mean maximum pixel value difference for different algo-
rithms
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Figure 5.21: Error plot of mean mean pixel value difference for different algorithms

Figure 5.22: Error plot of mean median pixel value difference for different algorithms
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Figure 5.23: Error plot of mean standard deviation value difference for different
algorithms

Figures 5.19, 5.20, 5.21, 5.22 and 5.23 show the error plots with standard

deviation for the four algorithms. These figures shows the values for five different ob-

jectives (minimum, maximum, mean, median and standard deviation, respectively).

When we associate these values with the P-value table (Table 5.7), we can see which

algorithm performs better in terms of mathematical values. GP outperforms the other

three algorithm significantly in terms of minimum (see Figure 5.19) and performance

is poor in terms of standard deviation (see Figure 5.23) compared with all three MAP-

Elites algorithms. But with other three features, there are no statistically significant

difference between GP and other three algorithms. GP outperforms the others as it

converges during the run. On the other hand, MAP-Elites solutions diverges as more

bins in the MAP are filled.

While comparing the base version of MAP-Elites with the two proposed multi-

individual-bin MAP-Elites, we can see base MAP-Elites outperforms the other two

version of MAP-Elites algorithm in terms of maximum and standard deviation values

(see Figure 5.20 and 5.23). While comparing the random selection - multiple individ-

ual bins MAP-Elites to tournament selection - multiple individual bins MAP-Elites,

we can see the tournament selection algorithm significantly outperforms the random

selection algorithm in terms of mean values.
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5.2 Experiment 2

Table 5.5 shows the feature set that has been used for this experiment. If we compare

this feature set with the feature set of the first experiment (see Table 5.4), we can

see the mean has been replaced by entropy and standard deviation has been replaced

with unique gray level. Figure 5.1(a) shows the target image for this experiment.

5.2.1 Basic Genetic Programming (GP)

For this experiment, we kept all the GP parameters the same as the first experiment

(see Table 5.1). Figure 5.24 shows the target image in first column and the evolved

image for 10 GP runs in the second and third columns. Some of the solutions may

look similar visually. The reason for this has been explained in Section 5.1.1.
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Figure 5.24: Best results of GP runs for target image- 1 and grayscale feature set -2
(10 runs).
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5.2.2 MAP-Elites: Single Individual Bin (MAP Base)

Figure 5.25: Best results of base MAP-Elites runs for target image- 1 and grayscale
feature set -2 (10 runs).
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The MAP-Elites parameters have also been kept the same as experiment 1

(see Table 5.2). The X-axis and Y-axis of the MAP represents the standard deviation

difference and mean difference between target image and generated images respec-

tively. Figure 5.25 shows the target image in first column and the evolved image for

10 MAP-Elites run in the second and third columns.

5.2.3 MAP-Elites: Multiple individuals Bin - Random Selec-

tion (MAP B5 R)

All the parameters are kept the same as the previous except the bin size, where

it is now set to 5. It has similar behaviour as seen in Section 5.1.3, as the algorithm

is the same. Only thing that is changed is the feature space MAP, which is similar

to the previous section. The X-axis and Y-axis of the MAP represents the standard

deviation difference and mean difference between target image and generated images

respectively.

Figure 5.26 shows the target image and the best results from 10 runs. Like

the first experiment the objective values are mapped between 0 and 1. The unique

gray value and entropy values were kept raw, meaning the unique gray values were 0

to 255 and entropy values were 0 to 8. Here since we are measuring the difference,

to make the difference standard for all experiments, this range was set to 0 to 1 for

both feature behaviour of the MAP, which is the same range as the objectives.

Figure 5.27 shows the final solution sum of ranks MAP for multiple individual

bins - random selection MAP-Elites run (run-2). Here the X-axis represents the

standard deviation difference between target image and generated images and the Y-

axis represents the mean difference between target image and generated images. The

white bins in sum-of-ranks MAP mean that there were no solutions found from those

bins (those bins never got filled). If we compare this with Figure 5.6, we can see how

changing the behaviour of the MAP from unique gray values and entropy to standard

deviation and mean difference affects the MAP. In this experiment we have fewer

solutions, as the right half of the MAP remains completely empty. It is the same case

for other runs as well, including the base MAP-Elites and multiple individual bins

- tournament selection MAP-Elites. This means we have fewer solutions, resulting

in less diversity. One of the reasons for the right half of the MAP being empty is

because the mean pixel value difference also gets smaller when we try to minimize

the differences for the five objectives (see Table 5.5).
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Figure 5.26: Best results of MAP-Elites (Multiple individuals bin - random selection)
runs for target image- 1 and grayscale feature set -2 (10 runs).
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Figure 5.27: Sum-of-ranks MAP of run-2 of experiment-2 (higher is better) [X-axis:
standard deviation difference (0-1); Y-axis: mean difference (0-1)].

In Figure 5.28 the raw differences of the five objective Min, Max, Entropy,

Median, Unique gray values are shown respectively for run-2 of experiment-2 of the

base MAP-Elites experiments. We can see different objective differences for different

solutions reach zero or very close zero, but the overall ranking may show other solu-

tions with better ranking. Here, we use the same normalized sum-of-ranks technique

as experiment 1. For the sum-of-ranks that higher value is preferred and for raw

feature difference values the lower is preferred as they are already normalized, as the

images are normalized between 0 and 1.
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(a) Min difference (b) Max difference

(c) Entropy difference (d) Median difference

(e) Unique gray difference

Figure 5.28: Raw feature difference of run-2 of experiment-2 (lower is better) [X-axis:
standard deviation difference (0-1); Y-axis: mean difference (0-1)]
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Figure 5.29: Activity MAP of run-2 of experiment-1 (higher is better) [X-axis: stan-
dard deviation difference (0-1); Y-axis: mean difference (0-1)].

Figure 5.29 shows the activity grid of the MAP (run 02). These values rep-

resents how many times a bin has been updated. Higher value of bins mean the

individuals in those bins have been replaced more times than the bins with lower val-

ues. Bins with 0 values (black bins) mean they have never been used. If we compare

this activity map to the activity map of experiment 1 (see Figure 5.8) we can see

individual bins have updated relatively more than in experiment 1. This is because

this version of MAP-Elites can hold the top (fittest) 5 solutions per bin, where the

base MAP-Elites only holds the best 1 solution. The probability of one of the 5 so-

lution being replaced is higher than replacing the best solution. For this reason, the

proposed versions of the MAP-Elites show a higher bin update rate than base the

MAP-Elites.
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5.2.4 MAP-Elites: Multiple individuals Bin - Tournament

Selection (MAP B5 T2)

Figure 5.30: Best results of MAP-Elites (multiple individuals bin - tournament selec-
tion) runs for target image- 1 and grayscale feature set -2 (10 runs).
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This experiment has similar parameters with previous section. The one pa-

rameter that is changed is the selection strategy. Instead of selecting individuals at

random for reproduction, a tournament selection is used with a tournament size of

two. The reason for having such a small tournament has been described in Section

5.1.4 . Figure 5.30 shows the target image and the best results from 10 runs.

5.2.5 Analysis of experiment 2

We used Mann-Whitney U test [66, 69] for the non-parametric analysis. Table

5.8 shows the statistical P-values of the comparison between the best 10 solutions

generated by 4 different algorithms. Again, mean error values between the objectives

of the original target image and the generated images are used for the analysis to get

the P-value.

From Table 5.8, we can see the P-value for the best solution comparison be-

tween algorithms. The mean error of minimum difference shows significant statistical

difference (threshold: P<0.05), when comparing GP to the MAP-Elites algorithm.

We can see mean entropy difference shows significant statistical difference (threshold:

P<0.05) with the proposed versions of MAP-Elites. And finally while comparing

the GP algorithm with the second proposed algorithm (MAP B5 T2) we can see a

significant statistical difference (threshold: P<0.05) between them for median value

difference. In short, GP shows significant difference for only one objective while

comparing to base MAP-Elites, two objectives when compared with MAP B5 R and

for three objectives when compared with MAP B5 T2. Other combinations do not

show any significant difference. The arrows next to the P-Values point towards the

algorithm that performed better.
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Table 5.8: P-Value table for Experiment 2

Objectives MAP Base MAP B5 R MAP B5 T2
Min 0.000109 ← 6.23E-05 ← 4.11E-05 ←
Max 0.053767 0.437913 0.157672
Entropy 0.060612 0.037831 ↑ 0.026951 ↑
Median 0.105975 0.106147 0.007010 ↑

GP

Unique Gray 0.172080 0.352623 00.409594
Min — 0.328370 0.412255
Max — 0.103110 0.189622
Entropy — 0.192337 0.395668
Median — 0.285230 0.454827

MAP Base

Unique Gray — 0.051534 0.063690
Min — — 0.344741
Max — — 0.156335
Entropy — — 0.311588
Median — — 0.144869

MAP B5 R

Unique Gray — — 0.178600

Figure 5.31: Error plot of mean minimum pixel value difference for different algo-
rithms
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Figure 5.32: Error plot of mean entropy value difference for different algorithms

Figure 5.33: Error plot of mean median pixel value difference for different algorithms
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Figures 5.31, 5.32 and 5.33 show the error plots with standard deviation for

the four algorithms. These figures shows the values for five different objectives (min-

imum, maximum, entropy, median and unique gray value, respectively). When we

associate these figures with the P-value table (Table 5.7), we can see which algorithm

performs better in terms of statistical values. Shaded cells represents significant sta-

tistical difference and arrows nest to the values points towards the algorithm that is

performing better for that value. GP outperforms the other three algorithm signif-

icantly in terms of minimum (see Figure 5.31) and performance is poor in terms of

entropy and median (see Figure 5.32) when compared with the proposed versions of

MAP-Elites, where both proposed algorithms outperforms GP. MAP B5 T2 outper-

forms GP also in terms of median value (see Figure 5.33). But with other values and

comparison between other algorithm pairs, we cannot see any significant statistical

difference (threshold: P<0.05).

Here only three error plots are showed for three out of five objectives. The

reason behind this is the other two objectives do not show any significant statistical

difference between any algorithm (see Table 5.8), and the plots do not provide any

significantly useful information. In experiment 1, every single objective provided

some significant differences between algorithms, and all of the objectives had their

own error plot, which is not the case here.
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5.3 Experiment 3

Table 5.6 shows the image features that have been selected as objectives for

this experiment. If we look closely, we can see a similarity with Table 5.4 used

for experiment 1. The only difference between experiment 1 and 3 is experiment 3

has one additional objective, number of edges in the image. The range of edge is

also mapped between 0 and 1 to scale it with other objective values. 10 runs were

performed with the same parameters and same target image (Target image 2; see

Figure 5.1(b)), producing 10 different solutions. Different versions of the MAP-Elites

algorithm generated hundreds of solutions for each run.

5.3.1 Basic Genetic Programming (GP)

The base GP system parameters are in Table 5.1. Using target image-2 as the

system target GP generated some pretty interesting solutions. Figure 5.34 shows the

best solution of the 10 GP runs. With the addition of edge count as an objective,

we can see some interesting characteristics. GP is actively trying to create edges

which was not seen in experiment-1 as edge was not an objective for fitness in that

experiment.
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Figure 5.34: Best results of GP runs for target image- 2 and grayscale feature set -3
(10 runs).
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Figure 5.35: Average mean fitness of GP population over 10 runs (lower is better).

Figure 5.35 shows the mean fitness plot of GP averaged over 10 runs. We can

see that the mean error values declines rapidly in first few generations for four out of

six objectives. But edge and median values decline and then go up. This behaviour

is directly related to our fitness evaluation method. Sum-of-ranks consider all the

ranks of different objectives of an individual to assign them a final rank. Here, the

sum-of-ranks sacrifice some objectives (mean, edge) to benefit the majority.
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5.3.2 MAP-Elites: Single Individual Bin (MAP Base)

Figure 5.36: Best results of base MAP-Elites runs for target image- 2 and grayscale
feature set -1 (20 runs).
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Figure 5.37: Sum-of-ranks MAP of run-5 of experiment-3 (higher is better) [X-axis:
unique gray value (0-255); Y-axis: entropy (0-8)].

This experiment uses the base MAP-Elites algorithm (bin size = 1). Other

parameters for MAP-Elites are in Table 5.2. The MAP feature behaviour is set to

unique gray level (range : 0 to 255) and entropy (range : 0 to 8) and the objectives

remains the same as previous section (see Table 5.6). Figure 5.36 shows the best

results from 10 base MAP-Elites run for target image 2 shown in the left most column

of the figure. Values that appears to be absolute black or white, are not necessarily

absolute black or white. In most cases they are very close to the pixel value of black

or white, and only appear to be absolute black or white visually. The number of

generations in the GP experiment is set to 50 with population size of 300, while the

number of iterations for the MAP-Elites algorithm is set to 1000 with a batch size

of 15, to keep the total number of evaluated individuals equivalent between base GP

and MAP-Elites algorithms.
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Figure 5.37 shows the final solution ranking of the MAP (sum-of-rank) for one

of the MAP-Elites run (run-5). In the sum-of-ranks MAP, all the ranks are mapped

between 0 and 1, and then inversed to make the one with the best ranking value

have the value of 1 and the worst ranked individual have a value of 0. The reason

for mapping them between 0 and 1 is to normalize all the MAPs of the experiments

between 0 and 1. We have also mapped the values of grayscale images between 0 and

1, where 0 represents the grayscale value 0 (black) and 1 represents grayscale value 255

(white). The rest of the gray levels are mapped accordingly. During unique grayscale

value calculations and entropy calculations, we used unsigned integer values between

0 and 255, for grayscale image as there are 256 unique grayscale values. Using a float

in this case can result in millions of unique grayscale values, which is not practical.

In Figure 5.38, the raw difference is plotted between six objectives; Min, Max,

Mean, Median, Standard division and Edge values are shown respectively for run-5

of experiment-3 of the base MAP-Elites experiments. We can see different objective

differences for different solutions reach zero or very close zero, but the overall ranking

may show other solutions with better ranking (same as experiment 1).
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(a) Min difference (b) Max difference

(c) Mean difference (d) Median difference

(e) Std. Dev. difference (f) Edge difference

Figure 5.38: Raw feature difference of run-5 of experiment-3 (lower is better) [X-axis:
unique gray value (0-255); Y-axis: entropy (0-8)]
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Figure 5.39: Average mean fitness of base MAP-Elites MAP over 10 runs (lower is
better).

Figure 5.39 shows the mean fitness of base MAP-Elites MAP for all five objec-

tives over 1000 iterations averaged over 10 runs. If we compare this Figure to Figure

5.35, we can see some clear differences. The GP fitness (mean error) average of the

population improves over generations for four of the objectives and gets worse for

the other two objectives. But in the case of base MAP-Elites, the average fitness

(mean error) improves over iteration for all six objectives. We can also see that, for

those four objectives of GP the error rate is lower compared with similar objectives in

MAP-Elites. This is because GP starts with a large randomly generated population

and converges over generations. On the other hand, MAP-Elites starts with a few

randomly generated solutions on the MAP, which is a very small portion of the MAP.

Over time the number of solutions increases as does the diversity.
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Figure 5.40: Activity MAP of run-5 of experiment-3 (higher is better) [X-axis: unique
gray value (0-255); Y-axis: entropy (0-8)].

Figure 5.40 shows the activity grid of the MAP. These values represents how

many times a bin has been updated. Higher value of bins mean the individuals in

those bins have been replaced more times than the bins with lower values. Bins with

0 values mean they have never been used. In these experiments, we used six image

features as objectives (see Table 5.6). By looking at the colour bar next to the heat

MAP for activity grid, we can see how many times each bin has been updated. Even

though there were 1000 iterations with each creating 15 new individuals, we can see

the total number of times bins are updated is significantly lower, proving that all

newly evolved solutions are not necessarily better than previous best for a feature

space in the MAP. The black bins are empty bins, meaning there were no solutions

found for those feature values.
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5.3.3 MAP-Elites: Multiple individuals Bin - Random Selec-

tion (MAP B5 R)

Figure 5.41: Best results of MAP-Elites (Multiple individuals bin - random selection)
runs for target image- 1 and grayscale feature set -3 (10 runs).
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Figure 5.42: Average mean fitness of MAP B5 R MAP over 10 runs (lower is better).

For this experiment we have used all the same objectives (see Table 5.6) and

parameters as the previous section. The only difference is the number of individuals

in each bins. Here each bin can store up to best 5 individuals for that feature space

compared with a single individual in MAP Base. Figure 5.41 shows the best solutions

from 10 runs of MAP B5 R.

Figure 5.42 shows the mean fitness of MAP B5 R MAP for all six objectives

over 1000 iterations averaged over 10 runs. If we compare this figure to Figures 5.35

and 5.39, we can see some differences. The GP fitness (mean error) average of the

population improves over generations for four of the objectives and gets worse for

the other two objectives, the base MAP-Elites gets better in all six objectives, and

the MAP B5 R gets better over five of the objectives out of six. But we can see the

average mean error values appears to be higher for this version of MAP-Elites. As

mentioned before (Section 5.1.4), this is due to the fact that multiple individual bins

MAP-Elites store up to five top solutions for a bin, and not just the best one, which

contributes to a lower mean as all of those individuals are considered during mean

calculation.
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5.3.4 MAP-Elites: Multiple individuals Bin - Tournament

Selection (MAP B5 T2)

Figure 5.43: Best results of MAP-Elites (multiple individuals bin - tournament selec-
tion) runs for target image- 2 and grayscale feature set -3 (10 runs).
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Figure 5.44: Average mean fitness of MAP B5 T2 MAP over 10 runs (lower is better).

For this experiment we have used all the same objectives (see Table 5.6) and

parameters as previous section. The bin size is also same (bin size : 5). The only

difference is the selection strategy for selecting parents for reproduction. In previous

section random selection is used. Here, a tournament selection is used with a tourna-

ment size of two. Figure 5.43 shows the best solutions from 10 runs of MAP B5 T2.

Figure 5.44 shows the mean fitness of MAP B5 T2 MAP for all six objectives

over 1000 iterations averaged over 10 runs. If we compare this figure to Figure 5.35,

5.39 and 5.42, we can see the average fitness differences between our four algorithms.

The fitness plots are highly influenced due to the fact that each bin can store up to

five individuals. The downside of this while comparing fitness plots is discussed in

previous section ( section 5.3.3). But we can see the overall mean error values are

lower compared with the multiple individual - random selection strategy. This shows

that tournament selection produced better solutions compared with random selection

approach for multiple individual bins MAP-Elites.

96



5.3.5 Analysis of experiment 3

Table 5.9: P-Value table for Experiment 3

Objectives MAP Base MAP B5 R MAP B5 T2
Min 1.000000 1.000000 1.000000
Max 1.000000 0.184060 0.038792 ←
Mean 0.000384 ← 0.000089 ← 0.000089 ←
Median 0.000323 ↑ 0.006306 ↑ 0.001557 ↑
Std. Dev. 0.000123 ↑ 0.000215 ↑ 0.000836 ↑

GP

Edge 0.022537 ↑ 0.051795 0.105717
Min — 1.000000 1.000000
Max — 0.184060 0.038792 ←
Mean — 0.060332 0.424914
Median — 0.022295 ← 0.012707 ←
Std. Dev. — 0.005603 ← 0.000836 ←

MAP Base

Edge — 0.015446 ← 0.022214 ←
Min — — 1.000000
Max — — 0.116953
Mean — — 0.062669
Median — — 0.350791
Std. Dev. — — 0.053766

MAP B5 R

Edge — — 0.500000

In this section we will compare the different algorithms used in this experiment.

We use Mann-Whitney U test [66, 69] for the non-parametric analysis. Table 5.9 shows

the statistical P-values of the comparison between the best 10 solutions generated by

4 different algorithms. Here, mean error values between the objectives of the original

target image and the generated images are used for the analysis to get the P-value.

Shaded cells represents significant statistical difference and arrows nest to the values

points towards the algorithm that is performing better for that value.
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Figure 5.45: Error plot of mean maximum pixel value difference for different algo-
rithms

From Table 5.9, we can see the P-value for the best solution comparison be-

tween algorithms. The mean error of maximum difference shows significant statistical

difference (threshold: P<0.05), when comparing GP to the MAP B5 T2 algorithm.

We can see mean, median and standard deviation shows significant statistical dif-

ference (threshold: P<0.05) while comparing GP with three version of MAP-Elites

algorithms. Also there is a significant statistical difference (threshold: P<0.05) be-

tween GP and base MAP-Elites in terms of unique gray value. The value 1.0 in the

MAP represents that the two sets of data were identical. If we observe closely these

are for the difference value for min and max pixel value of the image, which were all

zero.

.
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Figure 5.46: Error plot of mean mean pixel value difference for different algorithms

Figure 5.47: Error plot of mean median pixel value difference for different algorithms
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When comparing base MAP-Elites with MAP B5 T2 there is a significant

statistical difference (threshold: P<0.05) in terms of max difference. Base MAP-

Elites also shows significant statistical difference (threshold: P<0.05) when compared

with the two proposed multiple individual bins MAP-Elites algorithms in terms of

median, standard deviation and unique gray value. But this does not tell the whole

story. To know which algorithm is performing better in which feature, we have to

compare the table with error plots of respective objectives. We did not put the error

plot of min as it does not have any statistical significance while comparing algorithms,

therefore making it unnecessary for this analysis

Figures 5.45, 5.46, 5.47, 5.48 and 5.49 show the error plots with standard

deviation for the four algorithms. These figures shows the values for five (min error

plot is not shown here) different objectives (maximum, mean, median, standard devi-

ation and edge, respectively). When we associate these figures with the P-value table

(Table 5.9), we can see which algorithm performs better in terms of statistical values.

From Figure 5.45 we can see that GP and base MAP-Elites outperforms

MAP B5 T2 in terms of maximum pixel value difference. Figure 5.46 shows that

GP out performs all three MAP-Elites algorithm in terms of mean pixel value dif-

ference. Figure 5.47 shows that all three MAP-Elites beat GP and base MAP-Elites

beats the proposed two version of MAP-Elites in terms of performance for median

value difference. From Figure 5.48 we can see that base MAP-Elites outperforms

the other three algorithms and the proposed two MAP-Elites algorithms outperform

GP in standard deviation value difference. Finally, Figure 5.49 shows that the base

MAP-Elites outperforms the other three algorithms in terms of edge count difference.
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Figure 5.48: Error plot of mean standard deviation difference for different algorithms

Figure 5.49: Error plot of edge count difference value for different algorithms
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Chapter 6

Experiments and Results: RGB

Image

In this chapter RGB image experiments are presented and analyzed. RGB images

have three colour channels which, when separated, behave similarly to grayscale im-

age. Also, RGB images have many more interesting features compared with grayscale

images. Therefore, they are much more challenging to deal with, and shows inter-

esting behaviour. We will examine two RGB image experiments, and compare the

performance of the four algorithms used.

Tables 6.1 and 6.2 show the GP and MAP-Elites parameters for RGB image

experiments. When we compare Table 6.1 to Table 5.1, we can see most of the

parameters are the same. The only difference here is the number of generations, which

is changed from 50 to 30. This change is made considering two factors. The first one

is time and resources. RGB image evolution takes much longer time and consumes

more resources than evolving grayscale images. The second factor is, within the first

30 generations, GP makes most of the progress. Considering the minor improvements

after 50 generations, and the time and resources required, 30 generations is sensible

and adequate. When we compare Table 6.2 to Table 5.2, we can see a similar trend.

Number of iterations is the only parameter that has been changed from 1000 to 600.

Making this change assures that the total number of individuals evaluated by GP and

MAP-Elites algorithms remains the same.
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Table 6.1: GP parameter for grayscale experiment

Parameter Name Value
Population Size 300
No. of Generation 30
Tree Initializer Half and Half
Initial Tree Depth Min: 2 Max: 7
Max Tree Depth 17
Crossover 100%
Mutation 20%
Selection Tournament
Tournament Size 3
Number of Runs 10 / 10

Table 6.2: MAP-Elites parameter for grayscale experiment

Parameter Name Value
MAP size 8× 8
Initial batch size 30
Batch size 15
No. of Iteration 600
No. of features 2
Bin size 1 / 5
Evaluating algo. GP
Tree Initializer Half and Half
Initial Tree Depth Min: 2 Max: 7
Max Tree Depth 17
Crossover 100%
Mutation 20%
Selection Random / Tournament
Tournament Size 2
Number of Runs 10 / 10
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(a) Target colour image-1 (Phoenicopterus ru-
ber in São Paulo Zoo [11])

(b) Target colour image-2 (Les Parapluies
de Viborg [9])

Figure 6.1: RGB target images

Table 6.3: RGB (Colour) Image Features

Feature Name Target Colour Image -1 Target Colour Image -2
Size 1024× 680 1024× 794
Red Min 0.000 0.000
Red Max 1.000 1.000
Red Mean 0.373 0.558
Red Median 0.133 0.600
Red Std. Dev. 0.386 0.266
Green Min 0.000 0.000
Green Max 1.000 1.000
Green Mean 0.230 0.534
Green Median 0.184 0.557
Green Std. Dev. 0.177 0.276
Blue Min 0.000 0.000
Blue Max 1.000 1.000
Blue Mean 0.169 0.522
Blue Median 0.114 0.522
Blue Std. Dev. 0.172 0.289
Entropy 7.263 7.739
Unique RGB 92629 141438
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Table 6.4: RGB feature set

Feature Name Type Description
Red Max Canvas The maximum value in the Red channel.
Red Min Canvas The minimum value in the Red channel.

Red Mean Canvas
The arithmetic mean of the values in the
Red channel.

Red Median Canvas
The median of the values in the Red
channel.

Red Std. Dev. Canvas
The standard deviation of the values in the
Red channel.

Green Max Canvas The maximum value in the Green channel.
Green Min Canvas The minimum value in the Green channel.

Green Mean Canvas
The arithmetic mean of the values in the
Green channel.

Green Median Canvas
The median of the values in the Green
channel.

Green Std. Dev. Canvas
The standard deviation of the values in the
Green channel.

Blue Max Canvas The maximum value in the Blue channel.
Blue Min Canvas The minimum value in the Blue channel.

Blue Mean Canvas
The arithmetic mean of the values in the
Blue channel.

Blue Median Canvas
The median of the values in the Blue
channel.

Blue Std. Dev. Canvas
The standard deviation of the values in the
Blue channel.

For the two RGB experiments we have used two different images (see Figure

6.1). Both images are public domain images from Wikimedia commons. The first

image is a picture of an American flamingo called “Phoenicopterus ruber in São Paulo

Zoo” [11] and second image is a picture of hanging umbrellas called “Les Parapluies

de Viborg” [9]. The two images were chosen because of their different feature values

(see Table 6.3). They have different mean, median and standard deviation values for

all three channels. Therefore, their objectives will impact the evolved images.

105



6.1 Experiment 4

Table 6.4 shows the RGB feature set that has been used for this experiment. The

first target image is used (see Figure 6.1 (a)). 10 different runs are performed for each

of the four algorithms to generate solutions. Each evolved image here is 256 × 256

pixel. Even though the total RGB colour spectrum has over 16 millions unique RGB

colour, because of our evolved image size, the maximum possible unique RGB colour

can be 65536 (total number of pixels in the evolved images). All the pixel values are

mapped between 0 and 1 for all three RGB channels.

6.1.1 Basic Genetic Programming (GP)

Table 6.1 shows the GP parameters used. The GP population size is set to 300

and the total number of generations is set to 30. Sum-of-ranks is used for fitness

evaluation.

Figure 6.2 shows the 10 solutions generated by GP. The left most column

shows the target image and the right two columns show the best 10 evolved images

from each run. These images represents the best evolved images with closest features

with the target image.

Figure 6.3 shows the mean fitness of the GP population averaged over 10

runs for all 15 objectives. The X-axis represents number of generations and the Y-

axis represents mean error. We can see that GP behaviour remains similar to the

grayscale experiments for mean error (see Figure 5.3). It shows that most of the

features improves over time and then they remain almost flat, meaning that the

population is converging.

Figure 6.4 shows the mean fitness of the best GP individual per generation

over 30 generation for 10 runs. We can see that the best fitness plot only shows 9

objectives instead of 15. This is because min and max error difference values of all

three RGB channel is zero for the best individuals, and they do not change over time.

So they do not show any change over time, and remain flat on the X-axis. Table 6.3

shows that the min and max value for all three channel for the first image is 0 and

1 respectively. It is very likely for a moderate size RGB image to have at least one

pixel with 0 and one pixel with 1 value. So, the min and max difference becomes

zero for the best solution of a GP population. We can see from the fitness plots of
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GP that most features get better while some features get worse over time. This is

because sum of ranks sacrifices some of the objectives to improve most others.

Figure 6.2: Best result of each GP run for RGB target image- 1 and RGB feature set
(10 runs).
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Figure 6.3: Average mean fitness of GP over 10 runs (lower is better).

Figure 6.4: Average best fitness of GP over 10 runs (lower is better).
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6.1.2 MAP-Elites: Single Individual Bin (MAP Base)

Figure 6.5: Best results of base MAP-Elites runs for RGB target image- 1 and RGB
feature set (10 runs).
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Figure 6.6: Sum-of-ranks MAP of run-6 of experiment 4 (higher is better) [X-axis:
unique RGB value (0-65536); Y-axis: entropy (0-8)].

Figure 6.5 shows the best solutions generated by ten MAP-Elites runs. MAP-

Elites generated hundreds of solutions. Only the best one from each base MAP-Elites

is shown here. To find the best solution per bin all the individuals in the MAP are

ranked at the end of final iteration and the best ranked individuals from each bin

are then re-ranked with respect to each other. Then their rank is normalized and

inversed to make the best ranked individual have a rank of 1 and the worst ranked

individual to have a rank of 0. Other individuals ranks are between 1 and 0.
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Figure 6.6 shows the final sum-of-ranks MAP for run-6 of experiment 4. X-axis

represents the unique RGB values and Y-axis represents the entropy of the solution

images. We can see that the range for unique RGB is significantly lower than the

total number of unique RGB values (over 16 million) due to the small solution image

size.

Figure 6.7, 6.8 and 6.9 shows the raw objective values of 15 objectives. Figure

6.7 shows the raw values for the five objectives of red channel, Figure 6.8 shows the

raw values for green channel, and Figure 6.9 shows the raw values blue channel. Lower

values for an objective of a bin means that, for that solution, the difference between

the target image and evolved image for that feature is lower. We can see that the

min and max value for all three channels shows the lowest difference between target

and evolved images, where the difference values for other objectives are large. This

is because the target image had a min pixel value of 0 and max pixel value of 1. So,

even if one pixel value of a solution space is 0 the min difference will be zero, similarly

if just one pixel value of a solution image is 1, then the max pixel value difference

will be zero.
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(a) Min red difference (b) Max red difference

(c) Mean red difference (d) Median red difference

(e) Std. Dev. red difference

Figure 6.7: Raw feature difference of red channel of run-6 of experiment 4 (lower is
better) [X-axis: unique gray value (0-255); Y-axis: entropy (0-8)]
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(a) Min green difference (b) Max green difference

(c) Mean green difference (d) Median green difference

(e) Std. Dev. green difference

Figure 6.8: Raw feature difference of green channel of run-6 of experiment 4 (lower
is better) [X-axis: unique gray value (0-255); Y-axis: entropy (0-8)]
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(a) Min blue difference (b) Max blue difference

(c) Mean blue difference (d) Median blue difference

(e) Std. Dev. blue difference

Figure 6.9: Raw feature difference of blue channel of run-6 of experiment 4 (lower is
better) [X-axis: unique gray value (0-255); Y-axis: entropy (0-8)]
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Figure 6.10: Activity MAP of run-6 of experiment 4 (higher is better) [X-axis: unique
RGB value (0-65536); Y-axis: entropy (0-8)].

Figure 6.10 Shows the activity MAP of run-6 of experiment 4. The X-axis

represents unique RGB value and the Y-axis represents entropy. We can see that

most of the bins have been updated only once, meaning that after those bins have

been filled ones the new evolved solutions either had poor fitness than the existing

solutions of those bins or they did not have the similar MAP feature behaviour,

resulting them competing for other bins. Only a very few bins have been updated

multiple times. Black bins represents no activity at all, meaning no solutions were

found for those feature space as very high unique colour combination and low entropy

is very unlikely. When we compare Figure 6.10 to Figure 6.6 we can see the most

updated bin in this run has the best fitness among all the MAP solutions for this run

(run-6).
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Figure 6.11: Average mean fitness of base MAP-Elites MAP over 10 runs (lower is
better).

Figure 6.12: Average best fitness of base MAP-Elites MAP over 10 runs (lower is
better).
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Figure 6.11 shows the mean fitness of the base MAP-Elites MAP averaged over

10 runs for all 15 objectives. The X-axis represents number of Generations and the

Y-axis represents mean error. We can see that compared with GP, base MAP-Elites

has better fitness is some objectives and similar or worse fitness in a few. The solution

space values do not change much as it takes the whole MAP of diverse solutions into

account, and solutions diversify more over time. Figure 6.12 shows the best fitness of

the base MAP-Elites MAP over 600 iterations.
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6.1.3 MAP-Elites: Multiple individuals Bin - Random Selec-

tion (MAP B5 R)

Figure 6.13: Best results of base MAP-Elites runs for RGB target image -1 and RGB
feature set (10 runs).
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Figure 6.14: Average mean fitness of MAP-Elites (multiple individuals bin - random
selection) MAP over 10 runs (lower is better).

Figure 6.15: Average best fitness of MAP-Elites (multiple individuals bin - random
selection) MAP over 10 runs (lower is better).
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This experiment has the same parameters (see Table 6.2) as the previous

experiment. The only difference is the bin size, which is set to 5.

Figure 6.13 shows the best results from 10 MAP B5 R runs. These are the

best ranked individuals from each final MAP of the runs, meaning they have feature

values close to the target image. Figure 6.14 shows the mean fitness of the MAP B5 R

MAP averaged over 10 runs for all 15 objectives. The X-axis represents number of

generations and the Y-axis represents mean error. We can see that compared with

base MAP-Elites, MAP B5 R shows similar mean fitness in terms of mean error.

More information can be gained from Figure 6.15, which shows the best fitness of

the MAP B5 R MAP over 600 iterations. Features show that for the best individual

of the MAP MAP B5 R shows better mean error than base MAP-Elites from a very

early iterations (see Figure 6.12).
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6.1.4 MAP-Elites: Multiple individuals Bin - Tournament

Selection (MAP B5 T2)

Figure 6.16: Best results of base MAP-Elites runs for RGB target image- 1 and RGB
feature set (10 runs).
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Figure 6.17: Average mean fitness of MAP-Elites (multiple individuals bin - tourna-
ment selection) MAP over 10 runs (lower is better).

Figure 6.18: Average best fitness of MAP-Elites (multiple individuals bin - tourna-
ment selection) MAP over 10 runs (lower is better).
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This experiment has same parameters (see Table 6.2) as earlier. The only

difference is the selection method. The bin size is 5 and a tournament of size 2 is

used for the selection of parents for reproduction.

Figure 6.16 shows the best results from 10 MAP B5 T2 runs. Figure 6.17

shows the mean fitness of the base MAP-Elites MAP averaged over 10 runs for all 15

objectives. The X-axis represents number of Generations and the Y-axis represents

mean error. We can see that compared with MAP B5 R, MAP B5 T2 shows a slight

better mean fitness in terms of mean error. More information can be gained from

Figure 6.18, which shows the best fitness of the MAP B5 T2 MAP over 600 iterations.
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6.1.5 Analysis of experiment 4

Table 6.5: P-value table for experiment 4

Objectives MAP Base MAP B5 R MAP B5 T2

Red Min 1.000000 1.000000 0.184060

Red Max 0.007433 ← 0.038936 ← 0.017492 ←
Red Mean 0.080986 0.338792 0.213678

Red Med 0.054784 0.211570 0.271072

Red Std 0.236338 0.172352 0.484925

Green Min 0.401924 0.044929 ← 0.221276

Green Max 0.398990 0.447078 0.215909

Green Mean 0.366865 0.311588 0.311588

Green Med 0.321597 0.408417 0.453519

Green Std 0.014153 ↑ 0.048089 ↑ 0.022577 ↑
Blue Min 0.038936 ← 1.000000 0.184060

Blue Max 0.007433 ← 0.007466 ← 0.007466 ←
Blue Mean 9.13E-05 ← 9.13E-05 ← 9.13E-05 ←
Blue Med 0.022982 ← 0.483499 0.285907

GP

Blue Std 9.13E-05 ↑ 0.000291 ↑ 0.008629 ↑
Red Min — 1.000000 0.184060

Red Max — 0.304265 0.401889

Red Mean — 0.037831 ← 0.395668

Red Med — 0.298005 0.056138

Red Std — 0.311588 0.285375

Green Min — 0.041066 ← 0.175839

Green Max — 0.418058 0.250268

Green Mean — 0.410265 0.236338

Green Med — 0.424031 0.365347

Green Std — 0.086728 0.092938

Blue Min — 0.038936 0.193506

Blue Max — 0.404231 0.328301

Blue Mean — 0.425053 0.338792

Blue Med — 0.133325 0.258678

MAP Base

Blue Std — 0.032011 ← 0.106147
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Table 6.5 continued from previous page

Objectives MAP Base MAP B5 R MAP B5 T2

Red Min — — 0.184060

Red Max — — 0.447078

Red Mean — — 0.153745

Red Med — — 0.324951

Red Std — — 0.136518

Green Min — — 0.195144

Green Max — — 0.166112

Green Mean — — 0.236338

Green Med — — 0.409287

Green Std — — 0.106147

Blue Min — — 0.184060

Blue Max — — 0.285907

Blue Mean — — 0.454861

Blue Med — — 0.298005

MAP B5 R

Blue Std — — 0.395668

Table 6.5 shows the P-value table of experiment 4 comparing four different al-

gorithms for 15 objectives for their best results. The value used for the P-value

calculation is the absolute difference between the target image and the best evolved

images for the 15 RGB objectives (see Table 6.4). We used Mann-Whitney U test

[66, 69] for the non-parametric analysis. The shaded cells of the tables represents sig-

nificant statistical differences (threshold : P<0.05) and the arrow next to the values

shows which algorithm is statistically better.
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Figure 6.19: Error plot of mean minimum pixel value difference of red channel for
different algorithms

Figure 6.20: Error plot of mean maximum pixel value difference of red channel for
different algorithms
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Figure 6.21: Error plot of mean mean pixel value difference of red channel for different
algorithms

Figure 6.22: Error plot of mean median pixel value difference of red channel for
different algorithms
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Figure 6.23: Error plot of mean standard deviation value difference of red channel for
different algorithms

Figure 6.19 to 6.33 show the error plots with standard deviation for the four

algorithms. These figures shows the values for fifteen different objectives (minimum,

maximum, mean, median, and standard deviation of red, green and blue channel

respectively). Figure 6.19, 6.20, 6.21, 6.22, and 6.23, shows the five objectives of

the red channel. When we compare these figures with Table 6.5, we can see which

algorithm is performing better in which objective. When GP is compared with other

three algorithm in terms of red max objective (Figure 6.20), GP is statistically signif-

icantly better than the three version of MAP-Elites. And for the red mean objective

(Figure 6.21), base MAP-Elites performs significantly better than MAP B5 R. Other

red channel objectives do not show any significant difference between algorithms.
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Figure 6.24: Error plot of mean minimum pixel value difference of green channel for
different algorithms

Figure 6.25: Error plot of mean maximum pixel value difference of green channel for
different algorithms
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Figure 6.26: Error plot of mean mean pixel value difference of green channel for
different algorithms

Figure 6.27: Error plot of mean median pixel value difference of green channel for
different algorithms
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Figure 6.28: Error plot of mean standard deviation value difference of green channel
for different algorithms

Similarly Figure 6.24, 6.25, 6.26, 6.27, and 6.28 shows the five objectives

for the green channel. When we compare Table 6.5 with these figures we can see

which algorithm is better performing in which objective. When GP is compared with

MAP B5 R in terms of green min objective (see Figure 6.24), performance of both

GP and base MAP-Elites is statistically significantly better than the performance of

MAP B5 R. And for green standard deviation objective (see Figure 6.28), GP per-

forms significantly worse than the three MAP-Elites algorithm, performs significantly

better than MAP B5 R. Other green channel objectives do not show any significant

difference between algorithms.
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Figure 6.29: Error plot of mean minimum pixel value difference of blue channel for
different algorithms

Figure 6.30: Error plot of mean maximum pixel value difference of blue channel for
different algorithms
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Figure 6.31: Error plot of mean mean pixel value difference of blue channel for dif-
ferent algorithms

Figure 6.32: Error plot of mean median pixel value difference of blue channel for
different algorithms
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Figure 6.33: Error plot of mean standard deviation value difference of blue channel
for different algorithms

Blue channel objectives shows most number of significant difference between

algorithms, (Figures 6.29, 6.30, 6.31, 6.32, and 6.33). When we compare Table 6.5

with these figures we can see which algorithm is statistically better. When GP is

compared with base MAP-Elites in terms of blue min objective (see Figure 6.29),

performance of GP is statistically significantly better (threshold : p<0.05). For blue

max and mean objective (see Figure 6.30 and 6.31), GP performs significantly better

than the three MAP-Elites algorithm. For blue median objective (see Figure 6.32),

GP significantly outperforms base MAP-Elites. Finally, for blue standard deviation

objective (see Figure 6.33), all three MAP-Elites algorithms outperform GP and base

MAP-Elites outperforms MAP B5 R. The table and figures do not show any other

statistical significance.
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6.2 Experiment 5

This experiment is very similar to the previous RGB experiment. Table 6.4 shows

the RGB feature set that has been used for this experiment. For this experiment the

second target image is used (see Figure 6.1 (b)). Ten different runs were performed

for each of the four algorithms to generate solutions. Each of the solution here is a

256× 256 RGB image. All the pixel values are mapped between 0 and 1 for all three

RGB channels.

6.2.1 Basic Genetic Programming (GP)

Table 6.1 shows the GP parameters used for this experiments and Table 6.4 shows

the objective set for fitness evaluation.

Figure 6.34 shows the best solutions of ten GP runs. The left most column

shows the target image and the right two columns show the evolved images.

Figure 6.35 shows the mean fitness of GP population averaged over 10 runs for

all 15 objectives. The X-axis represents number of generations and the Y-axis rep-

resents mean error. The GP behaviour remains similar to the grayscale experiments

and the previous RGB experiment for mean error. It shows that most of the features

converge quickly. Some features get better or worse due to the use of sum-of-ranks

as it tries to find optimal solution based on ranking of (fifteen) objectives. So, where

some of the features may provide lower rank for an image others may not, resulting

the kind of performance graph we are observing.
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Figure 6.34: Best result of each GP run for RGB target image- 2 and RGB feature
set (10 runs).
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Figure 6.35: Average mean fitness of GP over 10 runs (lower is better).

Table 6.3 shows that the min and max value for all three channels for the

second image (see Figure 6.1 (b)), which is 0 and 1 respectively (similar to the first

image).
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6.2.2 MAP-Elites: Single Individual Bin (MAP Base)

Figure 6.36 shows the best solutions of ten MAP-Elites runs. The left most column

shows the target image and the right two columns show the evolved images.

Figure 6.36: Best results of base MAP-Elites runs for RGB target image- 2 and RGB
feature set (10 runs).
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Figure 6.37: Sum-of-ranks MAP of run-6 of experiment 5 (higher is better) [X-axis:
unique RGB value (0-65536); Y-axis: entropy (0-8)].

Figure 6.37 shows the final sum-of-ranks MAP for run-6 of experiment 4.

X-axis represents the Unique RGB values and Y-axis represents the entropy of the

solution images. We can see that the range for unique RGB is significantly lower than

the total number of unique RGB value (over 16 millions). The reason behind this is

explained in Section 6.1.2.
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Figure 6.38: Activity MAP of run-6 of experiment 5 (higher is better) [X-axis: unique
RGB value (0-65536); Y-axis: entropy (0-8)].

Figure 6.38 shows the activity MAP of run-4 of experiment 5. The X-axis

represents unique RGB value and the Y-axis represents entropy. We can see that

most of the bins have been updated only once, meaning that after those bins have

been filled ones the new evolved solutions either had poor fitness than the existing

solutions of those bins or they did not have the similar MAP feature behaviour,

resulting them competing for other bins. Only a very few bins have been updated

multiple times. Black bins represents no activity at all, meaning no solutions were

found for those feature space as very high unique colour combination and low entropy

is very unlikely. Here we can see the best solution bin has only been updated once,

meaning new solutions either did not match the feature space or did not have better

fitness than the existing solution in the bin.
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Figure 6.39: Average mean fitness of base MAP-Elites MAP over 10 runs (lower is
better).

Figure 6.11 shows the mean fitness of the base MAP-Elites MAP averaged

over 10 runs for all 15 objectives. The X-axis represents number of generations and

the Y-axis represents mean error. We can see that, compared with GP, base MAP-

Elites has better fitness is some objectives and similar or worse fitness in a few. And

the solution space values do not change much as it takes the whole MAP of diverse

solutions into account and diversify solutions more over time. The best fitness plot

behaves similar to the best fitness plot shown in Section 6.1.3 (see Figure 6.12). The

reason for not showing the best fitness plot is same as the one described in Section

6.2.1 (does not show any useful information).
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6.2.3 MAP-Elites: Multiple individuals Bin - Random Selec-

tion (MAP B5 R)

Figure 6.40: Best results of base MAP-Elites runs for RGB target image- 2 and RGB
feature set (10 runs).
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Figure 6.41: Average mean fitness of MAP-Elites (multiple individuals bin - random
selection) MAP over 10 runs (lower is better).

This experiments has the same parameters (see Table 6.2) as the previous

section. The only difference is the bin size, which is set to 5. Figure 6.40 shows

the best results from 10 MAP B5 R runs. Figure 6.14 shows the mean fitness of the

MAP B5 R MAP averaged over 10 runs for all 15 objectives. The X-axis represents

number of generations and the Y-axis represents mean error. We can see that com-

pared with base MAP-Elites, MAP B5 R shows similar mean fitness in terms of mean

error. The best fitness plot behaves similar to the best fitness plot shown in Section

6.1.3 (see Figure 6.15). The reason for not showing the best fitness plot is same as

the one described in Section 6.2.1 (does not show any useful information).
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6.2.4 MAP-Elites: Multiple individuals Bin - Tournament

Selection (MAP B5 T2))

Figure 6.42: Best results of base MAP-Elites runs for RGB target image 2 and RGB
feature set (10 runs).
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Figure 6.43: Average mean fitness of MAP-Elites (multiple individuals bin - tourna-
ment selection) MAP over 10 runs (lower is better).

This experiment has the same parameters (see Table 6.2) as the previous sec-

tion. The only difference is the selection method. The bin size is 5 and a tournament

of size 2 is used for the selection of parents for reproduction. Figure 6.42 shows the

best results from 10 MAP B5 T2 runs. Figure 6.43 shows the mean fitness of the

base MAP-Elites MAP averaged over 10 runs for all 15 objectives. The X-axis repre-

sents number of Generations and the Y-axis represents mean error. We can see that

MAP B5 R and MAP B5 T2 shows a similar mean fitness in terms of mean error.

The best fitness plot behaves similar to the best fitness plot shown in Section 6.1.4

(see Figure 6.18). The reason for not showing the best fitness plot is same as the one

described in Section 6.2.1 (does not show any useful information).
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6.2.5 Analysis of experiment 5

Table 6.6: P-value table for experiment 5

Objectives MAP Base MAP B5 R MAP B5 T2

Red Min 0.184060 1.000000 0.184060

Red Max 0.038936 ← 0.017422 ← 0.184060

Red Mean 0.037831 ↑ 0.120661 0.192337

Red Med 0.006984 ↑ 0.145475 0.014351 ↑
Red Std 0.136518 0.120661 0.037831 ↑
Green Min 0.271869 0.440730 0.363169

Green Max 0.280246 0.197078 0.354335

Green Mean 0.034087 ↑ 0.201864 0.059631

Green Med 0.057665 0.112569 0.029405 ↑
Green Std 0.131372 0.039037 ↑ 0.041121 ↑
Blue Min 0.184060 0.184060 0.084039

Blue Max 0.038936 ← 0.017492 ← 0.184060

Blue Mean 0.000853 ← 9.13E-05 ← 9.13E-05 ←
Blue Med 0.500000 0.171350 0.271839

GP

Blue Std 0.172352 0.044487 ↑ 0.012874 ↑
Red Min — 0.184060 0.500000

Red Max — 0.377866 0.127926

Red Mean — 0.338792 0.213678

Red Med — 0.234488 0.201775

Red Std — 0.236338 0.092938

Green Min — 0.344893 0.377866

Green Max — 0.438354 0.062569

Green Mean — 0.128330 0.285085

Green Med — 0.295820 0.307543

Green Std — 0.213330 0.338217

Blue Min — 0.500000 0.292124

Blue Max — 0.344893 0.117133

Blue Mean — 0.080986 0.153745

Blue Med — 0.099129 0.172261

MAP Base

Blue Std — 0.192337 0.037831 ↑
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Table 6.6 continued from previous page

Objectives MAP Base MAP B5 R MAP B5 T2

Red Min — — 0.184060

Red Max — — 0.061304

Red Mean — — 0.484925

Red Med — — 0.394854

Red Std — — 0.311588

Green Min — — 0.426026

Green Max — — 0.031381 ↑
Green Mean — — 0.172261

Green Med — — 0.454450

Green Std — — 0.366672

Blue Min — — 0.251816

Blue Max — — 0.050581

Blue Mean — — 0.484925

Blue Med — — 0.484902

MAP B5 R

Blue Std — — 0.106147

Some analyses for different algorithms have been discussed in previous sections. In

this section we will compare them in more detail. Table 6.6 shows the P-value table

of experiment 5 comparing four different algorithms for 15 objectives for their beast

results. The value used for P-value calculation is the absolute difference between the

target image and the best evolved images for the 15 RGB objectives (see Table 6.4).

We used Mann-Whitney U test [66, 69] for the non-parametric analysis. The shaded

cells of the tables represents significant statistical differences (threshold : P<0.05)

and the arrow next to the values shows which algorithm is statistically better.
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Figure 6.44: Error plot of mean maximum pixel value difference of red channel for
different algorithms

Figure 6.45: Error plot of mean mean pixel value difference of red channel for different
algorithms
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Figure 6.46: Error plot of mean median pixel value difference of red channel for
different algorithms

Figure 6.47: Error plot of mean standard deviation value difference of red channel for
different algorithms
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Figures 6.44, 6.45, 6.46, and 6.47, show the error plots with standard deviation

for four objectives (max, mean, median and standard deviation) of red channel for the

four algorithms used in this experiment. The error plot for the minimum objective

of the red channel is not shown here as it does not have any statistical significance.

When we compare these four figures mentioned earlier with Table 6.6 we can see

which algorithm is performing better in which objective.

When GP is compared with other three algorithm in terms of red max ob-

jective (see Figure 6.44), GP is statistically significantly better (threshold : p<0.05)

than the base MAP-Elites and MAP B5 R. But, shows no significant difference with

MAP B5 T2. For red mean and median objectives (see Figure 6.45) base MAP-

Elites significantly outperforms GP. For the red median objective base MAP-Elites

and MAP B5 T2 (see Figure 6.46), both shows significantly better results than GP.

And for the red standard deviation MAP B5 T2 (see Figure 6.47), performs signifi-

cantly better than GP.
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Figure 6.48: Error plot of mean maximum pixel value difference of green channel for
different algorithms

Figure 6.49: Error plot of mean mean pixel value difference of green channel for
different algorithms
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Figure 6.50: Error plot of mean median pixel value difference of green channel for
different algorithms

Figure 6.51: Error plot of mean standard deviation value difference of green channel
for different algorithms
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Figure 6.48, 6.49, 6.50, and 6.51, show the error plots with standard deviation

for four objectives (max, mean, median and standard deviation) of green channel for

the four algorithms used in this experiment. Error plot for the minimum objective

of the red channel is not shown here as it does not have any statistical significance.

When we compare these four figures mentioned earlier with Table 6.6 we can see

which algorithm performs better in which objective.

For green max objective (see Figure 6.48), MAP B5 T2 is statistically signif-

icantly better (threshold : p<0.05) than the MAP B5 R. For green mean objective

(see Figure 6.49), base MAP-Elites performs significantly better (threshold : p<0.05)

than GP. For green median objectives (see Figure 6.50), MAP B5 T2 significantly

outperforms GP. Finally, for the green standard deviation the two proposed version

of MAP-Elites (see Figure 6.51), performs significantly better than GP.
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Figure 6.52: Error plot of mean maximum pixel value difference of blue channel for
different algorithms

Figure 6.53: Error plot of mean mean pixel value difference of blue channel for dif-
ferent algorithms
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Figure 6.54: Error plot of mean standard deviation value difference of blue channel
for different algorithms

Figure 6.52, 6.53, and 6.54, show the error plots with standard deviation for

three objectives (max, mean and standard deviation) of green channel for the four

algorithms used in this experiment. Error plot for the minimum and median objective

of the blue channel is not shown here as it does not have any statistical significance.

When we compare these four figures mentioned earlier with Table 6.6 we can see

which algorithm performs better in which objective.

For green max objective (see Figure 6.48), GP is statistically significantly

better (threshold : p<0.05) than the base MAP-Elites and MAP B5 R. For blue mean

objective (see Figure 6.49), GP performs significantly better (threshold : p<0.05)

than all three MAP-Elites algorithm. Finally, for the blue standard deviation the two

proposed version of MAP-Elites (see Figure 6.51), performs significantly better than

GP and MAP B5 T2 significantly outperforms MAP B5 R.
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Chapter 7

Discussion

7.1 Objective Behaviours

Table 7.1: Objectives count with significant difference with at least one other algo-
rithm

Objectives GP MAP Base MAP B5 R MAP B5 T2
EXP - 1 5 3 5 1 2
EXP - 2 5 3 0 1 2
EXP - 3 6 4 10 2 2
EXP - 4 15 12 5 5 2
EXP - 5 15 7 3 2 7

Table 7.1 shows the number of objectives in each experiments and objective

performance count. Numbers in the table represents in how many objectives one

algorithm was able to significantly outperform (P-value threshold: 0.05) at least one

other algorithm for that same objective. Each time an objective performed better

for a algorithm compared with at least another algorithm it is given a point. Shaded

cells on the table shows the best performing algorithm for that experiment in terms of

maximum number of objective performance count. From this table we can see GP has

the most objective performance count in two experiments, tied for best position with

MAP B5 T2 for one. Base MAP-Elites outperformed others in terms of objective

performance count in two experiments and MAP B5 R failed to get best objective

performance count in any of the experiments. Keep in mind that these values does

not necessarily signifies which algorithm performed the best overall. For more details

on the values of Table 7.1 see Tables 5.7, 5.8, 5.9, 6.5 and 6.6 from Chapter 5 and 6.
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7.2 Overall Performance

Here we compare algorithms based on how well they generate optimized solutions

for all objectives. To get an overall idea of the performances of the best solutions

per run for each algorithms, we can look at Table 7.2. The same objective difference

values of the target image and evolved images that were used to calculate the five

P-value tables for five experiments, is used here to calculate the average sum-of-ranks

and its variation here. Shaded cell represents the best algorithm for that experiment

and its average sum-of-ranks. The second column of Table 7.2 represents the number

of objectives and number of runs performed for each algorithm for that experiment.

The third column for the four algorithms shows the sum-of-ranks averaged over

the mentioned number of runs showed in column two. The fourth column represents

the same thing in a more friendly way (bigger difference). To get these values all

the sum-of-ranks were ranked based on their values and then were averaged based on

the algorithms to get the value for that experiment. For example experiment-1 has

20 runs so it produces 20 best solutions for each algorithm, making total number of

solutions 80, that needs to be ranked. So, from those 80 solutions we get 80 sum-

of-ranks values. These values are then re-ranked. Then these ranks are grouped

and averaged based on which algorithm produced the solution. And the values in

fourth set of columns represent those values. The last set of column just re-ranks the

values from the previous set of columns between 1 and 4 as there are four different

algorithms.

By looking at the last set of columns (last four columns) we can see that

MAP elites shows best overall results in terms of best solutions in all three grayscale

experiments. GP and MAP B5 T2 each shows best overall results in terms of best

solutions in one RGB experiment. If we look at the last three rows it shows the

average final ranking score between the four algorithms. For the three grayscale

experiment base MAP-Elites has the best average rank. For RGB MAP B5 T2 has

the best average rank. And overall base MAP-Elites shows the best average ranks

and MAP B5 T2 shows the second best. In all cases we can see that the MAP B5 R

did not perform very well statistically.
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7.3 Some of Our Preferred Solutions

(a) Exp-4; Run-6; MAP B5 R (b) Exp-4; Run-1; MAP B5 T2

(c) Exp-5; Run-8; MAP B5 R (d) Exp-5; Run-3; MAP B5 T2

Figure 7.1: Four of our favourite evolved images from RGB experiments.

Figure 7.1 shows four of our favourite images from RGB experiments. Our

MAP-Elites algorithms produced hundreds of solution images. Showing all of them

in this paper is not practical. So, we only choose four images, two from each RGB

experiments with the new proposed algorithms.
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7.4 Challenges of the Proposed Algorithms

Some of the challenges of the proposed algorithms are listed below:

• From the discussion we can see that the random selection approach for the

multiple-individual bin MAP-Elites does not perform very well.

• Though the proposed algorithms are faster than than GP, they are little slower

than the original MAP-Elites algorithm. The reason is that more operations

are needed to be performed for storing, removing and selecting individuals from

bins.

• Having a lot of choices for higher dimension of MAP may lead to four or more

dimensions of the MAP. Although with two dimensions the algorithm performs

well, with higher dimensions there will be exponentially increasing number of

bins. With the number of features increasing, it may not find multiple solutions

for a single bin.

• A very large map with smaller intervals may also result in few individuals in

single bins, making the algorithms perform similarly to the original MAP-Elites.

• It may take a lot of trial and error to find the optimum bin size for a problem.

A small bin size may not help to diversify the solution compared with base

MAP-Elites. Having a very large bin size will likely contribute to many lower

quality solutions being produced.

• As with other many-objective optimization algorithms, there is no guarantee

that adequate solutions can be found for difficult problems with many objec-

tives.
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Chapter 8

Conclusion

8.1 Conclusion

In this research we have proposed new algorithms for many-objective quality diver-

sity search. We tested three different versions of MAP-Elites, including the original

MAP-Elites, to evolve procedural texture images. We have run 5 different experi-

ments and compared their results with each other, as well as with GP. Experiments

were divided into two groups: grayscale and RGB. For the grayscale experiments we

performed three different experiments, which showed that having unique gray value

and entropy as MAP features gives us more diverse solution compared with mean

gray value and standard deviation difference.

Grayscale experiments showed how adding just one more additional feature can

have a large impact on the output (see experiment 1 and 3). So, this gives us an insight

that adding useful objectives can help improve results. Compared with GP, MAP-

Elites generated more diverse solutions, and MAP B5 R and MAP B5 T2 produced

more diverse results compared with base MAP-Elites. In terms of the objective

difference values of the best individuals in each run, base MAP-Elites outperformed

the other three algorithms in grayscale experiments.
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RGB experiments used the same set of features as objectives. But from the

MAP-Elites MAP (see Figure 6.6 and 6.37), we can see that most solutions are clus-

tered in the middle, as the solutions do not always reach the maximum possible num-

ber of unique RGB colours, keeping the right most section of the MAP mostly empty.

In terms of diversity, we found a similar behaviour as was observed with grayscale

experiments. But in terms of the objective values, MAP B5 T2 outperformed the

other three algorithms.

By distributing the range non-uniformly, we can spread out the middle section

of the range more with a smaller range intervals, and have a large interval for the left

most and right most values. This will help us get better quality and more diverse

solutions for the MAP. As for the solution quality between GP and three version

of MAP elites, we cannot reach any definite conclusion as the algorithms are very

different in behaviour. As mentioned earlier, in terms of art, art is subjective. MAP-

Elites gives us more diverse solutions making it ideal for Evo Art, as the user will have

a wide range of images to choose from. The two new proposed versions of MAP-Elites

bring out the benefits of evolution, where less fit individuals sometimes get a chance

to be part of reproduction making the solution more diverse.

The GP behaviour we observed was expected, as GP converges over multiple

generations and the results tend to have similar features. Our expectation was that

the two new versions of MAP-Elites will outperform GP and base MAP-Elites in

terms of diversity and best solutions. In terms of the statistical analysis, MAP B5 T2

did well in the RGB experiments only. MAP B5 R failed to show better statistical

performance compared with other three algorithms. Which procedural texture image

a user will prefer is subjective. In that regard, MAP-Elites and the proposed version

of MAP-Elites can be considered to have an advantage over GP as they provide a

user with more choices to select from.

Some other things did not behave as we have hoped. For example, some

features are difficult to see on the MAP, as they are too subtle for human perception.

The light weight features from Lombardi et. al [64], although efficient to compute,

are not sophisticated and may have limited application to Evo Art. But the overall

results show promise, and can be improved with further research.
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8.2 Comparison to related work

This section compares this research with similar work elsewhere.

• Ross and Zhu used multi-objective optimization in their GP based procedural

texture generation [78]. For fitness evaluation they used Pareto ranking.

• Salami used GP in her research [81]. She also used the feature sets used by

Lombardi et al. [64]. She used both RGB and HSV feature sets proposed by

Lombardi, and also made some custom sets from the features from those two

sets. Sum-of-ranks was used for fitness evaluation.

• The new system will prove to be a better choice for handling many-objective

problems and generating diverse solution as the experiments have shown. And it

can be used in other multi-objective or many-objective problems as well, where

a diverse set of high quality solutions are required.

8.3 Future Work

The following ideas can be considered for future work:

• We can experiment with more images with different feature values to see the

resulting images.

• Add more image features as objectives. For example, add edge as one of the

objectives along with the current ones.

• We can use the HSV feature set proposed by Lombardi et al. [64] as objectives.

• Perlin noise [10, 75] can be added to the GP language, which is a pseudo noise

that aids the creation of natural appearing textures.

• Using island model GP as evolution algorithm [90].

• Choosing new features sets for the MAP-Elites MAP behaviour, and adding the

current MAP features as objectives.

• Have a higher dimension MAP with more features.
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• Using tournament selection instead of random selection in original MAP-Elites

algorithm.

• Use different MAP sizes (ex: a larger MAP size can be used to find more diverse

solutions)

• Use custom range for the current features instead of the uniform range to let

the more crowded part of the MAP spread out to hold more solutions

• Weighted normalized sum-of-ranks can be used to give more weight to mean,

median and standard deviation to make them more favourable as Min and Max

showed more improvement than those three sets naturally.

• A human survey can be conducted to see if the human preference match with

the evolved images.

• Applying these algorithms to solve other many-objective optimization and search

problems.
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Appendix A

Additional Analysis

A.1 System Testing

Table A.1: GP parameter for breast cancer experiment

Parameter Name Value
Population Size 1000
No. of Generation 50
Tree Initializer Half and Half
Initial Tree Depth Min: 2 Max: 6
Max Tree Depth 17
Crossover 100%
Mutation 20%
Selection Tournament
Tournament Size 3
Training Data Size 30%
Test Data Size 70%
Number of Runs 10

To test our MAP-Elites algorithm implementation, we have run several exper-

iments. For base a benchmark the traditional GP system is been used [40]. Using the

same dataset and same GP parameters multiple experiments have been performed

with different MAP-Elites parameters. 10 runs have been performed for each experi-

ments. Table A.1 shows the GP parameters used for the experiments.

174



Table A.2: GP function set for breast cancer experiment

Function Name Description
add Add two numbers
sub Subtract two numbers
mul Multiply two numbers
protectedDiv Divide one number by another.
and Logical AND operation between two numbers
or Logical OR operation between two numbers
not Logical NOT operation on a numbers
lt Checks if (number-1) < (number-2)
eq Checks if two numbers are equal
if then else Conditional statement for decision making

For testing purposes the breast cancer data set from Wisconsin (diagnostic)

is used [1]. This dataset consists of 32 attributes including 30 floating point features

value, the actual diagnostic data and 1 identification number. The value of the

identification number does not contribute to the determination of breast cancer and

is ignored. All the values of the dataset (except the identification number) are used as

terminals of the GP system. Ephemeral constant has also been used as an additional

terminal. Table A.2 shows the GP function set and Table A.3 shows the terminal set

used in this experiment.

For the MAP-Elites system, the same set of GP parameters are used. Different

MAP sizes are used. A 2D MAP of size 5 × 5, 10 × 10, and 17 × 20 are used. An

initial batch size (number of new individuals created randomly in the first iteration

to initialize the MAP) was 80% of each MAP size. Bin sizes used are 1 and 5 for

different experiments.
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Table A.3: GP terminal set for breast cancer experiment

Terminal Details
Mean Radius Mean radius
Mean Texture Mean texture
Mean Perimeter Mean perimeter
Mean Area Mean area
Mean Smoothness Mean smoothness
Mean Compactness Mean compactness
Mean Concavity Mean concavity
Mean ConcavePoints Mean concave points
Mean Isymmetry Mean symmetry
Mean FractalDimension Mean fractal dimension
STE Radius Radius standard error
STE Texture Texture standard error
STE Perimeter Perimeter standard error
STE Area Area standard error
STE Smoothness Smoothness standard error
STE Compactness Compactness standard error
STE Concavity Concavity standard error
STE ConcavePoints Concave points standard error
STE Isymmetry Symmetry standard error
STE FractalDimension Fractal dimension standard error
Largest Radius Largest radius
Largest Texture Largest texture
Largest Perimeter Largest perimeter
Largest Area Largest area
Largest Smoothness Largest smoothness
Largest Compactness Largest compactness
Largest Concavity Largest concavity
Largest ConcavePoints Largest concave points
Largest Isymmetry Largest symmetry
Largest FractalDimension Largest fractal dimension
rand1 Ephemeral constant.
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Feature 1 for the X-axis of the MAP is the tree size. So, the range of feature

1 was between 1 and 17. Feature 2 for the Y-axis is the number of nodes of the

tree, which we have found in different runs never exceeds above 400. So, we have

set feature 2 range between 1 and 400. The fitness domain range was between 0

and infinity. The fitness function measures how many data example it was able to

classify correctly. The MAP showed in Figure A.1 is from one of the experiment runs

of 17 × 20 size MAP which has 5 items per bin. The X-axis of the map represents

depth of the tree and the Y-axis represents total number of nodes in the tree. From

the figure we can see that almost half of the bins in the MAP has never been used,

meaning no solution was found for those bins. By looking at the experiment we can

see the reason for this. A tree with very low depth can not have very high number of

nodes. Similarly, tree with very high depth can not have just a couple of nodes.

Table A.4 shows the result of different runs with different MAP-Elites param-

eters. We can see from the table what impact changing some of the MAP-Elites

parameters can have on results. All of the values are averaged over 10 runs. Filled

bins column represents how many final solutions are on the MAP has at the end of

the run. MAP-Elites has generated over 160 solutions with different fitness values.

Another thing we can see that when we have 5 items per bin, the fitness value

is lower compared to 1 items per bin. This is because those bins can store up to 5 best

solutions found for that feature space in the MAP and then takes all those 5 values

into account while calculating the average fitness. On the other hand, the single item

bins only store the best solution for that feature space, resulting in a higher average

fitness value.
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Figure A.1: A single run 17 × 20 MAP of breast cancer experiment [X-axis: tree
depth (range: 1 - 17); Y-axis: total number of nodes (range: 1 - 400)].

We can understand the fitness diversity of the solutions generated by MAP-

Elites by looking at the average fitness value of the MAP. With a larger size MAP, we

get more diverse solutions which reduces the average fitness value. In this experiment

the tree size and number of nodes has been used as determining feature on the MAP.

Where GP was only able to produce 1 solution per run the MAP-Elites produced

many solutions per run.
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Table A.4: Result of 10 run average of GP system and MAP-Elites system

Algo.
MAP
Size

Init.
Batch

Bin
Size

Batch
Size

Iterations
Filled
Bins

Avg
Fitness

Base
GP

N-A 1000 N-A N-A 50 N-A 366

MAP
Elites

5× 5 20
1

1 50000 5 380
10 5000 10 384

5
1 50000 1 220
10 5000 4 207

10× 10 80
1

1 50000 16 374
50 1000 47 378

5
1 50000 14 204
50 1000 45 231

17× 20 272
1

1 50000 41 369
50 1000 160 369

5
1 50000 39 226
50 1000 161 216

From Table A.4 we can see how different MAP sizes, bin sizes and batch sizes

affects the number of solutions found and the quality of solutions. More solutions

means more diverse solutions. To make the comparison fair, the total number of

evaluated individuals are kept the same for all the experiments. We can see from the

table that the average fitness of MAPs with bin size 5 is lower than the average fitness

of MAPs with bin size 1. This is because single-individual bins only stores the best

solution for that feature space, where multiple-individual bins here are storing up to

five solutions which may not have the same fitness as the best individual in that bin.

But during the average fitness calculation, those less fit individuals are also taken

into account, resulting a lower fitness average for multiple-individual bin MAPs.
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