18,064 research outputs found

    A Framework for Active Learning: Revisited

    Get PDF
    Over the past decade, algorithm visualization tools have been researched and developed to be used by Computer Science instructors to ease students’ learning curve for new concepts. However, limitations such as rigid animation frameworks, lack of user interaction with the visualization created, and learning a new language and environment, have severely reduced instructors’ desire to use such a tool. The purpose of this project is to create a tool that overcomes these limitations. Instructors do not have to get familiar with a new framework and learn another language. The API used to create algorithm animation for this project is through Java, a programming language familiar to many instructors. Moreover, not only do the instructors have control over planning the animation, students using the animation will also have the ability to interact with it

    Teaching programming at a distance: the Internet software visualization laboratory

    Get PDF
    This paper describes recent developments in our approach to teaching computer programming in the context of a part-time Masters course taught at a distance. Within our course, students are sent a pack which contains integrated text, software and video course material, using a uniform graphical representation to tell a consistent story of how the programming language works. The students communicate with their tutors over the phone and through surface mail. Through our empirical studies and experience teaching the course we have identified four current problems: (i) students' difficulty mapping between the graphical representations used in the course and the programs to which they relate, (ii) the lack of a conversational context for tutor help provided over the telephone, (iii) helping students who due to their other commitments tend to study at 'unsociable' hours, and (iv) providing software for the constantly changing and expanding range of platforms and operating systems used by students. We hope to alleviate these problems through our Internet Software Visualization Laboratory (ISVL), which supports individual exploration, and both synchronous and asynchronous communication. As a single user, students are aided by the extra mappings provided between the graphical representations used in the course and their computer programs, overcoming the problems of the original notation. ISVL can also be used as a synchronous communication medium whereby one of the users (generally the tutor) can provide an annotated demonstration of a program and its execution, a far richer alternative to technical discussions over the telephone. Finally, ISVL can be used to support asynchronous communication, helping students who work at unsociable hours by allowing the tutor to prepare short educational movies for them to view when convenient. The ISVL environment runs on a conventional web browser and is therefore platform independent, has modest hardware and bandwidth requirements, and is easy to distribute and maintain. Our planned experiments with ISVL will allow us to investigate ways in which new technology can be most appropriately applied in the service of distance education

    RAGE: A Java-implemented Visual Random Generator

    Get PDF
    Carefully designed Java applications turn out to be efficient and platform independent tools that can compete well with classical implementations of statistical software. The project presented here is an example underlining this statement for random variate generation. An end-user application called RAGE (Random Variate Generator) is developed to generate random variates from probability distributions. A Java class library called JDiscreteLib has been designed and implemented for the simulation of random variables from the most usual discrete distributions inside RAGE. For each distribution, specific and general algorithms are available for this purpose. RAGE can also be used as an interactive simulation tool for data and data summary visualization.

    Visualisation techniques for users and designers of layout algorithms

    Get PDF
    Visualisation systems consisting of a set of components through which data and interaction commands flow have been explored by a number of researchers. Such hybrid and multistage algorithms can be used to reduce overall computation time, and to provide views of the data that show intermediate results and the outputs of complementary algorithms. In this paper we present work on expanding the range and variety of such components, with two new techniques for analysing and controlling the performance of visualisation processes. While the techniques presented are quite different, they are unified within HIVE: a visualisation system based upon a data-flow model and visual programming. Embodied within this system is a framework for weaving together our visualisation components to better afford insight into data and also deepen understanding of the process of the data's visualisation. We describe the new components and offer short case studies of their application. We demonstrate that both analysts and visualisation designers can benefit from a rich set of components and integrated tools for profiling performance

    Novis: A notional machine implementation for teaching introductory programming

    Get PDF
    Comprehension of programming and programs is known to be a difficult task for many beginning students, with many computing courses showing significant drop out and failure rates. In this paper, we present a notional machine imple- mentation, Novis, to help with understanding of program- ming and its dynamics for beginning learners. The notional machine offers an abstraction of the physical machine de- signed for comprehension and learning purposes. Novis pro- vides a real-time visualisation of this notional machine, and is integrated into BlueJ

    Visualization designs for constraint logic programming

    Get PDF
    We address the design and implementation of visual paradigms for observing the execution of constraint logic programs, aiming at debugging, tuning and optimization, and teaching. We focus on the display of data in CLP executions, where representation for constrained variables and for the constrains themselves are seeked. Two tools, VIFID and TRIFID, exemplifying the devised depictions, have been implemented, and are used to showcase the usefulness of the visualizations developed
    • …
    corecore