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Abstract 

We address the design and implementation of visual paradigms for observing the ex-
ecution of constraint logic programs, aiming at debugging, tuning and optimization, and 
teaching. We focus on the display of data in CLP executions, where representation for 
constrained variables and for the constrains themselves are seeked. Two tools, VIFID and 
TRIFID, exemplifying the devised depictions, have been implemented, and are used to 
showcase the usefulness of the visualizations developed. 

Keywords: Logic Programming, Constraint Logic Programming, Visualization, Debug­
ging, Performance, Abstraction of Visual Representations. 

1 Introduction 

Program visualization has been classically used by computer scientists for many different 
purposes, including teaching, debugging, and optimization. However, classical program vi­
sualizations are often too dependent on the programming paradigms they were devised for, 
and do not adapt well to the nature of the computations performed in other paradigms (e.g., 
visualization of concurrent programs focuses on aspects which are not present in sequential 
programming). In particular, Constraint Programming nature differs radically from that of 
other programming paradigms and the visualization should address different problems. More-
over, it appears that the needs of CP practitioners are also different from those using other 
paradigms. 

In any case, a good pictorial representation is fundamental to achieve a useful visualization. 
Thus, it is important to devise depictions which are well suited to the characteristics of CLP 
data and control. In addition, a recurring problem in the graphical representations of even 
medium-sized executions is the huge amount of information that is usually available. To cope 
successfully with these undoubtedly relevant cases, abstractions of the representations are 
needed. Ideally, such abstractions should show the most interesting characteristics (according 
to the particular objectives of the visualization process, which may be different in each case), 
without cluttering the display with unneeded details. 

2 Constraint Logic Programming in a Nutshell 

Constraint Programming (CP) is "one of the most exciting developments in programming 
languages of the last decade" [MS98]. CP refers to programming using the equations which 
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characterize the solution to a problem. These equations, which are similar to the arithmetical 
ones, can range over a wide gamut of domains: integers, reals, terms (Le., data structures), 
strings, sets,.. .A CP system would automatically (and incrementally) solve these equations, 
therefore yielding a solution to the initial problem. This approach has undoubtedly much 
to do with, on one hand, mathematics itself, and, on the other hand, Operation Research. 
But, from a practical point of view, it departs from them in two ways: the ability to set up 
dynamically the equations which model a problem (and probably retract some of them at 
some point and add new ones), and the use of domains not usually found in mathematics. 

Constraint Logic Programming (CLP) [Van89] merges the constraint-based approach with 
the Logic Programming (LP) ideas, resulting in a highly synergetic combination. The prop-
erties of logic programming variables (single assignment, unification) and the control usually 
implemented in LP (automatic search procedures with backtracking, goal delaying) fit partic-
ularly well within constraint programming. The result is a family of languages which naturally 
extends LP in a unified framework (such that LP can be seen as a case of the more general 
CLP), patching up some weaknesses (especially in arithmetic) found in LP languages. 

One of the most useful CLP domains is finite domains: finite domain variables range over 
imite sets of integers, and the operations allowed between them are pointwise extensions of 
the regular arithmetic operations and relations. Although there is no elimination procedure 
similar to that of linear equations over the reals, a set of equations in finite domains can 
always be decided to have or not solution, ultimately thanks to the finiteness of the domains, 
using a mixture of simplification, valué propagation, and labeling (Le., assignment of valúes to 
variables). We will focus mainly, due to their practical importance, in finite domain variables. 

3 Displaying Constrained Variables 

The concept of variable binding in CLP is more complex than in imperative and functional 
languages: the valué of a CLP variable is actually a complex object representing a (potentially 
infinite) set of valúes plus the constraints attached to the variable which relate it with the 
rest of the variables. Textual representations are usually not very informative and difficult to 
interpret and understand, and a graphical depiction of the variables can offer a view that is 
easier to grasp. Also, if we wish to follow the history of the program it is desirable that the 
graphical representation be either animated or laid out spatially as a series of pictures. The 
latter allows comparing different behaviors easily, trading time for space. 

3.1 Depicting Finite Domain Variables 

FD variables are instantiated to an initial domain, which is narrowed as equations are incre­
mentally added and as the constraint system is simplified (either by algebraic rewriting or 
by the labeling procedure). At any state in the execution, each FD variable has an active 
domain (the set of allowed valúes for it) which is usually accessible by means of language 
primitives. For several reasons (space limitations, speed of addition/removal of constraints, 
etc.) this domain is usually represented using an upper approximation of the actual set of 
valúes that the variable can take. 

A possible graphical representation is to assign a dot (or, depending on the visualization 
desired, a square) to every possible valué a variable can take, highlighting those valúes in 
the current domain. An example of the representation of a variable X with current domain 
{1, 2,4, 5} from an initial domain { 1 . . . 6} is shown in Figure 1. 
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Figure 1: Depiction of a FD variable Figure 2: History of a single variable 

use_module(library(clpfd)). 

use_module(library(tracing_library)). 

program: 
Variables = .... , 

Ñames = .... , 

open_log(Variables, Ñames, Handle), 

constrain_values(Variables, Handle). 

log_state (Handle) , 

visual_labeling(Variables, Handle), 

close_log(Handle). 

7,7, Added 

7,7, Added 

7,7, Added 

Figure 3: An annotated program skeleton 

It is extremely interesting to follow the evolution of a set of program variables throughout 
the execution. Probably the most useful portray is to simply stack the different state repre-
sentations, as in Figure 2. It can reflect time accurately (for example, by mapping it to the 
height between changes) or ignore it by simply stacking a new row of a constant height every 
time a variable domain changes or an enumeration step is performed. This representation al-
lows the user to perform an easy comparison between states and has the additional advantage 
of allowing more time-related information to be added to the display. Other possibilities we 
will not explore include animating the display, so that time is represented as such, or using 
different color hues or shades of grey. 

The stacking approach is one of the visualizations available in VIFID. VIFID is a Prolog 
library which represents the state of variables as instructed by spy-points introduced by the 
user in the program. Figure 3 shows an skeleton example of such an annotated program. The 
open_log/3 primitive initializes the Handle data structure which contains the Variables to 
be observed and their Ñames. close_log/l takes the necessary actions in order to finish the 
visualization (e.g., closing a file, sending appropriate messages to the windows, etc.). The 

visua l_ labe l ing( [] , _Handle) . 
v isual_label ing([QIQs] , Handle) : -

l abe l ing ( [Q] ) , 
log_s ta te (Handle) , 
visual_labeling(Qs, Handle). 

Figure 4: The visual_label ing/2 library predicate 



Figure 5: Evolution of FD variables for a 10-queens problem 
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Figure 6: Several variables side to side Figure 7: Changing a domain 

actual step-by-step depiction of the current state is made by the log_s ta te / l primitive. It 
contacts with the visual side of the tool in order to communicate the current state of the 
variables and update the windows. 

An important part of the CLP execution is the labeling phase, which tries to assign 
valúes to the variables which are compatible with the existing constraints. This labeling is 
usually performed by a builtin, which receives a list of variables and an indication of the 
labeling strategy. We visualize the evolution of the variables during labeling by recoding this 
builtin so that the state of the variables is logged after each labeling step. Figure 4 shows an 
example implementation, which receives the list of variables to label and the Handle to the 
visualization and performs a tailored labeling. It is a simplified code for illustration purposes, 
but it clarines how this (and other primitives) can be interfaced with the visual tools without 
too much effort. 

Figure 5 shows a screen dump of a window generated by VIFID presenting the evolution 
the state variables when solving the Queens problem for a board of size 10. Each column in 
the display corresponds to one program variable. The possible valúes are the row numbers in 
which a queen can be placed. Lighter squares represent valúes still in the domain, and darker 
squares represent discarded valúes. Each row in the display corresponds to a spy-point in 
the source program, and points where backtracking happened are marked with small hooks. 
It is straightforward to see that very little backtracking was necessary, and that variables 
are highly constrained, so that enumeration (proceeding left to right) quite quickly discarded 
initial valúes. 



4 Representing Constraints 

It is obviously interesting to represent the relationships among several variables as iniposed 
by the constraints affecting them. Textual representation is often not straightforward (or 
even possible in some constraint domains), can be computationally expensive, and provides 
too much level of detail for an intuitive understanding. Moreover, in general there are many 
states of the variables which meet the restrictions iniposed by the constraints. A general 
solution which takes advantage of the representation of the actual valúes of a variable (and 
which is independent of how this representation is actually performed) is to use projections 
to present the data piecemeal and to allow the user to update the valúes of the projected 
variables, while observing how the variables being shown are affected by such changes. This 
can often give the user an intuition of the relationships linking the variables (and detect, for 
example, the presence of erroneous constraints). We will use the constraint C l , below, in the 
examples which follow: 

C l = X e {1..6} A I / 6 A I / 3 A Z G {1..6} AZ = 2X -Y AY e {1..6} 

Figure 6 shows the domains of FD vari­
ables X, Y, and Z subject to C l . An update 
of the domain of a variable should induce 
changes in the domains of other related vari­
ables. For example, we may discard the val­
úes 1,5, and 6 from the domain of Y, which 
boils down to representing the constraint C2 
= C 1 A F / 1 A F < 5 

Figure 7 represents the new domains of 
the variables. Valúes directly disallowed by 
C2 are shown as crossed boxes; valúes discarded by the effect of this constraint are shown 
in a lighter shade. In this example the domains of both X and Z are affected by this change, 
and so they depend on Y; this type of user-driven visualization is also available in the VIFID 
tool. A more detailed inspection can be done by leaving just one element in the domain of 
a variable, and watching how the domains of other variables are updated. In Figure 8 Y is 
given a definite valué from 1 (in the leftmost rectangle) to 6 (in the rightmost one). This 
allows the programmer to check that simple constraints hold among variables, or that more 
complex properties (e.g., that a variable is made definite by the definiteness of another one) 
are met. 
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Figure 8: Enumerating Y, representing enumer-
ated domains for X and Z 
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Figure 9: X against Y Figure 10: X against Z Figure 11: Y against Z 

A static versión of this view can be obtained by plotting valúes of pairs of variables in 
a 2-D grid. This is schematically shown in Figures 9, 10, and 11, where the variables are 



subject to the constraint C2. From these representations we can deduce that the valúes X = 
3 and X = 6 are not feasible, regardless of the valúes of Y and Z. It turns out also that the 
plots of X against Y and X against Z (Figures 9 and 10) are identical. From this, one might 
guess that perhaps Y and Z have necessarily the same valué, i.e., that the constraint Z = Y is 
entailed by the store. This possibility is discarded by Figure 11, in which we see that there 
are consistent pairs where X / Z. Furthermore, the slope of the highlighted squares on the 
grid suggests that there is an inverse relationship between Z and Y: incrementing one of them 
would presumably decrement the other—and this is actually the case, from constraint C l . A 
VIFID window showing a 10-Queen 2-D plot appears in Figure 12; the check buttons at the 
bottom allow the user to select the variables to depict. 

Figure 12: Relating variables in VIFID 

5 Abstraction for Constraint Visualization 

It is often the case that executions of large programs result in too much data being displayed. 
Even if an easy-to-understand depiction is provided, the amount of data can overwhelm the 
user with an unwanted level of detail. Abstraction is a method to cope with this problem. 

5.1 Abstracting Valúes 

While the presence of a large number of variables can be partially solved by a careful selec-
tion of variables, another problem remains: representations of variables with a large number 
of possible valúes can convey information too detailed. At the limit, the screen resolution 
may be insumcient to assign a pixel to every valué in the domain. This is easily solved by 
using scrollable canvases, providing means for zooming, fish-eye views, etc. That was the 
approach taken in the VisAndOr tool [CGH93] aimed at showing the parallel execution of 
logic languages. 

However, these methods are more "physical" approaches than true conceptual abstractions 
of the information, which are richer and more flexible. 

An alternative is to use an application-oriented filtering of the variable domains. For 
example, if some parts of the program are trusted, their effects can be masked out by removing 
the valúes already discarded from the representation of the variables: e.g., if a variable is 
known to take only odd valúes, the even valúes are simply not shown in the representation. 



X 

Y X The CLP(FD) variables. 

Y An abstractkm of the variable: the size of its domain. 

Z Time. 

Figure 13: Meaning of the dimensions in the 3-D representation. 

use_module(library(clpfd)). 

use_module(library(trifid)). 

dgr(ListOfVars):-

ListOfVars = [G.O.B.N.E,A,R,L 

open_log(ListOfVars, Handle), 

domain(ListOfVars, 0, 9), 

log_state(Handle), 

D #> 0, 

log_state(Handle), 

G #> 0, 

log_state(Handle), 

all_different(ListOfVars), 

log_state(Handle), 

100000*D + 10000*0 + 1000*N + 

100000*G + 10000*E + 1000*R + 

100000*R + 10000*0 + 1000*B + 

log_state(Handle), 

T,D] , 

100*A + 

100*A + 

100*E + 

visual_labeling(ListOfVars, Handle), 

close_log(Handle). 

10*L 

10*L 

10*R 

+ D + 

+ D #= 

+ T, 

'/,'/, Added 

'/,'/, Added 

'/,'/, Added 

'/,'/, Added 

'/,'/, Added 

'/,'/, Added 

Figure 14: The annotated D0NALD + GERALD = R0BERT FD program. 

This filtering can be specified using the source language—in fact, the constraint which is to 
be abstracted should be the filter of the domain of the displayed variables. 

Another alternative is to perform a more semantic "compaction" of parts of the domain. 
As an example, consider presenting the domain of a variable simply as a number, denoting 
how many valúes remain in its current domain, thus providing an indication of its "degree of 
freedom". This idea is the basis of our next visualization. 

5.2 Domain Compaction and New Dimensions 

Besides the problems in applications with large domains, the static representations of the 
history of the execution (Figure 5) can also fall short in showing intuitively how variables 
converge towards their final valúes, again because of the excess of points in the domains, or 
because an execution shows a "chaotic" profile. A better option is to use the number of active 
valúes in the domain as coordinates in an additional dimensión. Figure 14 shows a CLP(FD) 
program for the D0NALD + GERALD = R0BERT puzzle. The program was annotated with calis 
to predicates which act as spy-points, and log the sizes of the domains of each variable at the 
time of each cali. 



Figure 15: Execution of the DONALD + GERALD = ROBERT program 

Figure 15 is an execution of the program in Figure 14. The variables closer to the origin 
(the ones which were labeled first) are assigned valúes quite soon in the execution and they 
remain fixed. There are backtracking points scattered along the execution, which appear 
as blocks of variables protruding out of the picture. There is also a variable (viewed as a 
white strip in the middle of the picture) which appears to be highly constrained, so that its 
domain is reduced right from the beginning; that variable is probably a good candidate to be 
labeled soon in the execution. Some other variables apparently have a high interdependence 
(at least, from the point of view of the solver): in case of backtracking, the change of one 
of them affects the others. This suggests that the variables in this program can be classified 
into two categories: one with highly related variables (those whose domains change at once in 
case of backtracking) and a second one which contains variables relatively independent from 
those in the first set. 

These figures have been generated by a tool, TRIFID, integrated into the VIFID en-
vironment. They were produced by using the ProVRML package [SCH99], which allows 
reading and writing VRML code from Prolog, with a similar approach to the one used by 
PiLLoW [CH97]. One advantage of using VRML is that sophisticated VRML viewers are 
readily available for most platforms. The resulting VRML file can be loaded into such a 
viewer and rotated, zoomed in and out, etc. Another reason to use VRML is the possibility 
of using hyper-references to add information and animation to the depiction of the execution 
without cluttering the display. 

5.3 A b s t r a c t i n g C o n s t r a i n t s 

As the number and complexity of constraints in programs grow visualizing them as relation-
ships among variables may cause the same problems we faced when trying to represent valúes 
of variables. The solutions suggested for the case of representation of valúes are still valid 
and can give an intuition of how a given variable relates to others. However, it is not always 
easy to deduce from them how variables are related to each other, due to the lack of accuracy 
in their representation. 

A different approach to abstracting the constraints in the store is to show them as a 
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Figure 16: Constraints represented as a Figure 17: Bold frames represent definite val-
graph u e s 

graph [MR91] where variables are represented as nodes which are linked iff the corresponding 
variables are related by a constraint (Figure 16)1. This representation provides the program-
mer with an approximate understanding of the constraints in the solver (but not exactly 
which constraints they are). Moreover, since different solvers behave in different ways, this 
can provide hints about better ways of setting up constraints for a given program and con­
straint solver. The topology of the graph can be used to decide whether a reorganization of 
the program is advantageous; for example, if there are subsets of nodes in the graph with a 
high degree of connectivity, but those subsets are loosely interconnected, it may be worth to 
set up the tightly connected sections and make a (partial) enumeration early, to favor local 
constraint propagation, and then link the different regions. Animation can reflect propagation 
and how variables acquire a definite valué. In Figure 17 some variables became definite, and 
as a result some constraints them are not shown any more: this reflects the idea of a sys-
tem being progressively simplified, and also visualizes how backtracking affects the constraint 
store. Further filtering can be accomplished by selecting which types of constraints are to be 
represented (e.g, represent only "greater than" constraints, or certain constraints flagged in 
the program through annotations). 

6 Implementation Details 

VIFID and TRIFID are implemented in Prolog and Tcl/Tk, and rely on a few primitives to 
open socket connections and to spawn and communicate with other processes (primarily for 
the Tcl/Tk part). VIFID is completely interactive, and since the library has direct access to 
the program variables, the user can update them on the fly. The execution can continué after 
updating, but the user does not have to commit to this update: a RESET button forces the 
program to backtrack to the point where the update was made. Only a few rutines commonly 
used throughout the execution were written directly in Tcl/Tk. The flexibility of Tcl/Tk was 
enough, since most of the windows have a simple layout. The speed of Tcl/Tk was not much 
of a problem, except when the number of objects in the window became very large. Overall, 
the tool was strong enough to be used routinely, and the visualization was found to be useful 
and easy to understand. 

TRIFID shares many ideas with VIFID: it is also a Prolog library which scans the variables 
it has access to, but instead of starting an interactive 3-D visualization, we decided to take 
advantage of a Prolog to VRML interface and genérate VRML. Gathering the data was not 
a computational problem; instead, we found troubles related with the size of the generated 

1This particular figure is only appropriate for binary relationships; constraints of higher arity would need 
hypergraphs. 



files2, and with the speed of the VRML visualizers (freely) available. 

7 Related Work 

Early work in constraint visualization was made for Eclipse [ECR93]; the GRACE sys-
tem [Mei96] represented the valúes of constrained variables as we did in Section 3.1, con-
nected to a Byrd box model for program debugging. Additional information was encoded 
using different color shades. More recently, the DisCiPl project [DHMOO] fostered the use of 
visualization and assertion-based debugging tools. 

Some constraint applications need to set up complex relationships among the variables. In 
those cases a visualization which mimics the initial problem helps in mapping problems in the 
constraint solving to the original problem. The Global Constraint visualization tool [SABBOO] 
does precisely this, by incorporating special visualizations tailored to some of the complex 
constraints available in the CHIP system. Although this gives an intuitive representation, it 
needs the user to map the problem to one of these standard complex constraint templates. 

The visualization of constraint networks, proposed here as an constraint abstraction 
amenable of being treated and studied, was implemented at a different level in the Constraint 
Investigator [TM99], interfaced with the Oz Explorer [Sch97]. This proposal visualizes a graph 
which is cióse to the implementation. The ability to expand and collapse the constraint net 
and to filter the variables increases the tool usefulness in the case of big executions. It gives 
a good representation of the store, but probably needs some further structure to represent 
complex problems. 

8 Conclusions 

We have discussed techniques for visualizing data evolution in CLP. The graphical represen-
tations have been chosen based on the perceived needs of a programmer trying to analyze the 
behavior and characteristics of an execution. We have proposed solutions for the representa­
tion of the run-time valúes of the variables and of the run-time constraints among them. In 
order to be able to deal with large executions, we have also discussed some abstraction tech­
niques, including the 3-D rendition of the evolution of the domain size of the variables. The 
proposed visualizations for variables and constraints have been tested using two integrated 
prototype tools: VIFID and TRIFID. VIFID and, to a lesser extent, TRIFID, which is less 
mature, have evolved into a practical system. Also, some of the views and ideas proposed 
have since made their way to other tools, such as those developed for the CHIP system [SAOO]. 

2More precisely, the VRML visualizers had problems with that! 
3 http://clip.dia.fi. upm.es/ 
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