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ABSTRACT
Comprehension of programming and programs is known to
be a difficult task for many beginning students, with many
computing courses showing significant drop out and failure
rates. In this paper, we present a notional machine imple-
mentation, Novis, to help with understanding of program-
ming and its dynamics for beginning learners. The notional
machine offers an abstraction of the physical machine de-
signed for comprehension and learning purposes. Novis pro-
vides a real-time visualisation of this notional machine, and
is integrated into BlueJ.

1. INTRODUCTION
It is well understood that programming is a fundamen-

tal activity in computer science; it is the process by which
conceptual ideas are mapped to instructions that can be un-
derstood and interpreted by a machine. The teaching of
introductory programming within computer science is es-
sential, and mastery of this skill necessary for students to
progress. To be successful in programming, students have
to be able to form a valid and consistent mental model of the
machine executing their instructions. Forming such a model
is not easy, and the computing education community has
no agreed, shared abstract model in widespread use. Of-
ten, ad-hoc models are formed by instructors or students,
but these are not guaranteed to be consistent or correct. A
shared, accepted and valid mental model – a notional ma-
chine – would benefit both instructors and students in their
attempts to teach and learn programming.

1.1 Notional Machines
The difficulties of learning to program are well known;

Kim & Lerch, for example, provide a summary [7]. Many
students fail or drop out of introductory courses, with a fail-
ure rate of 33% reported by Bennedsen and Caspersen not
out of line with many courses around the world [2]. A pop-
ular hypothesis presented by Du Boulay [4] states that stu-
dents find the concepts of programming too hard to grasp, do
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not understand the key properties of their program, and do
not know how to control them by writing code. Du Boulay
took this as a starting point and motivation to formalise
the concept of a notional machine. A notional machine is
an abstraction designed to provide a model to aid in under-
standing of a particular language construct or program ex-
ecution. The notional machine does not need to accurately
reflect the exact properties of the real machine; it presents
a higher conceptual level by providing a metaphorical layer
above the real machine (or indeed several such layers) that
are hoped to be easier to comprehend than the real machine.

Some teachers, when presented with the idea of a notional
machine, are initially skeptical, holding the view that stu-
dents need to understand what “really happens” to become
expert programmers. It should be noted that all models held
by almost all programmers are notional, in that they rep-
resent simplifications of the real machine. Even discussions
about assembly language or machine code are almost neces-
sarily abstractions, since hardware optimisations of mod-
ern processors are so complex that they cannot fully be
taken into account when reasoning about program execution
(other than by a small group of highly trained specialists
working on processor design). In addition, details of proces-
sor designs are often trade secrets of the manufacturer – we
cannot actually know what “really happens”.

A meaningful discussion about notional machines there-
fore does not centre around the question whether or not
to use one, but around the most useful level of abstraction
to aim for. Whatever the preferred abstraction level, it is
important that the notional machine is complete and consis-
tent: it must be able to explain all observable behaviour of
the real machine, and reasoning about the notional machine
must allow accurate predictions to be made about behaviour
of the real machine [5].

The design of the notional machine will typically be heav-
ily influenced by the programming paradigm of the language
used for implementation. In this paper, we discuss a notional
machine for programs written in Java, therefore representing
an object-oriented model.

A notional machine’s metaphorical layer can be presented
in many forms. Visual metaphors are most commonly used
to present state and events that unfold in the actual ma-
chine. Visual representations can be replaced or augmented
by other media, such as sound.
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1.2 The status quo
At present, one of the most common techniques for teach-

ers to explain dynamic elements of object orientation, and
the execution of object-oriented programs, is through the
drawing of diagrams of objects and classes, often by hand
on a whiteboard. No consistent, complete and widely ac-
cepted shared notation exists across classrooms, and it is
left to the student to form a mental model based on often
ad-hoc diagrams the teacher may use.

One contribution of this work is to provide a shared model
and notation that can be used by teachers and lecturers, in
textbooks and in discussions. It provides learners with a
consistent, correct and useful representation to support the
formation of a mental model that transfers to a number of
contexts and environments.

The second contribution is Novis, an implementation of
this notional machine in a software system. Novis is inte-
grated as a new main interface in an experimental version of
the BlueJ environment [9], where it replaces the traditional
object bench. It uses the notional machine notation to vi-
sualise the execution of a Java program in real time. It can
show the state of a program at selected points in time of the
execution, or it can animate the execution over a period of
time.

2. RELATED WORK
Several educational software systems are in use in class-

rooms that offer presentations and animations of notional
machines. UUhistle [14] is a software tool that provides an-
imated, live visualisations of the execution of Python pro-
grams. The model employed operates at a fairly low level,
animating single statements to illustrate the functionality of
single constructs, such as assignment or parameter passing.
A related tool, Jeliot [12], operates at a similar conceptual
level to UUhistle using the Java language. Both of these
tools lose their usefulness once the functionality of the ba-
sic programming language constructs is understood by the
learner. The level of abstraction is too low to usefully vi-
sualise larger examples or more complex data structures,
and therefore these tools are often employed for only a few
weeks at the beginning of a learning experience. In contrast,
a goal for our notional machine design is to be able to visu-
alise somewhat larger examples and to be useful to illustrate
or investigate program behaviour even after basic constructs
have been mastered.

The use and effectiveness of these systems for learning is
still under debate. Although literature regarding algorithm
visualisation effectiveness is readily available, literature on
program visualisation is more scarce. For algorithm visuali-
sations, one meta-study [6] found a high correlation of effec-
tiveness in those studies that actively involved the students.
Similar results have not yet been shown for program visuali-
sations. Where literature does exist, it is far from conclusive.
In one study evaluating Jeliot’s effectiveness, Moreno and
Joy found that on average, the transfer of knowledge from
the tool to the student was not successful [11]. However, a
different study (also using Jeliot) claims “a significant per-
centage of students had achieved better results when they
were using a software visualisation tool” [13].

For our own work this means that demonstrating the ef-
fectiveness of the tool has yet to be demonstrated in future
work. No convincing prior work exists that allows reliable

conclusions to be drawn about the efficacy of such systems.

3. RESEARCH QUESTIONS
This work supports two distinct and separate use cases:

the comprehension of programming and the comprehension
of programs. The first is most relevant for beginning pro-
grammers: the goal here is to understand how a computing
system executes program code, the mechanics and details of
a programming language and the concepts of the underly-
ing paradigm. Typical questions that the system helps to
answer in this case are What does an assignment statement
do? or How does a method call work? For experts who have
mastered the language this aspect is no longer relevant.

The second use case is to understand and investigate a
given program. The goal is to become familiar with a given
software system, or to debug a program. Typical questions
in this case are Why does my program behave like this?
or How many objects are being created when I invoke this
method? This part of the functionality remains relevant
even for seasoned programmers.

These use cases lead us to the main aims of the model:

Aim 1 : To provide a shared notation for representing the
execution of an object-oriented program within the
proposed model.

Aim 2 : To provide a valid mental model for learning and
reasoning about object-oriented programming.

Aim 3 : To provide a basis for an implementation in soft-
ware that can be used to provide a visualisation of the
model alongside a running object-oriented program.

These aims further lead us to the two principle research
questions:

Research question 1 : What should the notation for a
high level, consistent model of a notional machine, de-
veloped to aid novices in learning to program in an
object-oriented language look like?

Research question 2 : Can a software tool be created
that dynamically visualises the execution of typical be-
ginners’ programs using this notional machine notation
in a way that is manageable and useful?

For the purpose of RQ1, we define consistent to mean that
valid reasoning within that model must correctly predict the
behaviour of the underlying system. Our targeted problem
space covers Java programs of a complexity up to first year
university programming problems. Thus, we can explicitly
exclude some constructs from our model, if we postulate
that they are outside our targeted problem space. This is
discussed in more detail below (section 4).

This paper presents the design of the notional machine
and does not include an evaluation of its effectiveness. A
usability study related to the tool will be presented sepa-
rately in a future paper.

4. PROBLEM SPACE
Our notional machine is aimed at first year programming

students and therefore focuses on material typically covered
within that year. While the model and software system may
well remain useful for tasks in later years, where a conflict
between scope and simplicity emerges, simplicity will take



precedence for constructs not typically discussed in intro-
ductory programming courses.

For a more systematic definition of the problem space,
we look at programming examples and projects covered in
some popular introductory textbooks. A small number of
the most popular introductory Java textbooks (including
Objects First With Java[1], a book frequently used when
teaching with BlueJ) are used to set the scope against which
completeness is defined. These books were methodically cho-
sen by taking the top ten selling relevant, introductory Java
programming textbooks from Amazon. The notional ma-
chine should be able to model and visualise all examples
from these books.

5. DESIGN
The notional machine notation has been partly described

in a previous paper [3]. It also introduced Novis, an im-
plemented form of the notional machine that has been inte-
grated into BlueJ’s main interface. Novis can present static
notional machine diagrams at selected stages of program
execution, or animate ongoing execution in real time. An
earlier prototype of Novis was also presented in a previous
paper [3], the version described here is more complete and
the description more detailed.

5.1 BlueJ
The notional machine and visualisation that this work has

produced is integrated as part of the BlueJ IDE, an existing
IDE designed for educational use [9]. The design of BlueJ is
based around Blue [8], an earlier system that incorporated
a similar environment with a separate language. BlueJ is a
popular tool; it has been translated into 17 languages and
“is used in introductory programming courses at secondary
schools and Universities worldwide” [15].

The majority of BlueJ’s main interface contains a class
diagram which is useful for visualising the static relation-
ships between classes and interfaces. Any classes created are
added to the diagram, and both their “uses” and inheritance
relationships are shown. The layout is partially automated;
the user positions the classes by hand, but the inheritance
and use arrows are drawn automatically. An object bench
is also provided. Constructors of the classes in the class
diagram can be interactively invoked, creating an instance
of the class on the object bench. These current elements
provide limited functionality with respect to dynamic visu-
alisation; in particular the class diagram only shows compile
time relationships.

Novis provides a new view that utilises the real estate
previously occupied by the class diagram and object bench.

5.2 Class diagram
Novis depicts the static view of classes and their references

between them in a very similar way to BlueJ (Figure 1).
As with BlueJ, the user is responsible for the layout of the
classes but Novis draws the arrows automatically. When ob-
jects are created in this view, they are displayed “collapsed”
towards the right hand side.

Classes in the diagram are placed automatically when they
are created but can be moved by the user; clicking on the
class toggles between its simplified and detailed state. The
inheritance and use arrows are placed and updated auto-
matically by the software.

Figure 1: The class diagram shown in Novis.

5.3 Object creation and destruction
The class diagram may be collapsed towards the left hand

side of the window at any time so that the dynamic object
visualisation fills the majority of the window (Figure 2). Ob-
jects may be either user created or implicitly created. User
created objects are created as a direct result of the user exe-
cuting an object’s constructor; implicitly created objects are
instead created as a result of other code executing. When
an object is created, Novis searches for an appropriate space
in the diagram and places the object into that space (with
a short animation) before executing its constructor.

Initially, the object is displayed grey in colour to indicate
that it has not been fully instantiated. It then switches to
its default red colour on the constructor’s completion. If
an exception occurs during the object’s constructor, it may
remain in its default grey colour to indicate that a problem
has occurred with its instantiation.

User created objects may only be removed manually, by
right clicking on the object and selecting “Remove object”.
Implicitly created objects are always removed from the vi-
sualisation when they become eligible for garbage collection
(not when they are actually collected, which may of course
be some time later.) They may not be removed manually,
since forcibly removing an object from the graph is not nor-
mal behaviour, and would likely have undesirable side ef-
fects! In both cases, the objects disappear with a brief “puff
of smoke” animation, drawing the user’s attention to the
disappearance of the object. As opposed to the traditional
BlueJ object bench, Novis visualises all objects created as
part of a program execution, not just the top level objects
explicitly created by the user.

5.4 Viewing object state
Objects are initially created in their“collapsed”state, that

is we do not see details about the object’s underlying state.
If a user wishes to view the contents of an objects fields
however, this can be done by clicking on the object. The
name of the field is displayed as a label on the left hand
side, and the value of the field is displayed on a white box
on the right hand side (Figure 3). The field value may be an
inline value or a reference. In either case, the values of these



Figure 2: The Novis notional machine visualiser
with a simple example.

Figure 3: The expanded view of an object.

fields are updated in real-time as the object graph changes.

5.5 Interactive method calls
Methods may be called interactively on any object by

right-clicking it, showing a context menu. Any methods
may be executed by clicking on their name in this menu; if
a method requires a parameter then a dialog will be shown
(similar to that in BlueJ) for the user to enter the parameter
value.

5.6 Method execution
Active method executions are visualised on the bottom

right hand side of objects or classes, depending on whether
they are instance or static methods. The methods are only
visualised when they are part of the currently active call
stack. If more than one method is executed on the same
object (even if this is the same method such as when using
recursion) then the method is displayed underneath the first
(as on the Student object in Figure 4).

Figure 4: Novis visualising the execution of method
calls.

Figure 5: Novis displaying a method call chain, pass-
ing a parameter.

5.7 Call chain
The stack is often represented as a distinct visualisation

from the object heap, violating Mayer’s synchronization prin-
ciple [10]. This states that information should not be pre-
sented to the user in two distinct diagrams; the information
should be unified in a single diagram. If not, as in the tra-
ditional case, the user is then responsible for mentally syn-
chronizing two distinct diagrams (and this places increased
cognitive load on the user). Novis unifies the traditionally
separate stack diagram with the object heap view, display-
ing a trace over the methods in currently active stack frames
(Figure 5). This trace dynamically updates as the state of
the stack changes. The topmost method on the stack is ad-
ditionally shaded in a slightly different colour so the user
can easily visualise the topmost element on the stack (this
is the area where code is currently executing, so is arguably
the most important method.)

5.8 Parameter passing and return values
Figure 5 also shows a visualisation of a parameter being

passed. Parameters are shown in boxes that first appear



Figure 6: Novis visualising the passing of two pa-
rameters.

on the calling method, and then travel at the front of an
animation of the call chain arrow until they reach the des-
tination method. In the case of more than one parameter,
the values are enclosed in a separate box and visualised in
the same way (Figure 6). Return values are also visualised
using this technique – the return value is displayed in a box
and retracts from the method that returned the value as the
call chain retracts.

5.9 Speed and stepping granularity
The speed of the visualisation should not be fixed – in

some parts of a program, the user may not find the visual-
isation useful, in other parts they may wish to slowly step
through it in great detail. It is therefore necessary to allow
the user to control the speed of the visualisation, and ensure
they can easily change this setting while the visualisation is
running.

Novis therefore includes a slider to control the speed of
the animation. At its maximum setting, no delay is added
and the program executes at the maximum speed possible
with the current choice of animation detail. At the slow-
est, a two-second pause is added between each step of the
program. The interim levels have pauses that scale linearly
between these two values. A “step” of the program in our
context is a method call or a method return – single state-
ment executions are not visualised.

There are situations where user-controlled, line by line
execution is useful. The obvious scenario where this type
of control may be desirable is with highly novice program-
mers, those who are still working with programs of only a
few lines. While this high level of detail would present an
overload of information for all reasonably sized programs,
in this scenario this is not the case. This use case of the
comprehension of programming remains prevalent for only a
short period of time; only while the novice is solely working
with very small programs. However, this can also be useful
when attempting to understand the particular workings of a
small section of code – that is the comprehension of a partic-
ular program. This use case remains viable for much longer,
well beyond the first year of a computer science degree –
even seasoned developers will occasionally need to step, line
by line, through a particular section of code to understand
the full extent of its behaviour.

Figure 7: Novis working with the BlueJ debugger.

Novis therefore provides a mechanism for user-controlled,
line by line execution in that it integrates well with the de-
bugger already present in BlueJ (Figure 7). A breakpoint
can be set at any point in the editor, and line by line exe-
cution then visualised by pressing the “step” button. This
enables the user to view objects and references being created
while they step through the source, allowing them to view
the visualisation on a more controlled, line by line level.

Through this mechanism a user can opt to visualise the
majority of a program in rather low detail, only switching to
a slow, high level of detail for a particular section of interest
(whether this is for debugging or comprehension purposes.)
They can of course also use it to visualise small programs
in very high detail if they wish, which may be ideal for lec-
turers explaining very small programs at the beginning of
CS1. It is important to note however that the usefulness of
this functionality is not limited to this small scale, novice
approach, it is useful for visualising small sections of much
larger programs in detail.

5.10 Level of detail
A second slider in the interface controls the level of de-

tail displayed in the diagram. With full detail visible, the
animation performs as described above: objects are shown
in detailed view with their fields visible, object creation and
destruction are animated, and method calls are dynamically
visualised with call chain arrows slowly extending, parame-
ter values passed visually from one method to another, and
return values moving the other way at the end of a method
execution as the call chain arrow retracts.

This level of detail is useful in early stages of learning,
when the focus of the learner is on understanding basics
of object interaction and method calls, when examples are
small and execution chains short. In later examples, this
level of detail becomes a hindrance, illustrating concepts
that have already been understood and obscuring informa-
tion about the program under investigation.

The visualisation offers seven levels of detail display, grad-
ually reducing or omitting various animations and display el-
ements as the setting is decreased. The lower-detail settings
show objects in their simplified view by default, resulting at
the extreme end in a “heatmap” view that focuses on object
creation, destruction and activity levels. The two sliders –
speed and detail – can be linked in the user interface to al-
low both to be adjusted in a single interface gesture. User
control over speed and animation detail ensures that our



Figure 8: Heatmap view illustrating program activ-
ity.

notional machine visualisation addresses a broad range of
use cases and remains relevant after the first few weeks of
programming instruction.

At the lowest level of detail Novis’s display turns into a
heatmap (Figure 8). Here, colour is used to indicate object
activity. Method calls are not textually displayed; instead,
objects “warm up” as methods are invoked, first turning a
lighter purple, then red, then yellow with increased activity.
All objects cool down gradually when not being active, so
that the most recent active objects are easily recognisable.

This view provides a very useful level of detail for exam-
ining an entire program, or a large section of a program.
While it is deliberately vague, it allows many problems to
be detected on a broad scale. Performance problems, for in-
stance, can be highlighted at the object level – if a particular
operation on an object takes longer than expected to com-
plete it will stay “warmer” for a longer period of time. The
relevant sub-section of the program can then be run using a
display that provides a much greater level of detail, homing
in on the exact method where the problem occurs.

6. STATUS AND FUTURE WORK
Novis is currently available for testing and evaluation pur-

poses; it can be downloaded from http://bluej.org/novis.
zip/. The system has been tested with a small number of
users with promising results, but no formal study on learning
impact has yet been completed.

Work in the near future will concentrate on further test-
ing of usability and effectiveness with first year students,
including studies to evaluate effects on program comprehen-
sion. The results from these studies will then be used to
refine the interface and functionality of the model and cor-
responding implementation.
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