
JSS Journal of Statistical Software
January 2007, Volume 17, Issue 10. http://www.jstatsoft.org/

RAGE: A Java-implemented Visual Random

Generator

Carlos Javier Pérez
Universidad de Extremadura

Hansgeorg Schwibbe
HAWK Hochschule für Angewandte

Wissenschaft und Kunst

Petra Weidner
HAWK Hochschule für Angewandte

Wissenschaft und Kunst

Abstract

Carefully designed Java applications turn out to be efficient and platform independent
tools that can compete well with classical implementations of statistical software. The
project presented here is an example underlining this statement for random variate gen-
eration. An end-user application called RAGE (Random Variate Generator) is developed
to generate random variates from probability distributions. A Java class library called
JDiscreteLib has been designed and implemented for the simulation of random variables
from the most usual discrete distributions inside RAGE. For each distribution, specific
and general algorithms are available for this purpose. RAGE can also be used as an
interactive simulation tool for data and data summary visualization.

Keywords: Random numbers, discrete variates, statistical visualization, Java.

1. Introduction

The importance of simulation has increased in many areas of research and application during
the past several years. Stochastic simulation is widely used to validate procedures and provide
guidance for both theoretical and practical problems. Today, truly complex models often can
only be computationally handled by simulation-based techniques.
Simulation methods require random variate generation. For this reason, many generation
techniques have been developed. Some references on random variate generators are Devroye
(1986), Ripley (1987) and Gentle (1998), among others. The current research trend is the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6303103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/


2 RAGE: A Java-implemented Visual Random Generator

development of algorithms that are valid for large families of distributions. The programs
based on these algorithms are called universal (also automatic or black-box) generators. In
the last decade, some universal algorithms have been introduced, see Hörmann, Leydold, and
Derflinger (2004) for a monograph on this topic.
The main focus of this project has been the design and Java-implementation of a program
called RAGE (Random Variate Generator) to serve as an end-user application for generating
random numbers. The Java class library JDiscreteLib has been developed for this project.
RAGE uses JDiscreteLib to generate random variates from the most usual discrete distribu-
tions. For each distribution, specific and general algorithms to generate from are available.
RAGE can also be used as an interactive simulation tool for data and data summary visual-
ization. Among the very important characteristics are:

• it is visual and dynamic.

• it is intuitive and user-friendly.

• it is programmed in Java, a robust and platform independent programming language.

• it can easily be extended for more functionality.

• the complete documentation is clearly presented in JavaDoc.

• it allows for saving the generated variates and their summaries as well as graphics.

• it is freely distributed under GNU General Public License.

The outline of the paper is as follows. Section 2 shows how RAGE can be installed, run and
extended. The class library JDiscreteLib is described in Section 3. Finally, computational
times for some examples are shown in Section 4.

2. The application RAGE

RAGE is an MDI (Multiple Document Interface) application where the content is implemented
with plug-ins. This makes easy to extend the application with further functionality. The whole
documentation is written in JavaDoc and can be generated from the source files by using the
javadoc command. All source files are exported into the applications jar archives.

2.1. Installing RAGE

RAGE and the class library JDiscreteLib are published under the terms of the GNU Gen-
eral Public License and can be downloaded from http://sourceforge.net/projects/rage.
Table 1 presents the files being available for the download. The program can be run on any
platform that supports Java 1.5 or higher. The current version of the program is 1.06. Future
updates will be placed under the same URL.

2.2. Running RAGE

This section describes how to run RAGE by presenting the main elements of its inferface. An
important characteristic of the program is that its usage is easy and intuitive as it will be
shown in this subsection.

http://sourceforge.net/projects/rage


Journal of Statistical Software 3

Filename Size (bytes) Architecture
JDiscreteLib-V1.06.zip 649865 Platform-independent

RAGE-V1.06.zip 332667 Platform-independent

Table 1: Files for downloading on SourceForge.net.

Once the program has been installed on the computer and the RAGE.jar archive has been
executed, an empty window appears on the screen. This window presents the general menus
(File, Distributions, Extras and Help). The menu Distributions has been designed to allow
the user to select the distribution he wants to generate random variates from. In the current
program version, discrete distributions from the java class JDiscreteLib are available. These
distributions are divided into distributions with finite support and distributions with infinite
support as it is shown in Figure 1.

Figure 1: Distributions menu

After choosing the preferred distribution, a new window appears inside the main one. This
window consists of four clearly differentiated parts as it is illustrated by Figure 2.

1. The first part (top-left) contains the default values for the parameters. They depend on
the kind of distribution. The values can be changed by pushing the top/down arrows
on the keyboard or by clicking on the top/down arrows inside the window. It is also
possible to enter the parameter values by using the given text field.

2. The second one (top-right) presents the simulation inputs and options. The combo
box Algorithm sets the algorithm to be used for the generation of the simulated values,
whereas the combo box Sample size sets the number of random experiments to be carried
out. The check box Disable animation allows to activate or deactivate the animation
during the simulation. Animation enables a visualization of the goodness-of-fit through
the time. Deactivating animation is useful to measure the computational times of the
algorithms. Default values for sample size and animation can be changed in the main
menu Extras. Finally, the button Simulate starts the simulation.

3. The third part (bottom-left) has been designed to show the main statistics and the
probability distribution. The table at the top represents the statistics and the table at
the bottom shows the probability distribution. For both tables, the blue colored values
correspond to the exact distribution, and the red colored values stand for the simulated
one.



4 RAGE: A Java-implemented Visual Random Generator

Figure 2: Window for a Binomial distribution

4. The last one (bottom-right) contains the graphics. The blue bars in the coordinate
system show the exact probabilities for the selected distribution, while the red bars
show the simulated values. The coordinate system can be rescaled by clicking on it with
the mouse, allowing a better visualization of the barplot. The graphics for the infinite
domain distributions are restricted by a threshold to show only the significant bars.
In the Extras menu, the threshold can be selected to represent only the values with a
probability larger than it. If the number of values for the variable is large and it does
not allow a good visualization, then a “No graphics available” message is provided.

Finally, the menubar contains the File menu that provides some loading and saving options.
The menu item Load XML opens a dialog window where the user has the possibility to load a
previously saved XML (eXtended Markup Language) file. Save data opens a dialog window
where the user is able to save the generated data and summary data as an XML or ASCII
file. The XML file contains all the necessary information to rebuild the window (parameters,
true and simulated values, graphics,...). The menu Save graphics opens a dialog window that
allows the user to save the graphics as a PNG (Portable Network Graphics) or JPEG (Joint
Photographic Expert Group) file.



Journal of Statistical Software 5

2.3. Extending RAGE

The Java class for the generation of random numbers included in RAGE is JDiscreteLib
(see Section 3). This class contains algorithms to generate random numbers from univariate
discrete distributions. New classes can be added, for example for the generation of random
numbers from univariate continuous distributions.

The application has been designed by using plug-ins in order to ease future extensions that
provide more functionality. New plug-ins can be included in the following way:

1. Create a new Java project.

2. Bound the jar archive RAGE.jar into the project.

3. Create a new plug-in class which is derived from the class
“mdiframework.MDIPlugin”. For example:

import java.awt.BorderLayout;
import java.util.Locale;
import javax.swing.;
import mdiframework.MDIPlugin;

public class MyPlugin extends MDIPlugin {
private JInternalFrame iFrame = null;
private JLabel jLabel = null;
public JInternalFrame getJInternalFrame() {
if (this.iFrame == null) {
this.iFrame = new JInternalFrame();
this.iFrame.getContentPane()
.setLayout(new BorderLayout());

this.iFrame.getContentPane()
.add(this.getJLabel(),
BorderLayout.CENTER);

this.iFrame.setSize(400, 400);
}
return this.iFrame;

}
public JLabel getJLabel() {
if (this.jLabel == null) {
this.jLabel = new JLabel();
this.jLabel.setText("Hello plug-in !!!");
this.jLabel.setHorizontalAlignment(
SwingConstants.CENTER);

}
return this.jLabel;

}
public String getPluginName() {
return "My plug-in";

}



6 RAGE: A Java-implemented Visual Random Generator

public int getPreferredIndex() {
return 1;

}
public String getSubmenuName() {
return "New extensions";

}
public void setResourceBundle(Locale locale) {
// Optional: Set the resource bundle:
/* this.bundle = ResourceBundle

.getBundle("PluginBundle", locale); */
}

}

4. Export the project as a jar archive.

5. Copy the exported jar archive into the directory
“plug-ins” inside the RAGE folder.

6. Start RAGE with the new plug-in.

Future extensions of RAGE will include new distributions with the corresponding generat-
ing algorithms. The direct extension is for univariate continuous distributions. Specific and
general generating algorithms will be included in a future version. Also, both discrete and
continuous multivariate distributions will be considered. It is remarkable that in multidimen-
sional settings everything becomes more difficult. However, an important number of general
and particular algorithms have been designed for multivariate distributions (see, for example,
Hörmann et al. (2004)). In this case, the multidimensional extension should include modifi-
cations in the RAGE program to accommodate the new situation, e.g., to show the graphics
and statistics in different windows for each vector component. Finally, tools to compare
algorithms in terms of efficiency will be implemented.
The complete information about the program structure and the functionality can be found in
the documentation included in JavaDoc.

3. The class library JDiscreteLib

The class library JDiscreteLib contains random generators for the most usual univariate dis-
crete distributions with finite as well as with infinite support (Uniform, Bernoulli, Binomial,
Hypergeometric, User-supplied, Poisson, Logarithmic, Geometric, Pascal and Negative Bino-
mial). Specific and general algorithms have been implemented.
Specific algorithms inside JDiscreteLib:

• the inverse transformation method (Basic uniform) for the uniform distribution,

• the generator for the Bernoulli distribution (Basic Bernoulli) according to Gentle (1998),
page 47,

• the Summing Bernoulli Variates algorithm for the Binomial distribution (Ripley 1987,
page 78),



Journal of Statistical Software 7

• the Geometric Method for the Binomial distribution as in Devroye (1980),

• the Uniform Variate Multiplication algorithm (Devroye 1986, page 504) for the Poisson
distribution,

• the Exponential Interarrival Times method (Bratley, Fox, and Schrage 1987, page 182)
for the Poisson distribution,

• an algorithm based on a Distributional Property (Devroye 1986, page 547) for the log-
arithmic distribution,

• the Exponential Variates method (Ripley 1987, page 77) for the Geometric distribution,

• the Experimental Method (Devroye 1986, page 499) for the Geometric distribution,

• the Summing Geometric Variates algorithm (Devroye 1986, page 543) for the Pascal
distribution,

• the Composition Method (Gentle 1998, page 101) for the Negative Binomial distribution.

Moreover, for distributions with finite support, the Alias method, inversion by sequential
search and inversion by indexed search are implemented, whereas for distributions with infinite
support, an indexed search tail method has been implemented. All the algorithms derived
from these methods are general and not specific for any kind of discrete distributions. The
Alias Method (Walker (1977)) is an algorithm that uses aliases and bar fractions. The bar
fractions and the aliases have to be calculated once at the beginning before generating random
variates. Inversion by sequential search is implemented as a slightly modified version of the
algorithm given in Hörmann et al. (2004), page 43, to optimize speed and performance by
using cumulative probabilities. In this version, the cumulative probability vector is calculated
during the setup and stores the result in memory instead of having to evaluate the sum of
probabilities each time a value is generated. This makes the algorithm much faster when the
sample size is moderate or large. Indexed Search and Indexed Search Tail are implemented
as described on page 45 and page 216 of Hörmann et al. (2004) by including the cumulative
probabilities in the setup step as in the previous algorithm.

4. Computation time comparisons

Carefully designed Java applications run fast enough on today’s hardware and can compete
well with classical implementations. This section shows how the proper selection of an al-
gorithm can save an important amount of computational time, allowing an efficient random
variate generation. Of course, the computational time depends on a variety of factors as the
computer used, the algorithms, the quality of the implementation, the kind of distribution to
generate from or the parameters. Speed is one criterion for the evaluation of random variate
generators, but not the only one. A tradeoff between computational time, implementation
effort and memory requirements has to be considered. A general choice is to use universal or
automatic algorithms that are valid for large families of distributions as, for example, those
included in Hörmann et al. (2004) and Marsaglia, Tsang, and Wang (2004).

In this section, time comparisons are presented for both a discrete distribution with finite
support and a discrete distribution with infinite support by using RAGE. The graphical



8 RAGE: A Java-implemented Visual Random Generator

animation must be disabled to show the execution time for the generating process (not for
calculating statistics or plotting the final graphics). The computational time is presented in
the bottom-right part of the window. The machine used is a Pentium IV PC operating at 3.0
GHz.

One million random variates from Binomial distributions with several parameters have been
generated. Table 2 shows the execution time in seconds for several methods. The methods
used are: Summing Bernoulli Variates (SBV), Geometric Method (GM), Sequential Search
(SS), Indexed Search (IS), and Alias Method (AM).

n p SBV GM SS IS AM
5 0.1 1.172 1.063 0.313 0.312 0.500

0.4 1.203 1.875 0.297 0.328 0.500
10 0.1 2.297 1.344 0.313 0.328 0.515

0.4 2.360 2.937 0.328 0.329 0.515
25 0.1 5.610 2.125 0.375 0.328 0.500

0.4 5.813 6.125 0.391 0.343 0.532
50 0.1 11.234 3.469 0.484 0.328 0.515

0.4 11.562 11.359 0.515 0.391 0.562
75 0.1 16.735 4.781 0.594 0.343 0.515

0.4 17.328 16.593 0.640 0.407 0.579
100 0.1 22.375 6.078 0.687 0.359 0.516

0.4 23.079 21.985 0.766 0.454 0.625

Table 2: Computational times in seconds for Binomial variates.

Similarly, one million random variates from Poisson distributions with several parameters
have been generated. Table 3 show the execution time in seconds for several methods. The
methods used are: Uniform Variate Multiplication (UVM), Exponential Interarrival Times
(EIT), and Indexed Search Tail (IST). Both Table 2 and Table 3 shows that very important
computational differences are obtained from one method to another.

Acknowledgements

Suggestions from Jacinto Mart́ın are gratefully acknowledged. This work has been partially
supported by Ministerio de Educación y Ciencia, Spain (Project TSI2004-06801-C04-03).

References

Bratley P, Fox BL, Schrage LE (1987). A Guide to Simulation. Springer-Verlag.

Devroye L (1980). “Generating the Maximum of Independent Identically Distributed Random
Variates.” Computer and mathematics with applications, 6, 305–315.

Devroye L (1986). Non-Uniform Random Variate Generation. Springer-Verlag.



Journal of Statistical Software 9

λ UVM EIT IST
0.1 0.937 0.485 0.328
0.2 0.953 0.516 0.328
0.3 0.984 0.546 0.328
0.4 1.063 0.625 0.328
0.5 1.078 0.656 0.328
0.6 1.094 0.688 0.328
0.7 1.125 0.719 0.328
0.8 1.175 0.734 0.328
0.9 1.266 0.766 0.328

1 0.735 0.782 0.328
5 2.250 1.735 0.359

10 3.485 2.890 0.360
25 7.141 6.375 0.406
50 13.203 12.140 0.438
75 19.203 17.922 0.454

100 25.313 23.891 0.485

Table 3: Computational times in seconds for Poisson variates.

Gentle JE (1998). Random Number Generation and Monte Carlo Methods. Statistics and
Computing. Springer-Verlag.

Hörmann W, Leydold J, Derflinger G (2004). Automatic Nonuniform Random Variate Gen-
eration. Statistics and Computing. Springer-Verlag.

Marsaglia G, Tsang WW, Wang J (2004). “Fast Generation of Discrete Random Variates.”
Journal of Statistical Software, 11(3), 1–11.

Ripley BD (1987). Stochastic Simulation. Wiley Series in Probability and Mathematical
Statistics. John Wiley and Sons.

Walker AJ (1977). “An Efficient Method for Generating Discrete Random Variables with
General Distributions.” ACM Transaction on Mathematical Software, 3, 253–256.

Affiliation:

Carlos Javier Pérez
Departamento de Matemáticas
Facultad de Veterinaria
Universidad de Extremadura
Avda. de la Universidad s/n
10071 Cáceres, Spain
Fax: +34/927257110
E-mail: carper@unex.es

mailto:carper@unex.es


10 RAGE: A Java-implemented Visual Random Generator

Hansgeorg Schwibbe
Fakultät Naturwissenschaften und Technik
HAWK Hochschule für Angewandte Wissenschaft und Kunst
Von-Ossietzky-Str. 99
D-37085 Göttingen, Germany
E-mail: hansgeorg.schwibbe@gmx.de

Petra Weidner
Fakultät Naturwissenschaften und Technik
HAWK Hochschule für Angewandte Wissenschaft und Kunst
Von-Ossietzky-Str. 99
D-37085 Göttingen, Germany
E-mail: weidner@hawk-hhg.de

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 17, Issue 10 Submitted: 2006-03-30
January 2007 Accepted: 2007-01-31

mailto:hansgeorg.schwibbe@gmx.de
mailto:weidner@hawk-hhg.de
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	The application RAGE
	Installing RAGE
	Running RAGE
	Extending RAGE

	The class library JDiscreteLib
	Computation time comparisons

