148,165 research outputs found

    A group learning management method for intelligent tutoring systems

    Get PDF
    In this paper we propose a group management specification and execution method that seeks a compromise between simple course design and complex adaptive group interaction. This is achieved through an authoring method that proposes predefined scenarios to the author. These scenarios already include complex learning interaction protocols in which student and group models use and update are automatically included. The method adopts ontologies to represent domain and student models, and object Petri nets to specify the group interaction protocols. During execution, the method is supported by a multi-agent architecture

    Basic protocols in quantum reinforcement learning with superconducting circuits

    Get PDF
    Superconducting circuit technologies have recently achieved quantum protocols involving closed feedback loops. Quantum artificial intelligence and quantum machine learning are emerging fields inside quantum technologies which may enable quantum devices to acquire information from the outer world and improve themselves via a learning process. Here we propose the implementation of basic protocols in quantum reinforcement learning, with superconducting circuits employing feedback-loop control. We introduce diverse scenarios for proof-of-principle experiments with state-of-the-art superconducting circuit technologies and analyze their feasibility in presence of imperfections. The field of quantum artificial intelligence implemented with superconducting circuits paves the way for enhanced quantum control and quantum computation protocols.Comment: Published versio

    Learning 3D Navigation Protocols on Touch Interfaces with Cooperative Multi-Agent Reinforcement Learning

    Get PDF
    Using touch devices to navigate in virtual 3D environments such as computer assisted design (CAD) models or geographical information systems (GIS) is inherently difficult for humans, as the 3D operations have to be performed by the user on a 2D touch surface. This ill-posed problem is classically solved with a fixed and handcrafted interaction protocol, which must be learned by the user. We propose to automatically learn a new interaction protocol allowing to map a 2D user input to 3D actions in virtual environments using reinforcement learning (RL). A fundamental problem of RL methods is the vast amount of interactions often required, which are difficult to come by when humans are involved. To overcome this limitation, we make use of two collaborative agents. The first agent models the human by learning to perform the 2D finger trajectories. The second agent acts as the interaction protocol, interpreting and translating to 3D operations the 2D finger trajectories from the first agent. We restrict the learned 2D trajectories to be similar to a training set of collected human gestures by first performing state representation learning, prior to reinforcement learning. This state representation learning is addressed by projecting the gestures into a latent space learned by a variational auto encoder (VAE).Comment: 17 pages, 8 figures. Accepted at The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2019 (ECMLPKDD 2019

    Resilient Autonomous Control of Distributed Multi-agent Systems in Contested Environments

    Full text link
    An autonomous and resilient controller is proposed for leader-follower multi-agent systems under uncertainties and cyber-physical attacks. The leader is assumed non-autonomous with a nonzero control input, which allows changing the team behavior or mission in response to environmental changes. A resilient learning-based control protocol is presented to find optimal solutions to the synchronization problem in the presence of attacks and system dynamic uncertainties. An observer-based distributed H_infinity controller is first designed to prevent propagating the effects of attacks on sensors and actuators throughout the network, as well as to attenuate the effect of these attacks on the compromised agent itself. Non-homogeneous game algebraic Riccati equations are derived to solve the H_infinity optimal synchronization problem and off-policy reinforcement learning is utilized to learn their solution without requiring any knowledge of the agent's dynamics. A trust-confidence based distributed control protocol is then proposed to mitigate attacks that hijack the entire node and attacks on communication links. A confidence value is defined for each agent based solely on its local evidence. The proposed resilient reinforcement learning algorithm employs the confidence value of each agent to indicate the trustworthiness of its own information and broadcast it to its neighbors to put weights on the data they receive from it during and after learning. If the confidence value of an agent is low, it employs a trust mechanism to identify compromised agents and remove the data it receives from them from the learning process. Simulation results are provided to show the effectiveness of the proposed approach

    Representing Conversations for Scalable Overhearing

    Full text link
    Open distributed multi-agent systems are gaining interest in the academic community and in industry. In such open settings, agents are often coordinated using standardized agent conversation protocols. The representation of such protocols (for analysis, validation, monitoring, etc) is an important aspect of multi-agent applications. Recently, Petri nets have been shown to be an interesting approach to such representation, and radically different approaches using Petri nets have been proposed. However, their relative strengths and weaknesses have not been examined. Moreover, their scalability and suitability for different tasks have not been addressed. This paper addresses both these challenges. First, we analyze existing Petri net representations in terms of their scalability and appropriateness for overhearing, an important task in monitoring open multi-agent systems. Then, building on the insights gained, we introduce a novel representation using Colored Petri nets that explicitly represent legal joint conversation states and messages. This representation approach offers significant improvements in scalability and is particularly suitable for overhearing. Furthermore, we show that this new representation offers a comprehensive coverage of all conversation features of FIPA conversation standards. We also present a procedure for transforming AUML conversation protocol diagrams (a standard human-readable representation), to our Colored Petri net representation
    • …
    corecore