141,032 research outputs found

    SEMA4A: An ontology for emergency notification systems accessibility

    Get PDF
    This is the post-print version of the final paper published in Expert Systems with Applications. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2009 Elsevier B.V.Providing alert communication in emergency situations is vital to reduce the number of victims. Reaching this goal is challenging due to users’ diversity: people with disabilities, elderly and children, and other vulnerable groups. Notifications are critical when an emergency scenario is going to happen (e.g. a typhoon approaching) so the ability to transmit notifications to different kind of users is a crucial feature for such systems. In this work an ontology was developed by investigating different sources: accessibility guidelines, emergency response systems, communication devices and technologies, taking into account the different abilities of people to react to different alarms (e.g. mobile phone vibration as an alarm for deafblind people). We think that the proposed ontology addresses the information needs for sharing and integrating emergency notification messages over distinct emergency response information systems providing accessibility under different conditions and for different kind of users.Ministerio de Educación y Cienci

    eStorys: A visual storyboard system supporting back-channel communication for emergencies

    Get PDF
    This is the post-print version of the final paper published in Journal of Visual Languages & Computing. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.In this paper we present a new web mashup system for helping people and professionals to retrieve information about emergencies and disasters. Today, the use of the web during emergencies, is confirmed by the employment of systems like Flickr, Twitter or Facebook as demonstrated in the cases of Hurricane Katrina, the July 7, 2005 London bombings, and the April 16, 2007 shootings at Virginia Polytechnic University. Many pieces of information are currently available on the web that can be useful for emergency purposes and range from messages on forums and blogs to georeferenced photos. We present here a system that, by mixing information available on the web, is able to help both people and emergency professionals in rapidly obtaining data on emergency situations by using multiple web channels. In this paper we introduce a visual system, providing a combination of tools that demonstrated to be effective in such emergency situations, such as spatio/temporal search features, recommendation and filtering tools, and storyboards. We demonstrated the efficacy of our system by means of an analytic evaluation (comparing it with others available on the web), an usability evaluation made by expert users (students adequately trained) and an experimental evaluation with 34 participants.Spanish Ministry of Science and Innovation and Universidad Carlos III de Madrid and Banco Santander

    OpenKnowledge at work: exploring centralized and decentralized information gathering in emergency contexts

    Get PDF
    Real-world experience teaches us that to manage emergencies, efficient crisis response coordination is crucial; ICT infrastructures are effective in supporting the people involved in such contexts, by supporting effective ways of interaction. They also should provide innovative means of communication and information management. At present, centralized architectures are mostly used for this purpose; however, alternative infrastructures based on the use of distributed information sources, are currently being explored, studied and analyzed. This paper aims at investigating the capability of a novel approach (developed within the European project OpenKnowledge1) to support centralized as well as decentralized architectures for information gathering. For this purpose we developed an agent-based e-Response simulation environment fully integrated with the OpenKnowledge infrastructure and through which existing emergency plans are modelled and simulated. Preliminary results show the OpenKnowledge capability of supporting the two afore-mentioned architectures and, under ideal assumptions, a comparable performance in both cases

    RAPID WEBGIS DEVELOPMENT FOR EMERGENCY MANAGEMENT

    Get PDF
    The use of spatial data during emergency response and management helps to make faster and better decisions. Moreover spatial data should be as much updated as possible and easy to access. To face the challenge of rapid and updated data sharing the most efficient solution is largely considered the use of internet where the field of web mapping is constantly evolving. ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action) is a non profit association founded by Politecnico di Torino and SITI (Higher Institute for the Environmental Systems) as a joint project with the WFP (World Food Programme). The collaboration with the WFP drives some projects related to Early Warning Systems (i.e. flood and drought monitoring) and Early Impact Systems (e.g. rapid mapping and assessment through remote sensing systems). The Web GIS team has built and is continuously improving a complex architecture based entirely on Open Source tools. This architecture is composed by three main areas: the database environment, the server side logic and the client side logic. Each of them is implemented respecting the MCV (Model Controller View) pattern which means the separation of the different logic layers (database interaction, business logic and presentation). The MCV architecture allows to easily and fast build a Web GIS application for data viewing and exploration. In case of emergency data publication can be performed almost immediately as soon as data production is completed. The server side system is based on Python language and Django web development framework, while the client side on OpenLayers, GeoExt and Ext.js that manage data retrieval and user interface. The MCV pattern applied to javascript allows to keep the interface generation and data retrieval logic separated from the general application configuration, thus the server side environment can take care of the generation of the configuration file. The web application building process is data driven and can be considered as a view of the current architecture composed by data and data interaction tools. Once completely automated, the Web GIS application building process can be performed directly by the final user, that can customize data layers and controls to interact with the

    An information assistant system for the prevention of tunnel vision in crisis management

    Get PDF
    In the crisis management environment, tunnel vision is a set of bias in decision makers’ cognitive process which often leads to incorrect understanding of the real crisis situation, biased perception of information, and improper decisions. The tunnel vision phenomenon is a consequence of both the challenges in the task and the natural limitation in a human being’s cognitive process. An information assistant system is proposed with the purpose of preventing tunnel vision. The system serves as a platform for monitoring the on-going crisis event. All information goes through the system before arrives at the user. The system enhances the data quality, reduces the data quantity and presents the crisis information in a manner that prevents or repairs the user’s cognitive overload. While working with such a system, the users (crisis managers) are expected to be more likely to stay aware of the actual situation, stay open minded to possibilities, and make proper decisions

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    Modeling an ontology on accessible evacuation routes for emergencies

    Get PDF
    Providing alert communication in emergency situations is vital to reduce the number of victims. However, this is a challenging goal for researchers and professionals due to the diverse pool of prospective users, e.g. people with disabilities as well as other vulnerable groups. Moreover, in the event of an emergency situation, many people could become vulnerable because of exceptional circumstances such as stress, an unknown environment or even visual impairment (e.g. fire causing smoke). Within this scope, a crucial activity is to notify affected people about safe places and available evacuation routes. In order to address this need, we propose to extend an ontology, called SEMA4A (Simple EMergency Alert 4 [for] All), developed in a previous work for managing knowledge about accessibility guidelines, emergency situations and communication technologies. In this paper, we introduce a semi-automatic technique for knowledge acquisition and modeling on accessible evacuation routes. We introduce a use case to show applications of the ontology and conclude with an evaluation involving several experts in evacuation procedures. © 2014 Elsevier Ltd. All rights reserved
    • …
    corecore