36 research outputs found

    Guarded Cubical Type Theory: Path Equality for Guarded Recursion

    Get PDF
    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with coinductive types. We wish to implement GDTT with decidable type-checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\"of type theory in which the identity type is replaced by abstract paths between terms. CTT provides a computational interpretation of functional extensionality, is conjectured to have decidable type checking, and has an implemented type-checker. Our new type theory, called guarded cubical type theory, provides a computational interpretation of extensionality for guarded recursive types. This further expands the foundations of CTT as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation, and present semantics in a presheaf category.Comment: 17 pages, to be published in proceedings of CSL 201

    Classifying topoi in synthetic guarded domain theory

    Full text link
    Several different topoi have played an important role in the development and applications of synthetic guarded domain theory (SGDT), a new kind of synthetic domain theory that abstracts the concept of guarded recursion frequently employed in the semantics of programming languages. In order to unify the accounts of guarded recursion and coinduction, several authors have enriched SGDT with multiple "clocks" parameterizing different time-streams, leading to more complex and difficult to understand topos models. Until now these topoi have been understood very concretely qua categories of presheaves, and the logico-geometrical question of what theories these topoi classify has remained open. We show that several important topos models of SGDT classify very simple geometric theories, and that the passage to various forms of multi-clock guarded recursion can be rephrased more compositionally in terms of the lower bagtopos construction of Vickers and variations thereon due to Johnstone. We contribute to the consolidation of SGDT by isolating the universal property of multi-clock guarded recursion as a modular construction that applies to any topos model of single-clock guarded recursion.Comment: To appear in the proceedings of the 38th International Conference on Mathematical Foundations of Programming Semantics (MFPS 2022

    A model of guarded recursion with clock synchronisation

    Get PDF
    AbstractGuarded recursion is an approach to solving recursive type equations where the type variable appears guarded by a modality to be thought of as a delay for one time step. Atkey and McBride proposed a calculus in which guarded recursion can be used when programming with coinductive data, allowing productivity to be captured in types. The calculus uses clocks representing time streams and clock quantifiers which allow limited and controlled elimination of modalities. The calculus has since been extended to dependent types by Møgelberg. Both works give denotational semantics but no rewrite semantics.In previous versions of this calculus, different clocks represented separate time streams and clock synchronisation was prohibited. In this paper we show that allowing clock synchronisation is safe by constructing a new model of guarded recursion and clocks. This result will greatly simplify the type theory by removing freshness restrictions from typing rules, and is a necessary step towards defining rewrite semantics, and ultimately implementing the calculus

    Guard Your Daggers and Traces: On The Equational Properties of Guarded (Co-)recursion

    Full text link
    Motivated by the recent interest in models of guarded (co-)recursion we study its equational properties. We formulate axioms for guarded fixpoint operators generalizing the axioms of iteration theories of Bloom and Esik. Models of these axioms include both standard (e.g., cpo-based) models of iteration theories and models of guarded recursion such as complete metric spaces or the topos of trees studied by Birkedal et al. We show that the standard result on the satisfaction of all Conway axioms by a unique dagger operation generalizes to the guarded setting. We also introduce the notion of guarded trace operator on a category, and we prove that guarded trace and guarded fixpoint operators are in one-to-one correspondence. Our results are intended as first steps leading to the description of classifying theories for guarded recursion and hence completeness results involving our axioms of guarded fixpoint operators in future work.Comment: In Proceedings FICS 2013, arXiv:1308.589

    On Induction, Coinduction and Equality in Martin-L\uf6f and Homotopy Type Theory

    Get PDF
    Martin L\uf6f Type Theory, having put computation at the center of logicalreasoning, has been shown to be an effective foundation for proof assistants,with applications both in computer science and constructive mathematics. Oneambition though is for MLTT to also double as a practical general purposeprogramming language. Datatypes in type theory come with an induction orcoinduction principle which gives a precise and concise specification of theirinterface. However, such principles can interfere with how we would like toexpress our programs. In this thesis, we investigate more flexible alternativesto direct uses of the (co)induction principles.As a first contribution, we consider the n-truncation of a type in Homo-topy Type Theory. We derive in HoTT an eliminator into (n+1)-truncatedtypes instead of n-truncated ones, assuming extra conditions on the underlyingfunction.As a second contribution, we improve on type-based criteria for terminationand productivity. By augmenting the types with well-foundedness information,such criteria allow function definitions in a style closer to general recursion.We consider two criteria: guarded types, and sized types.Guarded types introduce a modality ”later” to guard the availability ofrecursive calls provided by a general fixed-point combinator. In Guarded Cu-bical Type Theory we equip the fixed-point combinator with a propositionalequality to its one-step unfolding, instead of a definitional equality that wouldbreak normalization. The notion of path from Cubical Type Theory allows usto do so without losing canonicity or decidability of conversion.Sized types, on the other hand, explicitly index datatypes with size boundson the height or depth of their elements. The sizes however can get in theway of the reasoning principles we expect. Our approach is to introduce newquantifiers for ”irrelevant” size quantification. We present a type theory withparametric quantifiers where irrelevance arises as a “free theorem”. We alsodevelop a conversion checking algorithm for a more specific theory where thenew quantifiers are restricted to sizes.Finally, our third contribution is about the operational semantics of typetheory. For the extensions above we would like to devise a practical conversionchecking algorithm suitable for integration into a proof assistant. We formal-ized the correctness of such an algorithm for a small but challenging corecalculus, proving that conversion is decidable. We expect this development toform a good basis to verify more complex theories.The ideas discussed in this thesis are already influencing the developmentof Agda, a proof assistant based on type theory

    Denotational semantics of recursive types in synthetic guarded domain theory

    Get PDF
    Just like any other branch of mathematics, denotational semantics of programming languages should be formalised in type theory, but adapting traditional domain theoretic semantics, as originally formulated in classical set theory to type theory has proven challenging. This paper is part of a project on formulating denotational semantics in type theories with guarded recursion. This should have the benefit of not only giving simpler semantics and proofs of properties such as adequacy, but also hopefully in the future to scale to languages with advanced features, such as general references, outside the reach of traditional domain theoretic techniques. Working in Guarded Dependent Type Theory (GDTT), we develop denotational semantics for FPC, the simply typed lambda calculus extended with recursive types, modelling the recursive types of FPC using the guarded recursive types of GDTT. We prove soundness and computational adequacy of the model in GDTT using a logical relation between syntax and semantics constructed also using guarded recursive types. The denotational semantics is intensional in the sense that it counts the number of unfold-fold reductions needed to compute the value of a term, but we construct a relation relating the denotations of extensionally equal terms, i.e., pairs of terms that compute the same value in a different number of steps. Finally we show how the denotational semantics of terms can be executed inside type theory and prove that executing the denotation of a boolean term computes the same value as the operational semantics of FPC

    Denotational semantics in Synthetic Guarded Domain Theory

    Get PDF
    In functional programming, features such as recursion, recursive types and general references are central. To define semantics of this kind of languages one needs to come up with certain definitions which may be non-trivial to show well-defined. This is because they are circular. Domain theory has been used to solve this kind of problems for specific languages, unfortunately, this technique does not scale for more featureful languages, which prevented it from being widely used. Step-indexing is a more general technique that has been used to break circularity of definitions. The idea is to tweak the definition by adding a well-founded structure that gives a handle for recursion. Guarded dependent Type Theory (gDTT) is a type theory which implements step-indexing via a unary modality used to guard recursive definitions. Every circular definition is well-defined as long as the recursive variable is guarded. In this thesis we show that gDTT is a natural setting to give denotational semantics of typed functional programming languages with recursion and recursive types. We formulate operational semantics and denotational semantics and prove computational adequacy entirely inside the type theory. Furthermore, our interpretation is synthetic: types are interpreted as types in the type theory and programs as type-theoretical terms. Moreover, working directly in gDTT has advantages compared with existing set-theoretic models. Finally, this work builds the foundations for doing denotational semantics of languages with much more challenging features, for example, of general references for which denotational techniques were previously beyond reach

    Sequent Calculus in the Topos of Trees

    Full text link
    Nakano's "later" modality, inspired by G\"{o}del-L\"{o}b provability logic, has been applied in type systems and program logics to capture guarded recursion. Birkedal et al modelled this modality via the internal logic of the topos of trees. We show that the semantics of the propositional fragment of this logic can be given by linear converse-well-founded intuitionistic Kripke frames, so this logic is a marriage of the intuitionistic modal logic KM and the intermediate logic LC. We therefore call this logic KMlin\mathrm{KM}_{\mathrm{lin}}. We give a sound and cut-free complete sequent calculus for KMlin\mathrm{KM}_{\mathrm{lin}} via a strategy that decomposes implication into its static and irreflexive components. Our calculus provides deterministic and terminating backward proof-search, yields decidability of the logic and the coNP-completeness of its validity problem. Our calculus and decision procedure can be restricted to drop linearity and hence capture KM.Comment: Extended version, with full proof details, of a paper accepted to FoSSaCS 2015 (this version edited to fix some minor typos

    Coinductive Formal Reasoning in Exact Real Arithmetic

    Full text link
    In this article we present a method for formally proving the correctness of the lazy algorithms for computing homographic and quadratic transformations -- of which field operations are special cases-- on a representation of real numbers by coinductive streams. The algorithms work on coinductive stream of M\"{o}bius maps and form the basis of the Edalat--Potts exact real arithmetic. We use the machinery of the Coq proof assistant for the coinductive types to present the formalisation. The formalised algorithms are only partially productive, i.e., they do not output provably infinite streams for all possible inputs. We show how to deal with this partiality in the presence of syntactic restrictions posed by the constructive type theory of Coq. Furthermore we show that the type theoretic techniques that we develop are compatible with the semantics of the algorithms as continuous maps on real numbers. The resulting Coq formalisation is available for public download.Comment: 40 page
    corecore