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Just like any other branch of mathematics, denotational semantics of programming

languages should be formalised in type theory, but adapting traditional domain theoretic

semantics, as originally formulated in classical set theory to type theory has proven

challenging. This paper is part of a project on formulating denotational semantics in

type theories with guarded recursion. This should have the benefit of not only giving

simpler semantics and proofs of properties such as adequacy, but also hopefully in the

future to scale to languages with advanced features, such as general references, outside

the reach of traditional domain theoretic techniques.

Working in Guarded Dependent Type Theory (GDTT), we develop denotational semantics

for FPC, the simply typed lambda calculus extended with recursive types, modelling the

recursive types of FPC using the guarded recursive types of GDTT. We prove soundness

and computational adequacy of the model in GDTT using a logical relation between

syntax and semantics constructed also using guarded recursive types. The denotational

semantics is intensional in the sense that it counts the number of unfold-fold reductions

needed to compute the value of a term, but we construct a relation relating the

denotations of extensionally equal terms, i.e., pairs of terms that compute the same

value in a different number of steps. Finally we show how the denotational semantics of

terms can be executed inside type theory and prove that executing the denotation of a

boolean term computes the same value as the operational semantics of FPC.
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1. Introduction

Recent years have seen great advances in formalisation of mathematics in type theory, in

particular with the development of homotopy type theory [Uni13]. Such formalisations

are an important step towards machine assisted verification of mathematical proofs.

Rather than adapting classical set theory-based mathematics to type theory, new syn-

thetic approaches sometimes offer simpler and clearer presentations in type theory. As an

example of the synthetic approach, consider synthetic homotopy theory [Uni13], which

formalises homotopy theory in type theory, not by formalising a topological space as a

type with structure, but rather by thinking of types as topological spaces directly. Par-

ticular spaces such as the circle can then be constructed as types using higher inductive

types. Synthetic homotopy theory can be formally related to classical homotopy theory

via the simplicial sets interpretation of homotopy type theory [KL12], interpreting types

essentially as topological spaces.

Just like any other branch of mathematics, domain theory and denotational semantics

for programming languages with recursion should be formalised in type theory and, as was

the case of homotopy theory, synthetic approaches can provide clearer and more abstract

proofs. In the case of domain theory, the synthetic approach means treating types as

domains, rather than constructing domains internally in type theory as types with an

order relation. The result of this should be a considerable simplification of denotational

semantics when expressed in type theory. For example, function types of a higher-order
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object language can be modelled simply as the function types of type theory, rather than

as some type of Scott continuous maps. To model recursion, some form of fixed point

construction must be added to type theory, but, as is well known, an unrestricted fixed

point combinator makes the logical reading of type theory inconsistent.

1.1. Synthetic guarded domain theory

In this paper we follow the approach of guarded recursion [Nak00], which introduces a

new type constructor ⊲, pronounced “later”. Elements of ⊲A are to be thought of as

elements of type A available only one time step from now, and the introduction form

next : A→ ⊲Amakes anything available now, also available later. The fixed point operator

has type

fix : (⊲A→ A) → A

and maps an f to a fixed point of f ◦ next. Guarded recursion also assumes solutions

to all guarded recursive type equations, i.e., equations where all occurences of the type

variable are under a ⊲, as for example in the equation

LA ∼= A+ ⊲LA (1)

used to define the lifting monad L below, but guarded recursive equations can also have

negative or even non-functorial occurences.

One application of guarded recursion is for programming with coinductive types. This

requires a notion of clocks used to index delays. For example, if κ is a clock and A is a

type then ⊲κA is a type. If κ is a clock variable not free in A and LA ∼= A+ ⊲κLA, then

κ can be universally quantified in LA to give the type ∀κ.LA which can be shown to be

a coinductive solution to ∀κ.LA ∼= A + ∀κ.LA. Almost everything we do in this paper

uses a single implicit clock variable and all uses of ⊲ should be thought of as indexed by

this clock. More details can be found in Section 2.

Recent work has shown how guarded recursion can be used to construct syntactic

models and operational reasoning principles for (also combinations of) advanced pro-

gramming language features including general references, recursive types, countable non-

determinism and concurrency [Bir+12; BBM14; SB14]. These models often require solv-

ing recursive domain equations which are beyond the reach of domain theoretic meth-

ods. When viewing these syntactic models through the topos of trees model of guarded

recursion [Bir+12] one recovers step-indexing [AM01], a technique for sidestepping re-

cursive domain equations by indexing the interpretation of types by numbers, counting

the number of unfoldings of the equation. Thus guarded recursion can be more accu-

rately described as synthetic step-indexing. Indeed, guarded recursion provides a type

system for constructing step-indexed models, in which the type equations sidestepped by

step-indexing can be solved using guarded recursive types.

This work is part of a programme of developing denotational semantics using guarded

recursion with the expectation that this will not only be simpler to formalise in type

theory than the classical domain theoretic semantics, but also generalise to languages

with advanced features for which step-indexing has been used for operational reasoning.
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This programme was initiated in previous work [PMB15], in which a model of PCF

(simply typed lambda calculus with fixed points) was developed in Guarded Dependent

Type Theory (GDTT) [Biz+16] an extensional type theory with guarded recursive types

and terms. By aligning the fixpoint unfoldings of PCF with the steps of the metalanguage

(represented by ⊲), we proved a computational adequacy result for the model inside type

theory. Guarded recursive types were used both in the denotational semantics (to define

a lifting monad) and in the proof of computational adequacy. Likewise, the fixed point

operator fix of GDTT was used both to model fixed points of PCF and as a proof principle.

1.2. Contributions

Here we extend our previous work in two ways. First we extend the denotational semantics

and adequacy proof to languages with recursive types. Secondly, we define a relation

capturing extensionally equal elements in the model.

More precisely, we consider the language FPC (simply typed lambda calculus extended

with general recursive types) with a call-by-name operational semantics. Working inter-

nally in GDTT this language can be given a denotational semantics in the synthetic

style discussed above. In particular, function types of FPC are interpreted simply as the

function types of GDTT. Base types are interpreted using the lifting monad L satisfying

the isomorphism (1). In particular the unit type of FPC is interpreted as L1 isomorphic

to 1 + ⊲L1, so that denotationally, a program of this type is either a value now, or a

delayed computation. Recursive types are modelled as guarded recursive types satisfying

the isomorphism

Jµα.σK ∼= ⊲ Jσ[µα.σ/α]K
(in the case of closed types). This means that the introduction rule for recursive types

(folding a term) can be interpreted as next. To interpret unfolding of terms of recursive

types we construct, for every FPC type σ a map θσ : ⊲ JσK → σ, and interpret unfolding

as θσ[µα.σ/α]. As a consequence, folding followed by unfolding is interpreted as the map

δσ[µα.σ/α] defined as θσ[µα.σ/α] ◦ next. This composition is not the identity, rather the

denotational semantics counts the number of fold-unfold reductions needed to evaluate

a term to a value.

Thus, to state a precise soundness theorem, the operational semantics also needs to

count the fold-unfold reductions. To do this, we define a judgementM →k
∗ N to mean that

M reduces to N in a sequence of reductions containing exactly k fold-unfold reductions,

and an equivalent big-step semantics M ⇓k v. One might hope to formulate an adequacy

theorem stating that for M of type 1, M ⇓k 〈〉 (where 〈〉 is the introduction form for

1) if and only if JMK = δk J〈〉K. Unfortunately this is not true. For example, if M ⇓2 〈〉

the type M ⇓1 〈〉 is empty, but the identity type JMK = δ1 J〈〉K is equivalent to ⊲0, a

non-standard truth value different from 0. To state an exact correspondence between

the operational and denotational semantics we use the guarded transitive closure of the

small-step semantics which synchronises the steps of FPC with those of GDTT. This is

defined as M ⇒k+1 N if M →0
∗ M

′, M ′ →1 M ′′ and ⊲(M ′′ ⇒k N), where M ′ →1 M ′′ is

a fold-unfold reduction in an evaluation context.
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The adequacy theorem states that M ⇒k 〈〉 if and only if JMK = δk J〈〉K. We prove

this working inside GDTT, and the proof shows an interesting aspect of guarded domain

theory: It uses a logical relation between syntax and semantics defined by induction over

the structure of types. The case of recursive types requires a solution to a recursive type

equation. In the setting of classical domain theory, the existence of this solution requires

a separate argument [Pit96], but here it is simply a guarded recursive type.

The second contribution is a relation capturing extensionally equal elements in the

model. As mentioned above, the denotational semantics distinguishes between computa-

tions computing the same value in a different number of steps. In this paper we construct

a relation on the denotational semantics of each type relating elements extensionally equal

elements, i.e., elements that compute the same value in a different number of steps. This

relation is defined on the global interpretation of types JσKgl defined from JσK by quanti-

fying over the implicit clock variable (see Section 1.1 above). This is necessary, because,

as can be seen from the denotational semantics of guarded recursion, any relation on J1K
relating J〈〉K to δn J〈〉K for any n will also necessarily relate non-termination to J〈〉K. On

the other hand, it is possible to define such a relation on J1Kgl which is the coinductive

solution to J1Kgl ∼= 1 + J1Kgl. This is then lifted to function types in the usual way for

logical relations: Two functions are related it they map related elements to related ele-

ments, and to recursive types using a solution to a guarded recursive type equation. We

prove a soundness result for this relation stating that if the (global) denotation of two

terms are related, then the terms are contextually equivalent.

Finally we show that it is possible to execute the denotational semantics. Of course,

FPC is a non-total programming language, so to run FPC programs in type theory, these

must be given a time-out to ensure termination. We demonstrate the technique in the

case of boolean typed programs and show that the denotation of a program executes to

true with a time-out of n steps if and only if the program evaluates to true in less than

n steps in the operational semantics.

All constructions and proofs are carried out working informally in GDTT. This work

illustrates the strength of GDTT , and indeed influenced the design of the type theory.

1.3. Related work

Escardó constructs a model of PCF using a category of ultrametric spaces [Esc99]. Since

this category can be seen as a subcategory of the topos of trees [Bir+12], our previous

work on PCF is a synthetic version of Escardó’s model. Escardó’s model also distinguishes

between computations computing the same value in a different number of steps, and

captures extensional behaviour using a logical relation similar to the one constructed

here. Escardó however, does not consider recursive types. Although Escardó’s model

was useful for intuitions, the synthetic construction in type theory presented here is

very different, in particular the proof of adequacy, which here is formulated in guarded

dependent type theory.

Synthetic approaches to domain theory have been developed based on a wide range of

models dating back to [Hyl91; Ros86]. Indeed, the internal languages of these models can

be used to construct models of FPC and prove computational adequacy [Sim02]. A more



R. E. Møgelberg and M.Paviotti 6

axiomatic approach was developed in Reus’s work [Reu96] where an axiomatisation of

domain theory is postulated a priori inside the Extended Calculus of Constructions.

There has also been work on (non-synthetic) adaptations of domain theory to type

theory [BKV09; Ben+10; Doc14]. However, due to the mistmatch between set-theory

and type theory “some of the proofs and constructions are much more complex than they

would classically and one does sometimes have to pay attention to which of two classically-

equivalent forms of definition one works with” [BKV09]. More recently Altenkirch et

al. [ADK17] have shown how to encode the free pointed ω-cpo as a quotient inductive-

inductive types (QIIT). This looks like a more promising direction for domain theory in

type theory, but this has not yet been developed to models of programming languages.

The lifting monad used in this paper is a guarded recursive variant of Capretta’s delay

monad [Cap05] considered by among others [BKV09; Ben+10; Dan12; CUV15; ADK17;

Vel17]. The monad D(A) is coinductively generated by the constructors now : A →

D(A) and later : D(A) → D(A). As reported by Danielsson [Dan12], working with

the partiality monad requires convincing Agda of productivity of coinductive definitions

using workarounds. In this paper productivity is ensured by the type system for guarded

recursion.

In the delay monad, two computations of type D(A) can be distinguished by their

number of steps. To address this issue, Capretta also defines a weak bisimulation on this

monad, similar to the one defined in Definition 6.2, and proves the combination of the de-

lay monad with the weak bisimulation is a monad using setoids. Chapman et al.[CUV15;

Vel17] avoid using setoids, but they crucially rely on proposition extensionality and the

axiom of countable choice. Altenkirch et al. [ADK17] show that under the assumption of

countable choice, their free pointed ω-cpo construction is equivalent to quotiented delay

monad of Chapman et al. We work crucially with the non-quotiented delay monad when

defining the denotational semantics, since the steps are necessary for guarded recursion.

This is an extended version of a conference publication [MP16]. A number of proofs

that were omitted from the previous version due to space restrictions have been included

in this version. There is also a slight difference in approach: the conference version defined

a big-step operational semantics equivalent to the guarded transitive closure of the small-

step operational semantics of Figure 2 below. This operational semantics synchronises the

steps of FPC with those of the meta-language, and capturing this in a big-step semantics

was quite tricky. Here, instead, we define a simpler big-step operational semantics and

prove this equivalent to the “global” small-step semantics (Lemma 3.2). The results on

executing the denotational semantics presented in Section 7 are also new.

Since this work was carried out, the extensional type theory GDTT that we work

in in this paper has been extended in two directions towards intensionality and imple-

mentation. The first direction is Guarded Cubical Type Theory [Bir+16], extending the

fragment of GDTT without universal quantification over clocks with constructions from

Cubical Type Theory [Coh+16]. Guarded Cubical Type Theory even has a prototype

implementation. The other direction is Clocked Type Theory [BGM17], a variant of the

fragment of GDTT without identity types in which delayed substitutions (Section 5.1)

are encoded using a new notion of ticks on a clock. Clocked Type Theory has a strongly
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normalising reduction semantics. Since neither theory is complete, we stick to GDTT as

our type theory for this paper.

The paper is organized as follows. Section 2 gives a brief introduction to the most impor-

tant concepts of GDTT. More advanced constructions of the type theory are introduced

as needed. Section 3 defines the encoding of FPC and its operational semantics in GDTT.

The denotational semantics is defined and soundness is proved in Section 4. Computa-

tional adequacy is proved in Section 5, and the relation capturing extensional equivalence

is defined in Section 6. Section 7 shows how to execute the denotational semantics of

boolean programs. We conclude and discuss future work in Section 8.

Acknowledgements. We thank Nick Benton, Lars Birkedal, Aleš Bizjak, and Alex Simp-

son for helpful discussions and suggestions.

2. Guarded recursion

In this paper we work informally within a type theory with dependent types, inductive

types and guarded recursion. Although inductive types are not mentioned in [Biz+16] the

ones used here can be safely added – as they can be modelled in the topos of trees model

– and so the arguments of this paper can be formalised in Guarded Dependent Type

Theory (GDTT) [Biz+16]. We start by recalling some core features of this theory, but

postpone delayed substitutions to Section 5.1 since these are not needed for the moment.

When working in type theory, we use ≡ for judgemental equality of types and terms

and = for propositional equality (sometimes =A when we want to be explicit about the

type). We also use = for (external) set theoretical equality.

The core of guarded recursion consists of the type constructor ⊲ and the fixed point

operator fix : (⊲A→ A) → A satisfying

fix f = f(next(fix(f))) (2)

both introduced in Section 1.1. Elements of type ⊲A are intuitively elements of type A

available one time step from now. To illustrate the power of the fixed point operator,

consider a type of guarded streams Strg satisfying

Strg
∼= N× ⊲ Strg (3)

This is a guarded recursive type in the sense that the recursion variable appears under a

⊲, and its elements are to be thought of as streams, whose head is immediately available

and whose tails take one time step to compute. The fixed point operator can be used

to define guarded streams by recursion. For example, the constant stream of a number

n can be defined as fix(λx. 〈n, x〉), where the type isomorphism (3) is left implicit. Note

that the type of the fixed point operator prevents us from defining elements like fix(λx.x),

which are not productive, in the sense that any element of the stream can be computed in

finite time. In fact, the type ⊲ Strg → Strg precisely captures productive recursive stream

definitions.
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The type constructor ⊲ is an applicative functor in the sense of [MP08], which means

that there is a “later application” ⊛ : ⊲(A→ B) → ⊲A→ ⊲B written infix, satisfying

next(f)⊛ next(t) ≡ next(f(t)) (4)

among other axioms (see also [BM13]). In particular, ⊲ extends to a functor mapping

f : A→ B to λx : ⊲A. next(f)⊛ x. Moreover, the ⊲ operator distributes over the identity

type as follows

⊲(t =A u) ≡ (next t =⊲A nextu) (5)

Guarded dependent type theory comes with universes in the style of Tarski. In this

paper, we will just use a single universe U. Readers familiar with [Biz+16] should think

of this as Uκ, but since we work with a unique clock κ, we will omit the subscript. The

universe comes with codes for type operations, including +̂ : U × U → U for binary sum

types, codes for dependent sums and products, and ⊲̂ : ⊲U → U satisfying

El(⊲̂(next(A))) ≡ ⊲El(A) (6)

where we use El(A) for the type corresponding to an element A : U. The type of ⊲̂ allows

us to solve recursive type equations using the fixed point combinator. For example, if A

is small, i.e., has a code Â in U, the type equation (1) can be solved by computing a code

of LA as

L̂ A = fix(λX : ⊲U. +̂(Â, ⊲̂X)) (7)

and then by taking the elements using El. More precisely, defining LA as El(L̂ A), LA

unfolds to El(+̂(Â, ⊲̂(next(L̂ A)))) which is equal to A + El(⊲̂(next(L̂ A))) which is equal

to A+ ⊲LA. In this paper, we will only apply the monad L to small types A.

To ease presentation, we will usually not distinguish between types and type operations

on the one hand, and their codes on the other. We will still refer use the notation

⊲̂ : ⊲U → U, but write ⊲ for the composition ⊲̂ ◦ next. We generally leave El implicit.

2.1. The topos of trees model

The topos S of trees is the category of presheaves over ω, the first infinite ordinal. The

category S models guarded recursion [Bir+12] and provides useful intuitions, and so we

briefly recall it.

A closed type is modelled as an object of the topos of trees, i.e., as a family of sets

X(n) indexed by natural numbers together with restriction maps rXn : X(n+1) → X(n)

as in the following diagram

X(1) X(2) X(3) X(4) . . . (8)

A term of type Y in context x : X, for X,Y closed types, is modelled as a morphism

in S, i.e., as a family of functions fi : X(i) → Y (i) obeying the naturality condition
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fi ◦ r
X
i = rYi ◦ fi+1 as in the following diagram

X(i) X(i+ 1)

Y (i) Y (i+ 1)

fi fi+1

rX
i

rY
i

(9)

The ⊲ type operator is modelled as an endofunctor in S such that ⊲X(1) = 1, ⊲X(n+

1) = X(n). Intuitively, X(n) is the nth approximation for computations of type X, thus

X(n) describes the type X as it looks if we have n computational steps to reason about

it.

Using the proposition-as-types principle, types like ⊲30 are non-standard truth values.

Following the intuition that ⊲30(n) is the type ⊲30 as it looks, if we have n steps to reason

about it, ⊲30 is the truth value of propositions that appear true for 3 computation steps,

but then are falsified after 4. In fact, in the model, (⊲30)(3) equals 1, but (⊲30)(4) equals

0 zero as depicted by the following diagram

1 1 1 0 0 . . . (10)

The global elements of a closed type X is the set of morphisms from the constant object

1 to X in S. This can be thought of as the limit of the sequence of (8) as a diagram in

Set. This construction gives us the global view of a type as it allows us to observe all the

computation at once. For example, the global elements of ⊲X correspond to those of X

simply by discarding the first component. Note that objects can have equal sets of global

elements without being isomorphic. In particular 0 and ⊲n0 are not isomorphic.

For guarded recursive type equations, X(n) describes the nth unfolding of the type

equation. For example, fixing an object A, the unique solution to (1) is

LA(n) = 1 +A(1) + · · ·+A(n)

with restriction maps defined using the restriction maps of A. In particular, if A is

a constant presheaf, i.e., A(n) = X for some fixed X and rAn identities, then we can

think of LA(n) as {0, . . . , n − 1} ×X + {⊥} with restriction map given by rn(⊥) = ⊥,

rn(n, x) = ⊥ and rn(i, x) = (i, x) for i < n. The set of global elements of LA is then

isomorphic to N×X + {⊥}. In particular, if X = 1, the set of global elements is ω̄, the

natural numbers extended with a point at infinity.

The global elements of LA, correspond to the elements of Capretta’s partiality monad [Cap05]

Lgl defined as the coinductive solution to the type equation

LglA ∼= A+ LglA (11)

Similarly, the type of Strg can be modelled as Strg(n) = Nn × 1. Note that if these

products associate to the right, we can even model (3) as an identity. The restriction

maps of this type are projections, and the global elements of this type correspond to

streams in the usual sense.
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2.2. Universal quantification over clocks

The type of guarded streams Strg mentioned above, is not the usual coinductive type of

streams. For example, a term t : Strg in context x : Strg is a causal function of streams,

i.e., one where the n first elements of the output depend only on the n first elements of

the input. This can be seen e.g. in the topos of trees model, where such a term is modelled

by a family of maps fn : Nn × 1 → Nn × 1 commuting with projections. Causality is

crucial to the encoding of productivity in types mentioned above.

On the other hand, a closed term t : Strg is modelled by a global element of Strg
and thus corresponds to a real stream of numbers. Likewise, if t : Strg only depends

on a variable x : N, then t denotes a map from the set of natural numbers to that of

streams, because the context is modelled as the constant topos of trees object N, with

restriction maps being identities. More generally, say a context is independent of time if

it is modelled as a constant object, i.e, one where all restriction maps are isomorphisms.

The denotation of a term t : Strg in a context Γ independent of time, corresponds to a

map from Γ(1) to the set of streams.

The idea of independence of time can be captured syntactically using a notion of clocks,

and universal quantification over these [AM13]. We now briefly recall this as implemented

in GDTT, referring to [Biz+16] for details.

In GDTT all types and terms are typed in a clock context, i.e., a finite set of names of

clocks. For each clock κ, there is a type constructor ⊲κ, a fixed point combinator, and so

on. Each clock carries its own notion of time, and the idea of a context being independent

of time mentioned above, can be captured as a clock not appearing in a context.

If A is a type in a context where κ does not appear, one can form the type ∀κ.A, binding

κ. This construction behaves in many ways similarly to polymorphic quantification over

types in System F. There is an associated binding introduction form Λκ.(−) (applicable

to terms where κ does not appear free in the context), and elimination form t[κ′] having

type A[κ′/κ] whenever t : ∀κ.A.

Semantically, a closed type in the empty clock variable context is modelled by a set,

and a type in a context of a single clock is modelled as an object in the topos of trees.

In the latter case, universal quantification over the single clock is modelled by taking the

set of global elements. As we saw above, these sets correspond to coinductive types, and

this also holds in the type theory: If Strg is the type of streams guarded on clock κ, i.e.,

satisfies Strg
∼= N × ⊲κ Strg, then one can prove [AM13; Møg14] that the type ∀κ. Strg

behaves as a coinductive type of streams. Similarly, if LA ∼= A+ ⊲κLA, and κ is not free

in A, then ∀κ.LA is a coinductive solution to X ∼= A+X. This isomorphism arises as a

composite of isomorphisms

∀κ.LA ∼= ∀κ.(A+ ⊲κLA)

∼= (∀κ.A) + (∀κ.⊲κLA) (12)

∼= A+ ∀κ.⊲κLA (13)

∼= A+ ∀κ.LA (14)

the components of which we recall below. Using these encodings one can use guarded

recursion to program with coinductive types in such a way that typing guarantees produc-



Denotational semantics of recursive types in synthetic guarded domain theory 11

tivity. We refer to [BM15] for a full model of guarded recursion with clocks, in particular

for how to model types with more than one free clock variable.

The isomorphism (14) arises from a general type isomorphism ∀κ.⊲κA ∼= ∀κ.A holding

for all A. The direction from right to left is induced by nextκ : A → ⊲κA. For the

direction from left to right, a form of elimination for ⊲κ is needed, but note that an

unrestricted such of type ⊲κA → A in combination with fixed points makes the type

system inconsistent. Instead GDTT allows for a restricted elimination rule for ⊲κ: If t is

of type ⊲κA in a context where κ does not appear free, then prev κ.t has type ∀κ.A. Using

prev κ. we can define a term force:

force : (∀κ.⊲κA) → ∀κ.A

force
def
== λx. prev κ.x[κ]

(15)

The term force can be proved to be an isomorphism by the axioms

prev κ. nextκ(t) ≡ Λκ.t nextκ((prev κ.t)[κ]) ≡ t (16)

If κ is not free in A, the type ∀κ.A is isomorphic to A, justifying the isomorphism (13).

The map A → ∀κ.A is simply λx : A.Λκ.x. The other direction is given by application

to a clock constant κ0, which we assume exists. These can be proved to be inverses of

each other using the clock irrelevance axiom, which states that if t : ∀κ.A and κ does not

appear free in A, then t[κ′] ≡ t[κ′′] for all κ′ and κ′′. Using force and the isomorphism

∀κ.0 ∼= 0, one can prove that ∀κ.⊲nκ0 is isomorphic to 0, reflecting the fact that there are

no global elements of ⊲n0 in the model, as mentioned earlier. We refer to [Biz+16] for

details.

The isomorphism (12) is a special case of an isomorphism

∀κ.(B + C) ∼= (∀κ.B) + (∀κ.C) (17)

distributing ∀κ over sums for all small types B and C. To describe this isomorphism,

encode sum types as B + C
def
== Σx : (1 + 1).[B,C](x) where [B,C] is defined by cases

by [B,C](inl(⋆)) ≡ B and [B,C](inr(⋆)) ≡ C. The result of applying the left to right

direction d of the isomorphism to x : ∀κ.(B + C) is defined by cases of π1(x[κ0]) : 1 + 1.

If π1(x[κ0]) = inl(⋆), note that for any κ, using the clock irrelevance axiom

π1(x[κ]) = (Λκ.π1(x[κ]))[κ] = (Λκ.π1(x[κ]))[κ0] = π1(x[κ0]) = inl(⋆)

and so Λκ.π2(x[κ]) has type

∀κ.[B,C](π1(x[κ])) = ∀κ.[B,C](inl(⋆)) = ∀κ.C

and so we can define in this case d(x) = Λκ. inl(π2(x[κ])). The case of π1(x[κ0]) = inr(⋆)

is similar. In fact, this construction generalises to an isomorphism

∀κ.Σ(x : A).B ∼= Σ(x : A).∀κ.B (18)

valid whenever κ is not free in A.

Finally we note the following extensionality rule for quantification over clocks.

(t =∀κ.A u) ≡ ∀κ.(t[κ] =A u[κ]) (19)
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In most of this paper we will work in a setting of a unique implicit clock κ, and simply

write ⊲ for ⊲κ to avoid cluttering all definitions and calculations with clocks.

For the proof of computational adequacy we will need one more construction from

GDTT: The delayed substitutions. These will be recalled in Section 5.1.

3. FPC

This section defines the syntax, typing judgements and operational semantics of FPC.

These are inductive types in guarded type theory, but, as mentioned earlier, we work

informally in type theory, and in particular remain agnostic with respect to choice of

representation of syntax with binding.

The typing judgements of FPC are defined in an entirely standard way. The grammar

for terms of FPC

L,M,N ::= 〈〉 | x | inlM | inrM | case L of x1.M ;x2.N | 〈M,N〉

| fstM | sndM | λx : τ.M |MN | foldM | unfold N

should be read as an inductive type of terms in the standard way. Likewise the grammars

for types and contexts and the typing judgements defined in Figure 1 should be read as

defining inductive types in type theory, allowing us to do proofs by induction over e.g.

typing judgements.

We denote by Type
FPC

, TermFPC and ValueFPC the types of closed FPC types and terms,

and values of FPC and by OTermFPC the type of all (also open) terms. By a value we mean

a closed term matching the grammar

v ::= 〈〉 | inlM | inrM | 〈M,N〉 | λx : τ.M | foldM

3.1. Operational semantics

Figure 2 defines a big-step and a small-step operational semantics for FPC, as well as

two transitive closures of the latter. All these definitions should be read as inductive

types. Since the denotational semantics of FPC is intensional, counting reduction steps,

it is necessary to also count the steps in the operational semantics in order to state

the soundness and adequacy theorems precisely. More precisely, the semantics counts

the number of unfold-fold reductions in the same fashion in which Escardó counted

fix-point reduction for PCF.

The statement

M ⇓k v (20)

where M is a term, k a natural number, and v a value, should be read as ’M evaluates

in k steps to a value v. We can define more standard big-step evaluation predicates as

follows

M ⇓ v
def
== Σk.M ⇓k v

We note that the semantics is trivially deterministic.
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Well formed types

Θ ∈ Type Contexts
def
== 〈〉 | 〈Θ, α〉

⊢ 〈〉

⊢ Θ

⊢ Θ, α
α 6∈ Θ

⊢ Θ

Θ ⊢ Θi
1 ≤ i ≤| Θ |

⊢ Θ

Θ ⊢ 1

Θ, α ⊢ τ

Θ ⊢ µα.τ

Θ ⊢ τ1 Θ ⊢ τ2
Θ ⊢ τ1op τ2

for op ∈ {+,×,→}

Typing rules

x : σ ∈ Γ · ⊢ Γ

Γ ⊢ x : σ Γ ⊢ 〈〉 : 1

Γ, x : σ ⊢ M : τ

Γ ⊢ (λx : σ.M) : σ → τ

Γ ⊢ M : σ → τ Γ ⊢ N : σ

Γ ⊢ MN : τ

Γ ⊢ e : τ1
Γ ⊢ inl e : τ1 + τ2

Γ ⊢ e : τ2
Γ ⊢ inr e : τ1 + τ2

Γ ⊢ L : τ1 + τ2 Γ, x1 : τ1 ⊢ M : σ Γ, x2 : τ2 ⊢ N : σ

Γ ⊢ case L of x1.M ;x2.N : σ

Γ ⊢ M : τ1 × τ2
Γ ⊢ fst M : τ1

Γ ⊢ M : τ1 × τ2
Γ ⊢ snd e : τ2

Γ ⊢ M : τ1 Γ ⊢ N : τ2
Γ ⊢ 〈M,N〉 : τ1 × τ2

Γ ⊢ M : µα.τ

Γ ⊢ unfold M : τ [µα.τ/α]

Γ ⊢ M : τ [µα.τ/α]

Γ ⊢ fold M : µα.τ

Fig. 1. Syntax of FPC

Lemma 3.1. The small-step semantics is deterministic: if M →k N and M →k′

N ′,

then k = k′ and N = N ′.

Of the two transitive closures of the small-step semantics defined in Figure 2 the

first is a standard one, equivalent to the big-step operational semantics. The second is

a guarded version which synchronises the steps of FPC with those of the metalogic.

This is needed for the statement of the soundness and adequacy theorems, and also

allows for guarded recursion to be used in the proofs of these. The next lemma states

the relationship between the big-step semantics and the two transitive closures of the

small-step semantics

Lemma 3.2. Let M and N be FPC terms, v a value and k a natural number. Then

1 M ⇓k v iff M →k
∗ v

2 M →k
∗ N iff ∀κ.M ⇒k N

Note that in particular M →k
∗ N implies M ⇒k N . The opposite implication does not

hold, as we shall see in the examples below.

Proof. The first statement is a essentially a textbook result on operational semantics,

and we omit the proof.

For the second statement the proof from left to right is by induction on M →k
∗ N . The

case of M = N is trivial, so consider the case when M →k M ′ and M ′ →m
∗ N . When
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Big-step semantics

v ⇓0 v

L ⇓k
inl L′ M [L′/x1] ⇓

m v

case L of x1.M ;x2.N ⇓m+k v

L ⇓k
inr L′ N [L′/x2] ⇓

m v

case L of x1.M ;x2.N ⇓m+k v

L ⇓k 〈M,N〉 M ⇓l v

fst L ⇓k+l v

L ⇓k 〈M,N〉 N ⇓l v

snd L ⇓k+l v

M ⇓k λx.L L[N/x] ⇓l v

MN ⇓k+l v

M ⇓k
fold N N ⇓m v

unfold M ⇓k+m+1 v

Small-step semantics

(λx : σ.M)(N) →0 M [N/x] unfold (fold M) →1 M

case (inl L) of x1.M ;x2.N →0 M [L/x1]

case (inr L) of x1.M ;x2.N →0 N [L/x2]

fst 〈M,N〉 →0 M snd 〈M,N〉 →0 N

M1 →k M2 k = 0, 1

E[M1] →
k E[M2]

E ::= [·] | EM | case E of x1.M ;x2.N | fst E | snd E | unfold E

M →0
∗ M

M →k M ′ M ′ →m
∗ N

M →k+m
∗ N

Guarded transitive closure of the small-step semantics

M →0
∗ N

M ⇒0 N

M →0
∗ M ′ M ′ →1 M ′′ ⊲(M ′′ ⇒k N)

M ⇒k+1 N

Fig. 2. Operational semantics for FPC.

k = 0, by definitionM →0
∗ M

′, and by induction hypothesis we know that ∀κ.M ′ ⇒m N .

Thus, M ⇒m N holds for any κ, and so also ∀κ.M ⇒m N , since κ is not free in

the assumption M →k
∗ N . When k = 1 by induction hypothesis ∀κ.M ′ ⇒m N and

thus, for any κ, M →1 M ′ and ⊲κ(M
′ ⇒m N). As before, this allows us to conclude

∀κ.M ⇒m+1 N .

The right to left implication is proved by induction on k. When k = 0 the clock κ is not

free in M ⇒k N and so ∀κ.M ⇒k N is isomorphic to M ⇒k N , which implies M →k
∗ N .

When k = k′ + 1 the assumption ∀κ.M ⇒k N implies that M →0
∗ N

′, N ′ →1 N ′′ and

∀κ.⊲κ(N
′′ ⇒k′

N). By the type isomorphism (15) the latter implies ∀κ.(N ′′ ⇒k′

N),

which by the induction hypothesis implies N ′′ →k′

∗ N . Thus we conclude M →k
∗ N .
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3.2. Examples

As an example of a recursive FPC type, one can encode the natural numbers as

nat
def
== µα.1 + α

zero
def
== fold (inl (〈〉))

succ M
def
== fold (inr (M))

Using this definition we can define the term ifz of PCF. If L is a term of type nat and

M ,N are terms of type σ define ifz as

ifz L M N
def
== case (unfold L) of x1.M ;x2.N

where x1, x2 are fresh. It is easy to see that ifz zero M N ⇒k+1 v iff ⊲(M ⇒k v) and

that ifz (succ L) M N ⇒k+1 v iff ⊲(N ⇒k v) for any L term of type nat. For example,

ifz 1 0 1 ⇒2 42 is ⊲0. On the other hand, ifz 1 0 1 →2
∗ 42 is equivalent to 0, showing that

⇒ and →∗ are not equivalent.

Recursive types introduce divergent terms. For example, given a type A, the Turing

fixed point combinator on A can be encoded as follows:

B
def
== µα.(α→ (A→ A) → A)

θ : B → (A→ A) → A

θ
def
== λxλy.y(unfold x x y)

YA
def
== θ(fold θ)

An easy induction shows that (Yσ (λx.x) ⇒k v) = ⊲k0, where 0 is the empty type.

If M →k
∗ v with v a value and M a term, then

— M ⇒k v is true

— M ⇒n v is logically equivalent to ⊲min(n,k)0 if n 6= k, where 0 is the empty type

If, on the other hand, M is divergent in the sense that for any k there exists an N such

that M →k
∗ N , then M ⇒n v is equivalent to ⊲n0.

4. Denotational Semantics

We now define the denotational semantics of FPC. First we recall the definition of the

guarded recursive version of the lifting monad on types from [PMB15]. This is defined

as the unique solution to the guarded recursive type equation

LA ∼= A+ ⊲LA

which exists because the recursive variable is guarded by a ⊲. Recall (Section 2) that

guarded recursive types are defined as fixed points of endomaps on the universe, so LA

is only defined for small types A. We will only apply L to small types in this paper.

The isomorphism induces a map θLA : ⊲LA→ LA and a map η : A→ LA. An element

of LA is either of the form η(a) or θ(r). We think of these cases as values “now” or
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JΘ ⊢ αK (ρ)
def
== ρ(α)

JΘ ⊢ 1K (ρ)
def
== L1

JΘ ⊢ τ1 × τ2K (ρ)
def
== JΘ ⊢ τ1K (ρ)× JΘ ⊢ τ2K (ρ)

JΘ ⊢ τ1 + τ2K (ρ)
def
== L(JΘ ⊢ τ1K (ρ) + JΘ ⊢ τ2K (ρ))

JΘ ⊢ τ1 → τ2K (ρ)
def
== JΘ ⊢ τ1K (ρ) → JΘ ⊢ τ2K (ρ)

JΘ ⊢ µα.τK (ρ)
def
== ⊲(JΘ, α ⊢ τK (ρ, JΘ ⊢ µα.τK (ρ)))

Fig. 3. Interpretation of FPC types

computations that “tick”. Moreover, given f : A→ B with B a ⊲-algebra (i.e., equipped

with a map θB : ⊲B → B), we can lift f to a homomorphism of ⊲-algebras f̂ : LA → B

as follows

f̂(η(a))
def
== f(a)

f̂(θ(r))
def
== θB(next(f̂)⊛ r)

(21)

Formally f̂ is defined as a fixed point of a term of type ⊲(LA → B) → LA → B. Recall

that λr. next(f̂)⊛ r is the application of the functor ⊲ to the map f̂ , thus f̂ is an algebra

homomorphism.

Intuitively LA is the type of computations possibly returning an element of A, record-

ing the number of steps used in the computation. We can define the divergent com-

putation as ⊥
def
== fix(θ) and a “delay” map δLA of type LA → LA for any A as

δLA
def
== θLA ◦ next. The latter can be thought of as adding a step to a computation.

The lifting L extends to a functor. For a map f : A → B the action on morphisms can

be defined using the unique extension as L(f)
def
== η̂ ◦ f .

4.1. Interpretation of types

A type judgement Θ ⊢ τ is interpreted as a map of type U |Θ| → U, where |Θ| is the car-

dinality of the set of variables in Θ. This interpretation map is defined by a combination

of induction and guarded recursion for the case of recursive types as in Figure 3.

More precisely, the case of recursive types is defined to be the fixed point of a map

from ⊲(U |Θ| → U) to U |Θ| → U defined as follows:

λX.λρ.⊲̂(next(λY : U. JΘ, α ⊢ τK (ρ, Y ))⊛ (X ⊛ next(ρ))) (22)

ensuring

JΘ ⊢ µα.τK (ρ) ≡ ⊲̂(next(λY : U. JΘ, α ⊢ τK (ρ, Y ))⊛ (next(JΘ ⊢ µα.τK)⊛ next(ρ)))

≡ ⊲̂(next(λY : U. JΘ, α ⊢ τK (ρ, Y ))⊛ (next(JΘ ⊢ µα.τK (ρ))))
≡ ⊲̂(next(JΘ, α ⊢ τK (ρ, JΘ ⊢ µα.τK (ρ))))
≡ ⊲(JΘ, α ⊢ τK (ρ, JΘ ⊢ µα.τK (ρ)))
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The first equation is the application of rule (2) for the guarded fix-point combinator,

whereas the second equation is derived by distributivity over the later application op-

erator described by rule (4). Finally, the last equation is derived by the fact that the

elements of the code of the later operator is the later operator on types (rule (6)).

We prove now the substitution lemma for types which states that substitution behaves

as expected, namely that substituting type variables in the syntax with syntactic types

corresponds to applying a dependent type U → U to a type U. This can be proved using

guarded recursion in the case of recursive types.

Lemma 4.1 (Substitution Lemma for Types). Let σ be a well-formed type with

variables in Θ and let ρ be of type U |Θ|. If Θ, β ⊢ τ then

JΘ ⊢ τ [σ/β]K (ρ) = JΘ, β ⊢ τK (ρ, JΘ ⊢ σK (ρ))

Proof. The proof is by induction on Θ, β ⊢ τ . Most cases are straightforward, and we

just show the case of Θ, β ⊢ µα.τ . The proof of this case is by guarded recursion, and

thus we assume that

⊲(JΘ ⊢ (µα.τ)[σ/β]K (ρ) = JΘ, β ⊢ µα.τK (ρ, JΘ ⊢ σK (ρ))) (23)

Assuming (without loss of generality) that α is not β we get the following series of

equalities

JΘ ⊢ (µα.τ)[σ/β]K (ρ)
= JΘ ⊢ µα.(τ [σ/β])K (ρ)
= ⊲(JΘ, α ⊢ τ [σ/β]K (ρ, JΘ ⊢ µα.(τ [σ/β])K (ρ)))
= ⊲(JΘ, α, β ⊢ τK (ρ, JΘ ⊢ µα.(τ [σ/β])K (ρ), JΘ, α ⊢ σK (ρ, Jµα.(τ [σ/β])K (ρ))))
= ⊲(JΘ, α, β ⊢ τK (ρ, JΘ ⊢ µα.(τ [σ/β])K (ρ), JΘ ⊢ σK (ρ)))

The latter equals

⊲̂(next(λXλY. JΘ, α, β ⊢ τK (ρ,X, Y ))⊛ (next(JΘ ⊢ µα.(τ [σ/β])K (ρ)))⊛ next JΘ ⊢ σK (ρ))

By (5), (23) implies

next(JΘ ⊢ µα.(τ [σ/β])K (ρ)) = next(JΘ, β ⊢ µα.τK (ρ, JΘ ⊢ σK (ρ)))

and so

JΘ ⊢ µα.τ [σ/β]K (ρ) = ⊲(JΘ, α, β ⊢ τK (ρ, JΘ, β ⊢ µα.τK (ρ, JΘ ⊢ σK (ρ)), JΘ ⊢ σK (ρ)))
= ⊲(JΘ, β, α ⊢ τK (ρ, JΘ ⊢ σK (ρ), JΘ, β ⊢ µα.τK (ρ, JΘ ⊢ σK (ρ))))
= JΘ, β ⊢ µα.τK (ρ, JΘ ⊢ σK (ρ))

By direct use of the Substitution Lemma we can prove that the interpretation of the

recursive type equals the interpretation of the unfolding of the recursive type itself, only

one step later. Intuitively, this means that we need to consume one computational step

to look at the data.
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θ1
def
== λx : ⊲ J1K .θLJ1K(x)

θτ1×τ2
def
== λx : ⊲ Jτ1 × τ2K .〈θτ1(⊲(π1)(x)), θτ2(⊲(π2)(x))〉

θτ1+τ2
def
== λx : ⊲ Jτ1 + τ2K .θLJτ1+τ2K(x)

θσ→τ
def
== λf : ⊲(JσK → JτK).λx : JσK .θτ (f ⊛ (next(x)))

θµα.τ
def
== λx : ⊲ Jµα.τK . next(θτ [µα.τ/α])⊛ (x)

Fig. 4. Definition of θσ : ⊲ JσK → JσK

Lemma 4.2. For all types τ and environments ρ of type U |Θ|,

JΘ ⊢ µα.τK (ρ) = ⊲ JΘ ⊢ τ [µα.τ/α]K (ρ)

The interpretation of every closed type τ carries a ⊲-algebra structure, i.e., a map

θτ : ⊲ JτK → JτK, defined by guarded recursion and structural induction on τ as in Figure 4.

The case of recursive types is welltyped by Lemma 4.2, and can be formally constructed

as a fixed point of a term of type

G : ⊲(Πσ : Type
FPC
.(⊲ JσK → JσK)) → Πσ.(⊲ JσK → JσK)

as follows. Suppose F : ⊲(Πσ : Type
FPC
.(⊲ JσK → JσK)), and define G(F ) essentially as in

Figure 4 but with the clause G(F )µα.τ for recursive types being defined as

λx : ⊲ Jµα.τK .(Fτ [µα.τ/α] ⊛ x) (24)

Here Fσ is defined as F ⊛ next(σ) using a generalisation of ⊛ to dependent products to

be defined in Section 5.1. Define θ as the fixed point of G. Then

θµα.τ (x) ≡ G(next (θ))µα.τ (x)

≡ next (θ)τ [µα.τ/α] ⊛ (x)
(25)

Using the θ we define the delay operation which, intuitively, takes a computation and

adds one step.

δσ
def
== θσ ◦ next .

4.2. Interpretation of terms

Figure 5 defines the interpretation of judgements Γ ⊢ M : σ as functions from JΓK to

JσK where Jx1 : σ1, · · · , xn : σnK def
== Jσ1K × · · · × JσnK. In the case of case, the function

f̂ is the extension of f to a homomorphism defined as in (21) above, using the fact that

all types carry a ⊲-algebra structure. The interpretation of fold is welltyped because

next(JMK (γ)) has type ⊲ Jτ [µα.τ/α]K which by Lemma 4.2 is equal to Jµα.τK. In the case

of unfold, since JMK (γ) has type Jµα.τK, which by Lemma 4.2 is equal to ⊲ Jτ [µα.τ/α]K,
the type of θτ [µα.τ/α](JMK (γ)) is Jτ [µα.τ/α]K.

Lemma 4.3. If Γ ⊢M : τ [µα.τ/α] then Junfold (foldM)K (γ) = δτ [µα.τ/α] JMK (γ).
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JΓ ⊢ t : σK : JΓK → JσK

JΓ ⊢ xK (γ)
def
== γ(x)

JΓ ⊢ 〈〉K (γ)
def
== η(∗)

JΓ ⊢ 〈M,N〉K (γ)
def
== 〈JMK (γ), JNK (γ)〉

JΓ ⊢ fst MK (γ)
def
== π1(JMK (γ))

JΓ ⊢ snd MK (γ)
def
== π2(JMK (γ))

JΓ ⊢ λx.MK (γ)
def
== λx. JMK (γ, x)

JΓ ⊢ MNK (γ)
def
== JMK (γ) JNK (γ)

JΓ ⊢ inl EK (γ)
def
== η(inl JEK (γ))

JΓ ⊢ inr EK (γ)
def
== η(inl JEK (γ))

JΓ ⊢ case L of x1.M ;x2.NK (γ)
def
== f̂(JLK (γ))

where f(inl(x1))
def
== JMK (γ, x1)

f(inl(x2))
def
== JNK (γ, x2)

JΓ ⊢ fold MK (γ)
def
== next(JMK (γ))

JΓ ⊢ unfold MK (γ)
def
== θτ [µα.τ/α](JMK (γ))

Fig. 5. Interpretation of FPC terms

Proof. Straightforward by definition of the interpretation and by the type equality

from Lemma 4.2.

Next lemma proves substitution is well-behaved for terms. The proof is standard text-

book result from domain theory (e.g. [Win93; Str06]).

Lemma 4.4 (Substitution Lemma). Let Γ ≡ x1 : σ1, · · · , xk : σk be a context such

that Γ ⊢ M : τ , and let ∆ ⊢ Ni : σi be a term for each i = 1, . . . k. If further γ ∈ J∆K,
then r

∆ ⊢M [ ~N/x] : τ
z
(γ) = JΓ ⊢M : τK

(r
∆ ⊢ ~N : ~σ

z
(γ)

)

Proof.

By induction on the typing judgement Γ ⊢M : τ .

The cases for Γ ⊢ 〈〉 : 1, Γ ⊢ x : τ , Γ ⊢ M N : τ , Γ ⊢ fst M : τ1, Γ ⊢ snd M : τ2,

Γ ⊢ 〈M,N〉 : τ1 × τ2 are standard.

For the case Γ ⊢ inlM : τ1 + τ2 we start from
r
∆ ⊢ (inlM)[ ~N/~x] : τ1 + τ2

z
(γ)

By substitution (inl M)[ ~N/~x] equals inl (M [ ~N/~x]). We also know that its denotation
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equals η(inl
r
(M [ ~N/~x])

z
(γ)) by induction hypothesis this is equal to

η(inl JΓ ⊢ (M) : τ1 + τ2K (γ,
r
∆ ⊢ ~N : ~σ

z
(γ)))

which is now by definition what we wanted. The case for Γ ⊢ inr N : τ1 + τ2 is similar.

Now the case for Γ ⊢ case L of x1.M ;x2.N : σ. By definition we know thatr
∆ ⊢ (case L of x1.M ;x2.N)[ ~N/~x] : τ

z
(γ) is equal

r
∆ ⊢ case L[ ~N/~x] of x1.M [ ~N/~x];x2.N [ ~N/~x] : τ

z
(γ)

which is by definition of the interpretation equal to

f̂(λx1.
r
M [ ~N/~x]

z
(γ, x1), λx2.

r
N [ ~N/~x]

z
(γ, x2))(

r
L[ ~N/~x]

z
(γ))

where f̂ is as in Figure 5. By induction hypothesis we know that this is equal to

f̂(λx1. JMK (γ, x1,
r
∆ ⊢ ~N : ~σ

z
(γ)), (λx2. JNK (γ, x2,

r
∆ ⊢ ~N : ~σ

z
(γ))))

(JLK (γ,
r
∆ ⊢ ~N : ~σ

z
(γ)))

which is equal by definition to

JΓ ⊢ case L of x1.M ;x2.N : τK (γ,
r
∆ ⊢ ~N : ~σ

z
(γ))

Now the fixed point cases. For the case Γ ⊢ unfold M : τ [µα.τ/α] we know thatr
Γ ⊢ (unfoldM)[ ~N/~x]

z
(γ) is equal by definition of the substitution function to

r
Γ ⊢ unfold (M [ ~N/~x])

z
(γ)

which by definition of interpretation is θτ [µα.τ/α](
r
Γ ⊢ (M [ ~N/~x])

z
(γ)). By induction

hypothesis this is equal to

θτ [µα.τ/α](JΓ ⊢MK (
r
∆ ⊢ ~N

z
(γ))

which by definition is JΓ ⊢ unfold (M)K (
r
∆ ⊢ ~N

z
(γ)). For the case Γ ⊢ foldM : µα.τ

we know that
r
Γ ⊢ (foldM)[ ~N/~x]

z
(γ) is equal by defintion to

r
Γ ⊢ fold (M [ ~N/~x])

z
(γ)

which is by definition of the interpretation equal to next(
r
Γ ⊢ (M [ ~N/~x])

z
(γ)). By in-

duction hypothesis we get fold(JΓ ⊢MK (
r
Θ ⊢ ~N

z
(γ)) which is by definition

JΓ ⊢ fold (M)K
r
Θ ⊢ ~N

z
(γ)

We now aim to show a soundness theorem for the interpretation of FPC. We do this

by first showing soundness of the single step reduction as in the next lemma. As usual in

denotational semantics, this proves that the model is agnostic to operational reductions.
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Lemma 4.5. Let M be a closed term of type τ . If M →k N then JMK (∗) = δk JNK (∗)

Proof. The proof goes by induction onM →k N . The cases when k = 0 follow straight-

forwardly from the structure of the denotational model.

The case unfold (foldM) →1 M follows directly from Lemma 4.3.

The case for (λx : σ.M)(N) →0 M [N/x] is straightforward from by Substitution

Lemma 4.4.

The case for case (inl L) of x1.x.M ;x2.x.N →0 M [L/x] and the case for

case (inr L) of x1.x.M ;x2.x.N →0 N [L/x]

follow directly by definition.

Also the elimination for the product, namely fst 〈M,N〉 →0 M and snd 〈M,N〉 →0 N

follow directly from the definition of the interpretation.

Now we prove the inductive cases. For the case M1N →k M2N we know that by defi-

nition JM1NK (∗) = JM1K (∗) JNK (∗). By induction hypothesis we know that JM1K (∗) =
δkσ→τ (JM2K (∗)), thus JM1K (∗) JNK (∗) = (δkσ→τ (JM2K (∗))) JNK (∗) By definition of δ and

θ this is equal to δkτ (JM2K (∗) JNK (∗)).
Now the case for

case L of x1.M ;x2.N →k case L′ of x1.M ;x2.N

The induction hypothesis gives JLK = δτ1+τ2 ◦ JL′K, and so Lemma 4.6 applies proving

the case.

The case for fstM →k fstM ′ and for sndM →k sndM ′ are similar to the previous

case.

Finally, the case for unfoldM1 →k unfoldM2. By definition we know that

JunfoldM1K (∗) = θ(JM1K (∗))

By induction hypothesis this is equal to θ(δkµα.τ (JM2K (∗))) which by Lemma 4.7 is equal

to δkτ [µα.τ/α](θ(JM2K (∗))) thus concluding.

The two most complicated cases of the proof of Lemma 4.5, namely the unfold-fold

reductions and case, are captured in the following two lemmas. In particular, the first

of these states that the interpretation of case is a ⊲-algebra homomorphism. In other

words, case analysing over a computation that perform n ticks and then produces a result

v is equal to a computation that produces n ticks and then performs case analysis over

a terminating computation producing a value v.

Lemma 4.6.

1 The interpretation of case is a homomorphism of ⊲-algebras in the first variable, i.e.,

J λx : τ1 + τ2.case x of x1.M ;x2.NK (γ)(θ(r))
=θ(next(J λx : τ1 + τ2.case x of x1.M ;x2.NK (γ))⊛ r)

2 If JLK (γ) = δ(JL′K (γ)), then

Jcase L of x1.M ;x2.NK (γ) = δ Jcase L′ of x1.M ;x2.NK (γ)
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Proof. For the proof of the first part, we use the notation f̂ as in Figure 5. Since f̂ is

a homomorphism of ⊲-algebras we get

Jλx.case x of x1.M ;x2.NK (γ)(θτ1+τ2(r)) = f̂(θτ1+τ2(r))

= θσ(next(f̂)⊛ r)

= θσ(next Jλx.case x of x1.M ;x2.NK (γ)⊛ r)

For the second part, note that f̂ is Jλx.case x of x1.M ;x2.NK (γ), so

Jcase L of x1.M ;x2.NK (γ) = f̂(JLK (γ))
= f̂(δτ1+τ2(JL′K (γ)))
= f̂(θτ1+τ2(next(JL′K (γ))))
= θσ(next(f̂)⊛ (next(JL′K (γ))))
= θσ(next(f̂(JL′K (γ))))
= δσ(Jcase L′ of x1.M ;x2.NK (γ))

We now prove the same for the interpretation of unfold. The key point here is to

observe that the tick operation for a folded recursive type , namely θµα.τ , is precisely the

tick of the unfolded recursive type after one step of computation, namely ⊲(θτ [µα.τ/α]).

Lemma 4.7. If µα.τ is a closed FPC type then

1 J λx : µα.τ.unfold xK (θµα.τ (r)) = θτ [µα.τ/α](next(θτ [µα.τ/α])⊛ r)

2 If JMK (γ) = δµα.τ (JM ′K (γ)), then

JunfoldMK (γ) = δτ [µα.τ/α](JunfoldM ′K (γ))

Proof. The interpretation for J λx : µα.τ.unfold xK (θµα.τ (r)) yields θτ [µα.τ/α](θµα.τ (r)).
This type checks as r has type ⊲ Jµα.τK, thus (θµα.τ (r)) has type Jµα.τK which – by

Lemma 4.2 – is equal to ⊲ Jτ [µα.τ/α]K. Thus the term θτ [µα.τ/α](θµα.τ (r)) has type

Jτ [µα.τ/α]K. Now by definition of θµα.τ this is equal to θτ [µα.τ/α](next(θτ [µα.τ/α])⊛ (r))

which is what we wanted.

For the second statement, we compute

JunfoldMK (γ) = θτ [µα.τ/α](JMK (γ))
= θτ [µα.τ/α](δµα.τ (JM ′K (γ)))
= θτ [µα.τ/α](θµα.τ (next(JM ′K (γ))))
= θτ [µα.τ/α](next(θτ [µα.τ/α])⊛ (next(JM ′K (γ)))) (statement 1)

= θτ [µα.τ/α](next(θτ [µα.τ/α](JM ′K (γ)))) (rule (4))

= θτ [µα.τ/α](next(JunfoldM ′K (γ)))
= δτ [µα.τ/α](JunfoldM ′K (γ))



Denotational semantics of recursive types in synthetic guarded domain theory 23

We can now prove Lemma 4.5. As stated above, this is soundness of the model w.r.t.

the small-step operational semantics. For the proof, it is crucial that the interpretation of

every term is an homomorphism of tickθ-algebras. This falls out in many cases. For the

cases of the interpretation of unfold and the inductive case of case we use the lemmas

we just proved above.

Proof of Lemma 4.5 The proof is by induction on M →k N . Most of the cases are

straightforward, some (β-reductions for function and sum types) using the substitution

lemma (Lemma 4.4). The case unfold (foldM) →1 M follows directly from Lemma 4.3.

Now we prove the inductive cases. For the case M1N →k M2N we know that by defi-

nition JM1NK (∗) = JM1K (∗) JNK (∗). By induction hypothesis we know that JM1K (∗) =
δkσ→τ (JM2K (∗)), thus JM1K (∗) JNK (∗) = (δkσ→τ (JM2K (∗))) JNK (∗) By definition of δ and

θ this is equal to δkτ (JM2K (∗) JNK (∗)).
In the case of

case L of x1.M ;x2.N →k case L′ of x1.M ;x2.N

the induction hypothesis gives JLK (∗) = δτ1+τ2 JL′K (∗), and so Lemma 4.6 applies proving

the case.

Finally, the case for unfoldM →k unfoldM ′. If k = 0 the case follows trivially from

the induction hypothesis. If k = 1, the step from the induction hypothesis to the case is

exactly the second statement of Lemma 4.7.

We now state and prove soundness of our model w.r.t. the operational semantics. We

use the transitive closure over →k, namely ⇒k, which is synchronised with the ⊲ operator

in the type theory. Using ⇒ (rather than →∗) is not essential to prove soundness, but it

is crucial to prove computational adequacy, which will be presented in the next section.

On the other hand, the explicit step-indexing k in ⇒k is necessary to relate the number

of operational steps with the number of delays (or ticks) in the denotational semantics.

Proposition 4.8 (Soundness). Let M be a closed term of type τ . If M ⇒k N then

JMK (∗) = δk JNK (∗).

Proof. By induction on k. When k = 0 Lemma 4.5 applies concluding the case. When

k = n+ 1 by definition we have M →0
∗ M

′, M ′ →1 M ′′ and ⊲(M ′′ ⇒n N) . By repeated

application of Lemma 4.5 we get JMK (∗) = JM ′K (∗) and JM ′K (∗) = δ(JM ′′K (∗)). By
induction hypothesis we get ⊲(JM ′′K (∗) = δn JNK (∗)) which implies next(JM ′′K (∗)) =

next(δn JNK (∗))) and since δ = θ ◦ next, this implies δ(JM ′′K (∗)) = δk(JNK (∗)). By

putting together the equations we get finally JMK (∗) = δk JNK (∗).

5. Computational Adequacy

Computational adequacy is the opposite implication of Proposition 4.8 in the case of

terms of unit type. It is proved by constructing a (proof relevant) logical relation be-

tween syntax and semantics. The relation cannot be constructed just by induction on

the structure of types, since in the case of recursive types, the unfolding can be bigger

than the recursive type. Instead, the relation is constructed by guarded recursion: we
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next ξ [x � next ξ.t] .u ≡ next ξ.(u[t/x]) (26)

next ξ [x � t] .x ≡ t (27)

next ξ [x � t] .u ≡ next ξ.u (28)

next ξ [x � t, y � u] ξ′.v ≡ next ξ [y � u, x � t] ξ′.u (29)

next ξ. next ξ′.u ≡ next ξ′. next ξ.u (30)

(next ξ.t =⊲ξ.A next ξ.s) ≡ ⊲ξ.(t =A s) (31)

El(⊲̂(next ξ.A)) ≡ ⊲ξ.El(A) (32)

Fig. 6. The notation ξ [x � t] means the extension of the delayed substitution ξ

with [x � t]. Rule (28) requires x not free in u. Rule (30) requires that none of the

variables in the codomains of ξ and ξ′ appear in the type of u, and that the

codomains of ξ and ξ′ are independent.

assume the relation exists later, and from that assumption construct the relation now by

structural induction on types. Thus the well-definedness of the logical relation is ensured

by the type system of GDTT, more specifically by the rules for guarded recursion. This

is in contrast to the classical proof in domain theory [Pit96], where existence requires a

separate argument.

The logical relation uses a lifting of relations on values available now, to relations on

values available later. To define this lifting, we need delayed substitutions, an advanced

feature of GDTT.

5.1. Delayed substitutions

In GDTT, if Γ, x : A ⊢ B type is a well formed type and t has type ⊲A in context Γ, one

can form the type ⊲ [x � t] .B. Intuitively, one time step from now, t delivers an element in

A, and ⊲ [x � t] .B is the type of elements that one time step from now delivers something

in B with x substituted by the element delivered at that time by t. One motivation for

this construction is to generalise ⊛ (described in Section 2) to a dependent version: if

f : ⊲(Π(x : A).B), then f ⊛ t : ⊲ [x � t] .B. The idea is that t will eventually reduce to a

term of the form nextu, and then ⊲ [x � t] .B will be equal to ⊲B[u/x]. But if t is open,

we may not be able to do this reduction yet.

More generally, we define the notion of delayed substitution as follows. Suppose Γ,Γ′ ⊢

is a wellformed context, and suppose Γ′ is on the form Γ′ = x1 : A1 . . . xn : An with all Ai

independent, i.e., no xj appears in an Ai. A delayed substitution ξ : Γ _ Γ′ is a vector

of terms ξ = [x1 � t1, . . . , xn � tn] such that Γ ⊢ ti : Ai for each i. [Biz+16] gives a more

general definition of delayed substitution allowing dependencies between the Ai’s, but

for this paper we just need the definition above.

If ξ : Γ _ Γ′ is a delayed substitution and Γ,Γ′ ⊢ B type is a wellformed type, then

the type ⊲ξ.B is wellformed in context Γ. The introduction form states next ξ.u : ⊲ξ.B if

Γ,Γ′ ⊢ u : B.

In Figure 6 we recall some rules from [Biz+16] needed below. Of these, (26) and (27)
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can be considered β and η laws, and (28) is a weakening principle. Rules (26), (28) and

(29) also have obvious versions for types, e.g.,

⊲ξ [x � next ξ.t] .B ≡ ⊲ξ.(B[t/x]) (33)

Rather than be taken as primitive, later application ⊛ can be defined using delayed

substitutions as

g ⊛ y
def
== next [f � g, x � y] .f(x) (34)

Note that if g : ⊲(A→ B) and y : ⊲A, the type of g⊛y is ⊲[f � g, x � y].B which reduces

to ⊲B since f and x do not appear in B. With this definition, the rule next(f(t)) ≡

next f ⊛ next t from Section 2 generalises to

next ξ.(f t) ≡ (next ξ.f)⊛ (next ξ.t) (35)

which follows from (26). In fact, later application generalises to the setting of delayed

substitutions: if g : ⊲ξ.Πx : A.B and y : ⊲ξ.A define

g ⊛ y
def
== next ξ [f � g, x � y] .f(x) : ⊲ξ [x � y] .B (36)

Note that in the special case where y = next ξ.u we get

g ⊛ next ξ.u : ⊲ξ.B[u/x]

Rules (27), (28) and (30) imply

next ξ [x � t] . nextx ≡ next(next ξ [x � t] .x)

≡ next(t)

≡ next ξ [x � t] .t

which by (31) gives an inhabitant of

⊲ξ [x � t] .(nextx = t) (37)

5.2. A logical relation between syntax and semantics

Our strategy to prove computational adequacy is by logical relation argument. We con-

struct a logical relation R as in Figure 7 between syntax and semantics. This is done

using first guarded recursion and then induction on the FPC types.

Figure 7 uses an operation lifting relations R from A to B to relations ⊲R from ⊲A

to ⊲B defined as

t ⊲R u
def
== ⊲ [x � t, y � u] .(x R y) (38)

As a consequence of (33) the following statement holds:

(next ξ.t) ⊲R (next ξ.u) ≡ ⊲ξ.(t R u) (39)

The lifting on relations is used, e.g., in the second case of R1 where x is assumed to

have type ⊲L1. In that case θ1(x) is a semantic computation that takes a step, and so

should only be related to M , if M can also reduce in one step to an M ′′, that should be
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η(∗) R1 M
def
== M ⇒0 〈〉

θ1(x) R1 M
def
== ΣM ′,M ′′ : TermFPC.M →0

∗ M ′ →1 M ′′ and x ⊲R1 next(M ′′)

x Rτ1×τ2 M
def
== π1(x) Rτ1 fst (M) and π2(x) Rτ2 snd (M)

η(inl(x)) Rτ1+τ2 M
def
== ΣL.M ⇒0

inl L and x Rτ1 L

η(inr(x)) Rτ1+τ2 M
def
== ΣL.M ⇒0

inr L and x Rτ2 L

θτ1+τ2(x) Rτ1+τ2 M
def
== ΣM ′,M ′′ : TermFPC.M →0

∗ M ′ →1 M ′′ and x ⊲Rτ1+τ2 next(M ′′)

f Rτ→σ M
def
== Πx : JτK , N : TermFPC.x Rτ N → f(x) Rσ (MN)

x Rµα.τ M
def
== ΣM ′M ′′.unfold M →0

∗ M ′ →1 M ′′ and x ⊲Rτ [µα.τ/α] next(M ′′)

Fig. 7. The logical relation Rτ : JτK × TermFPC → U.

later related to x. Note that x is not necessarily of the form next(y) for some y, but we

can still related x to next(M ′′) using delayed substitutions as in the definition of ⊲R1 .

Most of the definition of the logical relation is standard, e.g., in the case of function

types, where related functions are required to map related input to related output. The

case of recursive type deserves some attention. On the right hand side, we have x of

type Jµα.τK, which means it is a piece of data which later will be unfolded and therefore

available. More precisely, it has also type ⊲ Jτ [µα.τ/α]K. This semantic program is related

to a syntactic programM if and only if the unfolding ofM reduces in one computational

step to an M ′′ which is later related to x.

The logical relation is an example of a guarded recursive definition. To see this, note

first that the lifting operation can be expressed on codes mapping R : A→ B → U to

λx : ⊲A, y : ⊲B.⊲̂(next [x′ � x, y′ � y] .(x′ R y′))

and this operation factors as F ◦ next, for F : ⊲(A→ B → U) → A→ B → U defined as

λS.λx : ⊲A, y : ⊲B.⊲̂(next [x′ � x, y′ � y, R � S] .(x′ R y′))

Using this, one can formally define the logical relation as a fixed point of a function of

type

⊲(Π(τ : Type
FPC

). JτK × TermFPC → U) → (Π(τ : Type
FPC

). JτK × TermFPC → U)

similarly to the formal definition of θ in the equation (24).

5.3. Proof of computational adequacy

Before proving computational adequacy we need to show some key properties about the

logical relation R. The first of these is that the relation respects the applicative structure

of the ⊲ operator which is that we can apply an argument that will be available later to

a function that will also be available later.
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Lemma 5.1. If f ⊲Rτ→σ next(M) and r ⊲Rτ next(L) then

(f ⊛ r) ⊲Rσ next(ML)

Proof. By definition f ⊲Rτ→σ next(M) is type equal to

⊲ [x � f ] .(x Rτ→σ M)

which by definition is

⊲ [x � f ] .(Π(y : JτK)(L : TermFPC).y Rτ L→ x(y) Rσ ML)

By applying the latter to r and nextL using the generalised later application of (36) we

get an element of

⊲ [x � f, y � r, L � nextL] .(y Rτ L→ x(y) Rσ ML)

≡ ⊲ [x � f, y � r] .(y Rτ L→ x(y) Rσ ML)

By further applying this to the hypothesis r ⊲Rτ next(L) ≡ ⊲ [y � r] .(y Rτ L) we get

⊲ [x � f, y � r] .(x(y) Rσ ML)

which is equivalent to (f ⊛ r) ⊲Rσ next(ML), thus concluding the case.

Next we show that the relation is agnostic to 0-step reduction in the operational seman-

tics.

Lemma 5.2. If M →0 N then x Rσ M iff x Rσ N .

Proof. We prove first the left to right implication by induction on σ, and show just a

few cases.

In the case of coproducts, we proceed by case analysis on x. In the case of x = η(inl(y)),

by the assumption we have that M →0
∗ inl (N ′) and y Rτ1 N

′. If M = inl (N ′), then

by N must be of the form inl (N ′′) for some N ′′, such that N ′ →0 N ′′. In this case,

by induction hypothesis y Rτ1 N
′′ and so x Rτ1+τ2 N . If the reduction M →0

∗ inl (N ′)

has positive length, by determinancy of the operational semantics (Lemma 3.1) we get

N →0
∗ inl N ′, and thus x Rτ1+τ2 N . The case where x = η(inl(y)) is similar. When

x = θτ1+τ2(y), by the assumption x Rτ1+τ2 M there exist M ′ and M ′′ such that M →0
∗

M ′ and M ′ →1 M ′′ and y ⊲R1 next(M ′′). Again by determinancy of the operational

semantics, N →0
∗ M

′ and thus we conclude x Rτ1+τ2 N .

Now we consider the case for recursive types. By assumption we know there exists M ′

andM ′′ such that unfoldM →0
∗ M

′ andM ′ →1 M ′′ and x ⊲Rτ [µα.τ/α] next(M ′′). Since

M →0 N then also unfold M →0 unfold N . Therefore, from the assumption and the

fact that the operational semantics is deterministic (Lemma 3.1) we get unfold N →0
∗

M ′. By definition of the logical relation we get x Rµα.τ N , which concludes the proof.

The proof of the right to left implication is also by induction on the structure of σ.

Again we just show a few cases.

In the case of the unit type, we proceed by case analysis on x. When x = η(∗) we

have that N →0
∗ 〈〉. Since M →0 N we get M →0

∗ 〈〉 as required. When x is θ1(x
′)
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by assumption x R1 N implies that there exists N ′ and N ′′ such that N →0
∗ N

′ and

N ′ →1 N ′′ and x′ ⊲R1 next(N ′′). Since also M →0
∗ N

′ this implies x R1 M .

In the case of recursive types, by assumption we have that x Rµα.τ N and M →0

N . From the former we derive that there exists M ′ and M ′′ such that unfold N →0
∗

M ′,M ′ →1 M ′′ and x Rτ [µα.τ/α] next(M ′′). Since M →0 N then also unfold M →0

unfold N . Therefore, we know that unfold M →0
∗ M

′, thus by definition of the logical

relation we conclude.

Now we show a key property of the logical relation. This states that for programs that

are related later after a 1-step operational reduction are related now. Note that in the

interpretation of the unit type we used the lifting monad. This was not strictly necessary

to get a “tick” algebra structure, but it is crucial to make the following lemma to work.

Lemma 5.3. If x ⊲Rτ next(M) and M ′ →1 M then θτ (x) Rτ M
′.

Proof. The proof is by guarded recursion, so we assume that the lemma is “later true”,

i.e., that we have an inhabitant of the type obtained by applying ⊲ to the statement of

the lemma. We proceed by induction on τ .

The cases for the unit type and for the coproduct are straightforward by definition. In

the case for products, by assumption we have

y ⊲Rτ1×τ2 next(M) .

Unfolding definitions we get

⊲ [x � y] .(π1(x) Rτ1 (fstM)) and (π2(x) Rτ2 fst (M))

which implies

(π1(y)) ⊲Rτ1 next(fstM) and π2(y) ⊲Rτ2 next(sndM)

Since M ′ →1 M then also fst M ′ →1 fst M and snd M ′ →1 snd M , thus we can use

the induction hypothesis on τ1 and τ2 and get

θτ1(π1(y)) Rτ1 fstM ′ and θτ2(π2(y)) Rτ2 sndM ′

by definition θτ1×τ2 commutes with π1 and π2. Thus, we obtain

π1(θτ1×τ2(y)) Rτ1 fstM ′ and π2(θτ1×τ2(y)) Rτ2 sndM ′

which is by definition what we wanted.

Now the case for the function space. Assume f ⊲Rτ1→τ2 next(M) and M ′ →1 M . We

must show that if y : Jτ1K, N : TermFPC and y Rτ1 N then (θτ1→τ2(f))(y) Rτ2 (MN). So

suppose y Rτ1 N , and thus also ⊲(y Rτ1 N) which is equal to next(y) ⊲Rτ1 next(N). By

applying Lemma 5.1 to this and f ⊲Rτ1→τ2 next(M) we get

f ⊛ (next(y)) ⊲Rτ2 next(MN)

Since M ′ →1 M also M ′N →1 MN , and thus, by the induction hypothesis for τ2,

θτ2(f ⊛ (next(y))) Rτ2 M
′N . Since by definition θτ1→τ2(f)(y) = θτ2(f ⊛ next(y)), this

proves the case.
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The interesting case is the one of µα.τ . Assume x ⊲Rµα.τ next(M) and M ′ →1 M . By

definition of ⊲R this implies ⊲ [y � x] .(y Rµα.τ M) which by definition of Rµα.τ is

⊲ [y � x] .ΣN ′N ′′.unfoldM →0
∗ N

′ and N ′ →1 N ′′ and (y ⊲Rτ [µα.τ/α] next(N ′′))

Since zero-step reductions cannot eliminate outer unfold’s, N ′ must be on the form

unfold N for some N , such that M →0
∗ N . Thus, we can apply the guarded induction

hypothesis to get

⊲ [y � x] .(ΣN.M →0
∗ N and (θτ [µα.τ/α](y) Rτ [µα.τ/α] unfold N))

Since unfoldM →0
∗ unfold N , by Lemma 5.2 we get

⊲ [y � x] .(θτ [µα.τ/α](y) Rτ [µα.τ/α] unfoldM)

which by (39) is

next [y � x] .(θτ [µα.τ/α](y)) ⊲Rτ [µα.τ/α] next(unfoldM)

By (34) this implies

next(θτ [µα.τ/α])⊛ x ⊲Rτ [µα.τ/α] next(unfoldM)

Since by assumption M ′ →1 M also unfoldM ′ →1 unfoldM thus, by definition of the

logical relation

next(θτ [µα.τ/α])⊛ x Rµα.τ M
′

By definition next(θτ [µα.τ/α])⊛ x is equal to θµα.τ (x) thus we can derive

θµα.τ (x) Rµα.τ M
′

as we wanted.

We can now finally state and prove the fundamental lemma stating that any term is

related to its denotation in the logical relation of Figure 7. As we shall see below, this

will imply computational adequacy.

Lemma 5.4 (Fundamental Lemma). Suppose Γ ⊢M : τ , for Γ ≡ x1 : τ1, · · · , xn : τn
and ⊢ Ni : τi, γi : JτiK and γi RJτiK Ni for i ∈ {1, . . . , n}, then JMK (~γ) Rτ M [ ~N/~x]

Proof. The proof is by guarded recursion, and so we assume ⊲ applied to the statement

of the lemma. This implies that for all well-typed terms M with context Γ and type τ

the following holds:

⊲(JMK (~γ) Rτ M [ ~N/~x])

Then we proceed by induction on the typing derivation Γ ⊢ M : τ , showing only the

interesting cases.

Consider first the case of Γ ⊢ λx.M : σ → τ . Assuming γn+1 Rσ Mn+1, we must show

Jλx.MK (~γ)(γn+1) Rτ JMK (~γ, γn+1). Since

Jλx.MK (~γ)(γn+1) = JMK (~γ, γn+1)

(λx.M)[ ~M/~x](Mn+1) = λx.(M [ ~M/~x])(Mn+1)
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and λx.(M [ ~M/~x])(Mn+1) →
0 (M [ ~M/~x])[Mn+1/x], by Lemma 5.2 it suffices to prove

JMK (~γ, γn+1) Rτ M [ ~M/~x][Mn+1/x]

which follows from the induction hypothesis.

For the case Γ ⊢ unfoldM : τ [µα.τ/α] we must show that

JunfoldMK (~γ) Rτ [µα.τ/α] (unfoldM)[ ~N/~x]

By induction hypothesis we know that JMK (~γ) Rµα.τ (M [ ~N/~x]) which means that

there exists M ′ and M ′′ such that unfold (M [ ~N/~x]) →0
∗ M ′ and M ′ →1 M ′′ and

JMK (~γ) ⊲Rτ [µα.τ/α] next(M ′′). By Lemma 5.3 then θτ [µα.τ/α](JMK (~γ)) Rτ [µα.τ/α] M
′

and since unfold (M [ ~N/~x]) →0
∗ M

′ by repeated application of Lemma 5.2 we get

θτ [µα.τ/α](JMK (~γ)) Rτ [µα.τ/α] unfold (M [ ~N/~x])

Since by definition JunfoldMK (~γ) = θτ [µα.τ/α](JMK (~γ)) this finishes the proof of the

case.

For the case Γ ⊢ foldM : µα.τ we want to show that

JfoldMK (~γ) Rµα.τ (foldM)[ ~N/~x]

By definition of the logical relation we have to show that there exist M ′ and M ′′ such

that

unfold (fold (M [ ~N/~x])) →0
∗ M

′

M ′ →1 M ′′ and that JfoldMK (~γ) ⊲Rτ [µα.τ/α] next(M ′′). Setting M ′′ to be (M [ ~N/~x]),

we are left to show that

JfoldMK (~γ) ⊲Rτ [µα.τ/α] next(M [ ~N/~x])

which is equal by definition of the interpretation function to

next(JMK (~γ)) ⊲Rτ [µα.τ/α] next((M [ ~N/~x]))

The latter is equal by (39) to ⊲(JMK (~γ) Rτ [µα.τ/α] (M [ ~N/~x])) which is true by the

guarded recursive hypothesis.

For the case Γ ⊢ inlM : τ1 + τ2 we have to prove that

JinlMK (~γ) Rτ1+τ2 inlM [ ~M/~x]

By definition of the interpretation function JinlMK (~γ) is equal to η(inl(JMK (~γ))). By
definition of the logical relation we have to prove that there exists M ′ such that

(inlM)[ ~M/~x] ⇒0 inlM ′ and JMK (~γ) Rτ1 M
′.

The former is trivially true withM ′ =M [ ~M/~x] and the latter is by induction hypothesis.

The case for Γ ⊢ inr N : τ1 + τ2 is similar.

For the case Γ ⊢ case L of x1.M ;x2.N : σ we have to prove that

Jcase L of x1.M ;x2.NK (~γ) Rσ (case L of x1.M ;x2.N)[ ~M/~x]

For this it suffices to prove

Jλx.case x of x1.M ;x2.NK (~γ) Rτ1+τ2→σ (λx.case x of x1.M ;x2.N)[ ~M/~x] (40)
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and then applying this to JLK (~γ) Rτ1+τ2 L[
~M/~x]. We prove (40) by guarded recursion

thus assuming the statement is true later.

Assume y of type Jτ1 + τ2K, L a term, and y Rτ1+τ2 L. We proceed by case analysis on

y which is of type Jτ1 + τ2K which by definition is L(Jτ1K+Jτ2K). In the case y = η(inl(z)),

where z is of type Jτ1K we know by assumption that there exists L′ s.t. L ⇒0 inl (L′)

and z Rτ1 L
′. Since

Jλx.case x of x1.M ;x2.NK (~γ)(η(inl(z))) = JMK (~γ, z)

and

case L of x1.M [ ~M/~x];x2.N [ ~M/~x] ⇒0 M [ ~M/~x][L′/x1]

by Lemma 5.2 we are left to prove

JMK (~γ, γ) Rσ M [ ~M/~x][L′/x1]

which is true by induction hypothesis. The case y = η(inl(z)) where z is of type Jτ2K is

similar.

Now consider the case of y = θτ1+τ2(z), where z is of type ⊲ Jτ1 + τ2K. By induction

hypothesis we know that θτ1+τ2(z) Rτ1+τ2 L, thus there exist L′ and L′′ of type TermFPC

such that L→0
∗ L

′, L′ →1 L′′ and z ⊲Rτ1+τ2 next(L′′).

Recall that we have assumed ⊲ of (40), i.e.,

⊲(Jλx.case x of x1.M ;x2.NK (~γ) Rτ1+τ2→σ (λx.case x of x1.M ;x2.N)[ ~M/~x])

which is type equal to

next(Jλx.case x of x1.M ;x2.NK (~γ)) ⊲Rτ1+τ2→σ next((λx.case x of x1.M ;x2.N)[ ~M/~x])

By Lemma 5.1 we can apply this to the assumption z ⊲Rτ1+τ2 next(L′′) thus getting

next(Jλx.case x of x1.M ;x2.NK (~γ))⊛z ⊲Rσ next(((λx.case x of x1.M ;x2.N)[ ~M/~x])(L′′))

Since L′ →1 L′′ we can apply Lemma 5.3 and obtain

θσ(next(Jλx.case x of x1.M ;x2.NK (~γ))⊛ z) Rσ case L′ of x1.M [ ~M/~x];x2.N [ ~M/~x]

By Lemma 5.2 with the fact that L→0
∗ L

′ we get

θσ(next(Jλx.case x of x1.M ;x2.NK (~γ))⊛ z) Rσ case L of x1.M [ ~M/~x];x2.N [ ~M/~x]

And finally by simplifying the left-hand side using Lemma 4.6:

θσ(next(Jλx.case x of x1.M ;x2.NK (~γ))⊛ z) = Jλx.case x of x1.M ;x2.NK (~γ)(y)

thus getting

Jλx.case x of x1.M ;x2.NK (~γ)(y) Rσ (λx.case x of x1.M ;x2.N)[ ~M/~x](L)

as we wanted.

From the Fundamental lemma we can now prove computational adequacy.

Theorem 5.5 (Intensional Computational Adequacy). If M : 1 is a closed term

then M ⇒k 〈〉 iff JMK (∗) = δk(η(∗)).
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Proof. The left to right implication is soundness (Proposition 4.8). For the right to left

implication note first that the Fundamental Lemma (Lemma 5.4) implies δk(η(∗)) R1 M .

To complete the proof it suffices to show that δk1 (η(∗)) R1 M implies M ⇒k 〈〉.

This is proved by guarded recursion and induction on k: the case of k = 0 is immediate

by definition of R1 . If k = k′+1 first assume δk1 (η(∗)) R1 M . By definition of R there

exist M ′ and M ′′ such that M →0
∗ M

′, M ′ →1 M ′′ and next(δk
′

1 (η(∗))) ⊲R1 next(M ′′)

which is type equal to ⊲(δk
′

1 (η(∗)) R1 M
′′). By the guarded recursion assumption we get

⊲(M ′′ ⇒k′

〈〉) which by definition implies M ⇒k 〈〉.

From Theorem 5.5 one can deduce that whenever two terms have equal denotations

they are contextually equivalent in a very intensional way, as we now describe. By a

context, we mean a term C[−] with a hole, and we say that C[−] has type Γ, τ → (−, 1)

if C[M ] is a closed term of type 1, whenever Γ ⊢ M : τ .

Corollary 5.6. Suppose Γ ⊢ M : τ and JMK = JNK. If C[−] has type Γ, τ → (−, 1) and

C[M ] ⇒k 〈〉 also C[N ] ⇒k 〈〉.

As stated above, this is a very intensional result in the sense that whenever two FPC-

denotable programs are equal we can derive that, under any context, they reduce to the

same value with the same number of computational steps. This means that our model dis-

tinguishes programs whose input-output behaviour is the same, but the way in which the

result is computed is computationally different. More specifically, two different algorithms

implementing the same specification, but with a different computational complexity, will

be considered different in the model. We explain how to recover this extensionality via a

logical relation in the next section.

6. Extensional Computational Adequacy

Our model of FPC is intensional in the sense that it distinguishes between computations

computing the same value in a different number of steps. In this section we define a

logical relation which relates elements of the model if they differ only by a finite number

of computation steps. In particular, this also means relating ⊥ to ⊥.

Such a relation must be defined on the types of the form ∀κ. JσK rather than directly

on the types JσK. To see why, consider the case of σ = 1, in which case JσK = L1. Recall

from Section 2.1 that in the topos of trees model L1 is interpreted as the family of sets

L1(n) = {⊥, 0, 1, . . . , n− 1}

which describes computations terminating in at most n−1 steps or using at least n steps

(corresponding to ⊥). It cannot distinguish between termination in more than n − 1

steps and real divergence. Our relation should relate a terminating value x in L1(n) to

any other terminating value, but not real divergence, which is impossible, if divergence

cannot be distinguished from slow termination. Another, more semantic, way to phrase

the problem is that termination as described by the subsets {0, 1, . . . , n− 1} of L1(n) for

each n does not form a subobject of L1.
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On the other hand, if L1 ∼= 1 + ⊲κ1 then, as we saw in section the type

LglA
def
== ∀κ.LA

is a coinductive solution to the type equation

Lgl1 ∼= 1 + Lgl1

Semantically Lgl1 is modelled as the set N+{⊥}, and termination is the subset of this cor-

responding to the left inclusion of N. So on the global level we can, at least semantically,

distinguish between termination and non-termination. This is reflected syntactically in

Lemma 6.19.

We refer to ∀κ. J1K ≡ Lgl1 as the global interpretation of the type 1 because it captures

the global behaviour (computable in any number of steps) of terms of type 1. We now

extend this to the global interpretation of all types and terms and give the definition of

the logical relation.

6.1. Global interpretation of types and terms

Recall that the developments above should be read as taking place in a context of an

implicit clock κ. To be consistent with the notation of the previous sections, κ will remain

implicit in the denotations of types and terms, although one might choose to write e.g.

JσKκ to make the clock explicit.

We define global interpretations of types and terms as follows:

JσKgl def
== ∀κ. JσK

JMKgl def
== Λκ. JMK

such that if Γ ⊢ M : τ , then

JMKgl : ∀κ.(JΓK → JτK)
Note that JσKgl is a wellformed type, because JσK is a wellformed type in context σ : Type

FPC

and Type
FPC

is an inductive type formed without reference to clocks or guarded recursion,

thus κ does not appear in Type
FPC

. By a similar argument JMKgl is welltyped.
Define for all σ the delay operator δglσ : JσKgl → JσKgl as follows

δglσ (x)
def
== Λκ.δσ(x[κ]) (41)

Similarly for LA, δglLA(x)
def
== Λκ.δLA(x[κ]).

With these definitions we can lift the adequacy theorem to the global points. To prove

the denotational model is computationally adequate w.r.t. the standard big-step opera-

tional semantics ⇓n we take the global view points of the the denotational semantics in

order to be able to remove the occurrences of the ⊲ operator.

Corollary 6.1 (Computational adequacy). If M : 1 is a closed term and n is a

natural number, then M ⇓n 〈〉 iff ∀κ. JMK (∗) = δn(η(∗)).

Proof. Since ∀κ.(−) is functorial, Theorem 5.5 gives ∀κ. JMK (∗) = δn(η(∗)) iff ∀κ.M ⇒n

〈〉, which by Lemma 3.2 holds iff M ⇓n 〈〉.
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We have now a semantics that implies the standard operational semantics. However, we

are still not able to prove that if two programs are equal they are going to be contextually

equivalent w.r.t. the input-output behaviour. To achieve so, we need to lift the explicit

step-indexing as well.

6.2. A weak bisimulation relation for the lifting monad

Before defining the logical relation on the interpretation of types, we define a relational

version of the guarded recursive lifting monad L. If applied to the identity relation on

a type A in which κ does not appear, we obtain a weak bisimulation relation similar to

the one defined by Capretta [Cap05] for the coinductive partiality monad.

Definition 6.2. For a relation R : A × B → U define the lifting LR : LA × LB → U

by guarded recursion and case analysis on the elements of LA and LB:

η(x) LR η(y)
def
== x R y

η(x) LR θLB(y)
def
== Σn, y′.θLB(y) = δnLB(η(y

′)) and x R y′

θLA(x) LR η(y)
def
== Σn, x′.θLA(x) = δnLA(η(x

′)) and x′ R y

θLA(x) LR θLB(y)
def
== x ⊲LR y

Intuitively, LR relates two elements if they either both diverge, or both both converge

to elements related in R. For example, ⊥ as defined in Section 4 is always related to

itself which can be shown by guarded recursion as follows. Suppose ⊲(⊥ LR ⊥). Since

⊥ = θ(next(⊥)), to prove ⊥ LR ⊥, we must prove next(⊥) ⊲LR next(⊥). But, this type

is equal to the assumption ⊲(⊥ LR ⊥) by (39).

By the intuition given for LR below, it should be possible to add or remove ticks on

either side without breaking relatedness in LR. The next lemma shows half of this.

Lemma 6.3. If R : A×B → U, and x LR y then x LR δLB(y) and δLA(x) LR y.

Proof. Assume x LR y. We show x LR δLB(y). The proof is by guarded recursion,

hence we first assume:

⊲(Πx : LA, y : LB.x LR y ⇒ x LR δLB(y)). (42)

We proceed by case analysis on x and y. If x = η(x′), then, since x LR y, there exist n

and y′ such that y = δnLB(η(y
′)) and x′ R y′. So then δLB(y) = δn+1

LB (η(y′)), from which

it follows that x LR δLB(y).

For the case where x = θLA(x
′) and y = η(v), it suffices to show that δnLA(η(w)) LR η(v)

implies δnLA(η(w)) LR δLB(η(v)). The case of n = 0 was proved above. For n = m + 1

we know that if δnLA(η(w)) LR η(v) also δmLA(η(w)) LR η(v) holds by definition, and this

implies

⊲(δmLA(η(w)) LR η(v))
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But this type can be rewritten as follows

⊲(δmLA(η(w)) LR η(v)) ≡ next(δmLA(η(w)) ⊲LR next(η(v)))

≡ θLA(next(δ
m
LA(η(w)))) LR θLB(next(η(v))))

≡ δnLA(η(w)) LR δLB(η(v))

proving the case.

Finally, the case when x = θLA(x
′) and y = θLB(y

′). The assumption in this case is

x′ ⊲LR y′, which means by (38),

⊲ [x′′ � x′, y′′ � y′] .x′′ LR y′′

By the guarded recursion hypothesis (42) we get

⊲ [x′′ � x′, y′′ � y′] .x′′ LR δLB(y
′′)

which can be rewritten to

⊲ [x′′ � x′, y′′ � y′] .x′′ LR θLB(next(y
′′)) (43)

By (37) there is an inhabitant of the type

⊲ [x′′ � x′, y′′ � y′] .(next(y′′) = y′)

and thus (43) implies ⊲ [x′′ � x′] .x′′ LR θLB(y
′), which, by (39) and since y = θLB(y

′)

equals x′ ⊲LR next(y). By definition, this is

θLA(x
′) LR θLB(next(y))

which since x = θLA(x
′) is x LR δLB(y).

We can lift this result to Lgl as follows. Suppose R : A×B → U and κ not in A or B.

Define LglR : LglA× LglB → U as

x LglR y
def
== ∀κ.x[κ] LR y[κ]

Lemma 6.4. Let x : LglA and y : LglB. If x LglR y then x LglR δgl(y) and δgl(x) LglR y.

Proof. Follows directly from Lemma 6.3.

One might expect that δLA(x) LR δLB(y) implies x LR y. This is not true, it only implies

⊲(x LR y). In the case of Lgl, however, we can use force to remove the ⊲.

Lemma 6.5. For all x : LglA and y : LglB and for allR : A×B → U, if δglLA(x) L
glR δglLB(y)

then x LglR y.

Proof. Assume δglLA(x) L
glR δglLB(y). We can rewrite this type by unfolding definitions
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x ≈1 y
def
== x L(=1) y

x ≈τ1+τ2 y
def
== x L( ≈τ1 + ≈τ2 ) y

x ≈τ1×τ2 y
def
== π1(x) ≈τ1 π1(y) and π2(x) ≈τ2 π2(y)

f ≈σ→τ g
def
== Π(x, y : JσK).x ≈σ y → f(x) ≈τ g(y)

x ≈µα.τ y
def
== x ⊲ ≈τ [µα.τ/α] y

Fig. 8. The logical relation ≈τ is a predicate over denotations of τ of type

JτK × JτK → U

and (39) as follows.

δglLA(x) L
glR δglLB(y) ≡ ∀κ.(δglLA(x))[κ] LR (δglLB(y))[κ]

≡ ∀κ.(δLA(x[κ])) LR (δLB(y[κ]))

≡ ∀κ.(next(x[κ]) ⊲LR next(y[κ]))

≡ ∀κ.⊲(x[κ] LR (y[κ]))

Using force this implies ∀κ.(x[κ] LR (y[κ])) which is equal to x LglR y.

Lemma 6.6. For all x of type LglA and y of type LglB, if δglLA(x) L
glR y then x LglR y.

Proof. Assume δglLA(x) L
glR y. Then by applying Lemma 6.4 we get δglLA(x) L

glR δglLB(y)

and by applying Lemma 6.5 we get x LglR y.

With this machinery in place we can now define a relation on the semantics that

relates programs that produce the same value (or both diverge) and that discards the

information about the number of delays used.

6.3. Relating terms up to extensional equivalence

Figure 8 defines for each FPC type τ the logical relation ≈τ : JτK× JτK → U. The defini-

tion is by guarded recursion, and well-definedness can be formalised using an argument

similar to that used for well-definedness of θ in equation (24). The case of recursive types

is well typed by Lemma 4.2. The figure uses the following lifting of relations to sum

types.

Definition 6.7. Let R : A×B → U and R′ : A′ ×B′ → U. Define (R+R′) : (A+A′)×

(B +B′) → U by case analysis as follows (omitting false cases)

inl(x) (R+R′) inl(y)
def
== x R y

inl(x) (R+R′) inl(y)
def
== x R′ y

The logical relation can be generalised to open terms and the global interpretation of

terms as in the next two definitions.
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Definition 6.8. For Γ ≡ x1 : σ1, · · · , xn : σn and for f , g of type JΓK → JτK define

f ≈Γ,τ g
def
== Π(~x, ~y : J~σK).~x ≈~σ ~y → f(~x) ≈τ g(~y)

For x, y of type ∀κ.(JΓK → JτK) define

x ≈gl
Γ,τ y

def
== ∀κ.x[κ] ≈Γ,τ y[κ]

Perhaps surprisingly, this relation is not reflexive. For example the function f : L1 →

L1 defined by f(η(∗)) = η(∗) and f(θL1(x)) = ⊥ does not satisfy f ≈1→1 f . On

the other hand, the denotation of any term is always related to itself, as the following

proposition states.

Proposition 6.9. If Γ ⊢ M : σ, then JMK ≈Γ,σ JMK.

The rest of this section is devoted to the proof of Proposition 6.9 which is important for

the proof of the extensional computational adequacy theorem. To prove the proposition

we first establish some basic properties of the logical relation. The first lemma states

that delayed application ⊛ respects the logical relation.

Lemma 6.10. For all f, g of type ⊲ Jτ → σK and x, y of type ⊲ JτK, if f ⊲ ≈τ→σ g and

x ⊲ ≈τ y then (f ⊛ x) ⊲ ≈σ (g ⊛ y).

Proof. Assume f ⊲ ≈τ→σ g and x ⊲ ≈τ y. By Definition 38 f ⊲ ≈τ→σ g is

⊲ [f ′ � f, g′ � g] .(f ′ ≈τ→σ g′) which by unfolding the definition of ≈τ→σ is

⊲ [f ′ � f, g′ � g] .(Π(x, y : JσK).x ≈τ y → f ′(x) ≈σ g′(y))

By applying this to x, y and x ⊲ ≈τ y using the dependent version of ⊛ defined in (36)

we get

⊲ [f ′ � f, g′ � g, a � x, b � y] .(f ′(a) ≈σ g′(b))

By (39) this is equal to

next [f ′ � f, a � x] .(f ′(a)) ⊲ ≈σ next [g′ � g, b � y] .(g′(b))

which by rule (34) is equal to

(f ⊛ x) ⊲ ≈σ (g ⊛ y)

Next we show that θ respects the logical relation.

Lemma 6.11. Let x, y of type ⊲ JσK, if (x ⊲ ≈σ y) then θσ(x) ≈σ θσ(y)

Proof. We prove the statement by guarded recursion. Thus, we assume the statement

holds “later” and we proceed by induction on σ. All the cases for the types that are

interpreted using the lifting – namely the unit type and the sum type – in Definition 6.2

hold by definition of the lifting relation.

First the case for the function types: Assume σ = τ1 → τ2 and assume f and g of type

⊲ Jτ1 → τ2K such that f ⊲ ≈τ1→τ2 g. We must show that if x, y : Jτ1Kκ and x ≈τ1 y then

(θτ1→τ2(f))(x) ≈τ2 (θτ1→τ2(g))(y)).
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So suppose x ≈τ1 y, then also ⊲(x ≈τ1 y), which by (39) is equal to next(x) ⊲ ≈τ1

next(y). By applying Lemma 6.10 to this and f ⊲ ≈τ1→τ2 g we get

f ⊛ (nextx) ⊲ ≈τ2 g ⊛ next y

By induction hypothesis on τ2, we get θτ2(f⊛(nextx)) ≈τ2 θτ2(g⊛(next y)). We conclude

by observing that by definition of θ, θτ1→τ2(f)(x) = θτ2(f ⊛ next(x)).

The case of the product is straightforward.

For the case of recursive types, assume φ ⊲ ≈µα.τ ψ. This is type equal to

⊲ [x � φ, y � ψ] .(x ≈µα.τ y)

By definition this is equal to

⊲ [x � φ, y � ψ] .(x ⊲ ≈τ [µα.τ/α] y)

By the guarded recursion hypothesis we get

⊲ [x � φ, y � ψ] .(θτ [µα.τ/α](x) ≈τ [µα.τ/α] θτ [µα.τ/α](y))

By (39) this is equal to

(next [x � φ] .(θτ [µα.τ/α](x))) ⊲ ≈τ [µα.τ/α] (next [y � ψ] .(θτ [µα.τ/α](y)))

This equals

(next(θτ [µα.τ/α])⊛ φ ⊲ ≈τ [µα.τ/α] (next(θτ [µα.τ/α])⊛ ψ

By definition next(θτ [µα.τ/α])⊛ φ is equal to θµα.τ (φ) thus we can derive

θµα.τ (φ) ⊲ ≈τ [µα.τ/α] θµα.τ (ψ)

which by definition of ≈µα.τ is

θµα.τ (φ) ≈µα.τ θµα.τ (ψ)

Next we generalise Lemma 6.3 to hold for ≈σ for all σ.

Lemma 6.12. Let σ be a closed FPC type and let x and y of type JσK, if x ≈σ y then

δσ(x) ≈σ y and x ≈σ δσ(y).

Proof. The proof is by guarded recursion and then by induction on the type σ. Thus,

assume this lemma holds “later”, and proceed by induction on σ. The cases of the unit

type and coproduct follow from Lemma 6.3 and the case of products follows by induction

from the fact that δτi(πi(x)) = πi(δτ1×τ2(x)), for i = 1, 2. The case of function types

follows from the fact that δσ→τ (f)(x) = δτ (f(x)).

For the case of recursive types assume x ≈µα.τ y. Note that

x ≈µα.τ y ≡ x ⊲ ≈τ [µα.τ/α] y

≡ ⊲ [x′ � x, y′ � y] .x′ ≈τ [µα.τ/α] y
′

Using the dependent version of ⊛ as defined in (36) we can apply the guarded recursion

assumption to conclude ⊲ [x′ � x, y′ � y] .x′ ≈τ [µα.τ/α] δτ [µα.τ/α](y
′). Note that the
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delay operator is the composition θ ◦ next, thus y′ appears under next. We can thus

employ (37) to derive that ⊲ [x′ � x] .x′ ≈τ [µα.τ/α] θτ [µα.τ/α](y). From here we conclude

by a simple computation:

⊲ [x′ � x] .x′ ≈τ [µα.τ/α] θτ [µα.τ/α](y) ≡ x ⊲ ≈τ [µα.τ/α] next(θτ [µα.τ/α](y))

≡ x ⊲ ≈τ [µα.τ/α] next(θτ [µα.τ/α])⊛ next(y)

≡ x ⊲ ≈τ [µα.τ/α] θµα.τ (next(y))

≡ x ≈µα.τ δµα.τ (y)

Lemma 6.13. Let σ be a closed FPC type and let x, y of type JσKgl. If x ≈gl
σ y then

x ≈gl
σ δglσ (y) and δglσ (x) ≈gl

σ y

Proof. Direct from Lemma 6.12.

Proof of Proposition 6.9 The proof is by induction on M and we just show the inter-

esting cases. In all cases we will assume Γ ≡ x1 : σ1.., xn : σn and that we are given ~x

and ~y such that ~x ≈~σ ~y.

For case expressions, to prove that

Jcase L of x1.M ;x2.NK (~x) ≈τ Jcase L of x1.M ;x2.NK (~y)

it suffices to prove that

Jλx.case x of x1.M ;x2.NK (~x) ≈σ→τ Jλx.case x of x1.M ;x2.NK (~y) (44)

Thus that for all x, y s.t. x ≈τ1+τ2 y

Jλx.case x of x1.M ;x2.NK (~x)(x) ≈τ Jλx.case x of x1.M ;x2.NK (~y)(y)

holds. We prove (44) by guarded recursion. Thus, we assume the statement holds “later”

and we proceed by case analysis on x and y. When x is η(x′) and y is η(y′) either x′ and

y′ are both in the left component or they are both in the right component of the sum.

The former case x′ = inl(x′′) and y′ = inl(y′′) reduces to

JMK (~x, x′′) ≈τ JMK (~y, y′′)

which follows from the induction hypothesis, and the latter case is similar.

Now consider the case of x = θτ1+τ2(x
′) and y = η(v). Since by assumption x ≈τ1+τ2 y

there exists n and w such that x = δnτ1+τ2(η(w)) and w ≈τ1+τ2 v. As before, v and w

must be in the same component of the coproduct, so assume w = inl(w′) and v = inl(v′)

such that w′ ≈τ1 v′. By induction hypothesis we know that JMK (~x) ≈τ1→τ JMK (~y) and
thus that JMK (~x)(w′) ≈τ JMK (~y)(v′). By Lemma 6.12 this implies δnτ (JMK (~x)(w′)) ≈τ

JMK (~y)(v′). Since

JMK (~x)(w′) = Jλx.case x of x1.M ;x2.NK (~x)(η(w)),
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by Lemma 4.6 we get

δnτ (JMK (~x)(w′)) = δnτ (Jλx.case x of x1.M ;x2.NK)(~x)(η(w)))
= Jλx.case x of x1.M ;x2.NK (~x)(δnτ1+τ2(η(w)))

and thus we conclude

Jλx.case x of x1.M ;x2.NK (~x)(δnτ1+τ2(η(w))) ≈τ1+τ2 Jλx.case x of x1.M ;x2.NK)(~x)(η(v))

which is what we wanted to show.

The last case is when x is θτ1+τ2(x
′) and y is θτ1+τ2(y

′). By guarded recursion we know

that

⊲(Jλx.case x of x1.M ;x2.NK (~x) ≈τ1+τ2→τ (Jλx.case x of x1.M ;x2.NK)(~y))

By (39) we get

next(Jλx.case x of x1.M ;x2.NK (~x)) ⊲ ≈τ1+τ2→τ next(Jλx.case x of x1.M ;x2.NK (~y))

Since the assumption θτ1+τ2(x
′) ≈τ1+τ2 θτ1+τ2(y

′), means that x′ ⊲ ≈τ1+τ2 y′, by

Lemma 6.10 this implies

next(Jλx.case x of x1.M ;x2.NK)(~x)⊛ x′ ⊲ ≈τ next(Jλx.case x of x1.M ;x2.NK)(~y)⊛ y′

By Lemma 6.11 this implies

θτ (next(Jλx.case x of x1.M ;x2.NK)(~x)⊛ x′) ≈τ θτ (next(Jλx.case x of x1.M ;x2.NK)(~y)⊛ y′)

By Lemma 4.6 we conclude that

Jλx.case x of x1.M ;x2.NK (~x)(θτ1+τ2(x
′)) ≈τ Jλx.case x of x1.M ;x2.NK)(~y)(θτ1+τ2(y

′))

proving the case.

Finally we prove the two cases for the recursive types. We first consider the case for

unfoldM of type τ [µα.τ/α]. We have to show that

JunfoldMK (~x) ≈τ [µα.τ/α] JunfoldMK (~y)

By induction hypothesis we know that JMK (~x) ≈µα.τ JMK (~y) which by definition of

≈µα.τ is JMK (~x) ⊲ ≈τ [µα.τ/α] JMK (~y). By Lemma 6.11 we get

θτ [µα.τ/α](JMK (~x)) ≈τ [µα.τ/α] θτ [µα.τ/α](JMK (~y))

and by definition of the interpretation function this is what we wanted.

Now the case for fold M of type µα.τ . By induction hypothesis we know that

JMK (~x) ≈τ [µα.τ/α] JMK (~y) which implies ⊲(JMK (~x) ≈τ [µα.τ/α] JMK (~y)) which is

equal to

next(JMK (~x)) ⊲ ≈τ [µα.τ/α] next(JMK (~y)).
By definition of ≈µα.τ this is precisely next(JMK (~x)) ≈µα.τ next(JMK (~y)) which by

definition of the interpretation function is

JfoldMK (~x) ≈µα.τ JfoldMK (~y)
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6.4. Extensional computational adequacy

Contextual equivalence of FPC is defined in the standard way by observing convergence

at unit type. We first define the language of contexts. These are FPC programs with a

hole [−] defined inductively as in the next definition.

Definition 6.14 (Contexts).

Ctx := [−] | λx.Ctx | CtxN |M Ctx

| inl Ctx | inr Ctx | 〈Ctx,M〉 | 〈M,Ctx〉 | fst Ctx | snd Ctx

| case Ctx of x1.M ;x2.N

| case L of x1.Ctx;x2.N | case L of x1.M ;x2.Ctx

| unfold Ctx | fold Ctx

Intuitively, a context is a term that takes a term and returns a new term.

We define the “fill hole” function ·[·] : Ctx×OTermFPC → OTermFPC by induction on the

context in the standard way. Note that this may capture free variables in the term being

substituted.

We say that a context C has type (Γ, σ) → (∆, τ) if ∆ ⊢ C[M ] : τ whenever Γ ⊢ M : σ.

This can be captured by a typing relation on contexts as defined in Figure 9. Next

we define contextual equivalence using the big-step semantics ⇓. This states that two

program are contextually equivalent if no context can distinguish them. Using ⇓ (instead

of ⇓k) ensures that we capture the standard notion of contextual equivalence, thus that

two programs producing the same value will be equivalent no matter how many steps

they take to terminate.

Definition 6.15. Let Γ ⊢ M,N : τ . We say that M,N are contextually equivalent,

written M ≈CTX N , if for all contexts C of type (Γ, τ) → (−, 1)

C[M ] ⇓ 〈〉 ⇐⇒ C[N ] ⇓ 〈〉

Finally we can state the main theorem of this section. Using the global view of the

logical relation ≈ we can prove if the denotations of two programs are related then they

are contextual equivalent in the extensional sense.

Theorem 6.16 (Extensional Computational Adequacy). If Γ ⊢ M,N : τ and

JMKgl ≈gl
Γ,τ JNKgl then M ≈CTX N .

To prove this theorem, we need the following lemma stating that contexts preserve the

logical relation.

Lemma 6.17. Let Γ ⊢ M : τ and Γ ⊢ N : τ and suppose JMK ≈Γ,τ JNK. If C is a

context such that C : Γ, τ → ∆, σ then JC[M ]K ≈∆,σ JC[N ]K

Proof. The proof is by induction on C and most cases can be proved either very simi-

larly to corresponding cases of Proposition 6.9, or by direct application of Proposition 6.9.

We show how to do the latter in two cases.

For a context unfold C of type (Γ, σ) → (∆, τ [µα.τ/α]) we have by induction that C
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− : (Γ, τ) → (Γ, τ)

C : (Γ, τ) → ((∆, x : σ′), σ)

(λx.C) : (Γ, τ) → (∆, σ′ → σ)

C : (Γ, τ) → (∆, τ ′ → σ) ∆ ⊢ N : τ ′

CN : (Γ, τ) → (∆, σ)

C : (Γ, σ) → (∆, τ ′) ∆ ⊢ M : τ ′ → σ

MC : (Γ, σ) → (∆, σ)

C : (Γ, σ) → (∆, µα.τ)

unfold C : (Γ, σ) → (∆, τ [µα.τ/α])

C : (Γ, σ) → (∆, τ [µα.τ/α])

fold C : (Γ, σ) → (∆, µα.τ)

C : (Γ, τ) → (∆, τ1 × τ2)

fst C : (Γ, τ) → (∆, τ1)

C : (Γ, τ) → (∆, τ1 × τ2)

snd C : (Γ, τ) → (∆, τ2)

C : (Γ, τ) → (∆, τ1) ∆ ⊢ N : τ2

〈C,N〉 : (Γ, τ) → (∆, τ1 × τ2)

C : (Γ, τ) → (∆, τ2) ∆ ⊢ M : τ1

〈M,C〉 : (Γ, τ) → (∆, τ1 × τ2)

C : (Γ, τ) → (∆, τ1 + τ2) ∆, x1 : τ1 ⊢ M : σ ∆, x2 : τ2 ⊢ N : σ

case C of x1.M ;x2.N : (Γ, τ) → (∆, σ)

∆ ⊢ L : τ1 + τ2 C : (Γ, τ) → ((∆, x1 : τ1), σ) ∆, x2 : τ2 ⊢ N : σ

case L of x1.C;x2.N : (Γ, τ) → (∆, σ)

∆ ⊢ L : τ1 + τ2 ∆, x1 : τ1 ⊢ M : σ C : (Γ, τ) → ((∆, x2 : τ2), σ)

case L of x1.M ;x2.C : (Γ, τ) → (∆, σ)

C : (Γ, τ) → (∆, τ1)

inl C : (Γ, τ) → (∆, τ1 + τ2)

C : (Γ, τ) → (∆, τ2)

inr C : (Γ, τ) → (∆, τ1 + τ2)

Fig. 9. Typing judgment for contexts

has type (Γ, σ) → (∆, µα.τ) and thus induction hypothesis we know that JC[M ]K (~x) ≈µα.τ

JC[N ]K (~y). By Proposition 6.9 we know that

Jλx.unfold xK ≈(µα.τ)→(τ [µα.τ/α]) Jλx.unfold xK

By applying this latter fact to the induction hypothesis we obtain

Junfold C[M ]K (~x) ≈τ [µα.τ/α] Junfold C[N ]K (~y)

which is what we wanted.

When the context binds a variable one has to be a bit more careful. For example, for a

context of the form case L of x1.C;x2.N
′ of type (Γ, τ) → (∆, σ) we have by induction

that C has type (Γ, τ) → ((∆, x1 : τ1), σ) and thus by induction hypothesis we know by

applying the context parameters that JC[M ]K (~x) ≈τ1,σ JC[N ]K (~y). From this we also

know that

Jλx1.C[M ]K (~x) ≈τ1→σ Jλx1.C[N ]K (~y). (45)
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By Proposition 6.9 we know that

Jλx.case L of x1.x(x1);x2.N
′K (~x) ≈(τ1→σ)→σ Jλx.case L of x1.x(x1);x2.N

′K (~y).

By applying this to (45) we conclude.

As a direct consequence we get the following lemma.

Lemma 6.18. If Γ ⊢ M,N : τ and JMKgl ≈gl
Γ,τ JNKgl then for all contexts C of type

(Γ, τ) → (−, 1), JC[M ]Kgl ≈gl
(−,1) JC[N ]Kgl

The next lemma states that if two computations of unit type are related then the first

converges iff the second converges. Note that this lemma needs to be stated using the

fact that the two computations are globally related.

Lemma 6.19. For all x, y of type J1Kgl, if x ≈gl
(−,1) y then

Σn.x = (δgl1 )n(η(∗)) ⇔ Σm.y = (δgl1 )m(η(∗))

Proof. We show the left to right implication, so suppose x = (δgl1 )n(η(∗)). The proof

proceeds by induction on n. If n = 0 then since by assumption ∀κ.x[κ] ≈1 y[κ], by

definition of ≈1 , for all κ, there exists an m such that y[κ] = δm1 (η(∗)). By type

isomorphism (18), since m is a natural number, this implies there exists m such that for

all κ, y[κ] = δm1 (η(∗)) which implies y = Λκ.y[κ] = (δgl1 )m(η(∗)).

In the inductive case n = n′+1, since by Lemma 6.6 (δgl1 )n
′

(JvKgl) ≈gl
1 y, the induction

hypothesis implies Σm.y = (δgl1 )m(η(∗)).

Proof of Theorem 6.16 Suppose JMKgl ≈gl
Γ,τ JNKgl and that C has type (Γ, τ) →

(−, 1). We show that if C[M ] ⇓ 〈〉 also C[N ] ⇓ 〈〉. So suppose C[M ] ⇓ 〈〉. By definition

this means Σn.C[M ] ⇓n 〈〉. By Corollary 6.1 we get Σn.∀κ. JC[M ]K = (δ1)
n(η(∗)) which

is equivalent to Σn.JC[M ]Kgl = (δgl1 )n(η(∗)). From the assumption and Lemma 6.18 we

know that JC[M ]Kgl ≈gl
1 JC[N ]Kgl, so by Lemma 6.19 there exists an m such that

JC[N ]Kgl = (δgl1 )m(η(∗)). By applying the Corollary 6.1 once again we get C[N ] ⇓ 〈〉 as

desired.

7. Executing the denotational semantics

In this final section we sketch an additional benefit of the denotational semantics de-

scribed in this paper: The denotational semantics can be executed. More precisely, given

a closed FPC term of base type and a number n, the denotational semantics can be

executed up to n steps. This will terminate if and only if the big-step operational seman-

tics terminates in n steps or less. The time-out n is necessary since FPC programs can

diverge and programs in type theory must terminate. We emphasize that at the moment

there is no full implementation of GDTT and so the practical implications of this section

are speculative.

We illustrate the execution of the denotational semantics in the case of programs

computing booleans, i.e., closed term of type 1 + 1. The global interpretation of such a
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term has type J1 + 1Kgl = ∀κ.L(L1 + L1). We first define a term

runstep : (∀κ.L(L1 + L1)) → (1 + 1) + (∀κ.L(L1 + L1))

running the denotation of the term for one step. We define runstep x by cases of x[κ0] :

L(L1 + L1)[κ0/κ] where κ0 is the clock constant. If x[κ0] = η(inl(y)) for some y, then

runstep x = inl(inl(⋆)), and likewise if x[κ0] = η(inr(y)) for some y, then runstep x =

inl(inr(⋆)). In case x[κ0] is of the form θ(y), then, as we saw in the construction of the

isomorphism (17) in Section 2.2, there is a term zκ such that x[κ] = θ(zκ). (Precisely,

zκ = π2(x[κ]) using the encoding of binary sums as dependent sums over 1 + 1.) In that

case we define runstepx = inr(prev κ.zκ).

Using runstep we can define a function

exec : N → (∀κ.L(L1 + L1)) → (1 + 1) + (∀κ.L(L1 + L1))

such that exec n iterates runstep until it gets a result, or for at most n+1 times. Precisely,

we define exec 0x = runstep x and exec (n + 1)x = runstep x if runstep x is in the left

component and exec (n+ 1)x = exec n y if runstep x = inr(y).

We now show that executing the denotational semantics using exec n corresponds to

executing the operational semantics for up to n steps.

Proposition 7.1. Let M be a closed term of FPC of type 1 + 1, and let n be a natural

number. Then exec n JMKgl = inl(inl(⋆)) iff there exists an N such that M ⇓k inl (N)

for some k ≤ n.

To prove Proposition 7.1 we need following two lemmas.

Lemma 7.2. If exec nx = inl(inl(⋆)) then there exists a k ≤ n and a y such that

x = (δgl1+1)
k(Λκ.η(inl(y[κ]))).

Proof. The proof is by induction on n and case analysis of x[κ0]. If x[κ0] = η(inl(y))

for some y, then, as above, also x[κ] = η(inl(zκ)) for some zκ and so x = Λκ.η(inl(zκ))

proving the lemma.

If x[κ0] = η(inr(y)), then also exec nx = inl(inr(⋆)). Comparing this with the as-

sumption we get inl(inr(⋆)) = inl(inl(⋆)). Recall [Uni13, Section 2.12] that inl(inr(⋆)) =

inl(inl(⋆)) is equivalent to inr(⋆) = inl(⋆) which is equivalent to the empty type, so from

this we conclude 0 and thus anything is provable.

Suppose finally that x[κ0] = θ(y). Then x[κ] = θ(zκ), and runstepx = inr(prev κ.zκ). In

this case nmust be greater than 0, i.e., n = m+1, and exec (m+1)x = exec m (prev κ.zκ).

In this case, by induction hypothesis, prev κ.zκ = (δgl1+1)
k(Λκ.η(inl(y[κ]))) for some y and

k ≤ n. So then,

x = Λκ.(x[κ])

= Λκ.(θ(zκ))

= Λκ.(θ1+1 next
κ((prev κ.zκ)[κ])

= Λκ.(δ1+1((δ
gl
1+1)

k(Λκ.η(inl(y[κ])))[κ])

= (δgl1+1)
k+1(Λκ.η(inl(y[κ]))
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Lemma 7.3. LetM be a closed term of FPC of type 1+1. If JMKgl = (δgl1+1)
k(Λκ.η(inl(y[κ])))

then there exists an N such that M ⇓k inl (N).

Proof. We prove by induction on k that if

∀κ.δk1+1(η(inl(y[κ]))) Rτ1+τ2 M

then there exists an N such that M ⇓k inl (N). The lemma then follows from the

Fundamental Lemma (Lemma 5.4). In the case of k = 0, by definition the assumption

implies

∀κ.ΣN.M ⇓0 inl (N)

which by an application to the clock constant κ0 implies

ΣN.M ⇓0 inl (N)

as desired. If k = l+1, the assumption ∀κ.θ(nextκ(δl1+1(η(inl(y[κ]))))) Rτ1+τ2 M reduces

to

∀κ.(ΣM ′,M ′′ : TermFPC.M →0
∗ M

′ →1 M ′′ and nextκ(δl1+1(η(inl(y[κ])))) ⊲Rτ1+τ2 next(M ′′))

This implies

ΣM ′,M ′′ : TermFPC.M →0
∗ M

′ →1 M ′′ and ∀κ.⊲κ(δ
l
1+1(η(inl(y[κ]))) Rτ1+τ2 M

′′)

which, using force implies

ΣM ′,M ′′ : TermFPC.M →0
∗ M

′ →1 M ′′ and ∀κ.δl1+1(η(inl(y[κ]))) Rτ1+τ2 M
′′

Now the induction hypothesis applies to give an N such that M ′′ ⇓l inl (N), which by

Lemma 3.2 implies M ′′ →l
∗ v and thus M →k

∗ v which implies M ⇓k inl (N) again by

Lemma 3.2.

Proof of Proposition 7.1 The left to right implication follows from Lemmas 7.2 and 7.3.

If M ⇓k inl (N) for some k ≤ n, then JMKgl = (δgl1+1)
k(Λκ.η(inl(JNK))). We prove that

this implies that exec n JMKgl = inl(inl(⋆)) by induction on k. The case of k = 0 follows

directly by definition of exec. If k = l + 1 also n = m+ 1 for some m. Observe now that

for any x : J1 + 1Kgl

runstep δgl1+1(x) = runstep Λκ.(θ(nextκ(x[κ])))

= inr(prev κ.(nextκ(x[κ])))

= inr(Λκ.x[κ])

= inr(x)

and so in particular

runstep JMKgl = inr((δgl1+1)
l(Λκ.η(inl(JNK))))

so that

exec (n+ 1) JMKgl = exec n (δgl1+1)
l(Λκ.η(inl(JNK)))
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which equals inl(inl(⋆)) by the induction hypothesis.

8. Conclusions and Future Work

We have shown that programming languages with recursive types can be given sound

and computationally adequate denotational semantics in guarded dependent type theory.

The semantics is intensional, in the sense that it can distinguish between computations

computing the same result in different number of steps, but we have shown how to

capture extensional equivalence in the model by constructing a logical relation on the

interpretation of types.

This work can be seen as a first step towards a formalisation of domain theory in type

theory. Other, more direct formalisations have been carried out in Coq, e.g. [BKV09;

Ben+10; Doc14] but we believe that the synthetic viewpoint offers a more abstract and

simpler presentation of the theory. Moreover, we hope that the success of guarded re-

cursion for operational reasoning, mentioned in the introduction, can be carried over to

denotational models of more advanced programming language features as, for example,

to general references, for which, at the present day, no denotational model exists.

Future work also includes implementation of GDTT in a proof assistant, allowing for

the theory of this paper to be machine verified. Currently, initial experiments are being

carried out in this direction [Bir+16].

Finally, we have not yet investigate the possible applications of the weak bisimulation

introduced in Section 6.
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Monad by Weak Bisimilarity”. In: ICTAC. 2015.

[Dan12] Nils Anders Danielsson. “Operational semantics using the partiality monad”.

In: ICFP. 2012, pp. 127–138.

[Doc14] Robert Dockins. “Formalized, Effective Domain Theory in Coq”. In: ITP.

2014.
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[Vel17] Niccolò Veltri. “A Type-Theoretical Study of Nontermination”. PhD thesis.

2017.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages: An Intro-

duction. Cambridge, MA, USA: MIT Press, 1993. isbn: 0-262-23169-7.

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-

dations of Mathematics. Institute for Advanced Study: http://homotopytypetheory.

org/book, 2013.

http://homotopytypetheory.org/book
http://homotopytypetheory.org/book

	Introduction
	Synthetic guarded domain theory
	Contributions
	Related work

	Guarded recursion
	The topos of trees model
	Universal quantification over clocks

	FPC
	Operational semantics
	Examples

	Denotational Semantics
	Interpretation of types
	Interpretation of terms

	Computational Adequacy
	Delayed substitutions
	A logical relation between syntax and semantics
	Proof of computational adequacy

	Extensional Computational Adequacy
	Global interpretation of types and terms
	A weak bisimulation relation for the lifting monad
	Relating terms up to extensional equivalence
	Extensional computational adequacy

	Executing the denotational semantics
	Conclusions and Future Work
	References

