397 research outputs found

    A Low Cost Real Time Embedded Control System Design Using Infrared Signal Processing with Application to Vehicle Accident Prevention

    Get PDF
    Vehicle accidents are most common if the driving is inadequate. These happen on most factors if the driver is drowsy or if heis alcoholic. Driver drowsiness is recognized as an important factor in the vehicle accidents. It was demonstrated that drivingperformance deteriorates with increased drowsiness with resulting crashes constituting more than 20% of all vehicleaccidents. But the life lost once cannot be re-winded. Advanced technology offers some hope avoid these up to some extent.A car simulator study was designed to collect physiological data for validation of this technology. Methodology for analysisof physiological data, independent assessment of driver drowsiness and development of drowsiness detection algorithm bymeans of sequential fitting and selection of regression models is presented. In this paper proposes an approach towardsdesign of a Low cost real time embedded control system which involves measure and controls the eye blink using sensor. Ascar manufacturers / industrial automotive communities, incorporate intelligent vehicle systems in order to satisfy theconsumer’s ever increasing demand for more assistant systems for comfort, navigation, or communication, to address theissue of increased level of cognitive stress on drivers to the sources of distraction from the most basic task at hand, i.e.,driving the vehicle. Driver’s drowsiness detection systems are actually receiving a large interest in the academic andindustrial automotive communities for their potentiality to reduce fatalities Eye detection is a crucial aspect in many usefulapplications ranging from face recognition / detection to human computer interface for, driver behavior analysis. Visionbaseddriver fatigue detection which is non-contact has a key advantage over applicability. In this paper proposes a simpleand economical prototype design as a solution in developing a intelligent vehicles based on IR signal processing formonitoring the driver’s drowsiness level, vigilance and alerting the driver to prevent accidents. This approach is economicaland all the lower income side vehicle owners can afford to installation of this system.Keywords- Intelligent Vehicles, Driver Vigilance, Human fatigue, Safe Navigatio

    Driving sleepiness detection using electrooculogram analysis and grey wolf optimizer

    Get PDF
    In modern society, providing safe and collision-free travel is essential. Therefore, detecting the drowsiness state of the driver before its ability to drive is compromised. For this purpose, an automated hybrid sleepiness classification system that combines the artificial neural network and gray wolf optimizer is proposed to distinguish human Sleepiness and fatigue. The proposed system is tested on data collected from 15 drivers (male and female) in alert and sleep-deprived conditions where physiological signals are used as sleep markers. To evaluate the performance of the proposed algorithm, k-nearest neighbors (k-NN), support vector machines (SVM), and artificial neural networks (ANN) classifiers have been used. The results show that the proposed hybrid method provides 99.6% accuracy, while the SVM classifier provides 93.0% accuracy when the kernel is (RBF) and outlier (0.1). Furthermore, the k-NN classifier provides 96.7% accuracy, whereas the standalone ANN algorithm provides 97.7% accuracy

    Кибербезопасность в образовательных сетях

    Get PDF
    The paper discusses the possible impact of digital space on a human, as well as human-related directions in cyber-security analysis in the education: levels of cyber-security, social engineering role in cyber-security of education, “cognitive vaccination”. “A Human” is considered in general meaning, mainly as a learner. The analysis is provided on the basis of experience of hybrid war in Ukraine that have demonstrated the change of the target of military operations from military personnel and critical infrastructure to a human in general. Young people are the vulnerable group that can be the main goal of cognitive operations in long-term perspective, and they are the weakest link of the System.У статті обговорюється можливий вплив цифрового простору на людину, а також пов'язані з людиною напрямки кібербезпеки в освіті: рівні кібербезпеки, роль соціального інжинірингу в кібербезпеці освіти, «когнітивна вакцинація». «Людина» розглядається в загальному значенні, головним чином як та, що навчається. Аналіз надається на основі досвіду гібридної війни в Україні, яка продемонструвала зміну цілей військових операцій з військовослужбовців та критичної інфраструктури на людину загалом. Молодь - це вразлива група, яка може бути основною метою таких операцій в довгостроковій перспективі, і вони є найслабшою ланкою системи.В документе обсуждается возможное влияние цифрового пространства на человека, а также связанные с ним направления в анализе кибербезопасности в образовании: уровни кибербезопасности, роль социальной инженерии в кибербезопасности образования, «когнитивная вакцинация». «Человек» рассматривается в общем смысле, в основном как ученик. Анализ представлен на основе опыта гибридной войны в Украине, которая продемонстрировала изменение цели военных действий с военного персонала и критической инфраструктуры на человека в целом. Молодые люди являются уязвимой группой, которая может быть главной целью когнитивных операций в долгосрочной перспективе, и они являются самым слабым звеном Систем

    Detection of Driver Drowsiness and Distraction Using Computer Vision and Machine Learning Approaches

    Get PDF
    Drowsiness and distracted driving are leading factor in most car crashes and near-crashes. This research study explores and investigates the applications of both conventional computer vision and deep learning approaches for the detection of drowsiness and distraction in drivers. In the first part of this MPhil research study conventional computer vision approaches was studied to develop a robust drowsiness and distraction system based on yawning detection, head pose detection and eye blinking detection. These algorithms were implemented by using existing human crafted features. Experiments were performed for the detection and classification with small image datasets to evaluate and measure the performance of system. It was observed that the use of human crafted features together with a robust classifier such as SVM gives better performance in comparison to previous approaches. Though, the results were satisfactorily, there are many drawbacks and challenges associated with conventional computer vision approaches, such as definition and extraction of human crafted features, thus making these conventional algorithms to be subjective in nature and less adaptive in practice. In contrast, deep learning approaches automates the feature selection process and can be trained to learn the most discriminative features without any input from human. In the second half of this research study, the use of deep learning approaches for the detection of distracted driving was investigated. It was observed that one of the advantages of the applied methodology and technique for distraction detection includes and illustrates the contribution of CNN enhancement to a better pattern recognition accuracy and its ability to learn features from various regions of a human body simultaneously. The comparison of the performance of four convolutional deep net architectures (AlexNet, ResNet, MobileNet and NASNet) was carried out, investigated triplet training and explored the impact of combining a support vector classifier (SVC) with a trained deep net. The images used in our experiments with the deep nets are from the State Farm Distracted Driver Detection dataset hosted on Kaggle, each of which captures the entire body of a driver. The best results were obtained with the NASNet trained using triplet loss and combined with an SVC. It was observed that one of the advantages of deep learning approaches are their ability to learn discriminative features from various regions of a human body simultaneously. The ability has enabled deep learning approaches to reach accuracy at human level.

    A Hybrid Approach to Detect Driver Drowsiness Utilizing Physiological Signals to Improve System Performance and Wearability

    Get PDF
    Driver drowsiness is a major cause of fatal accidents, injury, and property damage, and has become an area of substantial research attention in recent years. The present study proposes a method to detect drowsiness in drivers which integrates features of electrocardiography (ECG) and electroencephalography (EEG) to improve detection performance. The study measures differences between the alert and drowsy states from physiological data collected from 22 healthy subjects in a driving simulator-based study. A monotonous driving environment is used to induce drowsiness in the participants. Various time and frequency domain feature were extracted from EEG including time domain statistical descriptors, complexity measures and power spectral measures. Features extracted from the ECG signal included heart rate (HR) and heart rate variability (HRV), including low frequency (LF), high frequency (HF) and LF/HF ratio. Furthermore, subjective sleepiness scale is also assessed to study its relationship with drowsiness. We used paired t-tests to select only statistically significant features (p < 0.05), that can differentiate between the alert and drowsy states effectively. Significant features of both modalities (EEG and ECG) are then combined to investigate the improvement in performance using support vector machine (SVM) classifier. The other main contribution of this paper is the study on channel reduction and its impact to the performance of detection. The proposed method demonstrated that combining EEG and ECG has improved the system’s performance in discriminating between alert and drowsy states, instead of using them alone. Our channel reduction analysis revealed that an acceptable level of accuracy (80%) could be achieved by combining just two electrodes (one EEG and one ECG), indicating the feasibility of a system with improved wearability compared with existing systems involving many electrodes. Overall, our results demonstrate that the proposed method can be a viable solution for a practical driver drowsiness system that is both accurate and comfortable to wear

    Detecting inter-sectional accuracy differences indriver drowsiness detection algorithms.

    Get PDF
    Convolutional Neural Networks (CNNs) have been used successfully across a broad range of areas including data mining, object detection, and in business. The dominance of CNNs follows a breakthrough by Alex Krizhevsky which showed improvements by dramatically reducing the error rate obtained in a general image classification task from 26.2% to 15.4%. In road safety, CNNs have been applied widely to the detection of traffic signs, obstacle detection, and lane departure checking. In addition, CNNs have been used in data mining systems that monitor driving patterns and recommend rest breaks when appropriate. This paper presents a driver drowsiness detection system and shows that there are potential social challenges regarding the application of these techniques, by highlighting problems in detecting dark-skinned driver's faces. This is a particularly important challenge in African contexts, where there are more dark-skinned drivers. Unfortunately, publicly available datasets are often captured in different cultural contexts, and therefore do not cover all ethnicities, which can lead to false detections or racially biased models. This work evaluates the performance obtained when training convolutional neural network models on commonly used driver drowsiness detection datasets and testing on datasets specifically chosen for broader representation. Results show that models trained using publicly available datasets suffer extensively from over-fitting, and can exhibit racial bias, as shown by testing on a more representative dataset. We propose a novel visualisation technique that can assist in identifying groups of people where there might be the potential of discrimination, using Principal Component Analysis (PCA) to produce a grid of faces sorted by similarity, and combining these with a model accuracy overlay.Comment: 9 pages, 7 figure

    Intelligent driver drowsiness detection system using uncorrelated fuzzy locality preserving analysis

    Full text link
    One of the leading causes of automobile accidents is related to driving impairment due to drowsiness. A large percentage of these accidents occur due to drivers' unawareness of the degree of impairment. An automatic detection of drowsiness levels could lead to lower accidents and hence lower fatalities. However, the significant fluctuations of the drowsiness state within a short time poses a major challenge in this problem. In response to such a challenge, we present the Uncorrelated Fuzzy Locality Preserving Analysis (UFLPA) feature projection method. The proposed UFLPA utilizes the changes in driver behavior, by means of the corresponding Electroencephalogram (EEG), Electrooculogram (EOG), and Electrocardiogram (ECG) signals to extract a set of features that can highly discriminate between the different drowsiness levels. Unlike existing methods, the proposed UFLPA takes into consideration the fuzzy nature of the input measurements while preserving the local discriminant and manifold structures of the data. Additionally, UFLPA also utilizes Singular Value Decomposition (SVD) to avoid the singularity problem and produce a set of uncorrelated features. Experiments were performed on datasets collected from thirty-one subjects participating in a simulation driving test with practical results indicating the significance of the results achieved by UFLPA of 94%-95% accuracy on average across all subjects. © 2011 IEEE

    Modern drowsiness detection techniques: a review

    Get PDF
    According to recent statistics, drowsiness, rather than alcohol, is now responsible for one-quarter of all automobile accidents. As a result, many monitoring systems have been created to reduce and prevent such accidents. However, despite the huge amount of state-of-the-art drowsiness detection systems, it is not clear which one is the most appropriate. The following points will be discussed in this paper: Initial consideration should be given to the many sorts of existing supervised detecting techniques that are now in use and grouped into four types of categories (behavioral, physiological, automobile and hybrid), Second, the supervised machine learning classifiers that are used for drowsiness detection will be described, followed by a discussion of the advantages and disadvantages of each technique that has been evaluated, and lastly the recommendation of a new strategy for detecting drowsiness
    corecore