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Abstract—Convolutional Neural Networks (CNNs) have been
used successfully across a broad range of areas including data
mining, object detection, and in business. The dominance of
CNNs follows a breakthrough by Alex Krizhevsky which showed
improvements by dramatically reducing the error rate obtained
in a general image classification task from 26.2% to 15.4%. In
road safety, CNNs have been applied widely to the detection of
traffic signs, obstacle detection, and lane departure checking.
In addition, CNNs have been used in data mining systems
that monitor driving patterns and recommend rest breaks when
appropriate. This paper presents a driver drowsiness detection
system and shows that there are potential social challenges
regarding the application of these techniques, by highlighting
problems in detecting dark-skinned drivers faces. This is a
particularly important challenge in African contexts, where there
are more dark-skinned drivers. Unfortunately, publicly avail-
able datasets are often captured in different cultural contexts,
and therefore do not cover all ethnicities, which can lead to
false detections or racially biased models. This work evaluates
the performance obtained when training convolutional neural
network models on commonly used driver drowsiness detection
datasets and testing on datasets specifically chosen for broader
representation. Results show that models trained using publicly
available datasets suffer extensively from over-fitting, and can
exhibit racial bias, as shown by testing on a more representative
dataset. We propose a novel visualisation technique that can assist
in identifying groups of people where there might be the potential
of discrimination, using Principal Component Analysis (PCA) to
produce a grid of faces sorted by similarity, and combining these
with a model accuracy overlay.

Index Terms—CNNs, Road Safety, Drowsiness Detection, Bi-
ased models.

I. INTRODUCTION

The convolutional neural network (CNN) has rapidly gained
popularity in many social aspects and has been applied across a
range of areas, including self-driving cars, collision detection,
identification of criminal activities, and to aid the granting of
bank loans. Historically, these tasks were generally performed
by humans, but the advancement of machine learning is
leading to the automation of these processes [1]. CNNs are
a multistage mechanism that learns data representations in
order to fulfil a specific goal. However, these can suffer
from challenges with regard to generalisation. For example,
a system that is trained to detect road lanes in an urban
environment and then deployed in rural areas could lead to

false detections. Furthermore, driver drowsiness detection sys-
tems predominately trained on a certain race or ethnicity may
not perform well when tested across multiple races. This can
potentially result in algorithmic discrimination if the trained
model is unable to handle differing skin complexions and
facial features [2]. This raises concerns in African contexts,
where many cars with driver drowsiness detection systems are
imported [3].

For example, the majority (80.8%) of South African citizens
identify as black nationals [4]. Deploying a system that is
trained in different contexts, for example, using a dataset
captured in Asia, could result in failure if trained models learn
to use skin complexion for decision-making. The taxi industry
dominates public transportation used in South Africa. Statistics
South Africa [5] report that about 76% of citizens in the coun-
try use public transportation to get to their destinations, with
private minibus taxis a primary mode of transport (51.0%),
followed by busses at 18.1 % and trains at 7.6%.

The alarming statistics of road accidents in South Africa
has led to the investigation of technologies to reduce these
high numbers of accidents. A Statistics South Africa report
showed that in 2015, there was a 2% increase in mortality
over the 2014 financial year, with about 12944 deaths caused
by accidents [6]. Furthermore, in 2016 there were about 14
071 deaths, which was a 9% increase over 2015 [6].

Drowsiness detection systems that are currently imple-
mented are typically available only in high-end vehicles, which
disadvantages citizens using public transport. As a result, a
number of researchers have aimed to develop similar systems
on mobile phones, which are more easily accessible [7]. In
addition to easily accessible systems, researchers also focused
on augmenting vehicle control units with machine learning
techniques to help reduce road accidents [8, 9]. However,
if a large benchmark dataset that is representative of all
race ethnicities is not used for training, systems like these
can easily fail. Sikander and Anwar conducted a review of
existing technologies for detection of fatigue in drivers, where
various techniques and features were examined [10]. Of the 23
fatigue detection systems reviewed here, 12 relied on machine
learning techniques. Moreover, in [11] it is shown that CNNs
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tended to outperform other technologies for driver drowsiness
detection. However, the authors note that there is no large
benchmarking dataset covering a wide range of ethnicities with
which to conclusively test the efficiency of CNNs against other
technologies.

This paper aims to highlight the challenges of using
unrepresentative images to train vision-based driver
drowsiness detection systems. In this article, we use
a range of pre-trained convolutional neural networks,
modifying the last layers by retraining these on a number
of popular drowsiness detection datasets including the ULg
Multimodality Drowsiness Dataset (DROZY), the National
Tsinghua University Drowsy Driver Detection database
(NTHU-DDD), and the Closed Eyes in the Wild dataset
(CEW). We test models trained using these datasets on a
test set more suited to South African contexts. Results show
that the three evaluated datasets produce high drowsiness
detection accuracies when tested on held out portions of the
original datasets, but that the accuracies obtained decreased
substantially when these models were evaluated using the
more representative South African test set. This decrease in
performance is due to models overfitting. Overfitting models
can be a particular challenge, as it can be difficult to establish
where models are failing to generalise. This work introduces
a new visualisation technique to identify potential population
groups for whom additional training data may be required, so
as to rectify the problem of unrepresentative models in driver
drowsiness detection systems.

This paper is structured as follows. Section II provides an
overview of related work, which is followed by a discussion
on algorithmic bias and convolutional neural networks. This
is followed by an introduction of the proposed visualisation
technique in Section III, and a description of the experimental
methods, including the architectures and datasets investigated
in Section IV. Finally, results and the conclusions are provided
in Section V and VI respectively.

II. BACKGROUND AND RELATED WORK

This section briefly summarises previous approaches
to driver drowsiness detection and existing benchmarking
datasets used for testing these algorithms. Related work and
advances in convolutional neural network architectures are also
discussed.

A. DRIVER DROWSINESS DETECTION SYSTEMS

A number of drowsiness detection systems rely on con-
volutional neural networks. Sanghyuk et al. [12] proposed a
deep architecture called deep drowsiness detections (DDD).
This architecture consists of three deep convolutional neural
networks including AlexNet [13], VGGNet-FaceNet [14], and
FlowImageNet [15]. The output of these networks is concate-
nated and fed into a softmax classification layer for drowsiness
detection. The DDD system was tested on the NTHU-drowsy
driver detection dataset, but the authors noted that the NTHU-
drowsy lacked reliable ground truth labeling, which led them

to use a substitute evaluation dataset for testing. The authors
also noted that there was a lack of previously benchmarked
datasets to compare with the publicly available NTHU-drowsy
dataset.

Reddy et al. [16] proposed a compressed deep neural net-
work model that can be deployed on an embedded board. The
authors note that for their focus, the NTHU-drowsy dataset
had an unsuitable capture angle and inappropriate class labels.
In addition, the authors noted that the DROZY dataset was
also unsuitable because the images contain sensor patches
attached to a subjects face, which could interfere with the
results obtained. Their solution was to use a custom dataset
and compare the efficacy of their approach to a number of
convolutional neural network architectures, including faster
RCNN, VGG-16, and AlexNet.

Lyu et al. [17] proposed a sequential multi-granularity deep
framework for detection of driver drowsiness. This framework
consists of two components, a multi-granularity CNN and
a deep long-short-term memory network (deep LSTM). A
contribution of this work was to utilise a group of parallel
CNN extractors. The deep LSTM was applied on facial
representations to identify long-term features of drowsiness
over a sequence of frames. The model was evaluated on the
NTHU-drowsy dataset in addition to a new dataset named
Forward Instant Driver Drowsiness Detection (FI-DDD). The
FI-DDD is a re-labeled NTHU-drowsy dataset, as the authors
note that it is difficult to locate drowsy states temporally with
high precision using the NTHU-drowsy labels.

Following a different approach, Dwivedi et al. [18]
introduced a more diverse dataset that includes persons with
different skin tones, eye shapes and eye sizes. This dataset
was used to test a CNN with a final softmax classification
layer, but unfortunately, the dataset is not publicly available
for comparison.

A recent study by Kim et al. proposed a deep CNN based
on the classification of opened and closed eyes using a visible
light camera sensor [19]. They used the ZJU eye blink dataset
in addition to their own dataset collected for performance anal-
ysis. Here, the ResNet-50 [20] architecture was adopted, with
a modified fully connected layer. The system outperformed
AlexNet [13], GoogleNet [21], VGGFace fine-turning [14],
and HOG-SVM [22].

B. ALGORITHMIC BIAS

It is clear that a number of modern drowsiness detection
systems rely on convolutional neural networks, and many of
these models are trained and tested on only a few datasets.
These datasets do not always cover a wide range of different
races and ethnicities with varying facial features. As a result,
these systems are vulnerable to problems regarding algorithmic
bias. This paper evaluates the efficacy of the NTHU-drowsy,
DROZY, and CEW datasets in a South African context, where
racial bias is likely to have a significant impact, using a more
representative dataset.



Unfortunately, the road safety community is not the only
field that is affected by algorithmic bias caused by using
unrepresentative datasets for training. Buolamwini [23] have
documented extensive algorithmic bias in face detection
systems, which fail on faces with darker skin-tones, while
Renda et. al have highlighted bias in predictive policing [24],
by showing that a system called PredoPol used to send police
to crime hotspots tends to send police to areas where there
are large numbers of dark-skinned people or Muslims. Wen et
al. [25] analysed a face spoof detection algorithm, designed
to recognise fake faces using image distortion analysis and
reported that most current systems mis-classify individuals
with dark-skinned faces as spoof attacks.

Furthermore, Brauneis and Goodman added to the dis-
cussion of how to deploy AI-based systems, evaluating a
number of scenarios where dark-skinned people could be mis-
classified [26]. Zou and Schiebinger [27] shows that there
is often bias in machine learning algorithms, which can be
caused by a variety of factors including imbalanced training
datasets, representation of the datasets and also algorithms
themselves. They suggest that datasets should include infor-
mation on how they were collected and the demographics of
participants therein using meta-data. However, this process is
also problematic, as it requires the classification of people
into different ethnic groups or categories, which is itself a
subjective and questionable task. In an attempt to address this,
we propose a visualisation technique that can identify groups
or individuals on whom algorithms fail, without the need for
pre-classification or meta-data.

C. CONVOLUTIONAL NEURAL NETWORKS

CNNs have dominated many computer vision tasks since
the breakthrough shown by Alex Krizhevsky in the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) in 2012
[13]. Convolutional neural networks are a collection of sequen-
tially stacked layers, which typically consist of convolution,
pooling, and fully connected layers, with model parameters
trained using gradient descent. The convolutional layer takes
in a three-dimensional image tensor, comprising d channels of
feature maps, sized h× w pixels. Here, h denotes the height
and w the width of the input image tensor. Convolutional
layers extract low level features from an input tensor I by
means of a convolution with a two-dimensional kernel K,

c(i, j) = (K ∗ I)(i, j)
=

∑
m

∑
n

I(i−m, i− n)K(m,n) + bm,n (1)

where bm,n is a bias parameter, and i, j denote the coordinates
of a feature map pixel. After convolution, an activation func-
tion is applied to introduce non-linearity and produce an output
feature map a, comprising elements, a(i, j) = f(c(i, j)). A
number of activation functions can be used, but the ReLU
function,

f(c) =

{
c, if c > 0,

0, if c ≤ 0,
(2)

is typically used for convolutional neural networks in order to
avoid vanishing gradients in deeper networks.

Pooling layers are often applied after activations. Here,
downsampling is applied to reduce the dimensionality of the
image by a grouping operation over activations in small spatial
regions of the input image. For example, max pooling returns
the maximum value of the input region. Max pooling is
also used to control over-fitting. Downsampling can also be
achieved by using a convolutional layer with larger filtering
strides.

A fully connected output layer is typically the final layer in
a convolutional neural network, producing a network output:

Z = Wa + b (3)

where W is a weight matrix and a the input from the previous
layer. This is typically followed by a final activation layer. The
activation function that is used for this paper is the sigmoid
function, which is commonly used for binary classification
tasks.

Convolutional neural networks are trained using gradient
descent to find model parameters that minimise some loss.
For binary classification tasks like drowsiness detection, the
binary cross entropy loss given by

J = −
r∑

i=1

yilog(oi), (4)

is typically applied, where y is a vector of one-hot encoded
labels, and o is the output probability produced by the final
sigmoid layer. This loss function is typically minimised using
stochastic gradient descent schemes to adjust model weight
and bias parameters, with the Adam optimiser [28] often
favoured.

A number of convolutional neural network architectures
have been developed. The following section briefly highlights
some of the improvements made thus far, by highlighting
results in the ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC):
ZFNet (2013) In 2013 the winners of the ILSVRC were

Matthew Zeiler and Rob Fergus from New York Uni-
versity [29]. Their model achieved an 11.2% error rate,
improving upon 2012 error rate of 15.4% obtained by
AlexNet. Although ZFNet is similar to AlexNet, ZFNet
was modified by introducing a deconvNet and decreasing
filter sizes from 11 x 11 pixels to 7 x 7 pixels.

GoogleNet (2014) GoogleNet is a 22 layer convolutional neu-
ral network that won the 2014 ILSVRC challenge. The
novelty of this work was the introduction of the Inception
module [21]. This module aims to reduce computational
costs while increasing the width and depth of the network.
The inception module has been extended several times
with recent iterations including Inception-V3 [30] and
Inception-V4 [31] models.

VGGNet (2014) The VGGNet developed by Karen Simonyan
and Andrew Zisserman consists of two versions (VGG16
and VGG19 models), and took second place in the



ILSVRC 2014 challenge [32]. The two network archi-
tectures have depths of 16 and 19 layers respectively.
VGGNet decreased the filter sizes of ZFNet to 3x3 with
the motivation that these smaller filter sizes are capable
of gathering more information from input images.

ResNet (2015) This network, developed by Microsoft Re-
search Asia, won the 2015 ILSVRC with an error rate of
3.6% [20]. This model uses a residual learning framework
that aims to simplify the training of deeper networks and
yield higher accuracy. This network consists of 152 layers
and was extended to 1001 layers on CIFAR-10, achieving
an error rate of 4.62% [33].

It is clear that there is a trend of increasing the depth of the
network, producing increasing performance, while reducing
computational costs. However, these trends can make convolu-
tional neural networks more vulnerable to over-fitting. Strate-
gies for avoiding over-fitting include Batch Normalization [34]
and Dropout [35].

III. VISUALISING CONVOLUTIONAL NEURAL
NETWORKS

Visualisation is a commonly used technique to interpret
trained convolutional neural networks, so as to improve the
architecture or identify model failures. For example, saliency
visualisation helps to identify which image areas contribute
strongly to the network output. This technique was introduced
by Simonyan et al. who presented two approaches to visualise
what a neural network learns [36]. Here, the gradient of
the class score with respect to image pixels is computed to
determine the contribution of each pixel to the final output
prediction [37]. Many previous approaches [29, 38, 39, 40, 41]
tried to come up with visualisation solutions to better under-
stand what each layer learns, but none of these directly address
the challenge of potential racial bias in machine learning.

In this work, we introduce a visualisation technique building
on Principal Component Analysis (PCA) to help identify
population groups where models fail to perform well. Here, we
use PCA to project images onto a 2-dimensional grid such that
images are located near other images of similar appearance.
PCA is a dimension reduction technique that can be used to
compress a large number of features to a smaller number
while retaining dominant information [42]. This is done by
transforming data into an orthogonal subspace where axes
(Principal components) align with the directions of maximum
variance in the data. In this work we use singular value
decomposition (SVD) to perform PCA. Let X be the matrix
of images, formed by reshaping images xi into row vectors
(where i = 1...N, and N is the number of images in the dataset)
and stacking these vertically to form an N x P matrix. Here,
P denotes the number of pixels in each image. PCA starts by
mean centering the matrix of images, which is accomplished

by subtracting the mean image µi =
1

N

∑N
i Xi from each 1

x P dimensional row vector, Xi in the matrix of images,

X̂i = Xi − µi

The mean centred matrix N x P dimensional matrix of images
X̂ is then decomposed using singular value decomposition
(SVD),

X̂ = UΣVT

Here, U is a P × N unitary matrix, V is a P × P unitary
matrix and Σ is a diagonal matrix comprising the singular
values of X̂ in decreasing order [43]. A reduced dimensional
representation of X̂ can be obtained by discarding columns of
U and V,

X̂ ≈ U0:jΣ0:j,0:jV
T
0:j

Here, j denotes the number of columns retained. As shown
above, PCA can project data into a low dimensional coordinate
system, with axes provided by the columns of U0:j , and data
coordinates given by V0:j .

In this work, we retain only two columns (j = 2), and
project images into a two dimensional coordinate system.
Figure 1 shows the 2D projection (coordinates obtained from
V0:2) of facial images in our test dataset. We use this pro-
jection to construct a grid of images, grouped by similarity.
Algorithm 1 describes this process. We create a uniform
coordinate grid and search for the closest image (in the reduced
dimensional coordinate system) to each point in the grid.
We assign each image a corresponding point, and ensure
that no image is duplicated, by removing it from the list of
available images once allocated a grid coordinate in order to
produce a grid of images that groups individuals by facial
similarity, as shown in Figure 2. It is clear that this process
successfully groups faces of similar skin tone together, with
darker skinned individuals located towards the top of the
image, and lighter skinned individuals towards the bottom.
For each image selected, we calculate the error in prediction,
to produce a saliency map indicating model quality for the
constructed grid of images.

IV. EXPERIMENTAL METHOD

We examine the potential of CNN-based drowsiness detec-
tion algorithms to exhibit algorithmic bias by training a variety
of popular classification models on a number of publically
available drowsiness detection datasets. A number of strategies
were applied to prevent overfitting, so as to ensure a fair
analysis.

A. MODEL ARCHITECTURE

The architectures of the networks used for testing were
based on a variety of pre-trained network models (VGG-Face,
VGG, and ResNet), with the final layers modified as shown
in Figure 3, with Batch Normalisation (BN) applied and three
fully connected layers added to the network.

Pre-trained models (trained for general image classification)
were used as feature extractors to lower the number of
parameters to be trained and reduce training time. In addition,
lower level features are already learned for the pre-trained
models, which can prevent overfitting to smaller datasets. We
made use of the Adam optimizer and a binary cross entropy



Figure 1. The figure shows 2-dimensional grid projection coordinates obtained
after applying the linear PCA transformation into 2-dimensional subspace. A
uniformly spaced grid is placed over the projected image coordinates, and
images are assigned a grid position by finding the closest image coordinate
to each grid position, ensuring each image can only be used once. The blue
dots represent grid position and the red dots represent PCA projections.

Figure 2. The proposed visualisation strategy uses PCA to sort faces by
similarity without requiring meta-data.

loss in the training process. Data augmentation was also used
in an attempt to prevent over-fitting. Here, re-scaling, shearing,
zooming, and horizontal flipping was applied to extend the size
of datasets used for training.

Furthermore, zooming was applied to images because the
face is of greater interest in drowsiness detection. Horizontal
flipping was also applied to generate different angles of the
drivers’ faces. Dropout (α = 0.5) was applied between fully
connected layers to reduce the chances of over-fitting even

Algorithm 1 Image overlay generation
Let p be the N × 2 matrix V0:2

Input: p, list of images xi, where i = 1 . . . N , labelsi
1: x-min = min(p0)
2: x-max = max(p0)
3: y-min = min(p1)
4: y-max = max(p1)
5: image-grid = [ ][ ]
6: overlay-grid = [ ][ ]
7: j = 0
8: for pos-x in x-min : d1 : x-max do
9: k = 0

10: for pos-y in y-min : d2 : y-max do
11: min-dist = 10000
12: best-idx = 0
13: for i in range(0,N) do
14: dist =

√
(p[i, 0]− j)2 + (p[i, 1]− k)2

15: if dist < min-dist then
16: min-dist = dist
17: best-idx = i
18: end if
19: k = k +1
20: image-grid[j,k] = xi

21: overlay-grid[i, k] = |labelsi − cnn-model(xi)|
22: remove image xi from image-list
23: end for
24: j = j + 1
25: end for
26: Output: Returns an overlayed saliency image
27: end for

further.

B. DATASETS

This section describes the datasets that were used for train-
ing and testing. For this work, the NTHU-drowsy, DROZY,
and CEW datasets are used.
NTHU-drowsy was introduced at the 13th Asian Conference

on Computer Vision (ACCV2016) [44]. The dataset is
split into test and training sets. For training, there are 18
participants (10 men and 8 women) pretending to drive,
with 5 scene scenarios for each participant including no-
glasses, glasses, glasses at night, no glasses at night, and
sunglasses. For evaluation, there are images of 2 men and
2 women. Videos combining drowsy, normal and sleepy
states are provided.

DROZY consists of 14 participants (3 males and 11 fe-
males) [45]. Each video is approximately 10 minutes
long and is accompanied by the results of psychomotor
vigilance tests (PVTs) regarding the drowsiness state. For
each participant, the dataset contains a time-synchronized
Karolinska Sleepiness Scale (KSS) score [45].

CEW is a collection of online images of different races (for
example Asians and non-Asians with light-skinned faces)
and contains about 2423 participants [46]. Among the



Figure 3. The figure shows the neural network architecture used for detection of drowsiness. Pre-trained layers follow the VGG, VGG-face and RestNet
architectures, which are used as feature extraction layers. The modified layers are trained to perform drowsiness detection. Dropout layers are used to prevent
over-fitting.

participants, 1192 have both eyes closed and 1231 have
their eyes open. These images were selected from the
labeled faces in the wild database.

Our Test Dataset was prepared from a collection of online
videos of South African faces. There are 30348 images
comprising a variety of different races and ethnicities
represented in South Africa. Images range from dark
to light-skinned faces of multiple genders to provide a
diverse testing dataset.

The drowsiness detection models were trained and evaluated
on these three datasets, which all consist of two classes (awake
and drowsy). Three models were trained on each dataset (on
over 300k images) and evaluated on 50k of images that were
held out from each of the training datasets used. Finally, the
South African test dataset was used to test the three trained
models.

We prepared all the images from the three datasets in the
same manner for training. All images were resized to 150x150
pixels, before applying augmentation and feeding the data in
batches into the model. The Adam optimizer was used to train
the model and training was performed for 30 epochs. The
batch size was kept constant at 32 as it was observed that
using a larger batch size degraded the model’s quality.

V. RESULTS

The accuracy obtained when testing on data held out during
training for each dataset is shown in Figure 4. All the training
datasets include images of light-skinned individuals, but only
the CEW contains images of a small number of dark-skinned
individuals. All facial images are blurred for confidentiality.

Figure 4. The figure shows validation accuracies obtained for each model
when testing on data held out from the training datasets. These accuracies
seem to indicate that all the models will generalize well.

The testing dataset was prepared in the same way as
the training dataset and using the same parameters for data
augmentation. The loss and accuracy were recorded for both
the training and testing phases. Pre-trained models performed
well when tested on data held out from training sets. However,
all models showed decreased performance when tested on
our representative dataset, as shown in Figure 5, although
the decrease in performance was marginal for the CEW
dataset. It is clear that the models trained using NHTU-drowsy
and DROZY completely overfit to these datasets, and failed
entirely when tested on our dataset. As a result, the NHTU-
drowsy and DROZY are excluded from further analysis.

Figure 6 shows a selection of saliency maps obtained when



Figure 5. When testing on the representative South African dataset, both the
NTHU-drowsy and DROZY models failed to generalise, but the CEW model
seems to perform well.

the VGG-Face models trained using the CEW dataset were
tested using both light-skinned individuals (dominant in the
training sets) and dark-skinned individuals (dominant in our
test set). Here, red areas denote image pixels that contributed
significantly to the algorithm output. Interestingly, the model
seems to focus on facial regions for the lighter skinned
individuals shown here, but fails to do so for darker skinned
individuals, indicating a potential failure case.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. The saliency map overlays highlight pixels in the input image that
contribute to the network’s final output. Areas marked in red contribute signif-
icantly, while blue regions contribute little to the final classification decision.
Images (a) to (d) are from the validation set, and the saliency map highlight
facial features, as would be expected for a drowsiness detector. Images (e) to
(h) were sampled from our test dataset. The saliency visualisation failed to
highlight facial features in the images (g) and (h).

We also applied the proposed PCA-saliency visualisation
strategy (Figure. 7). Although the accuracy measures high-
lighted previously showed that the CEW models performed
well, the proposed visualisation shows that the CEW models
seem to struggle to predict drowsiness for darker-skinned
individuals at the top of the image, potentially indicating a
population group for which additional data is required to train
a better model.

The key findings of these experiments are as follows:

• All training experiments performed well when tested on
data held out from training datasets (85.3% - 98.7%).

• All three models showed a decrease in performance when
tested on our more representative test dataset, indicating
some overfitting.

• Models trained using NTHU and DROZY datasets com-
pletely failed to generalise.

• Models trained using the CEW dataset fail to perform
well for certain dark-skinned individuals indicating a
need for additional training data covering these popula-
tion groups.

VI. CONCLUSION

Results presented in this paper have showed that models
trained using publicly available datasets for drowsiness de-
tection do not generalise well when tested on dark-skinned
races. The 50% accuracy obtained when testing the NTHU
and DROZY models on a more representative dataset shows
that the network is simply guessing the drowsiness state of the
driver, which could lead to system failure and endanger drivers
if these models were deployed. In contrast, the CEW models
appear to perform well, but further examination shows that
they are failing systematically on certain population groups.

This paper has highlighted the potential for racial dis-
crimination by machine learning models when the datasets
used for training do not cover the demographics present
where the system might be deployed. Going forward, it is
crucial that balanced training datasets, covering all races and
ethnicities, are used to train systems for driver aid. This work
has introduced a visualisation strategy that can be used to
identify population groups on which an algorithm is failing,
without the need for meta-data regarding race or ethnicity.
Furthermore, this work has shown that there is a strong need
to evaluate vision-based driver drowsiness detection systems in
the countries where they will be deployed, in order to prevent
unintentional discrimination.
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K. T. Schütt, S. Dähne, D. Erhan, and B. Kim, “The
(un) reliability of saliency methods,” arXiv preprint
arXiv:1711.00867, 2017.

[41] M. Kahng, P. Y. Andrews, A. Kalro, and D. H. P. Chau,
“A cti v is: Visual exploration of industry-scale deep neu-
ral network models,” IEEE transactions on visualization
and computer graphics, vol. 24, no. 1, pp. 88–97, 2018.

[42] L. I. Smith, “A tutorial on Principal Components Anal-
ysis,” Statistics, vol. 51, p. 52, 2002.

[43] G. Stewart, “On the early history of the singular
value decomposition,” SIAM Review, vol. 35, no. 4, pp.
551–566, 1993. [Online]. Available: https://doi.org/10.
1137/1035134

[44] “NTHU CVlab - Driver Drowsiness Detection Dataset,”
2016. [Online]. Available: http://cv.cs.nthu.edu.tw/php/
callforpaper/datasets/DDD/

[45] Q. Massoz, T. Langohr, C. François, and J. G. Verly, “The
ulg multimodality drowsiness database (called drozy) and
examples of use,” in Applications of Computer Vision
(WACV), 2016 IEEE Winter Conference on. IEEE, 2016,
pp. 1–7.

[46] “The Closed Eyes in the Wild (CEW) dataset.”
[Online]. Available: http://parnec.nuaa.edu.cn/xtan/data/
ClosedEyeDatabases.html

https://www.nature.com/articles/d41586-018-05707-8
https://www.nature.com/articles/d41586-018-05707-8
https://doi.org/10.1137/1035134
https://doi.org/10.1137/1035134
http://cv.cs.nthu.edu.tw/php/callforpaper/datasets/DDD/
http://cv.cs.nthu.edu.tw/php/callforpaper/datasets/DDD/
http://parnec.nuaa.edu.cn/xtan/data/ClosedEyeDatabases.html
http://parnec.nuaa.edu.cn/xtan/data/ClosedEyeDatabases.html

	I Introduction
	II BACKGROUND AND RELATED WORK
	II-A DRIVER DROWSINESS DETECTION SYSTEMS
	II-B ALGORITHMIC BIAS
	II-C CONVOLUTIONAL NEURAL NETWORKS

	III VISUALISING CONVOLUTIONAL NEURAL NETWORKS
	IV EXPERIMENTAL METHOD
	IV-A MODEL ARCHITECTURE
	IV-B DATASETS

	V RESULTS
	VI CONCLUSION

