91 research outputs found

    Evaluating the Applicability of Advanced Techniques for Practical Real-time Train Scheduling

    Get PDF
    AbstractThis paper reports on the practical applicability of published techniques for real-time train scheduling. The final goal is the development of an advanced decision support system for supporting dispatchers’ work and for guiding them toward near-optimal real-time re-timing, re-ordering and re-routing decisions. The paper focuses on the optimization system AGLIBRARY that manages trains at the microscopic level of block sections and block signals and at a precision of seconds. The system outcome is a detailed conflict-free train schedule, being able to avoid deadlocks and to minimize train delays. Experiments on a British railway nearby London demonstrate that AGLIBRARY can quickly compute near-optimal solutions

    Dispatching and Rescheduling Tasks and Their Interactions with Travel Demand and the Energy Domain: Models and Algorithms

    Get PDF
    Abstract The paper aims to provide an overview of the key factors to consider when performing reliable modelling of rail services. Given our underlying belief that to build a robust simulation environment a rail service cannot be considered an isolated system, also the connected systems, which influence and, in turn, are influenced by such services, must be properly modelled. For this purpose, an extensive overview of the rail simulation and optimisation models proposed in the literature is first provided. Rail simulation models are classified according to the level of detail implemented (microscopic, mesoscopic and macroscopic), the variables involved (deterministic and stochastic) and the processing techniques adopted (synchronous and asynchronous). By contrast, within rail optimisation models, both planning (timetabling) and management (rescheduling) phases are discussed. The main issues concerning the interaction of rail services with travel demand flows and the energy domain are also described. Finally, in an attempt to provide a comprehensive framework an overview of the main metaheuristic resolution techniques used in the planning and management phases is shown

    Simulation and Control of Groups of People in Multi-modal Mobility

    Get PDF
    Tourism and transport are constantly growing and, with it, the movements of travellers. This entails two fundamental effects on which we must focus: control of mass tourism and the organization of transport. Good transport organization and travel planning avoid crowds and therefore mass tourism. This allows promoting sustainable tourism in which it is sought to offer a quality service to tourists taking care of the environment. In this thesis the objective is to manage the flow of groups of people through means of transport. This control of groups of people is aimed at customer satisfaction by offering quality tourism. On the one hand, the study focuses on the problem to mitigate the negative effects due to mass arrivals in touristic locations. A TEN network has been developed to define the optimal tours for different groups of tourists. A related mixed integer quadratic optimization model has been developed with three main objectives: it minimizes the maximum value of occupancy in the selected destinations to limit mass tourism, reduces the divergence between the proposed visit tour and one required by the tourist group and the overall duration of their visit, and a heuristic approach has been introduced. On the other hand, it has been implemented a railway scheduling and rescheduling problem introducing optimization-based and min-max approaches on the regional and high-speed railway network. The scheduling model defines the best schedules for a set of trains considering costumers\u2019 demand and the priority of the trains to cover the rail sections in case of conflict on the railway lines. Consecutively, the generated feasible timetables are used to minimize possible consequences due to events that may negatively affect the real time traffic management. The main contribution of this section is the introduction in the second approach the innovative concept to prioritize the train that can access on the block section in case of conflicts on the network

    Intelligent real-time train rescheduling management for railway system

    Get PDF
    The issue of managing a large and complex railway system with continuous traffic flows and mixed train services in a safe and punctual manner is very important, especially after disruptive events. In the first part of this thesis an analysis method is introduced which allows the visualisation and measurement of the propagation of delays in the railway network. The BRaVE simulator and the University of Birmingham Single Train Simulator (STS) are also introduced and a train running estimation using STS is described. A practical single junction rescheduling problem is then defined and it investigates how different levels of delays and numbers of constraints may affect the performance of algorithms for network-wide rescheduling in terms of quality of solution and computation time. In order to deal with operational dynamics, a methodology using performance-based supervisory control is proposed to provide rescheduling decisions over a wider area through the application of different rescheduling strategies in appropriate sequences. Finally, an architecture for a real-time train rescheduling framework, based on the distributed artificial intelligence system, is designed in order to handle railway traffic in a large-scale network intelligently. A case study based on part of the East Coast Main Line is followed up to demonstrate the effectiveness of adopting supervisory control to provide the rescheduling options in the dynamic situation

    Modelling of interactions between rail service and travel demand: a passenger-oriented analysis

    Get PDF
    The proposed research is situated in the field of design, management and optimisation in railway network operations. Rail transport has in its favour several specific features which make it a key factor in public transport management, above all in high-density contexts. Indeed, such a system is environmentally friendly (reduced pollutant emissions), high-performing (high travel speeds and low values of headways), competitive (low unitary costs per seat-km or carried passenger-km) and presents a high degree of adaptability to intermodality. However, it manifests high vulnerability in the case of breakdowns. This occurs because a faulty convoy cannot be easily overtaken and, sometimes, cannot be easily removed from the line, especially in the case of isolated systems (i.e. systems which are not integrated into an effective network) or when a breakdown occurs on open tracks. Thus, re-establishing ordinary operational conditions may require excessive amounts of time and, as a consequence, an inevitable increase in inconvenience (user generalised cost) for passengers, who might decide to abandon the system or, if already on board, to exclude the railway system from their choice set for the future. It follows that developing appropriate techniques and decision support tools for optimising rail system management, both in ordinary and disruption conditions, would consent a clear influence of the modal split in favour of public transport and, therefore, encourage an important reduction in the externalities caused by the use of private transport, such as air and noise pollution, traffic congestion and accidents, bringing clear benefits to the quality of life for both transport users and non-users (i.e. individuals who are not system users). Managing to model such a complex context, based on numerous interactions among the various components (i.e. infrastructure, signalling system, rolling stock and timetables) is no mean feat. Moreover, in many cases, a fundamental element, which is the inclusion of the modelling of travel demand features in the simulation of railway operations, is neglected. Railway transport, just as any other transport system, is not finalised to itself, but its task is to move people or goods around, and, therefore, a realistic and accurate cost-benefit analysis cannot ignore involved flows features. In particular, considering travel demand into the analysis framework presents a two-sided effect. Primarily, it leads to introduce elements such as convoy capacity constraints and the assessment of dwell times as flow-dependent factors which make the simulation as close as possible to the reality. Specifically, the former allows to take into account the eventuality that not all passengers can board the first arriving train, but only a part of them, due to overcrowded conditions, with a consequent increase in waiting times. Due consideration of this factor is fundamental because, if it were to be repeated, it would make a further contribution to passengers’ discontent. While, as regards the estimate of dwell times on the basis of flows, it becomes fundamental in the planning phase. In fact, estimating dwell times as fixed values, ideally equal for all runs and all stations, can induce differences between actual and planned operations, with a subsequent deterioration in system performance. Thus, neglecting these aspects, above all in crowded contexts, would render the simulation distorted, both in terms of costs and benefits. The second aspect, on the other hand, concerns the correct assessment of effects of the strategies put in place, both in planning phases (strategic decisions such as the realisation of a new infrastructure, the improvement of the current signalling system or the purchasing of new rolling stock) and in operational phases (operational decisions such as the definition of intervention strategies for addressing disruption conditions). In fact, in the management of failures, to date, there are operational procedures which are based on hypothetical times for re-establishing ordinary conditions, estimated by the train driver or by the staff of the operation centre, who, generally, tend to minimise the impact exclusively from the company’s point of view (minimisation of operational costs), rather than from the standpoint of passengers. Additionally, in the definition of intervention strategies, passenger flow and its variation in time (different temporal intervals) and space (different points in the railway network) are rarely considered. It appears obvious, therefore, how the proposed re-examination of the dispatching and rescheduling tasks in a passenger-orientated perspective, should be accompanied by the development of estimation and forecasting techniques for travel demand, aimed at correctly taking into account the peculiarities of the railway system; as well as by the generation of ad-hoc tools designed to simulate the behaviour of passengers in the various phases of the trip (turnstile access, transfer from the turnstiles to the platform, waiting on platform, boarding and alighting process, etc.). The latest workstream in this present study concerns the analysis of the energy problems associated to rail transport. This is closely linked to what has so far been described. Indeed, in order to implement proper energy saving policies, it is, above all, necessary to obtain a reliable estimate of the involved operational times (recovery times, inversion times, buffer times, etc.). Moreover, as the adoption of eco-driving strategies generates an increase in passenger travel times, with everything that this involves, it is important to investigate the trade-off between energy efficiency and increase in user generalised costs. Within this framework, the present study aims at providing a DSS (Decision Support System) for all phases of planning and management of rail transport systems, from that of timetabling to dispatching and rescheduling, also considering space-time travel demand variability as well as the definition of suitable energy-saving policies, by adopting a passenger-orientated perspective

    Ant Colony Optimisation for Dynamic and Dynamic Multi-objective Railway Rescheduling Problems

    Get PDF
    Recovering the timetable after a delay is essential to the smooth and efficient operation of the railways for both passengers and railway operators. Most current railway rescheduling research concentrates on static problems where all delays are known about in advance. However, due to the unpredictable nature of the railway system, it is possible that further unforeseen incidents could occur while the trains are running to the new rescheduled timetable. This will change the problem, making it a dynamic problem that changes over time. The aim of this work is to investigate the application of ant colony optimisation (ACO) to dynamic and dynamic multiobjective railway rescheduling problems. ACO is a promising approach for dynamic combinatorial optimisation problems as its inbuilt mechanisms allow it to adapt to the new environment while retaining potentially useful information from the previous environment. In addition, ACO is able to handle multi-objective problems by the addition of multiple colonies and/or multiple pheromone and heuristic matrices. The contributions of this work are the development of a junction simulator to model unique dynamic and multi-objective railway rescheduling problems and an investigation into the application of ACO algorithms to solve those problems. A further contribution is the development of a unique two-colony ACO framework to solve the separate problems of platform reallocation and train resequencing at a UK railway station in dynamic delay scenarios. Results showed that ACO can be e ectively applied to the rescheduling of trains in both dynamic and dynamic multi-objective rescheduling problems. In the dynamic junction rescheduling problem ACO outperformed First Come First Served (FCFS), while in the dynamic multi-objective rescheduling problem ACO outperformed FCFS and Non-dominated Sorting Genetic Algorithm II (NSGA-II), a stateof- the-art multi-objective algorithm. When considering platform reallocation and rescheduling in dynamic environments, ACO outperformed Variable Neighbourhood Search (VNS), Tabu Search (TS) and running with no rescheduling algorithm. These results suggest that ACO shows promise for the rescheduling of trains in both dynamic and dynamic multi-objective environments.Engineering and Physical Sciences Research Council (EPSRC

    Port Rail Shunting Optimization Problems

    Get PDF
    openThe work focuses on a particular section of the intermodal chain of freight transportation, which is the link between rail and sea transportation modes and happens in the maritime port area. Among this field, the study deals with the management of rail operations, called here rail shunting operations, that have to be performed in the port area. Two optimization problems arises in this context. The first concerns the scheduling of the rail shunting operations, here called Port Rail Shunting Scheduling Problem (PRSSP). The second deals with the re-scheduling of the same operations in case of unpredictable events, here called Port Rail Shunting Re-Scheduling Problem (PRSRP). After a literature overview on the concerning studies, we concentrate on an innovative way to use the well known space-time networks as solution approach structure for both the above mentioned problems. The innovative structure has been called operation-time-space network and is deeply analyzed in a dedicated chapter. A network flow model based on an operation-time-space network for solving PRSSP has been developed. It has been tested using random generated instances providing good results. The same model has been extended in order to solve PRSRP and it has been tested giving good results as well. Finally, the models have been used to solve the real case of a port area located in Italy in order to test the applicability of the developed models to a real context. The tests have been executed using real data and provided good results confirming the possibility to apply the proposed approach in similar real problems.openXXXIII CICLO - LOGISTICA E TRASPORTIAsta, Veronic

    Risk-Based Optimal Scheduling for the Predictive Maintenance of Railway Infrastructure

    Get PDF
    In this thesis a risk-based decision support system to schedule the predictive maintenance activities, is proposed. The model deals with the maintenance planning of a railway infrastructure in which the due-dates are defined via failure risk analysis.The novelty of the approach consists of the risk concept introduction in railway maintenance scheduling, according to ISO 55000 guidelines, thus implying that the maintenance priorities are based on asset criticality, determined taking into account the relevant failure probability, related to asset degradation conditions, and the consequent damages
    • …
    corecore