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ABSTRACT 

Demand for railway transport has grown within the last few years and continuous growth is 

projected in future years. Consequently, rail networks are increasingly being operated at the 

limits of their capacity and stability. The issue of managing a large and complex railway system 

with continuous traffic flows and mixed train services in a safe and punctual manner is very 

important, especially after disruptive events. A large number of recovery algorithms have been 

developed in recent years to support dispatchers in making decisions during railway operation. 

However, these algorithms do not have the ability to provide solutions to all situations which 

arise as delays develop.  

In the first part of this thesis an analysis method is introduced which allows the visualisation 

and measurement of the propagation of delays in the railway network. By categorising the 

resilience of a railway operation into three levels according to the system response and 

operational strategies required for absorbing delays, train re-ordering and re-timing strategies 

are applied at junctions to solve real-time train rescheduling problems after minor disruptions 

to maintain a robust system. A simple case study has been conducted using the HERMES 

railway simulator in which different junction control strategies are applied in response to a 

delay situation. The case study shows how the visualisation and categorisation methods may be 

used to compare the effectiveness of different strategies in reducing the influence of knock-on 

delays. 

The BRaVE simulator and the University of Birmingham Single Train Simulator (STS) are also 

introduced and a train running estimation using STS is described. The rescheduling process of 

the simulation is illustrated. A practical single junction rescheduling problem is then defined 



and a number of representative rescheduling approaches are applied to solve the problem. The 

algorithms considered are: Timetable-Order-Enforce (TOE), First-Come-First-Served (FCFS), 

First-Leave-First-Served (FLFS), Brute Force (BF), Dynamic Programming (DP), Decision 

Tree Based Elimination (DTBE), Tabu Search (TS), Local Search (LS), Simulated Annealing 

(SA), Genetic Algorithms (GA) and Ant Colony Optimisation Algorithm (ACO). These 

approaches are investigated and tested on a series of delay scenarios in microscopic simulation, 

and rescheduling solutions are compared and analysed.  A case study investigates how different 

levels of delays and numbers of constraints may affect the performance of algorithms for 

network-wide rescheduling in terms of quality of solution and computation time. A 

recommendation for using these approaches is given based on their performance on different 

delay scenarios, and this can be used as a reference for further local rescheduling in decision 

centres. 

In order to deal with operational dynamics, a methodology using performance-based 

supervisory control is proposed to provide rescheduling decisions over a wider area through the 

application of different rescheduling strategies in appropriate sequences.  A single junction case 

study is designed to demonstrate how this process is realised, and it shows the improvement in 

reducing the propagation of delays by applying alternating approaches. 

Finally, an architecture for a real-time train rescheduling framework, based on the distributed 

artificial intelligence system, is designed in order to handle railway traffic in a large-scale 

network intelligently, with different decision centres (DCs) processing together. A case study 

based on part of the East Coast Main Line using real-world data is considered, which 

demonstrates the effectiveness of adopting supervisory control to provide the rescheduling 

options for individual DCs. 



Keywords: Real-time rescheduling, delay propagation, algorithms, supervisory control, DAI 

system. 
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CHAPTER 1  

INTRODCTION 

 

1.1 Research background  

Demand for railway transport has grown in recent years and continuous growth is projected in 

coming years. Transport in the Great Britain is facilitated by road, rail, air and water networks. 

According to the transport statistics report [1], in 2003 91% of the total distance travelled was 

by road, of which 85% was by car or taxi and 6% by bus. Rail transport accounted for 6% and 

all other modes accounted for roughly 3% in total. By 2013, the percentage of distance travelled 

by rail had increased to 9%, whereas the percentage by road had decreased to 88%.  

The growing demand for railway transport has led to an increased requirement for higher quality 

railway services, including improved speed, capacity, punctuality and comfort. To fulfil this 

purpose, new lines were built and existing infrastructure was enhanced, with more services 

offered. In the UK, the national railway network of 10,072 route miles (16,116 km) in Great 

Britain and 189 route miles (303 route km) in Northern Ireland with 18,000 passenger trains 

and 1,000 freight trains operating daily. Urban rail networks exist in the main cities of the UK, 

such as London, Manchester and Birmingham [2]. As the construction and upgrade of 

infrastructure is expensive, time consuming and sensitive to environmental and social concerns, 

greater efficiency and higher capacity on the existing rail networks is required to optimise 

investment within the limits of the infrastructure [3].  

https://en.wikipedia.org/wiki/National_Rail
https://en.wikipedia.org/wiki/Commuter_rail_in_the_United_Kingdom
https://en.wikipedia.org/wiki/London
https://en.wikipedia.org/wiki/Manchester
https://en.wikipedia.org/wiki/Birmingham
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As the number of trains in operation increases, it is also more difficult to cope with delays. 

Network Rail’s average annual punctuality stood at 91.5% in January 2013 [4, 5], based on the 

moving annual average Public Performance Measure. This is defined as the percentage of 

planned trains that are not cancelled and do not arrive at their destination late. Late is defined 

to be 5 minutes late for London, the South East and other suburban train operations, and 10 

minutes late for other areas. This statistic shows that around 1 in 10 trains do not arrive on time. 

Due to the limited resources available (tracks, platforms, etc.), a small problem can lead to a 

chain of knock-on delays that affect other services. Generally, with robust timetables, the 

knock-on delays can be absorbed gradually by the margins in the timetables. However, there 

still are some delays which are too big to be absorbed by the system automatically, and 

dispatchers must make decisions to help to reduce these delays. 

Railway traffic control is a way of maintaining the quality of service with a high standard of 

punctuality while ensuring the safety of train operations. According to basic safety regulations, 

no more than one train is allowed in a block section at any time in the fixed blocking system: 

the signalling system with Automatic Train Protection (ATP) functions is usually used to ensure 

a safe headway between successive trains by restricting the availability of track segments. 

Nowadays, with the development of railway technology, train traffic control has become more 

advanced and more comprehensive. Because of the complexity of railway operations, railway 

traffic control approaches mainly refer to two aspects: off-line and on-line [6]. Off-line railway 

traffic control means that the schedule is built to abide by public constraints and satisfy 

necessary requirements. The approaches for off-line optimisation include timetabling, train 

routing and train platforming, etc. In contrast, in on-line railway traffic control, dispatchers 

make decisions to maintain the schedule when unpredictable incidents occur. Furthermore, 

solutions must be found quickly in a valid time limit, thus problems must be solved in real-
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time, or near real-time. Thus, on-line optimisation is also called real-time management, 

including real-time train rescheduling and real-time operational management. 

Nevertheless, it is still a challenge to carry out a rescheduling plan in a large-scale railway 

network with uncertain delays and mixed traffic. In addition, the fact that different train 

operating companies (TOCs) and open access operators share the limited infrastructure has 

resulted in a complicated situation for railway traffic control. Various algorithms are used as 

the centralised methods for train rescheduling in a local area but they lack the ability to deal 

with the complicated traffic in a large-scale network.  Local control is defined as junctions or 

stations controlled by individual signal boxes, which can contact each other. With the 

introduction of a control panel, a dispatcher can set routes for the trains through an interlocking 

area [7].  

1.2 Motivation and objective 

The issue of managing a large and complex railway system with continuous traffic flows and 

mixed train services in a safe and punctual manner is very important, especially after disruptive 

events.  The purpose of real-time train rescheduling is to find an optimised schedule for the 

services in a given area and a given time horizon during operations, by providing a solution that 

is compatible with the actual traffic conditions and infrastructure constraints.  The objectives 

for rescheduling are varied, for example, to reduce the sum of delays of all considered trains 

[8]; to minimise energy consumption [9]; to minimise the number of delayed passengers [10]; 

and to decrease the delay cost of the most delayed train [11]. After communicating with TOCs, 

the general goal of the rescheduling operation for them is to avoid secondary delays or at least 

to reduce the effect of delays.  
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Train rescheduling requires changes to the timetable, and if necessary, the rolling stock and 

crews as well. Currently, the most commonly used method is to send a dispatcher to make 

decisions manually, which are usually based on experience and knowledge, without any support 

from an intelligent decision tool [12]. Recently, a large number of existing recovery algorithms 

have been developed to support the dispatchers in making their decisions, including centralised 

approaches and distributed approaches. However, they lack the ability to provide answers to all 

questions about the development of delays. 

Because it is necessary to reduce delays in railway operation, it is essential to study the 

propagation of delays. Railway operation simulation provides a way of analysing delay 

propagation in the whole railway network. Knowledge of delay propagation helps the 

construction of a better rescheduling plan for the railway network due to a deeper understanding 

of the interaction between trains in complicated situations [13]. 

The motivation of this research is to provide the dispatchers with better decision support by 

considering the delay propagation of the whole railway network with continuous traffic flows 

and mixed services after disruptive events.  

Consequently, this thesis consists of the following research tasks: 

1. The propagation of delays in the railway network is visualised and evaluated. 

2. Train running estimation using the University of Birmingham Single Train Simulator 

(STS) and the microscopic simulator (BRaVE) is introduced to simulate train operations 

in the railway network. 

3. A rescheduling process is specified based on a case study with different advanced 

rescheduling approaches applied. 
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4. The methodology of supervisory control for railway rescheduling is modelled and 

verified to manage the railway traffic dynamically. 

5. An architecture for a real-time rescheduling framework based on a distributed artificial 

intelligence (DAI) system is designed in order to handle railway traffic in a large-scale 

network intelligently, with different decision centres (DCs) processing together.  

The thesis will offer responses to the following hypothesis: A railway system with a high degree 

of resilience could absorb a certain level of train delays, and recover from perturbed railway 

traffic rapidly and stably by applying train rescheduling approaches at junctions.  

The aim of this research is thus to define the concept of resilience of railway systems and to 

improve the degree of resilience by using advanced railway traffic recovery approaches at 

junctions in the event of disturbances. Various train rescheduling approaches will be 

investigated at one junction and a performance-based supervisory control approach will be 

developed to deal with train rescheduling and dynamic traffic flows in distributed areas. Train 

rescheduling approaches can be altered to respond to the real-time situation according to this 

supervisory control. The resilience of the railway network is expected to be enhanced with these 

approaches applied.   

An architecture of train rescheduling based on the distributed artificial intelligence (DAI) 

system will be constructed to deal with train rescheduling problems in a large-scale network. 

The resilience of the railway network is expected to be enhanced by alternating the approaches 

applied at different junctions. 

1.3 Outline of the thesis 

The thesis is organised as follows:  
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 Chapter 1 introduces the background, research motivation, research objective and the 

structure of the thesis. 

 Chapter 2 classifies and reviews related literature of real-time railway rescheduling and 

introduces the existing recovery models used in real-time train rescheduling. 

 Chapter 3 presents a clear definition of system resilience by dividing it into three 

categories. A visualisation method is developed to evaluate the system resilience by 

monitoring the delay propagation in the railway network. 

 Chapter 4 introduces the simulation platform used in this thesis. The train running 

estimation is described in detail and the rescheduling process of simulation is illustrated. 

 Chapter 5 investigates various train rescheduling approaches at one junction area to 

provide a comparison of different algorithms in different delay scenarios. 

 Chapter 6 develops the supervisory control to alter algorithms at the junction area in 

order to deal with dynamic traffic flows and respond to different delay situations. The 

mathematical formulation of this methodology is presented and a verification case study 

is provided. 

 Chapter 7 introduces an architecture for intelligent real-time train rescheduling in a 

large-scale railway network and presents a description of all architecture modules. A 

case study on the East Coast Main Line (ECML) with mixed traffic and uncertain delays 

is described. With the application of the intelligent train rescheduling system developed 

in this thesis, the delay propagation indicates that the resilience of the system is 

enhanced. 

 Chapter 8 presents conclusions and comments on further work.



7 

CHAPTER 2  

AN OVERVIEW OF RECOVERY MODELS FOR 

REAL-TIME TRAIN RESCHEDULING 

 

2.1 Introduction of the train rescheduling problem  

The occurrence of unexpected disruptions to railway operations, such as the unavailability of 

tracks, bad weather, rolling stock breakdown and suicide, usually leads to a chain of delays to 

passenger trains with a consequent decrease in the quality of service to passengers. Therefore, 

decisions are required in order to minimise the effect of such delays, both at the timetabling 

stage and at the rescheduling stage. 

Railway operations are usually based on a timetable, which specifies the journeys that are 

carried out by the trains in the system, as well as the detailed routes and stations at which the 

trains should stop. At the timetabling stage, the objectives include minimising the journey time 

for passengers, maintaining the robustness of the timetable and maximising the capacity and 

service frequency [14, 15]. The robustness of the timetable, i.e. the ability to resist minor 

disturbance, is crucial to ensure the system can cope with delays. Running time supplements 

and buffer times are introduced in the timetabling process to enable trains to compensate delays 

without influencing sequential trains to some extent. However, running time supplements and 

buffer times are still limited by the capacity constraints set by TOCs and they fail to ensure 

recovery from major disruptions without making any dispatching decisions.  
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At the rescheduling stage, it is necessary to maintain passenger satisfaction and restore the 

service of the railway system by providing decisions to dispatchers in a disruption situation. 

Due to the complexity of the railway system, the delay recovery problem is usually divided into 

phases, which are: (i) timetable rescheduling, (ii) rolling stock rescheduling, and (iii) crew 

rescheduling. Timetable rescheduling calls for a new conflict free timetable by applying 

reordering, retiming, rerouting or even cancellation decisions, and rolling stock and crew 

rescheduling are demanded to operate the derived timetable if necessary, due to the changes 

made in the timetable rescheduling phase [16]. In this thesis, the rescheduling problem is 

restricted to the timetable rescheduling phase for disturbances. The classification of the train 

rescheduling problem and different types of delays are discussed in the next section.  

2.1.1 Classification of train rescheduling problem  

A definition of the train rescheduling problem is given by Pacciarelli [17]: Given static 

information (e.g. timetable, railway infrastructure, train configurations) and dynamic 

information (e.g. disruptions, train positions at time 𝑡), find a new conflict-free timetable for 

the time window [t + a, t + b], such that some performance index is minimised. Different train 

rescheduling problems are categorised due to the range of a and b.  

 When a ≤ 2 min, b ≤ 45 min, 

This train rescheduling problem is defined as real-time rescheduling or CDR/CDS 

(Conflict Detection and Resolution/Solution). Real-time rescheduling aims to 

provide a new conflict-free disposition schedule without rerouting, replatforming, 

speed optimisation, etc. [18, 19]. The objectives for the real-time rescheduling 

process are varied and difficult to quantify; the existing research objectives include 

train delay minimisation, capacity utilization, railway cost, etc. [20]. 
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 When 2~3 min ≤ a ≤ 10~15min, b ≤ 2~3 hours, 

This train rescheduling problem is defined as delay management. Delay 

management focuses on minimising the inconvenience for passengers at stations and 

the main task is deciding which connections to ‘drop’ and which to maintain. The 

current practise in delay management is Waiting Time Agreement (WTA)-for each 

connection, whereby a maximal waiting time for the connecting train is determined 

[21]. Classic delay management models the delay of passengers who miss a 

connection as exactly one cycle time [22]. Recent research on delay management 

adds more flexibility, such as rerouting the passengers, replatforming the trains, etc. 

[23].  

 When b ≥ 2~3 hours, 

This train rescheduling problem is defined as disruption management. Disruption 

management is focused on designing a new timetable with the available resources, 

including rolling stock rescheduling and crew rescheduling [24, 25]. Emergency 

timetables are usually defined in advance and adapted in real-time according to the 

delay situation [26]. 

2.1.2 Different types of train delays 

During daily rail operations, it is inevitable for delays to occur due to reasons such as bad 

weather, train connections, technical problems, blocked doors, etc. According to the location 

and source of the generation of these delays, they are generally classified as initial, original or 

knock-on delays [27, 28]. Initial delays are those recorded at the boundary when a train is 

entering a network, or at the beginning of a journey. Original delays, usually known as primary 

delays, are those which occur due to external reasons, like engine failure, reduction in speed, 
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boarding time of passengers, weather conditions and accidents. These delays are hard to predict 

and reduce.  Knock-on delays are the consequences of other delays. Some knock-on delays 

happen because a delayed train is occupying the route and preventing other trains from passing 

(e.g. at a crossing). Some happen as trains that wait for connections from other delayed trains. 

The number and severity of knock-on delays can reflect on the resilience of the timetable and 

the reliability of train operations. 

According to the duration of time, delays can be categorized into disturbances and disruptions 

[12]. A disturbance is “relatively small” and it can be managed by timetable rescheduling only, 

without any rolling stock and crew rescheduling. A disruption is “relatively large” and strongly 

influences the timetable. Rolling stock and crew rescheduling are required as well as timetable 

rescheduling. A disruption may result in large delays or the cancellation of trains. Usually, the 

duration of a disruption is unknown when it starts, and rescheduling management has to be 

applied several times, until the normal timetable is restored. 

2.2 Problem description   

Generally, the railway network consists of tracks, signals and stations. Signals are located along 

the tracks and inside the station area. A track segment between two main signals is called a 

block section (in the fixed block signalling system) that may host only one train at a time, which 

means that a train is only allowed to enter a block section after the preceding train has left this 

section completely. 

For safety reasons, signals are used to control the movements of trains by imposing the 

minimum distance headway between consecutive trains. An interlocking system can control the 

train traffic by setting up conflict-free routes for the trains. The Automatic Train Protection 

(ATP) system is a control system used by the operators to help avoid collisions by automatically 
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restricting the Maximum Allowable Speed (MAS) at which a train can travel at any given time 

according to its current status. ATP can operate automatic braking when a train ignores a valid 

speed restriction. 

Timetables are designed to satisfy all traffic requirements. However, during practical 

operations, unexpected events occur that can make the original timetable infeasible. 

Unscheduled braking and stopping of trains increases running times and causes knock-on 

delays. Real-time train dispatchers must adjust the timetable of each train, in terms of retiming, 

reordering and routing the trains at the entrance of each crossing point. In order to choose the 

most effective timetable modifications, the goals of rescheduling should be defined while 

satisfying traffic regulation constraints. For example: to minimise train delay (sum, max, 

average, etc.) [8, 11, 29], to minimise passenger delay [10], to minimise energy consumption 

[9], or a combination of these goals. 

In summary, the real-time rescheduling problem can be defined as follows: given a railway 

network, the position and speed of each train is known by the dispatchers, and decisions 

covering a set of train routes and passing times at each relevant crossing point in the network 

must be made when a delay is detected that may result in a conflict with the optimisation 

objectives. The classic rescheduling process can be described in the following steps [30]: 

 Begin with a nominal timetable 

 Transmission of data to the operation 

 Detection of conflicts 

 Resolution of conflicts 

 Generation of new schedule plan 

 Application of traffic control management 
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2.3  Recovery models for real-time train rescheduling 

Different approaches have been developed to solve the real-time rescheduling problem. In this 

section, several recovery models are described at microscopic level and macroscopic level. The 

distinction between them concerns the level of detail of the infrastructure in the railway system. 

In former one, the infrastructure is considered in details. However, the latter one consider the 

railway network in a higher level, in which stations and tracks are represented by nodes and 

arcs respectively, the details of block sections and signalling are not considered. A classification 

of recent literature on different recovery models is presented in Table 2-1 and a detailed 

introduction to each model and the approaches to rescheduling are given in the following 

section. 

 Microscopic models Macroscopic models 

Real-time 

train 

rescheduling 

 Alternative Graph (AG) model 

[31], [32, 33], [34], [35], [36], [37]. 

 Stage-to stage transform (SST) 

model [38], [39], [40], [41].  

 Decision tree model [42], [43], 

[44]. 

 Mixed Integer Programming (MIP) 

model [45], [46], [47], [48, 49], 

[19]. 

 Simulation model [50], [51], [52], 

[53], [54], [7]. 

 Discrete event model [55], [56], 

[57], [8], [58]. 

 Time event graph (TEG) model 

[59, 60], [61, 62]. 

 MIP model [63], [64], [65], 

[66]. 

 Other models[67], [68], [69], 

[70], [71].  

 

Table 2-1: Classification of recent literatures 

2.3.1 Microscopic models 

Alternative Graph (AG) model 
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Mascis and Pacciarelli introduce an Alternative Graph (AG) model for no-store job shop 

scheduling, which is similar to the train rescheduling problem [31]. AG is based on the track 

layout of the railway network; the train routes can be divided into many block sections and the 

running times to pass different sections are fixed. The passing of a train through a particular 

block section is defined as a node and the processing time is defined as an arc. Since a block 

section cannot hold more than one train at the same time, to avoid conflict, a processing order 

must be defined and the order of two operations can be modelled as a pair of alternative arcs. 

Let 𝑉 be the set of all the operations (nodes), 𝐹 be the set of all the fixed arcs, and 𝐴 be the set 

of all the alternative arcs in an instance. The alternative graph 𝐺 =  (𝑉, 𝐹 ∪ 𝐴) is defined for 

the train rescheduling problem. Figure 2-1 illustrates the AG for a simple train rescheduling 

problem. On the left side, the figure shows a small railway network with 5 block sections 

(denoted as 1, 2, 3, 4 and 6) and one junction section (denoted as 5). Assume at the time t, there 

are two trains (denoted as A and B) in the network and they are approaching the same junction. 

The nodes on the right side indicate a passing of a particular train through a block, here, 𝑡(𝑖𝑗) 

indicates the cover time for train 𝑖 in the section 𝑗. According to the block constraints in the 

railway network, only one train is allowed to run in a block section at any time. Collisions may 

happen if two or more trains approach to the same block section at the same time. In particular, 

trains A and B share resource section 5 and 6, and therefore the dispatchers have selected 

alternative arcs (A6, B5) and (B6, A5). If train A precedes B to pass the junction area, arc (A6, 

B5) is selected; on the contrary, if train B enters junction block before A, arc (B6, A5) is 

selected. 
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Figure 2-1: Example of an AG model 

Mazzarello and Ottaviani proposed a heuristic method (Avoid Most Critical Completion time 

(AMCC)) for reordering, rerouting and speed adjustment to minimise the exit delays based on 

an AG model. The cases include 27 trains at the Schiphol Station bottleneck area in the 

Netherlands and 4 trains at the junction at Lage Zwaluwe, also in the Netherlands [32]. 

D’Ariano proposed a Branch-and-Bound (B&B) algorithm to reschedule a bottleneck area of 

the Dutch rail network based on an AG formulation [33]. The results present optimal or near 

optimal solutions which are calculated within a short time. Later, in 2008, D’Ariano described 

the implementation of the AG model in the ROMA (Railway Traffic Optimisation by Means of 

Alternative graphs) [34]. In 2009, D’Ariano developed a Tabu search for rerouting and speed 

adjustment to minimise the total delay, including the primary delay and maximum consecutive 

delay [35]. 

Corman extended the research in 2012 with the objective of minimising delays and missed 

connections by adopting two heuristic methods for selecting connections and a B&B method 

for reordering based on an AG model [36]. In the following year, Dollevoet and Corman 

proposed an iterative approach incorporating the computed wait-depart decisions in Utrecht 

Central Station with the objective of minimising total passenger delay [37]. 

Stage-to stage transform (SST) model 
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The railway rescheduling problem at junctions can be structured as a series of ‘stages’. As 

shown in Figure 2-2, four trains are approaching a junction, starting at Stage 0 which indicates 

the original situation (no train has passed), each sub-stage shows all possible next states (where 

one state indicates one possible sequence of trains) and links between each state give the cost 

of moving (for instance, time consumed passing the next sequential train). The optimal solution 

can be found by seeking the shortest path moving from the first stage to the last stage [38]. This 

kind of model is usually known as a stage-to stage transform (SST) model.  

 

Figure 2-2: Example of a SST model [72] 

Some literature on train rescheduling is based on a stage-to-stage model, for example, dynamic 

programming (DP) is one of the most frequently used algorithms based on this model [39]. Ho 

and Haugland introduce a control strategy based on DP by adopting a cost function based on 

total weighted train delay to determine an optimal train sequence [40]. Albrecht and Oettich 

describe the dynamic schedule synchronisation for service connection by using DP. The cost 

function is deemed as the passenger waiting time between services and the stations are 

structured as a multi-stage process [41]. 

Decision tree model 
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The decision tree model is another frequently used model to identify feasible solutions for a 

train rescheduling problem. For example, in Figure 2-3, on the left side, there are four trains 

which are approaching a junction. On the right side, the root of the tree indicates the initial state 

where no trains have passed the junction area. The first level of branches represents all possible 

first trains through the junction and the subsequent level of branches represents possible 

successive trains. The leaves of the tree show all valid sequences for trains passing the junction. 

 

Figure 2-3: Example of a decision tree 

Depending on the optimisation algorithms, a decision tree can be used to find the optimal 

solution for train reordering at the junction. Shah and Sastry proposed a pruning technique to 

evaluate the nodes by an objective function, such that if it does not meet a predefined threshold, 

the branch is cut [42]. This approach increases the speed of finding a solution. However, it 

cannot guarantee that the optimal solution will be found every time. In the train rescheduling 

study, a decision tree model is used to minimise the train delays on a mixed traffic network by 

Weston [43]. In this study, the objective function is the measure of passenger delay minutes. A 

decision tree can also be used to solve the train rerouting problem; Ismail models the destination 

of routing queries as a decision tree model and the solution for the train rerouting problem can 

be found within a practical response time [44].  

Mixed Integer Programming (MIP) model 
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A Mixed Integer Programming (MIP) model is developed for solving the train rescheduling 

problem on a single line railway. The rescheduling process can be represented by binary 

decision variables, such as maintenance connections, the sequence of trains, the assignment of 

resources, etc. The continuous variables are defined to represent the arrival time and departure 

time of each train at the station. Delays can also be defined as integer variables. The constraints 

in the railway network are generally expressed as the constraint equations in a MIP model. The 

decision variables and sets of constraints are generally different from one researcher’s work to 

the next, which therefore results in different levels of detail in the MIP models. 

A mathematical model to describe the timetable rescheduling problem in case of delays based 

on the MIP model was presented by Gély (2006). This model presents binary variables 

indicating re-ordering choices and continuous variables representing the arrival or departure 

time of trains from each visited node in the network [45].  

Van de Boom et al. described the train reordering problem using a MIP model by determining 

the order of trains as the binary variables and the time instants at which a train departs from the 

station as the continuous variables. All constraints are presented by a matrix. Genetic algorithms 

are used to minimise the sum of all predicted delays and the penalty for all broken connections 

and switched train orders is based on the model of the Dutch railway system [46]. 

Chen (2012) formulated the junction rescheduling problem with a MIP model, with the 

objective function defined as the Weighted Average Delay of all passing trains and the binary 

decision variables are defined for the route setting (whether or not the route is set for the train 

to pass) and headway maintenance (whether or not the headway in consecutive events must be 

kept). The algorithm DE_JRM (Differential Evolution for Junction Rescheduling Model) is 
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derived and improved from a general Differential Evolution (DE) algorithm for solving 

proposed MIP problems [47].  

From 2012 to 2013, Boccia et al. developed a new MIP model using binary variables to indicate 

whether a route is occupied by a train or not, and continuous variables to represent the time at 

which a train reaches a block section and the delay of a train on a route. Heuristic approaches 

are proposed in a simplified network with the idea of pre-selecting a “most promising route” 

for each train [48, 49]. 

To minimise the total costs incurred by the train delay, in 2012 Yan and Yang formulated the 

Movement Planner Problem as a MIP model and developed several heuristic rules for variable 

fixing. In addition, they proposed a rolling-horizon-based decomposition algorithm to “divide 

and conquer” the problem. The experiments on the three data sets show that the solution 

approaches perform better than the existing pure branch-and-cut algorithm in providing high 

quality solutions [19]. 

Simulation model 

Simulation is the development of models to analyse and study the dynamic behaviour of actual 

or hypothesized real-life systems. The simulation approach can be divided into two types: 

discrete or continuous. In discrete simulation, the data are only collected when there are certain 

changes to the discrete event, whereas continuous simulation collects data continuously [50]. 

An event-driven based approach and network-based approach, as two widely used discrete 

models, are used for railway rescheduling by Cheng (1996), with different algorithms applied 

[50].  
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In the railway system, computer-based continuous simulation models (e.g. HERMES and 

BRaVE) are usually used to model the train operation at a microscopic level based on the 

detailed information of the infrastructure (e.g. track layout, signalling, station platform 

allocation, etc.) and train configuration (e.g. maximum speed, acceleration, braking, etc.). The 

simulation model can not only present the real time status, but can also forecast the future status. 

Therefore, the simulation model can be used to support real-time rescheduling. Simulation 

approaches have the capability of showing the performance of train rescheduling strategies. 

Based on a well-defined simulation model, the rescheduling strategies can be validated and 

evaluated. 

The components of a railway network from Downtown Los Angeles to the Eastern Inland 

Empire area and movements of trains and passengers are modelled by Lu et al. A Velocity-

Augmenting algorithm and deadlock-free algorithm are proposed and validated in minimising 

the travel time of trains based on this model [51]. Jacobs (2004) presented a computer procedure 

to generate conflict-free rescheduled plans for disturbed services with an asynchronous 

simulation approach based on blocking times [52]. 

An investigation of microscopic simulation models for rescheduling in a large-scale network 

can be found in a paper written by Jacobs [53]. Asynchronous simulation is coupled with 

heuristic approaches for conflicts by ranking trains into categories and always giving priority 

to trains in a higher category. It is a feasible solution for train rescheduling in a large-scale 

network but the resulting schedule can be far from the global optimum.  

Recent research based on microscopic models decompose a large-scale rescheduling problem 

into several sub-problems with computable scale and these sub-problems are solved locally 

with collaborative activities to achieve a global optimum [54]. Chou introduced a collaborative 
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method to optimise the train passing sequences in junctions of a railway network and validated 

this method through simulation. He decomposed the entire railway network into individual 

junction areas and used a greedy local search to find the optimal solutions for each junction 

until none of these solutions conflicted with each other [7]. 

2.3.2 Macroscopic models 

Discrete event model 

Continuous simulation models require the information of the position and speed of trains at 

every time increment and the large amount of computation prevents them from being practical. 

In 1991, Van Breusegem et al. presented an event-based traffic model for metro lines. This 

model accounts only for discrete events occurring on the line (e.g. arrival or departure of trains 

at platforms). The corresponding variables are related to both trains and platforms [55]. 

In the studies of discrete models, the railway system is described by discrete events and the 

state of each train at the time, t. A discrete-event dynamic system consists of nodes and arcs. 

Nodes indicate the events, and arcs refer to the processes. For a railway network, the individual 

train operation can be regarded as a series of events and processes to connect them. The node 

can be defined by the train identity, location, type (departure, arrival or passing) and scheduled 

event time. The arcs are defined by the train identity, type (run or stop), linked two adjacent 

events and the minimum processing time. The interactions between trains are modelled with 

headway and connection processes. Headway processes separate the passing events of different 

trains which share the same block section and connection processes separate the departure event 

of a connecting train and the arrival event of a feeder train [56]. An event can only occur after 

all processes represented by incoming arcs have been completed and it follows a fixed order 

determined at the beginning.  
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As a simple example, consider the railway transportation between three consecutive junctions 

based on the discrete-event model in Figure 2-4.  This network consists of three stations (Station 

A, Station B and Station C) and two lines (Line 1 between station A and B, and Line 2 between 

station B and C). Nodes 1-4 indicate all departure and arrival events for train 1 and nodes 5-8 

indicate all departure and arrival events for train 2. The process times are weighted in minutes 

by different arcs: the running times and dwell times are weighted by black arcs, the connection 

times and the departure headway times are weighted by light grey arcs. 

 

Figure 2-4: Example of discrete-event railway system 

Compared with the discrete time based simulation models, the discrete event based model is 

more efficient [57]. Ho et al. (2001) used three heuristic algorithms (GA, SA and TS) in a 

discrete event model to solve the conflicts in a reasonable computation time with the objective 

of minimising total weighted delay in [8]. Dorfman (2004) developed a Greedy Travel Advance 

Strategy (TAS) to schedule trains on a railway network using a discrete event model to 

minimise the energy cost [58]. 

Time event graph (TEG) model 

Timed Event Graphs (TEG), also known as timed Petri nets, are used to model the railway 

operation at a macroscopic level by Goverde [59, 60]. A TEG is a representation of a discrete-

event dynamic system. The nodes can be portioned into two disjoint subsets: places (usually 
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depicted as circles) and transitions (usually depicted as bars). Arcs from places to transitions 

do exist, as well as from transitions to places. However, arcs from transitions to transitions or 

from places to places do not exist. Moreover, the marking and holding times are assigned to the 

places. The marking (usually depicted as tokens in the places) can be interpreted as one or more 

active processes at the beginning of each observed period, while the holding time of a place is 

the minimum process time that a token is occupies the place. The dynamic processes in a 

discrete-event system are defined by the movements of tokens from place to place in the TEG 

model. 

Figure 2-5 shows a TEG of the example network in Figure 2-4. The location of tokens indicates 

that train 1 is dwelling at Station A and train 2 is running on Line 2 towards Station B at the 

beginning of this observation period. When event 4 (departure event of train 1 at Station A) has 

occurred (fired), Figure 2-6 shows that the token of the input place of event 4 has moved to the 

output place of event 4. 

 

Figure 2-5: TEG model with initial marking 



23 

 

Figure 2-6: TEG model after event 4 fired 

A time event graph can be represented by a max-plus linear system whereby an event occurs 

after the process time of the last predecessor events have finished. Computational algorithms 

exist for optimising the performance indicators of a max-plus linear system. 

Goverde (2010) developed a bucked-based delay propagation algorithm based on the max-plus 

delay propagation model for minimising the propagation of train delays [59]. Schutter and van 

den Boom extended the model predictive control (MPC) to the class of max-plus linear system 

with soft and hard synchronization constraints for a railway network and this method is used to 

minimise the sum of deviations from the original schedule and number of broken connections 

[61, 62]. 

MIP model 

There are also a number of researchers who solve the train rescheduling problem based on a 

MIP model in a macroscopic level. For example, an MIP model which considers the reordering 

and rerouting of trains is presented by Törnquist and Persson (2007) [63]. This model contains 

binary variables to express whether or not an event occupied a track, and continuous variables 

to indicate the start times and end times of an event. The model assumes that the headway times 

between the trains and running times along the segments between stations are fixed. Since the 

sequence of trains on tracks is predefined by the original timetable and remains the same during 

http://www.sciencedirect.com/science/article/pii/S0191261514000198#b0450
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the operations, there are only a few modifications which can be made to minimise the train 

delays. Four different strategies are investigated based on the MIP model of part of the Swedish 

railway network. In 2012, Törnquist developed a heuristic greedy algorithm for the same 

problem and this algorithm can quickly find a good solution according to a set of criteria [64]. 

Acuna-Agost et al. extended the model presented by Törnquist and Persson in 2007 and used 

the same idea in 2010. There are two main changes in the latter model: one is that unplanned 

stops will change the minimal travel time when considering acceleration and braking behaviour; 

and the other is some modifications on constraints to admit more than one train in the same 

block section running in the same direction [65]. Right-shift Rescheduling, the MIP-based 

Local Search Method and the Iterative MIP-based Local Search Algorithm are considered in 

this paper to solve the train rescheduling problem. The experimental results show that the best 

compromise is obtained with the Iterative MIP-based local search procedure. 

Min et al. formulated the train-conflict resolution problem as an MIP model in 2011. They argue 

that the train-conflict resolution problem is NP-hard and proposed a column-generation-based 

algorithm that exploits the ‘separability’ of the problem. During tests of this approach on real 

data from the Seoul Metropolitan Railway network, the proposed algorithm managed to provide 

near-optimal conflict-free timetables in a few seconds for most cases [66]. 

Other models 

Other macroscopic models include an integrated framework based on a pattern description 

language for automatic train rescheduling proposed by Hirai [67]. Here, a large number of 

rescheduling plans are prepared to help manage major disruptions caused by an incident which 

is likely to require more than an hour of suspended train operations. 

http://www.sciencedirect.com/science/article/pii/S0191261514000198#b0450
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Missikoff described a fast prototype of MINT (Manager on Integrated Network of Train traffic), 

which combines information management and decision-support functions in a single integrated 

system for railway traffic control. This integration has been realised by means of an object-

oriented approach and all the developments have been supported by Mosaico, which is a 

software environment for analysing, designing and rapid prototyping of most object-oriented 

applications [68]. 

Barta et al developed a Markov-chain based model for delay propagation in the railway network 

to evaluate the evolution of train delays as a train visits successive terminals. The model is 

based on the examination of a large set of historical data and shows how to classify different 

terminals according to their ability to absorb or amplify delays [69].  

Albrecht et al described the railway network with a Possession Plans On Demand (PPOD) 

system, which can simultaneously consider track maintenance and trains in order to produce 

good integrated timetables. The dispatch can be customized to model different operating 

procedures by altering a combination of the dispatch decision time, possessor selection rule and 

action selection rule. Problem Space Search (PPS) is used to quickly generate a range of feasible 

timetables and a user-defined objective may be used to rank these timetables [70]. 

Dündar and Şahin studied the train rescheduling problem for benchmarking purposes, they 

developed an artificial neural network (ANN) model to mimic the decision behaviour of train 

dispatchers when processing conflict resolutions. ANN is an artificial intelligence method, 

which can learn, remember and memorise, which is developed based on the human brain’s basic 

operation principals [71]. 

http://www.sciencedirect.com/science/article/pii/S0191261514000198#b0200
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2.4 Conclusion  

Due to the complexity of railway operations, the growth of traffic demands and limited 

resources, the occurrence of disruptions may lead to a chain of delays. Timetabling and 

rescheduling approaches are demanded to minimise the effect of the delays. Although a good 

timetable has the ability to recover from minor disturbances by implementing the running time 

supplements and buffer times, major disruptions are hardly recovered without dispatching 

decisions. 

In this chapter, the rescheduling problem in a railway network is detailed, defined and classified 

into three categories: real-time rescheduling, delay management and disruption management 

according to the response time to the initial or primary delay. Delays can be classified as initial, 

original and knock-on delays according to the source of generation, or disturbances and 

disruptions according to the duration of time. 

A detailed description of the real-time train rescheduling problem is presented and some basic 

terms for modelling a train rescheduling problem are introduced.  With the increasing attention 

which is currently being given to the rescheduling problem in the railway network, a lot of 

researches on recovery models and solution approaches have been done in recent years. Several 

recovery models for real-time train rescheduling are reviewed at a microscopic and macroscopic 

level. The microscopic models include the: AG model, SST model, decision tree model, MIP-

based models and simulation models, and the macroscopic models including the discrete-event 

model, TEG model, MIP-based models and other undefined models. These recovery models 

offer a different understanding of the train rescheduling problem and some algorithms based on 

the models described are developed to carry out rescheduling solutions. 
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The development of computer technology makes the continuous simulation of the rail network 

available for practical real-time rescheduling. A good simulation can present the real-world 

operation very precisely and provides useful information for train dispatchers. In this research, 

a microscopic simulation model of railway network is used for the real-time rescheduling 

management, and recovery approaches are implemented to that model. With an accurate rail 

simulator, different rescheduling approaches can be verified and investigated by evaluating 

their performance in different delayed scenarios.  

The next chapter will give a definition of railway system resilience, and a visual method based 

on the railway simulation is proposed to evaluate and analyse delay propagation in the rail 

network.
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CHAPTER 3  

METHODOLOGY OF DELAY PROPAGATION 

VISUALISATION 

 

During railway operations, it is inevitable that trains are delayed. The propagation of train 

delays in a railway network reflects the resilience of the system to different types of delays. A 

visualisation of the delay propagation can give dispatchers a clear understanding of the traffic 

states so that adjustments to train movements can be made. In this chapter, an introduction to 

railway system resilience is given, followed by some visualisation examples. A methodology 

of delay propagation visualisation is illustrated and a discussion of delay propagation with 

junction controls is also included in this chapter. 

3.1 Introduction to railway system resilience 

System resilience usually means the capability of a system to deal with change and adapt itself 

continually to survive the threats and shocks within critical thresholds [73]. Unclear and blurred 

definitions have been given by previous researchers on resilience. In this section, research views 

on system elasticity to delays are presented and a series of generally used terms are explained. 

A system resilience definition and classification are set out, followed by a discussion of the 

influence of factors based on a Quality of Service (QoS) measure [74].  

3.1.1 Views on general terms 

Stability 
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Loosely speaking, a solution of a dynamical system is deemed to be stable if all perturbations 

to the system result in a new solution that stays “close” to the original solution for all time [75]. 

In the railway system, it is usually used to describe the ability of the railway system to 

compensate for delays, usually perturbations, and results in an asymptotically stable behaviour 

with respect to the original schedule/ service pattern. [76] 

Robustness 

In a general way, robustness can be defined as the ability of a system to withstand the variations 

of parameters or changes in operational condition. A system is defined ‘robust’ if it is able to 

maintain its functionality under the incidences [75]. The idea of robust timetable should tolerate 

a certain degree of uncertainly during operations, in other words, they should be able to absorb 

some dynamic variations caused by both external and internal factors. 

Even though much research on robustness in railway systems has been pursued, the concept of 

robustness remains vague and uncertain. Some definitions have emphasized the ability to 

preserve some level of solution quality. for example, Carey and Carville [77], define the 

robustness of a solution with respect to its ability to preserve the solution quality, like 

computation time. Another definition of robustness describes a timetable as robust if the system 

can survive threats without significant modification [78]. This work also defines a number of 

robustness levels (see Figure 3-1). Considering the differences between the retrieved timetable 

and original timetable, the associated modifications that should be made to cope with incidents 

range from level 0 (do nothing) to level 5 (cancel trains). In most cases, the main disruptions 

occur in level 0 due to small perturbations. The higher the level, the more rescheduling 

strategies are needed. 
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Figure 3-1: The main levels of robustness [78] 

The robustness of the railway system indicates that the dynamic variations found in railway 

operation leads to an asymptotically stable behaviour of the railway system and the initial 

schedule plan/ service pattern is restored [79]. 

Recoverable robustness 

Recoverable robustness is proposed based on a basic definition of robustness, with more 

flexibility added. Liebchen provides a precise concept of recoverable robustness for an 

optimisation problem [80]. Firstly, the original optimisation problem (𝑂 ), the interrupted 

scenarios (𝑆) and the limited recovery possibilities (𝑅) need to be defined. A solution 𝑥 for an 

optimisation problem 𝑂 is recoverably robust if in all situations that may happen according to 

𝑆, a feasible solution 𝑥 can be found by one of the approaches given in 𝑅. 

Several recoverable robustness models are built with boundaries for the action of recovery or 

limitations on computational power [80, 81]. For example, in [81], strict robustness models are 

the cases in which there are no recovery capabilities, however, the recoverable robustness 

models have possible new solutions computed by a recovery algorithm which must not deviate 

too much from the original solution, s, according to a distance, 𝑑. 
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The recoverable robustness of the railway system indicates that the imperfect situation found 

in railway operation leads to an asymptotically stable behaviour of the railway system with 

respect to a new schedule/service pattern with the same volume of traffic as the original 

solution. 

Recoverability 

Recoverability refers to the ability to restore a system with recovery actions when a disruption 

has occurred. For the railway, a recoverable timetable/service results in an asymptotically stable 

behaviour of the railway system with respect to a reduced service pattern with a lower volume 

of traffic than the original solution [75]. 

Table 3-1 shows the differences of four definitions. For each definition, the delays it can handle, 

the results after the recovery, and recovery strategies are represented and compared.  

Definitions  Delay situations Results Recovery strategies 

Stability  Perturbations The original schedule/ service 

pattern. 

No recovery actions. 

Robustness   Minor 

disruptions 

The original schedule/ service 

pattern. 

Traffic management 

strategies. 

Recoverable 

robustness 

Disruptions A new schedule/service 

pattern with the same volume 

of traffic as the original 

solution. 

Traffic management 

strategies. 

recoverability Major 

disruptions  

A reduced service pattern with 

a lower volume of traffic than 

the original solution 

Operational 

management strategies. 

Table 3-1: Differences of four definitions 
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3.1.2 Resilience classification and definition 

In this research, we use resilience to describe the ability of a system to withstand stresses, 

pressures, perturbations, unpredictable changes or variations in its operating environment 

without loss of functionality [75]. Here, the term resilience is used to represent the ability of 

the railway system to deal with delays. Generally, railway systems can deal with delays in three 

ways: (1) systems can absorb delays automatically without active train rescheduling (i.e. no 

action being required by the traffic controller); (2) active train rescheduling or reordering 

strategies can be implemented to prevent the propagation of minor disruptions and aid the 

recovery of the system; and (3) adopt operational management measures, such as train 

cancellation, train re-allocation etc. when major disruptions occur. 

In this work the term resilience is subdivided into three categories. This is based on the way in 

which the interacting services operating on the system respond to a given primary delaying 

incident (for example, a signal failure, dwell time delay, emergency speed restriction), and 

measures the return of the system to an on-time state. The definition of the on-time state will 

differ between and within railway administrations. 

The definitions arrived at by the author and used throughout this thesis are [82]: 

- A set of interacting services is said to be stable in response to a particular incident if the 

system recovers to an on-time state without the implementation of active traffic 

management measures; 

- A set of interacting services is robust in response to a given delaying incident if active 

train rescheduling or reordering strategies must be implemented to allow the system to 
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return to an on-time state, without the requirement to cancel any of the trains involved in 

or affected by the incident; 

- A set of interacting services is recoverable in response to an initial delaying incident if 

the system requires the introduction of major operational management measures, such as 

train cancellation or rolling stock reallocation, to return to an on-time state. 

An important question is what kind of resilience strategy should be used to manage a transport 

network which is subject to a continued growing intensity of demand and a variety of 

disruptions? Taking into account the previous research that has considered a range rescheduling 

approaches to solve delay recovery problems, the specific aim of this research is to develop an 

approach that provides robustness. 

3.1.3 Influence factors 

The level of resilience should be related to the capacity of the system, the type of disruptions 

and the application of control strategies. Before a discussion of the influencing factors of 

railway resilience, a decomposition of the QoS (Quality of Service) concept is shown in Figure 

3-2 below [74]. This general high level measure Quality of Service diagram is used as an 

indication of the overall performance of the railway system. This work has been presented in 

the “ON-TIME” project deliverables, and the author was enrolled in this project [74]. 

At the top it shows the key performance indicators (KPI) for QoS and the associated quantitative 

key measures. It covers transport volume, journey time, connectivity, punctuality, resilience, 

passenger comfort, energy and resource usage. It is desirable for the railway systems to be 

optimal in terms of all the indicators, however, trade-offs need to be made in practice due to the 

various constraints in real life railway operations. The bottom portion of the diagram shows the 
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static and dynamic factors that influence the QoS. On the engineering side, the factors affecting 

Quality of Service can be broken down into capability and dependability. Capability covers all 

the “static” elements that are relatively hard to change, such as rolling stock, infrastructure, 

timetable and operational rules. Dependability includes all the dynamic components of the 

system: traffic management, operational management, human factors, system maintenance and 

environmental factors. These components can be modified over a shorter term in practice. 
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Figure 3-2: Quality of Service Diagram [74] 

Based on the Quality of Service diagram (see Figure 3-2), there are many factors that may 

influence the system resilience. Different strategies to achieve different categories of resilience 

are also sought: to ensure the stability of the system, in this case train rescheduling activities 

are not required to recover perturbations, thus only off-line timetabling is needed. To achieve 
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robustness, with regard to off-line timetabling, real-time traffic management is also required to 

help recover minor disruptions. For recoverability, real-time operational management is added 

to solve problems caused by major disruptions. In this research, the main aim is to manage with 

delays caused by minor disruptions through the use of real-time traffic management.  

3.2 Existing delay propagation models 

In recent decades, a considerable number of models to represent delay propagation have been 

proposed. These models reflect the impact of various factors on the propagation of train delays 

and provide a prediction of the effect of knock-on delays. These models can be divided into two 

categories: analytical methods and simulation-based methods. 

3.2.1 Analytical models 

Weigand described the variation of delays as either negative, zero or positive with an 

exponential distribution [83]. Based on the primary and secondary delay distributions, as well 

as the running time supplement and buffer time in the timetable, he derived a model for the 

distribution of the delays in a large-scale railway network.  Based on this model, Muhlhans 

considers a generic cumulative probability distribution of delays and then computes the exit 

delay distribution by convoluting the primary delay and secondary delay distributions [84].  

Carey and Kwiecinski computed the distribution of arrival and departure delays of trains at 

successive stations with recursive substitutions starting from the departure station with for a 

given departure delay [85]. Later work also evaluated the knock-on delays occurring on a single 

line caused by route conflicts by non-linear regression and heuristic approximations  [27]. 

Considering the knock-on delays caused by insufficient headway, speed constraints and late 

connections, Higgins and Kozan presented an analytical model to quantify the expected delay 
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for individual passenger trains and signal blocks in a railway network [86]. However, this model 

does not considers the knock-on delays caused by route conflicts and rerouting operations.     

Later, Yuan proposed a probability model that provided a realistic estimate of knock-on delays 

[87]; this model can reflect the dependencies of dwell times and speed fluctuation. In 2008, 

D’Ariano evaluated delay propagation by decomposing a long time horizon into tractable 

intervals, and train conflicts are detected and solved in each time interval using advanced 

Conflict Detection and Resolution with Fixed Routes (CDRFR) algorithms [54]. 

3.2.2 Simulation-based models 

Simulation techniques are widely used to study the primary delays and knock-on delays in a 

complex railway network. The interaction of these delays and the influence of different factors 

can be directly captured in the simulation models. 

Petersen presented the first simulation model for rail lines in 1982. In his model, rail lines are 

divided into track segments between adjacent switches and algebraic relationships are 

developed to represent the model logic [88]. Then Dessouky used a simulation methodology to 

consider both single and double lines, making the approach insensitive to the size of the rail 

network [89]. This model considers headways, speed limits and actual train lengths in order to 

determine the track configuration that minimizes congestion delay to trains. In 1999, Krueger 

developed a simulation tool to support a regression model to allow the study of the relationship 

between train delay and traffic volume with network parameters, traffic parameters and 

operating parameters [90]. 

The analytical models usually make a lot of assumptions in order to simplify the complexity of 

the problem within solvable bounds. Thereby they are different to real-life operations to some 
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extent. The simulation models, on the other hand, can describe the relationships between delays 

more accurately by capturing the interactions between the services and impacts from the 

operating parameters. 

3.3 Delay propagation visualisation  

In this section, a visualisation method with simulation techniques is adopted to describe and 

estimate the delay propagation. This work has been presented in the “ON-TIME” project 

deliverables [74], [82], [91]. 

3.3.1 Introduction to the visualisation method 

The visualisation approach adopted here shows the lateness and change in lateness of all trains 

in the system, as well as the delays to individual trains, all with respect to time. These values 

are calculated as described in the following paragraphs. 

Simulations which have been run with the HERMES simulator (see Appendix A) over a defined 

time window, T, are analysed as part of a post processing task. All trains operating within the 

system during T are considered. The times at which all trains under consideration pass each 

designated timing point are recorded; the time at which train 𝑖 passes its 𝑗th timing point is 

defined as 𝑡𝑖𝑗. For all train journeys the lateness of train 𝑖 at its 𝑗th timing point, 𝐿𝑖𝑗 is calculated 

as the delay in seconds between the actual time and the scheduled time, 𝑡𝑖𝑗
𝑠 : 

𝐿𝑖𝑗  = max (0, 𝑡𝑖𝑗  − 𝑡𝑖𝑗
𝑠 ) 

Equation 3-1 

The Equation 3-1 results in a discrete set of observations of the system. A continuous function 

for each train service is defined here by using the most recent delay recorded along the journey 
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to represent the current delay. At the time 𝑡, if the service 𝑖 has passed the 𝑘th observation point 

but hasn’t reached the 𝑘 + 1th observation point, the current delay for this service, 𝐿𝑖
𝑐(𝑡), is the 

most recent delay value recorded, which is equal to 𝐿𝑖𝑘. 

𝐿𝑖
𝑐(𝑡) = 𝐿𝑖𝑘,    𝑤ℎ𝑒𝑛 𝑡𝑖𝑘 ≤ 𝑡 < 𝑡𝑖,𝑘+1 

Equation 3-2 

The scheduled time 𝑡𝑖𝑗
𝑠  is calculated from an initial as-timetabled run of the simulator with no 

delays. The actual times at timing points are taken from the simulated delayed scenario under 

consideration. This is an event driven approach because the lateness is updated whenever a new 

timing point is passed. It is generally appropriate to plot both the lateness of individual trains 

(those that are delayed) against time, and the sum of lateness of all 𝑛 trains within the system, 

𝐿(𝑡). 

𝐿(𝑡)  =  ∑ 𝐿𝑖
𝑐(𝑡)

𝑛

𝑖=1

 

Equation 3-3 

An increase or decrease in the delay for a train is considered from one timing point to the next, 

and then the change in lateness is introduced between timing points for each train journey:  

𝐶𝑖𝑗  =  𝐿𝑖𝑗  – 𝐿𝑖𝑗−1 

Equation 3-4 

𝐶𝑖𝑗: The change in lateness of train 𝑖 at its 𝑗th timing point; 

𝐿𝑖𝑗: The lateness of train 𝑖 at its 𝑗th timing point; 

𝐿𝑖𝑗−1: The lateness of train 𝑖 at its 𝑗 − 1th timing point. 
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A continuous function is defined by using the most recent value recorded along the journey. At 

the time 𝑡, the 𝑘th observation point is passed until the 𝑘 + 1th observation point is reached, 

the current change in lateness, 𝐶𝑖
𝑐(𝑡), is the most recent value recorded: 

𝐶𝑖
𝑐(𝑡) = 𝐶𝑖𝑘,    𝑤ℎ𝑒𝑛 𝑡𝑖𝑘 ≤ 𝑡 < 𝑡𝑖,𝑘+1 

Equation 3-5 

We then consider the change in lateness in the system as a measure of whether the delay to the 

system is increasing or decreasing, C(t). 

𝐶(𝑡)  =  ∑ 𝐶𝑖
𝑐(𝑡)

𝑛

𝑖=1

 

Equation 3-6 

Examples of these measures are given in Figure 3-3. The purple line illustrates the total lateness 

within the network, calculated as the sum of the delays from individual trains. The lateness of 

individual trains is also given. The red line shows the change of the total lateness. From the 

visualisation, the propagation of the delays and the rate of change can be seen, as well as the 

contribution of individual trains to the overall system lateness.  

3.3.2 Key performance indicator [91] 

There are three significant characteristics that can be used to evaluate the performance and 

quantify the delays that occurred during a delayed scenario derived from this visualisation 

method. They are described as the key performance indicators (KPIs) and can be derived from 

the visualisation graph described above (see Figure 3-3 (a)). They are maximum lateness, time 

to recover and integral of delay.  
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Maximum lateness indicates the maximum total lateness of all journeys running in the network 

within the time window 𝑇; it indicates the worst delay situation. Time to recover measures 

how quickly the system returns back to a situation with no delays. The third main measure, 

Integral of delay, measures the area under the lateness curve. Combined with the other two 

KPIs, this measure gives a quantitative summary of the delayed situation.  

It can also be given as a proportion of the maximum possible integral of delay as: Integral of 

Delay proportion = Integral of delay/ (Maximum lateness* Time to recover). This value gives 

an indication of how severe the delays were relative to the maximum lateness throughout the 

period of delay. 

3.3.3 Visualisation examples  

Figure 3-3 shows the response of a simple example system to three different input delays using 

the visualisation method described above. This example is taken from trains running over a 

short section of the East Coast Mainline. Further details of this part of the network are given in 

Section 3.4.2 where a case study is analysed in detail; here the objective is to demonstrate 

examples of the three levels of resilience defined previously.  

In the first case, train TS172 is delayed at Welwyn Garden City station for 180 seconds due to 

an extended dwell time, in the second a 360 second delay is caused by a signal failure, and in 

the final graph an additive delay occurs along the journey of one train due to a partial engine 

breakdown and consequent loss of power. From the visualisation, the propagation of delays and 

the rate of change can be observed. In this simulation case an on-time state is said to be when 

there are ≤0 seconds of lateness. 
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In Figure 3-3 (a) the 180 second delay is recovered and absorbed quickly by the system, causing 

only a minimal delay to one following train. No active recovery strategy is applied and the 

system recovers from the disruption by itself. According to the resilience classification 

proposed in the previous section, this is an example of a stable response to the initial extended 

dwell time delay.  

In Figure 3-3 (b), an initial 360 second delay takes approximately 1 hour for the system to 

recover. The initially delayed train TS180 causes knock-on delays to three following trains, 

hence enlarging the total delays in the system. To improve the resilience of the system and 

allow the system to recover to an on-time state more quickly, a reordering strategy could be 

applied to allow this train to pass the junction before the initially delayed train, thus reducing 

the total delays in the system using a real-time rescheduling method. Such a system response 

to the input delay could be considered to be robust.  

Lastly, in Figure 3-3 (c), an engine breakdown on train TS172 causes cumulative knock-on 

delays. The delays severely influence the following trains on the same line and the system 

cannot recover from the situation without the application of operational train management, in 

this case the cancellation of service TS172, which would allow the system to recover. The 

requirement for a train cancellation places this system response to the underpowered train in 

the recoverable category of system resilience. 
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(a) 

 

(b) 
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 (c)  

Figure 3-3: Visualisation of system resilience for the scenarios. 

3.4 Case study of delay propagation with junction controls 

3.4.1 Introduction to algorithms at junctions 

A railway junction is a place where two or more rail routes meet or diverge, facilitated by points 

and signals. When delays occur in a rail network, conflicts at junctions are common, especially 

at complex junctions and / or on busy networks, leading to a propagation of the initial delay. In 

a delayed situation, the use of an appropriate junction control method (JCM) can help to assign 

the best possible train sequence through the junction and thus improve the quality of service of 

the railway. It should be noted that any change of sequence at a given junction will have 

consequences for other services since trains are moving out of their timetabled order. Thus, the 

selection of the best JCM in a delayed scenario is a complex task. A simple case study is selected 

for investigation here to demonstrate the usefulness of the categorisation of resilience and the 

new visualisation method in analysing train control approaches. 
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Four fundamentally different JCMs are chosen for study they are: First Come First Served 

(FCFS), Timetable Order Enforced (TTE), Fast Line First (FLF) and Busy Line First (BLF). In 

FCFS the first train to arrive at the junction is allowed to pass first, TTE forces all trains to pass 

the junction strictly in the timetabled order. In the case of a conflict, FLF allows the faster train 

(running a faster schedule with fewer stops on the fast line) to pass the junction first, while BLF 

prioritises the train that has the greatest number of following trains within 10 km of the junction. 

A summary of this four JCMs is presented in Table 3-2. 

JCMs Description 

FCFS First Com First Served: Prioritise the first train arriving at the last signal before 

a junction.  

TTE Timetable Order Enforced: Strictly enforce the timetabled order for passing a 

junction. 

FLF Fast Line First: Prioritise a train travelling on the fast line over a train travelling 

on the slow line. 

BLF Busy Line First: Prioritise the busiest line, that is, the train from the line with 

the greatest number of following trains within a given distance. 

Table 3-2: JCMs used in this chapter 

3.4.2 Design of experiments 

Model description 

The experiment simulates trains running on a part of the East Coast Main Line (ECML), which 

is an electrified and high speed (up to 125 mph) railway linking London with Yorkshire, the 

North East and Scotland [5, 6]. The experiment is carried out with a simplified version of the 

timetable published by Network Rail [92]. The aim is to demonstrate the visualisation of the 

system resilience and show the different behaviours that can be observed when different 

junction control methods are applied. 
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The simulation is commenced from the first train of the day, but in order to observe the 

influence during peak time, the period 7:00 am to 9:30 am was chosen as the observation period. 

The map of the case study area presented in Figure 3-4 (a) is chosen from part of the ECML, 

bounded by Welwyn Garden City and Hertford (on the Hertford loop) in the north, and the 

terminus London stations at King’s Cross and Moorgate [93]. Due to the fact that some services 

will leave the section of the network being studied at the point between Finsbury Park station 

and London King’s Cross station, five directions must be defined within the network to reflect 

the different routes that different services may take, as shown in Figure 3-4 (b). Direction No. 

5, marked with a dotted line, indicates the direction where some trains leave and enter the 

system from the Midland Road Junction. 

 

Figure 3-4 (a): Map of the simulated area [93]; (b): Five defined directions. 

The experimental timetable used here runs ten services from Welwyn Garden City and Hertford 

to London and Moorgate. Table 3-3 shows the timetable and the service description of the 
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sample case study. The maximum speed allowed for the fast train is 100km/h and for the slow 

train it is 75km/h. Four out of the ten services begin on the fast line and the rest are on the slow 

line. Figure 3-5 shows which track each of the services take and the locations of junctions. 
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Service No. 1 2 3 4 5 6 7 Service No. 8 9 10 

Train ID TS152 TS157 TS158 TS172 TS173 TS190 TS203 Train ID TS156 TS175 TS202 

Type Fast Slow Fast Slow Fast Fast Slow Type Slow Slow Slow 

Passing 

junctions 

J3 J1, J3 J1, J3 J1, J2 J3 J1, J3 J1, J2 Passing 

junctions 

J2 J2 J2 

Start time 07:17:00 07:21:00 07:26:00 07:33:00 07:35:00 07:54:00 08:03:00 Start time 07:23:00 07:38:00 08:01:00 

 Hertford North 07:25:00 07:40:00 08:05:00 

Welwyn Garden 

City 

- 07:26:00 - 07:36:00 - - - Bayford 07:30:00 07:45:00 

 

- 

Hatfield - 07:30:15 - 07:40:30 - - 08:10:30 Cuffley 07:34:39 07:49:39 08:13:00 

Welham Green - - - 07:44:00 - - 08:14:00 Crews Hill 07:37:40 07:52:40 - 

Brookmans Park - - - 07:46:30 - - 08:16:30 Gordon Hill 07:41:01 07:56:01 08:18:00 

Potters Bar - 07:37:00 - 07:50:38 - - 08:20:38 Enfield Chase 07:43:29 07:58:29 08:20:30 

Hadley Wood - - - 07:54:00 - - 08:24:02 Grange Park 07:45:29 08:00:29 - 

New Barnet - - - 07:57:09 - - 08:27:11 Winchmore 

Hill 

07:47:29 08:02:29 08:23:05 

Oakleigh Park - - - 07:59:38 - - 08:29:40 Palmers Green 07:49:59 08:04:59 08:26:00 

New Southgate - - - 08:02:46 - - 08:32:48 Bowes Park 07:52:29 08:07:29 - 

Alexandra Palace - 07:45:00 - 08:05:30 - - 08:35:31  07:55:29 08:10:29 08:30:30 

Hornsey - - - 08:07:38 - - 08:37:39 - - 08:32:42 

Harringay - - - 08:09:33 - - 08:39:35 - - 08:34:33 

Finsbury Park - 07:49:30 07:39:21 08:13:11 07:52:09 08:09:21 08:43:16 08:01:59 08:16:59 08:38:38 

Drayton Park    08:16:06   08:46:11 08:04:58 08:19:58 08:41:37 
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Highbury & 

Islington 

- - - - - 

Essex Road 08:19:30 - 08:08:29 08:23:29 08:44:31 

Old Street 08:23:12 08:53:14 08:12:11 08:27:11 08:48:13 

Moorgate 08:27:01 08:57:03 08:17:00 08:32:00 08:52:02 

London King’s 

cross 

07:36:40 07:58:00         

Table 3-3: The timetable and service description of the sample case study
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Figure 3-5: Infrastructure with junction specification 
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Scenario design 

In the delayed scenario a single train TS158 heading for London King’s Cross is delayed for 10 

minutes from 07:27 to 07:37 at Welwyn Garden City because of signal failure. This size of 

delay is selected to make trains conflict at the junctions and allow the effect of different JCMs 

to be visualised.  Figure 3-6 shows the effect of the disrupted scenario and the propagation of 

delays with four different JCMs: TTE, FCFS, FLF and BLF in place.  

3.4.3 Analysis of Results 

As can be seen from all the Figure 3-6(a) – (d), the 10 minute delay experience by the fast train 

TS158 is recovered slightly before it arrives at the junction area, and it therefore delays the 

subsequent service TS157.        

Figure 3-6 (a) and 3-7 (c), which are using TTE and FLF junction control methods respectively, 

show that the trains follow very similar trajectories at the beginning of the delay period. 

However, towards the end of the observation period the FLF strategy recovers more quickly as 

TS173, the faster service, is allowed to pass junction 2 before TS157.  

Figure 3-6 (b) shows that the FCFS strategy provides a good control strategy. A significant 

difference with this strategy is that only two trains are delayed in the network when applying a 

FCFS strategy, rather than three trains delayed using the other approaches. This results in the 

maximum total delay being least for the FCFS case. 

Figure 3-6 (d) representing the BLF junction control strategy provides the worst performance, 

with the recovery time, maximum lateness and integral delay all larger than in the other cases. 

In this case the BLF strategy causes TS152 to be significantly delayed as it is given a very low 
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priority in passing junction 3 due to the other lines being busier at the time it arrives at this 

junction.  

The example shows that the resilience of the system is affected by changing the JCMs and 

demonstrates the usefulness of the visualisation approach to assess the performance of each 

strategy. 

 

Figure 3-6 (a): The propagation of delays with TTE; (b): The propagation of delays with FCFS; 

 (c): The propagation of delays with FLF; (d): The propagation of delays with BLF. 

3.4.4 Summary 

From each of the graphs in Figure 3-6, the three KPIs - maximum lateness, time to recover and 

integral of delay - are quantified and used to construct a high level representation of the 

performance of each strategy in terms of the KPIs; these are shown in Figure 3-7. Table 

3-4summarises these performance measures which include the three KPIs and the proportion 
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of integral of delay. It gives an estimation of the shape of the delay graph, and allows the three 

KPIs to summarise the characteristics of the visualisation.  

In order to more easily compare the integral of delay values, the integral of delay normalisation 

is also given.  

 

Figure 3-7: Triangle representations with three KPIs for the four JCMs studied in the case study 

JCM Maximum 

Lateness (s) 

Time to recover 

(s) 

Integral Delay ( 𝒔𝟐 ) 

(normalised value (%)) 

Proportion of 

Integral Delay (%) 

TTE 1121 1390 987066 (76.73) 63.4 

FCFS 834 1203 822198 (63.92) 82.0 

FLF 1121 1477 999273 (77.68) 60.4 

BLF 1964 1342 1286344 (100) 48.8 

Table 3-4: Three KPIs and ID proportion of four JCMs 

The triangle representation allows a direct comparison of the KPIs for each of the junction 

control methods. There is a significant difference in performance between all the methods, 

except FLF and TTE which are very similar to one another in terms of the KPIs. The smallest 

triangle representation, shown in green is produced by the FCFS strategy, indicating the best 
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recovery from the initial delay. The largest triangle representation is produced by BLF, which 

indicates the worst service with the most significant effect to the train services, although the 

time to recover is comparable with TTE and FLF. The KPI triangle representation shows a 

summary of the propagation of delays and affords an easy comparison of the performance of 

the junction control recovery strategies in response to the input delay. 

3.5 Conclusion  

In this chapter, the resilience of a railway system can be defined according to the response of a 

system to a delay, and it is allocated one of three levels: stable, robust and recoverable. Stability 

indicates that the system can absorb delays automatically without active train rescheduling; 

robustness shows that active train rescheduling or reordering strategies must be implemented 

to prevent the propagation of minor disruptions and aid the recovery of the system; and 

recoverability represents the situation where the system needs active operational management 

intervention, such as train re-allocation, to handle some major disruption. Considering the use 

of rescheduling approaches to solve delay recovery problems, the aim of this research is to 

achieve robustness of the system. 

In the recent decades, analytical methods and simulation methods are used to model the 

propagation of train delays. Those models reflect the impact of various factors and give a direct 

prediction of knock-on delays. An overview of the existing models is given and a visualisation 

and quantification method is introduced with simulation techniques to monitor the delay 

propagation in the rail network. Examples of the three levels of resilience are shown in the 

graphs created using the visualisation method.  

Using the Graffica HERMES simulator, a delayed scenario was simulated and compared to an 

as-timetabled run. Then the propagation of delays with respect to time was produced by 
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MATLAB to visualise the resilience of the system. Lateness and change in lateness of all trains 

in the system with respect to time, as well as the individual lateness of delayed trains, are shown 

in the visualisation. Three Key Performance Indicators (KPIs) are introduced for the 

measurement of the propagation of delays and resilience of the system, which are maximum 

lateness, time to recover, and integral of delay. 

This visualisation method can also be used to analyse and evaluate the different control 

strategies. A comparison of the response of the different JCMs to a delayed scenario is given 

as a demonstration of the visualisation method introduced here. Using this approach, 

information can be derived about the propagation of delays and overall resilience of the system 

in response to the different strategies. The comparison shows the different effects of junction 

controls on the resilience of the system. Furthermore, it shows that we can change the resilience 

of the system by changing the JCM.  
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CHAPTER 4  

IMPLEMENTATION OF SIMULATION MODEL 

 

4.1 Introduction to the simulators 

4.1.1 BRaVE [94] 

The BRaVE simulator is a railway network simulator written in Java at the University of 

Birmingham. BRaVE is an acronym for Birmingham Railway Virtual Environment. The 

simulator forms the core of the virtual railway laboratory at the Birmingham Centre for Railway 

Research and Education. Figure 4-1 shows the user interface of the simulator, which includes 

two main panels: the graphical panel and the information panel. The top side of the display in 

Figure 4-1 is the graphical panel, which shows a graphical view of the simulation model 

including infrastructure, signals and the trains running on the network. The graphical panel is 

updated when the simulation is running. The information panel is shown on the lower side of 

the display. The panel displays database tables that detail the current state of all of the entities 

in the simulation database. A tabbed window is contained in the panel, with tabs across the top 

allowing the different tables of data to be displayed. The information includes train types, 

vehicles, infrastructure, routes, interlocking, junctions, maps, traffic, timetable and current train 

runs. 

BRaVE is highly flexible, allowing the modification of many parameters. For example, 

timetable information, trains and routing information are all editable in the simulation. 

Simulations may be run as per a timetable, or with a delay that can be inserted artificially. The 
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main outputs of BRaVE are described in the following section; based on the outputs, a direct 

view of train movements and service performance can be shown to users. 

 

Figure 4-1: Platform of simulator (example) 

4.1.2 Single Train Simulator (STS) 

The STS, developed at the University of Birmingham, is a single train simulator which is used 

for the study of the movement of a single train along the railway. In the current analysis, whether 

under automatic train operation (ATO) or driver control, four possible modes of single-train 

movement are assumed: powering, cruising, coasting and braking [95]. A typical journey 

between two stopping points can be defined by a sequence of the four modes. The coasting 
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mode is usually used for energy saving, which is not considered in this research. To simplify 

the complexity of the problem, the trains are set to run as fast as possible, at maximum 

acceleration, maximum cruising speed within the speed limit and service braking. 

The simulator can output the train trajectory, running diagram and energy consumption when 

some static parameters and dynamic parameters are given as the inputs. The static parameters, 

which are not changed during the modelling process, include the information of the 

infrastructure (e.g. line length, velocity limit, gradient), parameters of the train (e.g. train top 

speed and maximum acceleration), and station characteristics (e.g. station position, dwell time). 

The dynamic parameters are the acceleration and deceleration of the trains and the location of 

coasting points along the journey. By changing the inputs (e.g. infrastructure, timetable), an 

estimated train profile is given for the running estimation. 

An example is given to compare the speed profiles (Figure 4-2) and the running diagrams 

(Figure 4-3) of the same train running in two different simulators based on the same timetable. 

Train S8 is selected from the case study shown later in Chapter 5. In Figure 4-2, the red line 

indicates the speed limit of the line, the black line indicates the speed profile obtained by 

BRaVE, and the blue line represents the speed profile obtained by the STS.  

In Figure 4-3, the black line indicates the running distance according to the time obtained by 

BRaVE, and the blue line represents the running diagram obtained from the STS. It can be seen 

that the running diagrams obtained from the two simulators are very similar.  
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Figure 4-2: Speed profile of the train S8 in BRaVE and STS 

 

Figure 4-3: Running diagram of the train S8 in BRaVE and STS 

Table 4-1 summaries the differences, advantages and disadvantages of these two simulators.  
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 BRaVE STS 

Difference   Reference step 

BRaVE uses time (seconds) as its 

reference step;  

 

 Signalling 

BRaVE has signal timing 

points on the route setting, 

points switching and signal 

switching. 

 

 Vehicle model 

BRaVE models vehicles’ 

performance with their given 

traction system characteristics. 

 Reference step 

The STS uses length (metres) as its 

reference step; 

 

 Signalling 

The STS does not use signalling. 

Instead of signalling, the stopping 

points along the journey are known 

by the trains. 

 

 Vehicle model 

The STS models vehicles’ 

performance with their given 

configuration parameters. 

Advantages   The simulation process of BRaVE 

is more close to reality, and the 

simulation results are more 

reliable. 

 The simulator can output various 

train running information to give a 

comprehensive view of train 

movement. 

 The simulation process of the STS 

is simpler and quicker. The results 

are less accurate but still reliable. 

 

 The vehicles are easy to construct.  

 

Disadvantages Time consuming when simulating the 

railway network with a lot of trains 

running at the same time. 

It generates a knock-on effect of many 

small timing differences; therefore, 

later trains have a greater difference. 

Table 4-1: Comparison of BRAVE and STS 

In summary, BRaVE is chosen as the simulation platform in this study for implementation of 

rescheduling approaches, due to its accurate and reliable simulation process and its various 

outputs. The STS is chosen for the train running estimation by the rescheduling algorithms 

because of its short calculation time; the results can be very close to the results obtained from 

BRaVE (the difference is less than 60 seconds) when the vehicles are well defined.  
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4.2 Implementation of algorithms  

A Java interface in BRaVE has been provided to enable third party developers to use the real 

time information captured in the entity data model to drive new algorithms and to generate 

requests which can be fed back into the simulator.  

The developer has provided a class document which implements an interface that is installed as 

a plug-in object to perform the necessary initialisation of the plug-in and to carry out regular 

updates as required by the implementation. The plug-in architecture is illustrated in Figure 4-4 

below. BRaVE provides real-time data to the traffic manager and also receives traffic 

management requests from the traffic manager. The traffic manager (TM) creates a plug-in 

interface which is accessible to the entity data models, including train detection (TD) section, 

route, signal, point, service and train path. Algorithms provided by third party developers can 

be used as plug-in objects in the junction area, which is defined in the network model. 

BRAVE Traffic Manager TM Plugin Impl

TM context

TDsection ServicePoint TrainpathSignalRoute

Algorithm 

Junction area

Accesses

CreatesReal-time data

Traffic management requests

<<abstraction>>

 

Figure 4-4: Traffic Management Plug-in Architecture 

The junction panel (see Figure 4-5) is used to specify areas in the simulation model where an 

external signalling plug-in will control the signals in the network, via the API described above. 
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Junction definitions include junction name, junction signals, junction edge paths, junction 

boundary paths and routing plug-in. 

 

Figure 4-5: Junction panel (example) 

4.3 Train running estimation 

All rescheduling methods consider the sequence of trains to pass into the junction area, so it is 

important to keep the estimated running time as close as possible to reality. In this thesis, 

BRaVE is used to represent the real world, and the STS is used for the train running estimation 

by the algorithms. An estimation process is constructed to manage the train running estimation 

by using the STS, which is essential for the rescheduling approaches. Unlike BRaVE, the STS 

only analyses one train at one time. When given the information of junctions, timetables and 

the sequences of passing trains, it can calculate the arrival time of a particular train at a 

particular station. The estimation process is described in the following steps: 

Step 0: Define the signals in the network: 𝑛 𝜖 𝑁 = {𝑛1, 𝑛2, … , 𝑛𝑛}. 

             Define the block sections in the network: 𝑏 𝜖 𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑛}. 

             Define the junctions in the network: 𝑗 𝜖 𝐽 = {𝑗1, 𝑗2, … , 𝑗𝑛}. 

             Set the sequence of passing trains: 𝑆 =  [𝑠1, 𝑠2, … , 𝑠𝑛].            

             Set the block clearance time , 𝑇𝐵 = { 𝑡𝑏| 𝑡𝑏 = 0;   𝑏 = 𝑏1, 𝑏2, … , 𝑏𝑛}, and 

junction route set time, 𝑇𝐽 = {𝑡𝑗|𝑡𝑗 = 0;   𝑗 = 𝑗1, 𝑗2, … , 𝑗𝑛}.             

The simulation results obtained from the STS are related to the sequences of passing trains. 

When the sequence changes, the simulation result changes as well. In this step, all signals, block 
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sections and junctions in the network are defined, and a sequence of trains passing the junction 

area is also determined. For each block section, the block clearance time indicates the time 

when the block section is available for trains to enter, and the junction route set time indicates 

the time when the junction is available for a junction route to be set. 𝑡𝑏 denotes the clearance 

time for the block section 𝑏, and 𝑡𝑗 denotes the junction route set time for the junction 𝑗. All 

block clearance times and junction route set times are set to zero at the beginning. 

Step 1: Run the first train of the sequence 𝑠 = 𝑠1 in STS; 

Since no train is in front of the first train of the sequence, this train is simulated in the STS with 

all scheduled stops known (based on a nominal timetable).  

Step 2: Record the block clearance time, 𝑇𝐵
𝑠 = {𝑡𝑏

𝑠  |𝑏 = 𝑏1, 𝑏2, … , 𝑏𝑛, 𝑠 ∈ 𝑆} , and 

junction route set time , 𝑇𝐽
𝑠 = {𝑡𝑗

𝑠 |𝑗 = 𝑗1, 𝑗2, … , 𝑗𝑛, 𝑠 ∈ 𝑆}  when train s finishes its 

journey.  

When a train passes a series of block sections, according to the block and interlocking 

principles, the blocking time for a running train in the simple two-aspect signalling system 

consists of the following parts, see Figure 4-6 [96]. 

1. Approach time,  

2. Running time in the block,  

3. Clearing time (running time over the train length to clear the block), and a  

4. Release time to release the route in the block. 
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Block clearance time, 𝑡𝑏
𝑠 is regarded as the clear time of block section b when train s leaves this 

block section. For example, in Figure 4-6, 𝑡𝑏1

𝑠1 means the block clearance time of block section 

 𝑏1when train 𝑠1 passes. 

 

Figure 4-6: Railway block occupation [96] 

If a block section has not been occupied by train 𝑠 along its journey, the block clearance time 

for this block section keeps the previous value when the last train passed through. Thus, the 

block clearance time for the train 𝑠 can be calculated by the equations below: 

When 𝑠 = 𝑠1, 

𝑇𝐵
𝑠 = {𝑡𝑏

𝑠1  | 𝑡𝑏
𝑠1 = {

𝑡𝑏
𝑠1 , 𝑠1 passes the block section 𝑏

0, otherwise
; 𝑏 = 𝑏1, 𝑏2, … , 𝑏𝑛, 𝑠1 ∈ 𝑆}    

Equation 4-1 

When 𝑠 = 𝑠𝑛 𝜖 𝑆, 𝑛 > 1, 
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𝑇𝐵
𝑠 = {𝑡𝑏

𝑠𝑛  | 𝑡𝑏
𝑠𝑛 = {

𝑡𝑏
𝑠𝑛 , 𝑠𝑛 passes the block section 𝑏

𝑡𝑏
𝑠𝑛−1 , otherwise

; 𝑏 = 𝑏1, 𝑏2, … , 𝑏𝑛, 𝑠𝑛 ∈ 𝑆}  

Equation 4-2 

The same for the junction route set time, if a train passes a junction area, the route set time for 

this junction is recorded, if not, the junction route set time for this junction keeps the previous 

value. Thus, the junction route set time of the train s can be calculated by the equations below: 

When 𝑠 = 𝑠1, 

𝑇𝐽
𝑠 = {𝑡𝑗

𝑠1  | 𝑡𝑗
𝑠1 = {

𝑡𝑗
𝑠1 , 𝑠1 passes the junction 𝑗

0, otherwise
; 𝑗 = 𝑗1, 𝑗2, … , 𝑗𝑛, 𝑠1 ∈ 𝑆},  

Equation 4-3 

When 𝑠 = 𝑠𝑛 𝜖 𝑆, 𝑛 > 1, 

𝑇𝐽
𝑠 = {𝑡𝑗

𝑠𝑛  | 𝑡𝑗
𝑠𝑛 = {

𝑡𝑗
𝑠𝑛 , 𝑠𝑛 passes the junction 𝑗

𝑡𝑗
𝑠𝑛−1 , otherwise

; 𝑗 = 𝑗1, 𝑗2, … , 𝑗𝑛, 𝑠𝑛 ∈ 𝑆},  

Equation 4-4 

 

Step 4: Calculate signal clearance time:  𝑇𝑁
𝑠 = {𝑡𝑛

𝑠  |𝑛 = 𝑛1, 𝑛2, … , 𝑛𝑛, 𝑠 ∈ 𝑆} , when 

train s finishes its journey. 

Each block section has at least one approaching signal, for example, in Figure 4-6, 𝑛1 is the 

approaching signal of block section 𝑏1. On the other hand, one signal can lead at least one block 

section. If signal 𝑛 is the approaching signal of block section 𝑏, we claim that block section 𝑏 

is relevant to signal  𝑛 . Similarly, if signal 𝑛  is the approaching signal of junction  𝑗 , this 
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junction 𝑗 is defined to be relevant to signal 𝑛. The signal clearance time 𝑇𝑁
𝑠 is presented by the 

equation below: 

When 𝑠 𝜖 𝑆, 

𝑇𝑁
𝑠 = {𝑡𝑛

𝑠  | 𝑡𝑛
𝑠 = 𝑀𝑎𝑥(𝑡𝑏

𝑠 , 𝑡𝑗
𝑠); ∀𝑏 is relevant to 𝑛 ;  ∀𝑗 is relevant to 𝑛;  𝑛

=  𝑛1, 𝑛2, … , 𝑛𝑛, 𝑠 ∈ 𝑆}, 

 Equation 4-5 

 Step 5: Run the next train in sequence S in the STS with the signal clearance times of 

the previous train applied. 

The signal clearance times indicate the earliest release time for a signal, which means signal 𝑛 

is deemed to be closed (red) until the time reaches 𝑡𝑛
𝑠 , which can lead to some deceleration and 

stops which are not scheduled in the timetable to the next train.  

Step 6: Repeat Step 2 to Step 5 until all trains have reached their destination.  

The arrival times of all trains in this sequence at their destinations are obtained, and these values 

can be used to evaluate the sequence with a well-defined cost function. 

4.4  Rescheduling process of the simulation 

In reality, railway network rescheduling is a complex, multi-stage process, as described by 

Laube and Schaffer [97]. The details of each conceptual level are illustrated in Figure 4-7 [98]. 

The process begins from collecting network condition information (e.g. infrastructure status, 

train positions and states), and compares this information to pre-defined thresholds (i.e. 

deviation, disturbance, service change) to determine if a rescheduling process is needed. Once 

a rescheduling process is triggered (i.e. the rescheduling plans are usually periodically 
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generated, e.g. every 3 minutes), the operator must prepare a new scheduled plan. After an 

appropriate prediction, one or more rescheduling algorithms must be run to actually develop 

the new production plan. The choice of method depends on the type of problem, data 

availability and urgency of the need for a new production plan. These refresh schedules are then 

transmitted to dispatchers to execute. 

 

Figure 4-7: Railway network rescheduling process in reality [98] 

In simulation models, the network condition information is known by the simulator, and all 

disturbances or failures are predefined. In this study, only reordering at the junctions is 

considered for the network rescheduling. The rescheduling process of the simulation model is 

shown in Figure 4-8. Firstly, run the network in BRaVE simulator, and observe the network 

conditions. Once the current conditions have met some pre-defined thresholds, a rescheduling 

command is sent to the BRaVE. Once this rescheduling command is received, BRaVE 

simulator is paused and all network information is transmitted to the STS. Combining the train 
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running estimations provided by the STS and an appropriate algorithm, an optimised reordering 

plan is generated (according to a pre-defined cost function), and this plan is transmitted back to 

the simulator and the routing sequence as junctions is updated. The simulation resumes and 

runs the timetable with new junction routing sequence. 

Run the network in BRaVE

Is a rescheduling command 

received?

No

Yes

Pause BRaVE

Generate a ‘best’ reordering 

plan

Restart BRaVE

Transmit network information to 

the STS

Train running estimation (using 

the STS)
 Algorithms

Send a rescheduling 

command to BRaVE

UPDATE the routing sequence 

at junctions

 

Figure 4-8: Railway network rescheduling process in simulation 

4.5 Conclusion  

The simulation platform used in this thesis is the BRaVE simulator, which is developed by the 

University of Birmingham. The capability of BRaVE is briefly described, which are compatible 

with the visualisation tool described in Chapter 3. To speed up the rescheduling algorithms, the 
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STS developed by the University of Birmingham is used for the estimation of train movements 

for some advanced algorithms.  

The algorithm implementation progress is explained with a plug-in architecture and the train 

running estimation process is described step by step. The values of predicted arrival times at 

the destinations can be used to evaluate the sequence with an appropriate cost function. 

The rescheduling processes in reality and in the simulation model are both described. The 

prediction part of the rescheduling process in the simulation model is not needed, because when 

the simulator pauses, no time is added to the plan generation. However, considering the 

practical situation, the calculation time for the algorithm still needs to be considered when we 

evaluate the performance of the algorithm in simulation. 
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CHAPTER 5  

EXPERIMENTS ON SINGLE JUNCTION 

RESCHEDULING USING DIFFERENT ALGORITHMS 

 

In this chapter, a practical rescheduling problem in the single junction area is defined and a 

number of representative rescheduling approaches are applied to solve the problem. These 

approaches are investigated and tested on a series of delay scenarios in microscopic simulation, 

and rescheduling solutions are compared and analysed. The case study investigates how 

different levels of delays and numbers of constraints may affect the performance of algorithms 

for network-wide rescheduling in terms of quality of solution and computation time. A 

recommendation for using these approaches is given based on their performance on different 

delay scenarios, and can be used as references for rescheduling. 

5.1 Introduction to the approaches in the experiments 

As a verification and supplement to the benchmark problem presented in the thesis ‘Railway 

Traffic Rescheduling Approaches To Minimise Delays In Disturbed Conditions’ [72],  the 

experimental algorithms: Brute Force (BF), Dynamic Programming (DP), Decision Tree Based 

Elimination (DTBE), Tabu Search (TS), Local Search (LS), Simulated Annealing (SA), Genetic 

Algorithms (GA) and Ant Colony Optimisation Algorithm (ACO) were chosen. Additionally, 

Timetable-Order-Enforced (TOE), First-Come-First-Served (FCFS), and First-Leave-First-

Served (FLFS) have been added as they are commonly used strategies in practice. 
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A brief description of the different optimisation algorithms for train rescheduling which are 

used in this work is presented and classified here. To address the characteristics of each 

classification, a high level description is provided in Table 5-1. The introduction and application 

of each algorithm is discussed later in this chapter. 

Algorithms  Classification Description  

Timetable-Order-Enforce 

(TOE) 

Rule-based 

methods 

 

These methods are parametric methods, based on 

a set of predefined rules [99]. No complex 

calculation is needed. First-Come-First-Served 

(FCFS) 

First-Leave-First-Served 

(FLFS) 

Brute Force (BF) Exhaustive 

methods 

An entire search algorithm that systematically 

examines all possible solutions. Usually very 

simple to program and requiring no  specific 

knowledge [100]. 

Dynamic Programming (DP) Graphic 

methods 

A scientific search method of entire search 

methods by analysing the relations between 

numbers, by means of figures (e.g. the SST) 

[101]. 

Decision Tree Based 

Elimination (DTBE) 

Branch and cut 

methods 

A combination of a cutting plane with a branch-

and-bound algorithm. The cutting plane methods 

improve the convergence of the problem, and 

branch-and-bound algorithms proceed with an 

accurate divide and conquer activities[102]. 

Ant Colony 

Optimisation Algorithm (ACO) 

Evolutionary 

methods 

Evolutionary Algorithms (EA) are an optimisati

on method that use the computational models of 

natural evolution, such as mutation, crossover, 

natural selection and survival of the fittest [103]. 

Genetic Algorithms (GA) 

Simulated Annealing (SA) 

Tabu Search (TS) 

Local Search (LS) 

Table 5-1: Algorithm classification 

http://www.encyclopedia.com/doc/1O11-domainknowledge.html
http://www.encyclopedia.com/doc/1O11-domainknowledge.html
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5.2 Application of algorithms 

5.2.1 Rule-based methods 

Rule-based algorithms are usually adopted to solve very complex problems in a limited time. 

In this chapter, three rule-based algorithms, which are intuitively used on the operational 

railway by signallers, are used to solve the train rescheduling problem. They are: TOE, FCFS, 

and FLFS. 

Timetable-Order-Enforce (TOE) is used as a standard method for comparison of all the other 

algorithms. No effective reordering strategy is applied, and the original order will be enforced 

in all scenarios. The method is predicted to lead to an unsatisfactory result.  The application of 

TOE is done by recording the original passing order with no delay, and enforcing this order for 

any delayed situations. The pseudo-code of TOE is given in Figure 5-1. 

 

Figure 5-1: Pseudo-code of TOE 

First-Come-First-Served (FCFS) is where a simple ‘rule-of-thumb’ rule is commonly adopted 

in railway practice. It consists of giving precedence to the train arriving first at a junction area. 

FCFS computes the arrival time of the trains at each junction, sequencing the trains in the order 

of arrival [104]. The pseudo-code of FCFS is given in Figure 5-2. 
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Figure 5-2: Pseudo-code of FCFS 

First-Leave-First-Served (FLFS) is used to compare the first arriving trains from different lines 

which may have a conflict at the junction, and gives precedence to the train that is able to leave 

the block section first [104]. FLFS is a compromise between two commonly used dispatching 

rules of: (i) Fast train served first; and (ii) FCFS. The pseudo-code of FLFS is given in Figure 

5-3. 

 

Figure 5-3: Pseudo-code of FLFS 

The implementation of the rule-based method can be simply described as making a decision as 

to whether a train can pass or not when it requests passing authority at the junction area, based 

on whether the rule is satisfied. 
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5.2.2 Exhaustive method 

Brute Force (BF) is a straightforward approach to solving a problem. It suggests that all possible 

solutions in the problem’s domain are generated, selecting those of them which satisfy the 

specific constraints and finding the optimal one (the one which fits with an objective function) 

[105]. When BF is used to solve a train rescheduling problem with many possible sequences, it 

will take a long time to evaluate every possible solution with the objective function. An 

exhaustive search is impractical, although as BF enumerates all possible sequences, it always 

finds the best solution to the train rescheduling problem. The pseudo-code of BF is given in 

Figure 5-4. 

 

Figure 5-4: Pseudo-code of BF 

5.2.3 Graphic method 

Dynamic Programming (DP) is one of the most commonly used algorithms for solving the 

shortest path problem and it uses Stage-to-Stage Transformations (SST). It resolves a problem 

into a collection of sub-problems and tackles them one by one.  The smallest one is taken first, 

using the solutions to help figure out a bigger one, until all sub-problems are solved.  When 

solving a problem by dynamic programming, the most crucial question is what the sub-
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problems are.  In the problem considered here, the train rescheduling problem is modelled by a 

forward stage-to-stage model [106]. Dynamic Programming can also be considered as a kind 

of exhaustive algorithm; it will give an optimal solution if the original problem is completely 

decomposed. The pseudo-code of DP is given in Figure 5-5. 

 

Figure 5-5: Pseudo-code of DP 

5.2.4 Branch and cut method 

Decision Tree Based Elimination (DTBE) uses a greedy, top-down recursive partition approach 

to induce a decision tree from data. The approach is designed to reduce the search time by 

pruning the decision tree according to some heuristic rules [72]. The pseudo-code of DTBE is 

given in Figure 5-6. 
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Figure 5-6: Pseudo-code of DTBE 

5.2.5 Evolutionary algorithms and their stability 

Ant colony optimisation (ACO) emulates ants searching for food. In ACO algorithms (first 

proposed by Dorigo in his PhD thesis [107]), in virtual, ‘ants’ construct solutions by 

probabilistically making a set of local decisions to create paths on a graph. At each node of a 

path, the ant can extend the current partial solution by keeping crawling one possible branch 

[108]. Each node is assigned a ‘pheromone’ coefficient value according to the cost of a solution 

which need pass through the node. The pseudo-code of ACO is given in Figure 5-7. 
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Figure 5-7: Pseudo-code of ACO 

Genetic Algorithms (GA) were rapidly developed and widely used over the last 20 years. They 

are simulated on the principles of evolution via natural selection, which means a population of 

candidates is produced through competition, mating and variation activities [109]. A pre-

defined cost function is used to evaluate these individuals, and next generation success varies 

with the ‘cost’. The pseudo-code of GA is given in Figure 5-8. 
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Figure 5-8: Pseudo-code of GA 

Local Search (LS) is one of elementary evolutionary algorithms. The principle of local search 

is to keep a simple ‘current best’ state, and try to improve it by modifying repeatedly within a 

local area, until some termination conditions are reached, such as the maximum number of 

iterations or until no further improvement can be found over a specific number of iterations 

[110]. The pseudo-code of LS is given in Figure 5-9. 
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Figure 5-9: Pseudo-code of LS 

Tabu Search (TS), presented by Glover [111, 112], is considered to be a more efficient method 

than the local search as it uses memory structures: a ‘tabu’ list is built by recording a potential 

solution or swap, and it is forbidden to repeat this is in the next certain number of iterations. 

The pseudo-code of TS is given in Figure 5-10. 
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Figure 5-10: Pseudo-code of TS 

Simulated Annealing (SA) is a further development of a local search to solve the combinatory 

optimisation problem as well as Tabu search [113]. The algorithm is based on the annealing 

process used in statistical mechanics, where heating and controlled cooling is used. Begin with 

a ‘current best’ state, a new candidate solution is found based on a local search, and this 

candidate solution will be selected as it has been improved or satisfies a probabilistic function. 

The pseudo-code of SA is given in Figure 5-11. 
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Figure 5-11: Pseudo-code of SA 

The Evolutionary Algorithm (EA) is an optimisation method which uses the computational 

models of natural evolution, such as mutation, crossover, natural selection and survival of the 

fittest [103]. Thus, the three main components for an evolutionary process are: 

 Selection: Some environmental factors (i.e. the cost function used in the train 

rescheduling problem) must favour certain speciality over others.  

 Variation: Individuals arise some characteristics which are significantly different from 

their ancestors. 

 Heritability: Generally, children must inherit almost traits from their parents to insure 

that selected traits survive in the next generation. 

Based on the characteristics of the evolutionary algorithms, there is no guarantee that the 

problem will be optimised to one optimal solution every time. When an evolutionary algorithm 

is applied to a railway system, the stability of using the algorithm must be ensured by 

determining certain algorithm parameters.  
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The range ω and the coefficient of variation 𝐶𝑣 in statistics are used to determine the stability 

of using evolutionary algorithms. When they are within a reasonable range of values (ω is set 

to range from 0 to 1000 and 𝐶𝑣 is set to range from 0 to 0.001 in this work), the stability of the 

evolutionary algorithm is acceptable. 

Arithmetically, the range ω of a set of data is the difference between the largest and smallest 

values [114]: 

𝜔 = 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 

Equation 5-1 

the coefficient of variation 𝐶𝑣, known as unitised risk, is a normalised measure of dispersion of 

a probability distribution or frequency distribution. It is defined as the ratio of the standard 

deviation σ to the mean μ. It shows the extent of variability in relation to the mean of the 

population [115]: 

𝐶𝑣 =
𝜎

𝜇
 

Equation 5-2 

The evolutionary algorithms are tested with different parameters in place until stability is 

reached, then the parameter values will be kept when the evolutionary algorithms are addressed 

into different scenarios.  

 

http://en.wikipedia.org/wiki/Normalization_(statistics)
http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Frequency_distribution
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Mean
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5.3 Development of a benchmark scenario for algorithm assessment 

5.3.1 Cost function for the benchmark problem 

To find an optimal solution, a rescheduling ‘objective’ for a particular network should be 

defined in the railway traffic management system, for example, minimising overall delay, 

maximising the track usage, or minimising journey times. There are a variety of objectives of 

rescheduling that have been considered in previous research, for instance, to minimise train 

delay (sum, max, average, etc.) [8, 11, 29], to minimise passenger delay [10], to minimise 

energy consumption [9], etc. In Fan’s thesis [72], the rescheduling objective is measured by 

cost, whereby Network Rail pays a fine to train companies for network control delays, which 

is calculated from delay minutes. To make the algorithm more sensitive to different solutions, 

the total delay cost 𝐶𝑜𝑠𝑡(𝑆) for the sequence 𝑆 in this thesis is defined as the delay penalty 

calculated in seconds for all considered trains; the cost function is thus represented as: 

                                                    𝐶𝑜𝑠𝑡(𝑆) =  ∑ 𝐷𝑇𝑖(𝑆) × 𝐷𝑃𝑖
𝑛
𝑖=1     

Equation 5-3 

𝑛: The total number of trains; 

𝑆: The sequence of trains through the junction 

𝐷𝑇𝑖: Delay time for the 𝑖th train in seconds at its last stop in the control zone; 

𝐷𝑃𝑖: Delay Penalty per second of the 𝑖th train; 

5.3.2 Introduction to the infrastructure and rolling stocks 

A network layout (Figure 5-12 (a)) considered in the research is the same as the one in section 

3.4.2. A simplified track map with the experimental junction area marked is presented in Figure 

5-12 (b) with its boundary from Welwyn Garden City and Hertford in the north to the terminal 
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stations at London King’s Cross and Moorgate in the south. The layout includes two fast lines 

(red lines), two slow lines (black lines) and one parallel line (blue line), which is from Hertford 

to Moorgate. 

The junction area studied in this chapter is presented in detail in Figure 5-13. In this work 14 

trains coming from Welwyn Garden City and Hertford are considered over identical two time 

periods. In the first time period the trains are numbered 01 to 07 and then all services are 

repeated in the second time period (numbered 11 to 17). Inspired by the real timetable published 

by Network Rail, an idealised model with high frequency services (services repeat every 5 

minutes) is simulated in BRaVE. These services include two types of rolling stock: fast train 

(vehicle type Class 313) and slow train (vehicle type Class 59). 

                       

Figure 5-12(a): A track map of the network; (b): A simplified track map of the experimental network in 

this chapter 
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Junction region  

The experiment junction area consisting of two simple adjacent flat junctions is located near 

Finsbury Park Station, and is shown in Figure 5-13. The layout includes one fast line (red line 

F), one slow line (black line S) from Welwyn Garden City (W) to King’s Cross (K), and one 

parallel line (blue line P), which comes from Hertford (H) then goes towards Moorgate (M). 

The distance between Welwyn Garden City to the north edge of the junction area is about 

28.6km and the distance between Hertford to the north edge of the junction area is about 

27.5km; the distance between the junction edge to the junction signals is 870m and the distance 

between two flat junctions is 556m; the distance between the south edge of the junction area to 

King’s Cross is about 4km and the distance between the south edge of the junction area to 

Moorgate is about 5.8km [116]. These two flat junctions can be regarded as one junction control 

region, and all algorithms are investigated in this junction region. 

All services come from the same direction, and are numbered 01 to 07 in the first time period 

and then repeated (numbered 11 to 17) in the second time period. The letters (shown in brackets) 

are of the form [(Line, origin) - (Line, destination)], for example, “01[(F, W) - (F, K)]” means 

train 01 coming from Welwyn Garden City on the Fast line, terminating at King’s Cross on the 

Fast line. In Figure 5-13, services in the first period from 01 to 07 are shown to approach the 

junction area. 
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Figure 5-13: Junction area layout and approaching services of first period 

Original Timetable 

Regarded as the main rescheduling area, all services in this network are arranged to pass this 

area according to a conflict-free timetable.  The timetable in Table 5-2 shows all services in two 

time periods with scheduled start times, arrival times, and types of vehicles; to give significant 

observation outputs, the service frequency is compressed to be every 5 minutes.
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Period 1 

Train No. 01 02 03 04 05 06 07 

Vehicle Type Class 313 Class 313 Class 313 Class 59 loco Class 59 loco Class 313 Class 313 

Start  (F, W) (F, W) (F, W) (S, W) (S, W) (P, H) (P, H) 

Destination (F, K) (S, K) (P, M) (S, K) (P, M) (P, M) (P, M) 

Welwyn Garden City  07:00:00 07:02:00 07:04:00 07:00:00 07:02:00   

Hertfort      07:00:00 07:02:00 

King’s Cross 07:19:00 07:21:00  07:30:00    

Moorgate   07:29:00  07:38:00 07:25:00 07:27:00 

Period 2 

Train number 11 12 13 14 15 16 17 

Vehicle Type Class 313 Class 313 Class 313 Class 59 loco Class 59 loco Class 313 Class 313 

Start  (F, W) (F, W) (F, W) (S, W) (S, W) (P, H) (P, H) 

Destination (F, K) (S, K) (P, M) (S, K) (P, M) (P, M) (P, M) 

Welwyn Garden City  07:05:00 07:07:00 07:09:00 07:05:00 07:07:00   

Hertfort      07:05:00 07:07:00 

King’s Cross 07:24:00 07:26:00  07:35:00    

Moorgate   07:36:00  07:40:00 07:31:00 07:33:00 

Table 5-2: Original conflict-free timetable 
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Rolling stock 

The rolling stock configuration and train-specific delay penalties of different vehicle types are 

presented in Table 5-3; this data has been obtained from industry contacts. All this information 

will be used to simulate train running and calculate the cost function in the following sections. 

Type Class 313 Class 59 loco 

Maximum speed (𝑘𝑚/ℎ) 121 72 

Maximum braking rate (𝑚𝑠−2) 0.78 0.45 

Max acceleration (𝑚𝑠−2) 0.588 1 

Total mass (tonnes) 220  132 

Train length (m) 118 21.4 

Number of seats 231 188 

Penalty (£𝑠−1) 0.1 0.02 

Table 5-3: Vehicles parameters  

5.3.1 Benchmark scenario design  

With the aim of building an understanding of how to select a particular algorithm to address 

different delay situations, the author has designed a series of benchmark scenarios to test and 

evaluate the performance of different rescheduling approaches. In this section, a series of 

disturbed scenarios are designed and tested with different rescheduling algorithms in place.  

In a set of experiments, there are several variables which need be defined before starting. 

Generally, the numbers of initial delays, delay type, number of trains in total and delay size are 

used to design different scenarios. The diagram in Figure 5-14 gives the structure of the 

classification of different scenarios.  Train 01 is delayed to test the single train delay scenarios 

and trains 01 and 04 are delayed to test the multiple train delay scenario. Delay type includes 

initial delay and additive delay; for initial delay tests, a train is stopped at Alexandra Palace 

Station for a defined time period due to signal failure, meanwhile, the trains behind it cannot 



88 

proceed because the track is blocked by the delayed train. For additive delay tests, the maximum 

train speed is reduced due to simulate engine failure at the first station, and the delay increases 

along the whole journey until the train arrives at its destination. 

To observe the relationship between the computation time and the number of trains in the 

network, the total number of trains is considered when designing the benchmark scenarios. In 

the 7 train scenario, trains 01 to 07 (all trains in the first time period) are considered; in the 10 

train scenario, three more trains (trains 11, 14, 16) are added because they are the first three 

trains in the second time period; then in the 13 train scenario, three more trains (trains 12, 15, 

17) appear, as the time window which is considered is enlarged by 2 minutes; finally, the whole 

network with 14 approaching trains in two time periods is considered, and this is also used in 

the multiple trains delay experiments. 

For 7-train, 10-train and 13-train networks, only a 2-minute delay is inserted to test the 

performance of different algorithms. Scenarios 1.1 to 1.3 are designed with 2 minutes of 

departure delay occurring to a single train, train 01, with an increasing number of trains in the 

network. 

Scenario 1.1: Train 01 is delayed for 2 minutes with 7 trains in the network. 

Scenario 1.2: Train 01 is delayed for 2 minutes with 10 trains in the network. 

Scenario 1.3: Train 01 is delayed for 2 minutes with 13 trains in the network. 

For the single delay tests, 2, 5, 10, 15, 20 and 30-minute departure delays are given to train 01 

in scenarios 1.4.1 to 1.4.6 with the 14-train network model (see below). 

Scenario 1.4.1: Train 01 is delayed for 2 minutes at Alexandra Palace. 

Scenario 1.4.2: Train 01 is delayed for 5 minutes at Alexandra Palace. 
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Scenario 1.4.3: Train 01 is delayed for 10 minutes at Alexandra Palace.  

Scenario 1.4.4: Train 01 is delayed for 15 minutes at Alexandra Palace. 

Scenario 1.4.5: Train 01 is delayed for 20 minutes at Alexandra Palace. 

Scenario 1.4.6: Train 01 is delayed for 30 minutes at Alexandra Palace. 

To generate the delay scenarios 2.1 to 2.3 which have single additive delays, the following 

reductions in speed are given to train 01 in the additive delay region: 80% top speed remains; 

50% top speed remains; and 20% top speed remains.  

Scenario 2.1: Train 01 is limited to 80% full speed. 

Scenario 2.2: Train 01 is limited to 50% full speed. 

Scenario 2.3: Train 01 is limited to 20% full speed. 

Scenarios 3.1 to 3.5 refer to the different initial delay which affect different trains (trains 01 and 

04), as below:  

Scenario 3.1: Train 01 is delayed for 2 minutes and Train 04 is delayed for 2 minutes. 

Scenario 3.2: Train 01 is delayed for 2 minutes and Train 04 is delayed for 5 minutes. 

Scenario 3.3: Train 01 is delayed for 2 minutes and Train 04 is delayed for 10 minutes. 

Scenario 3.4: Train 01 is delayed for 5 minutes and Train 04 is delayed for 2 minutes. 

Scenario 3.5: Train 01 is delayed for 10 minutes and Train 04 is delayed for 2 minutes. 

Scenarios 4.1 to 4.3 test different additive delays which affect different trains (trains 01 and 

04): 

Scenario 4.1: Train 01 is limited to 50% full speed, and train 04 is limited to 50% full 

speed. 
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Scenario 4.2: Train 01 is limited to 80% full speed, and train 04 is limited to 50% full 

speed. 

Scenario 4.3: Train 01 is limited to 20% full speed, and train 04 is limited to 50% full 

speed. 

 

Figure 5-14: Benchmark scenarios classification diagram 

A set of scenarios are designed to represent different realistic delay situations; by implementing 

different algorithms at the junction region. The rescheduling results are compared and analysed 

in the next sections.  
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5.4 Analysis and comparison of solutions 

5.4.1 Key performance indicator  

A series of benchmarking experiments are carried out and the results are discussed in this 

section. By evaluating different rescheduling algorithms with different delayed scenarios, a 

summary of the characteristics of each algorithm is presented according to the experimental 

results. Some assumptions are proposed for an automatic rescheduling system. To assess the 

performance of each algorithm, two indicators are used to analyse the experiment results, which 

are: Total Delay Penalty (TDP), Computing Time (CT). The visualisation of the delay 

propagation is observed and compared with the best algorithm addressed. 

TDP 

As a key indicator of the quality of the solution, TDP will be used to evaluate different 

algorithms. Considering the variation of the evolutionary algorithms, an average value from 

100 results is taken as the main TDP for the evolutionary algorithms.   

The Optimisation Rate (OR) is used to represent how much the TDP is improved; the bigger 

the OR is, the better the improvement made by the algorithm j. The equation is shown as: 

𝑂𝑅(𝑗) =
𝑇𝐷𝑃0 − 𝑇𝐷𝑃𝑗

𝑇𝐷𝑃0
; 

Equation 5-4 

𝑂𝑅(𝑗) represents Optimisation Rate when method j is addressed; 

𝑇𝐷𝑃𝑗 indicates the Total Delay Penalty of the system when method j is addressed; 
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𝑇𝐷𝑃0 indicates the Total Delay Penalty of the system when no rescheduling method is 

addressed; here, the train passes the junction according to the original timetable, thus 

𝑇𝐷𝑃0 =𝑇𝐷𝑃𝑇𝑂𝐸 

CT 

CT, as a main indictor of the performance of the algorithm, helps to define the area considered 

in the later research. According to the algorithm operation process, the algorithm starts 

computing by the time the first train enters the junction region, and gives the results when the 

algorithm computation completes. In the experiment, time is frozen when an algorithm is 

running, but in reality, trains are still running while an algorithm is operating. The junction 

signal is deemed to be red when no junction route has been assigned, which means, the train 

will decelerate and stop by the junction signal until a passing route is given. For the best results, 

a train should receive the junction routing sequence from the control centre before it starts to 

brake. Due to the buffer time inserted in the timetable, a 5-second delay which happens in the 

junction area will have no effect on the order of passing trains. 

The algorithm detection area in the experiment is defined as 𝑋 km from the edge of the junction 

region to the junction signals. There are a series of trains running in the network, 𝐼. The train 𝑖 ∈

𝐼 enters the junction region with speed 𝑈𝑖 and brake rate 𝑑𝑖, and it should stop by the head of 

the junction signal if it does not receive a command from a dispatcher. The braking distance 𝑆𝑖 

for the train 𝑖 can be calculated by the equation below [117]:  

𝑆𝑖 = (−𝑈𝑖
2)/2(𝑑𝑖 − 𝑔 ∗ 𝑡𝑎𝑛𝛼)  ,       𝑓𝑜𝑟 𝛼 < 0 

Equation 5-5 
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The equation for the running time 𝑅𝑇𝑖 of train 𝑖  from it entering the junction to it beginning to 

decelerate without receiving any command is given as: 

𝑅𝑇𝑖 =
𝑋 − 𝑆𝑖

𝑈𝑖
, 𝑖 ∈ 𝐼 

Equation 5-6 

Therefore, the acceptable computing time 𝐶𝑇 will be no more than the minimum running time 

of a series of trains 𝐼, and a reasonable buffer time such that the train can recover the delay itself 

before it reaches the junction signal is added as well: 

𝐶𝑇 ≤ 𝑚𝑖𝑛(𝑅𝑇𝑖) + 𝑡𝑏𝑢𝑓𝑓𝑒𝑟 , 𝑖 ∈ 𝐼 

Equation 5-7 

The term " − g ∗ tanα" is the gravitational acceleration, assumed as 0 in this case. 

𝑈𝑖 is the speed of the train 𝑖 when the brakes are applied. 

𝑑𝑖 is the brake rate of the train 𝑖. 

𝑆𝑖 is the braking distance for the train 𝑖. 

𝑋 is the distance between the edge of the junction region to the junction signal. 

𝑅𝑇𝑖 stands for the running time of the train i  from entering the junction to when it starts 

to decelerate. 

𝑡𝑏𝑢𝑓𝑓𝑒𝑟 is the added buffer time for the algorithm calculation, assumed as 5 seconds in 

this case. 

According to the rolling stock configuration and junction information given in the section 5.3.2, 

𝐶𝑇 of less than 15 seconds is deemed to be acceptable in this thesis. The best method should 

give the solution in an acceptable CT, and lead to the minimum TDP/ maximum OR.   
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5.4.2 Results comparison across different algorithms 

All experiments’ results have been recorded in tables and ranked by their performance (see 

Appendix C). In this section, the bar charts are used to compare the optimisation rate with 

different rescheduling approaches addressed in different scenarios and the line graphs are used 

to indicate how computation time changes in different scenarios. 

(a)  Results analysis for scenarios 1.1 to 1.4.1 

Figure 5-15 shows the optimisation performance in different scenarios (optimisation rate vs. 

number of trains), and Figure 5-16 shows how the computation time changes when the number 

of trains is increasing (computation time in log vs. number of trains). 

 

Figure 5-15 Optimisation rate vs. number of trains 
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Figure 5-16 Computation time in log vs. number of trains 

Analysis: 

TOE and FLFS fail to find the optimal solution (optimisation rates stay at zero in Figure 5-15) 

due to the inability to change the original order of the passing trains. On the contrary, BF, DP 

and DTBE can always find the optimal solution (shown by a maximum optimisation rate) under 

a minor disruption situation in all scenarios. Evolutionary algorithms behave variably when the 

number of trains increases (for example, the GA performs worse than other evolutionary 

algorithms in 10-train and 13-train scenarios, but better in the 14-train scenario). When the 

number of trains is up to 14 in the network, all evolutionary methods failed to find the optimal 

solution. When the number of trains in the network increases, the optimisation rate is also 

slightly raised, and the OR of each of the algorithms does not appear to differ much under a 

minor disruption.  

From Figure 5-16 it can be seen that the computation time of fundamental algorithms and 

evolutionary algorithms grows super exponentially when the number of trains in the network 

1

10

100

1000

10000

100000

1000000

10000000

100000000

5 7 9 11 13 15

C
o

m
p

u
ta

ti
o

n
 t

im
e

  i
n

 lo
g(

m
s)

 

Number of trains in the network

TOE

FCFS

FLFS

BF

DP

DTBE

ACO

GA

SA

TS

LS



96 

increases; in contrast, the computation time of TOE, FCFS and FLFS stays low while the 

number of trains increases. 

(b)  Results analysis for scenarios 1.4.1 to 1.4.6 

Figure 5-17 shows the optimisation rates of different algorithms when the inserted delay 

increases and Figure 5-18 shows the relationship between the computation time in log and the 

size of the inserted delay. 

 

Figure 5-17 Optimisation rate vs. number of trains 
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Figure 5-18 Optimisation rate vs. number of trains 

Analysis: 

When the delay is larger than 20 minutes, all rescheduling algorithms can provide the optimal 

solution. The reason is that the experimental network only runs a two time periods timetable, 

when the input delay on one train is too big, all trains that are running on the other two lines 

will pass the junction before the delayed train arrives at the junction, therefore there will be no 

conflict detected in the junction area. It is pointless to do the rescheduling if no conflict is 

present.   

FLFS failed to find the optimal solution when the initial delay is small (OR is zero when initial 

delay is 2-minute), but the performance improves when the initial delay size increases. BF and 

DP can always find the best solutions, while for the other algorithms the performance is varied. 
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Evolutionary algorithms perform very differently and none of them can find the best solution 

in these scenarios and they provide solutions with ORs ranging from 0.4 to 0.5. 

From Figure 5-18, it can be seen that CT is slightly declines when the delay increases, but there 

is not a significant reduction. An acceptable CT can be calculated with the information provided 

by the infrastructure and train configuration; with an acceptable CT the best algorithm can be 

chosen based on its OR. 

(c) Results analysis for scenarios 2.1 to 2.3 

Figure 5-19 shows the optimisation rate of different algorithms with different speeds of train. 

01, and 0.8, 0.5, and 0.2 indicate the percentage of the original speed used. Figure 5-20 shows 

the relationship between computation time in log and the speed of train 01. 

 

 

Figure 5-19 Optimisation rate vs. percentage remaining speed of train 01 
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Figure 5-20 CT in Log (ms) vs. percentage remaining speed of train 01 

Analysis: 

The 𝑥 axis speed/original speed ranges from 1 to 0, which means that the train speed drops 

down from full speed to zero, and the additive delay is increasing while the speed is reducing. 

Figure 5-19 shows that while additive delays increase, the optimisation rate is slightly decreased 

for all algorithms except FLFS. FLFS is poor when dealing with minor disruptions: In the 80% 

of full speed scenario, FLFS makes no improvement. BF and DP undoubtedly give the best 

result, although DTBE can also find the best solution and other algorithms give optimal 

solutions which are very close. When the speed is reduced to 50%, BF and DP can still find the 

best solutions, whereas other algorithms find their optimal solutions with a lower OR. 

Because optimisation is undertaken using STS model whist evaluation is undertaken using 

BRaVE model, the BF and DP might not always yield optimal evaluation results. When speed 
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algorithms provide a worse solution due to a less accurate prediction. For example, when speed 
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is reduced to 20% of the original speed, BF and DP fail to find the best solution compared to 

FCFS and FLFS, due to poor prediction. Under this type of situation, where prediction is poor, 

simple rule-based methods can be more effective. 

The computation time increases when the speed of the train is reduced, except for DTBE, which 

can be observed from Figure 5-20. The computation time for DTBE drops a little, while remain 

the same or even rise slightly. 

(d) Results analysis for scenarios 3.1 to 3.5 

Figure 5-21 shows the optimisation rates of different algorithms in scenarios 3.1 to 3.5 when 

two trains are delayed. On the horizontal axis, 1 to 5 represents the scenario 3.1 to 3.5. Figure 

5-22 shows the relationship between computation time in log and these scenarios. 

 

Figure 5-21 Optimisation rate vs. different scenarios 
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Figure 5-22 CT in log (ms) vs. different scenarios 

Analysis: 

To test multiple inserted delays, five representative scenarios with two trains which are delayed 

at the beginning are tested in this section. The OR of FLFS is increases along the five scenarios 

and the ORs of other algorithms increase in the first three scenarios and decrease in the fourth, 

moving back up in the fifth. Scenarios 2 and 4 and scenarios 3 and 5 share the same total inserted 

delays respectively, and this may be the reason why the ORs for the algorithms are similar to 

each other in the two scenarios.  

In Figure 5-22, BF takes the longest time to search for the optimal solution, and for others, CTs 

are different to each other, but show no large differences when the same algorithm is used, but 

for different delay scenarios 

(e)  Results analysis for scenarios 4.1 to 4.3 
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Figure 5-23 shows the optimisation rate of different algorithms in scenarios 4.1 to 4.3 with two 

additive delays occurring at the same time, and Figure 5-24 shows the computation time in log 

for the different scenarios. 

 

Figure 5-23 Optimisation rate vs. different scenarios 

 

Figure 5-24 Computation time in log (ms) vs. different scenarios 
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Analysis: 

To show algorithm performance in a scenario with multiple inserted additive delays, three 

representative scenarios with two trains which are delayed at the beginning because of engine 

failure are tested in this part. Train 01 retained 80%, 50% and 20% of its speed in these three 

scenarios respectively and train 04 retained 50% of its speed in all scenarios.  

With increasing additive delays input into the system, the performance of FLFS improves along 

the three scenarios. In scenario 1, due to a minor estimation error, all algorithms, except FLFS 

and TOE, give similar optimal solutions with the OR around 0.53. In scenario 2, ACO performs 

relatively better than the other algorithms, which have ORs of around 0.46, dropping down 

slightly compared with scenario 1. In scenario 3, due to a big loss on the speed of train 01, the 

line is blocked for a long time, which leads to no conflict being detected in the junction area. 

All algorithms give the same rescheduling solution, except TOE. From Figure 5-24, the 

computation times are observed to be very close to the single additive delay scenario in 2.1 to 

2.3.   

5.4.3 Summary  

After analysing the performance of the different algorithms across different delay scenarios, a 

summary of the application and characteristics of each algorithm in Table 5-4 below (note that 

this conclusion is restricted to the experiments in this chapter): 

TOE: 

 

Trains pass the junction with an enforced order with no flexibility, leading to a 

chain of delays since the on time trains need to wait at the junction for the delayed 

trains. The OR stays at zero because no rescheduling action is taken with TOE, 

which means that no improvement is made by executing this approach. 
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FCFS FCFS only considers the junction arrival time for each train without considering 

the delay penalty at the final destination. It can be calculated quickly but it is not 

accurate. Although it is a simple way to avoid conflict, it does not consider the 

whole network, therefore it is not recommended in most scenarios. 

FLFS The FLFS algorithm considers the destination arrival time for each train. When 

the delay is small, it will give an order very close to the timetable order, since the 

predicted destination arrival time is close to the timetable arrival time, which 

means that little or no improvement is made when FLFS is applied in a small 

disruption scenario. When the delay increases, the performance of FLFS 

improves. However, it still does not consider the delay penalty for each train, 

therefore it cannot calculate the best solution in most minor disruption situations. 

BF As an exhaustive method, BF can find the best solution in most situations with a 

good prediction. However, the computation time is obviously bigger than other 

approaches. In scenario 1.1 and 1.2, the CT is within an acceptable region, but in 

other scenarios, it is too big to be practicable. 

DP As for BF, DP can find the best solution in most situations with a good prediction. 

It takes less time to compute the solution than BF, but the computation time is still 

too big to accept in 13-train and 14-train scenarios. 

DTBE DTBE can find the best, or a relatively good solution, in most situations. It is a 

very stable algorithm which can be applied to solve most cases if the CT is 

acceptable. According to the complexity of the different scenarios, the computing 

time varies from 20 s to 100 s in 14-train scenarios. 

ACO ACO takes a relatively short time (around 10s) for the computation in 14-train 

scenarios. It performs well when the delay is small, however, when delay 

increases, the performance deteriorates. 

GA The GA algorithm performs averagely in all scenarios; it was neither the best nor 

the worst performing. It spends nearly an equal amount of time on computation 

(around 15 s) in almost all situations.  

SA In the minor disruption scenario, SA performs very badly, although it performs 

better when the delay increases.  

TS This takes the least time of all evolutionary algorithms, the performance of TS 

deteriorates when the delay increases. In the minor disruption scenarios (2-minute 
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initial delay scenario and 80% of full speed additive delay scenario), it can always 

find the best solution, or a relatively good solution in a short time. 

LS Using LS, the performance improves and the computation time is reduced when 

the delay increases. It gives a satisfactory solution in an acceptable time when the 

delay is not too small, and it is recommended in most scenarios. 

Table 5-4 Summary of the application 

5.5 Conclusion  

In this chapter, the author introduced the application of ten algorithms and one standard method 

(TOE) to a set of benchmark problems. These algorithms include rule-based methods (FCFS, 

FLFS), an exhaustive algorithm (BF), a graphic method (DP), a branch and cut method (DTBE) 

and evolutionary methods (ACO, GA, SA, TS LS). The rescheduling approaches used for the 

experiment tests and the innovation of the application are generally introduced and classified 

in Section 5.1. 

A cost function is defined to evaluate the performance of different algorithms in Section 5.2. In 

Section 5.3, a benchmark scenario is developed for assessment of the algorithms in order to 

estimate their performance under different disturbed conditions. The junction area studied in 

this chapter is Finsbury Park junction on the ECML in the UK, with 14 trains passing through 

in 30 minutes. The experimental methodology of simulation, train running estimation and 

algorithm implementation are also explained. 

In Section 5.4, a series of scenarios are designed and tested with different algorithms addressed. 

Analysis and comparison of different solutions is presented, using two performance indicators: 

Computation Time (CT) and Total Delay Penalty (TDP). The characteristics of each algorithm 

are derived from the summaries of each group for comparison. Currently, the developed 

methods have been tested mainly in an experimental setting, showing promising results, both 



106 

in terms of their solution quality and in terms of their computation times. A summary of the 

performance of these algorithms is given at the end of this section, and can be used as references 

in further operation in this junction region.  

To conclude, BF and DP are the most appropriate algorithms in the majority of delay scenarios 

because they can always find the optimal solution and the computation time is acceptable due 

to the limited scale of the network and scale of the rescheduling area. However, in simulation, 

the capacity is enhanced by the computer, which leads to an enormous amount of computation 

time when BF and DP are used. As a result, BF and DP are no longer appropriate for these delay 

scenarios. DTBE is also a good method to use because it can find the best solution in most 

scenarios, the disadvantage of this algorithm is that it still needs a long time to find the solution. 

FCFS and FLFS are commonly used approaches for junction rescheduling, as they are both 

quick and simple. However, in most scenarios, the results they found are not as good as other 

methods. ACO, GA, SA, TS and LS need to be well constructed to ensure the stability of the 

evolutionary algorithms. According to CTs, these algorithms rank as: TS <  𝐴𝐶𝑂 <  𝐿𝑆 <

 𝐺𝐴 ≈  𝑆𝐴 when the number of trains in the network are the same. According to the TDPs, 

these algorithms perform discrepantly according to different delay conditions.  

The characteristics of the applications for each algorithm can be concluded from their 

comparison, and some suggestions for choosing algorithms to use in the dynamic rescheduling 

can be formulated. For example, Table 5-5 shows an example of choosing algorithms for 

different networks and delay conditions after considering the characteristics of application for 

each algorithm.  
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 𝑳 = ECML  

𝑵 ≤ 9 𝑵 = 10,11 𝑵 = 12 𝑵 = 13,14 

 

 

𝒏 

=  1  

Departure 

( 𝑑1 is the delay 

time of Train 01) 

𝒅𝟏 < 5 𝑚𝑖𝑛𝑠 BF, DP DP DTBE TS 

5 𝑚𝑖𝑛𝑠 ≤ 𝒅𝟏

< 15 𝑚𝑖𝑛𝑠 

BF, DP DP DTBE LS 

𝒅𝟏 ≥ 15 mins BF, DP DP DTBE FLFS 

Additive ( 𝑎1 is 

the percentage of 

the remaining 

speed of Train 

01) 

𝒂𝟏 ≥ 80% BF, DP DP DTBE TS 

80% > 𝒂𝟏 ≥ 50% BF, DP DP DTBE LS 

50% > 𝒂𝟏 ≥ 20% BF, DP DP DTBE FLFS 

𝒂𝟏 < 20% BF, DP DP DTBE FLFS, 

FCFS 

𝒏 

=  2 

Departure 

( 𝑑1 is the delay 

time of Train 01, 

𝑑2 is the delay 

time of Train 04) 

𝒅𝟏 + 𝒅𝟐 ≤ 4 𝑚𝑖𝑛𝑠 BF, DP DP DTBE ACO, TS 

4 𝑚𝑖𝑛𝑠 < 𝒅𝟏 + 𝒅𝟐

≤ 7 𝑚𝑖𝑛𝑠 

BF, DP DP DTBE TS, LS 

7 𝑚𝑖𝑛𝑠 < 𝒅𝟏 + 𝒅𝟐

≤ 12 𝑚𝑖𝑛𝑠 

BF, DP DP DTBE LS 

Additive 

( 𝑎1 is the 

percentage of the 

remaining speed 

of Train 01, 𝑎2 is 

the percentage of 

the remaining 

speed of Train 

04) 

𝒂𝟏 = 80% 

𝒂𝟐 = 50% 

BF, DP DP DTBE TS 

𝒂𝟏 = 50% 

𝒂𝟐 = 50% 

BF, DP DP DTBE ACO 

𝒂𝟏 = 20% 

𝒂𝟐 = 50% 

BF, DP DP DTBE FLFS 

Table 5-5: Algorithm recommendation table 

Network layout ( 𝑳 ) / 

The number of trains in 

the network (𝐍) 

The number of delays (𝒏) / 

Delay type (Departure/ Additive) /  

Delay size (𝒅/ 𝒂) 
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CHAPTER 6  

STUDY OF SINGLE-JUNCTION RESCHEDULING 

USING PERFORMANCE-BASED SUPERVISORY 

CONTROL 

 

In chapter 5, a number of rescheduling approaches are investigated on a single-junction area 

with idealised the timetable and compressed periods. However, in real working conditions, 

railway operations are highly uncertain and complex, and delays are hard to predict and avoid 

due to technical failures, weather conditions and passenger performance. These result in 

operational dynamics such as uncertain delays, changing traffic flows, unpredictable changes 

in traffic, etc. In this chapter, in order to deal with these operational dynamics, supervisory 

control is adopted to provide rescheduling decisions over a wider time window through the 

application of different rescheduling strategies in appropriate sequences.  

In order to explain the fundamentals of the approach, initially a brief overview of supervisory 

control is provided. A methodology for using supervisory control as part of a junction 

rescheduling problem is developed and demonstrated. A single-junction case study is designed 

to demonstrate how this process is realised.  

6.1 Supervisory control overview  

Supervisory control is a common method to select between different control strategies within a 

single system. It is particularly useful in applications where it is beneficial to try different 
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control strategies to find solutions over a broad solution space, and therefore avoid local 

minima, or where a single control strategy is unlikely to be able to find a satisfactory solution 

in all possible situations [118]. Supervisory Control usually takes one of two forms: In the first, 

‘switched supervisory control’ the control process proceeds autonomously and is monitored by 

an ‘observer’; when necessary, the observer intervenes to select an alternative control 

strategy.  In the other, ‘schemed supervisory control’’, the process follows a set of predefined 

control instructions, which can be changed by an operator if required.  

In this thesis, switched supervisory control is discussed and an approach to address the railway 

junction rescheduling problem is developed. A more detailed introduction to this type of 

supervisory control is presented in the following section, along with a demonstration of the 

effect of using different types of supervision. 

6.1.1 Introduction to supervisory control 

A standard architecture for supervisory control is shown in Figure 6-1. A key feature of the 

approach is the bank of alternative controllers, and the ability to switch between them in real-

time, based on the current measured outputs.  When an uncertain disruption 𝑤 is detected by a 

controlled process, the measured output 𝑦 is sent to a supervisor where it is combined with the 

control signal 𝑢 from the current controller, and the supervisor provides a switching signal σ to 

select expected to be the most appropriate controller from the bank of candidate controllers 

[119]. 
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Figure 6-1: Supervisory control architecture 

6.1.2 Type of supervision 

Three types of supervision are generally used in switched supervisory control; they are pre-

routed supervision, performance-based supervision and estimator-based supervision. 

Pre-routed supervision: 

In pre-routed supervision, the supervisor tries one controller after another in a pre-defined 

sequence, and stops when the performance becomes acceptable against a cost function (See 

Figure 6-2) [120]. Algorithms can be used to help determine the searching sequence.  However, 

in practice pre-routed supervision is usually restricted to a small number of candidate 

controllers, so as to minimise the time taken to find an acceptable controller. 

 

Figure 6-2: Pre-routed supervision 
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Performance-based supervision: 

Performance-based supervision attempts to directly assess the performance of each candidate 

controller, but it does not attempt to estimate the model of the process in order to achieve this 

[121]. The principle of performance-based supervision is to retain the existing controller while 

observed performance continues to be acceptable, however as soon as the performance becomes 

unacceptable an alternative controller is selected that will provide improved performance based 

on the available data provided from the measured output and the feedback from the controlled 

signal. 

Figure 6-3 shows a block diagram that represents performance-based supervision. For all 

candidate controllers 𝐶𝑞 ∈ 𝐶 , 𝜋𝑞1 to 𝜋𝑞𝑛  represents the expected performance indicators of 

controller 𝐶𝑞  by using the measured output,  y , and control signal, 𝑢 , as inputs into a 

performance monitor. The decision logic is responsible for generating the switching signal, so 

if σ: 𝜋𝑞 is acceptable, then the current controller is retained; if it is not, an alternative controller, 

𝐶𝑞, is selected corresponding to the best 𝜋𝑞. 

 

Figure 6-3: Performance-based supervision 

Estimator-based supervision: 

Estimator-based supervision is an indirect supervision approach that estimates a control model 

from observed data, then selects a controller based on the current estimation. This type of 
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supervision was developed to improve the performance obtained by pre-routed supervision. To 

select an appropriate estimate model, estimator-based supervisors continuously compare the 

outputs of the process with the outputs of several process models to determine which model 

most closely matches the actual process [119]. A control process which has uncertain 

parameters is assumed to be in a family of systems and for each process in this family at least 

one candidate controller, Cp, with a defined controller selection function can provide adequate 

performance. 

The structure of estimator-based supervision can be represented by the diagram in Figure 6-4. 

It includes a multi-estimator which is responsible for determining which admissible model best 

describes the actual process:  𝑦𝑝 is the estimate of the output y, and 𝑒𝑝 is the estimation error 

between the estimated output 𝑦𝑝 and the actual output y. 𝑒𝑝 is small if the estimate process 

matches the actual process. A decision logic that generates a switching signal, 𝜎, is used to 

select the most appropriate candidate controller. 

 

Figure 6-4: Estimator-based supervision 

6.2 Performance-based supervisory control for junction control 

6.2.1 Modelling framework  

A general supervisory control architecture was introduced in the previous section. In this section 

the unique structure of a supervisory control process for railway rescheduling is developed (see 
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Figure 6-5). When a railway network is disturbed by a perturbation 𝑤, the output 𝑦 from the 

network performance assessment is detected and analysed by the global control centre, and a 

calling signal 𝜏 is sent to the individual supervisor from the global control centre.  

The switching signal 𝜎 is given by each supervisor to select a control mode in the control 

region. When  𝜎 is “1”, all trains in the control region will be rescheduled through intelligent 

local rescheduling control, which is supported by an advanced algorithm chosen by the control 

centre; when 𝜎 is “0”, it is as long as no rescheduling happens before the trains reach the 

junction and all trains will pass the junction following the current timetable order. After a 

reordering/retiming process, the rescheduled result  𝑢 is sent back to the network to execute. 

The network database will update while the results are processing. The network output, 𝑦, is 

considered and observed by a global control module and each local control module every time 

step.  

 

Figure 6-5: Supervisory control for railway rescheduling 

Differing from traditional performance-based supervisory control, the supervision has been 

divided into two steps:  
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Step 1: Global control supervision 

Step 2: Local control supervision 

Step 1: Global control supervision 

The global control module adopts this type of supervision to control different supervisors. 

Figure 6-6 shows the structure of global control supervision. The measured output  y  is 

performed and evaluated in the global performance monitor (G-PM).  𝜋𝑞 equals the measure of 

the expected performance of the controller inferred from the current data.  

The global decision logic (G-DL) is relatively simple: if  𝜋𝑞  is acceptable then the current 

controller is retained; if it is not, a rescheduling calling signal τ equals “1” is sent to the 

supervisor. Otherwise, the calling signal τ remains “0”. 

 

Figure 6-6: Global control supervision 

Step 2: Local control supervision 

Local control supervision is adopted by an individual supervisor to directly control each 

decision centre. By receiving signals from the global control centre and feedback from the 

decision centre, the supervisor should make decisions on which controllers to retain. Similar to 

global control supervision, in Figure 6-7, the inputs for the local control supervision include the 

rescheduled results, u, from the decision centre and the calling signal, 𝜏, from the global control 

centre. The local performance monitor (L-PM) measures the performance of the rescheduling 
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results and passes these measures  (𝜋𝑙) to the decision logic, and the calling signal, 𝜏, is directly 

delivered to the local decision logic (L-DL) part. The decision logic module makes a decision 

as to whether the value of the switching signal, σ, is “1” or “0”. 

 

Figure 6-7: Local control supervision 

Considering these two types of supervision, the architecture for the abstract supervision of the 

whole system can be shown, as in Figure 6-8. 

 

Figure 6-8: Abstract supervision architecture 
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6.3 Performance monitor 

Due to the supervision type used for the rescheduling process, the supervisor should keep the 

controller while the observed performance is acceptable. When the performance of the current 

controller becomes unacceptable, the supervisor should switch to the controller that leads to the 

best outcome. The architecture of the supervision system was presented in the previous section 

(see Figure 6-5). In this section, two main performance monitors are developed to measure the 

performance of the input signals. 

6.3.1 G-PM 

The daily operation of the railway network is a complex and unpredictable system. With a 

disruption, 𝑤, and a controlled result, u, the running operation is simulated in BRaVE and delay 

propagation is also captured. G-PM can be replaced by the delay propagation visualisation tool, 

and there are some measures which can be extracted from the G-PM to evaluate the performance 

of the train operation. The key measures consist of two parts: delay condition and recovery 

condition.  

In more detail, the delay condition indicates the Primary Delay Detection (PDD) and the Total 

Delay (TD) of the whole control region at time 𝑡; the recovery condition is set by the estimated 

Recovery Time (RT) for the current delay. A railway network running a number of trains 𝑇𝑅 =

 {𝑡𝑟1, 𝑡𝑟2, … , 𝑡𝑟𝑛}with a time window 𝑇 = [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑], and there are a number of primary 

delays happened during the operation 𝑃𝐷 = [𝑑1, 𝑑2, … , 𝑑𝑛]. For each primary delay, 𝑑𝑚, the 

time when it is firstly recorded is 𝑡𝑑𝑚
. The sum of lateness 𝐿(𝑡) can be calculated by the 

Equation 3-1, Equation 3-2 and Equation 3-3, the total recovery time 𝑅𝑇𝑡𝑜𝑡𝑎𝑙 is defined as the 

time between the first primary delay of the system increasing above a small threshold value, 
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and it returning below this threshold (the recovery threshold). All these measurements can be 

derived from the delay recovery graph by using the delay propagation visualisation tool. 

 𝑃𝐷𝐷𝑡 = {
1, 𝑤ℎ𝑒𝑛 𝑡 = 𝑡𝑑𝑚

,   𝑑𝑚  ∈ 𝑃𝐷

  0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
   

Equation 6-1 

𝑇𝐷𝑡 = 𝐿(𝑡) ,         𝑡 ∈ 𝑇 

Equation 6-2 

𝑅𝑇𝑡 = {
0,            𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡 < 𝑡𝑑1

 ∨   𝑅𝑇𝑡𝑜𝑡𝑎𝑙  < 𝑡 ≤ 𝑡𝑒𝑛𝑑

𝑅𝑇𝑡𝑜𝑡𝑎𝑙 − 𝑡,                                𝑡𝑑1
≤ 𝑡 ≤ 𝑅𝑇𝑡𝑜𝑡𝑎𝑙   

 

Equation 6-3 

𝑃𝐷𝐷𝑡  indicates the primary delay detection at time 𝑡; when  𝑃𝐷𝐷𝑡 = 1, a primary delay is 

detected as starting in the network. When  𝑃𝐷𝐷𝑡  =  0, no primary delay is present at the current 

time (see Equation 6-1). In Equation 6-2, the real-time total delay measurement of the whole 

control region at time 𝑡 is presented as 𝑇𝐷𝑡, which equals the current sum of lateness 𝐿(𝑡). In 

Equation 6-3, 𝑅𝑇𝑡 stands for the estimated recovery time of the current delay at time 𝑡, and it is 

calculated by using the total recovery time minus the current time.  

For example, a scenario has 7 trains running in the network from 7:00am to 8:00am with two 

trains delayed at two different stations, and no rescheduling is applied for the delay situation. 

The network is the same as in Section 5.3.2 and the original conflict free timetable of these 7 

trains is the same as the timetable in period 1 in Section 5.3.2. The two delayed trains are train 

01 and train 04, which are delayed at Brookmans Park Station and Alexandra Palace 

respectively.  
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The delay propagation is visualised as set out below (see Figure 6-9) in G-PM.  The green line 

indicates the total delay by time: 𝑇𝐷(𝑡); the red line and the purple line refer to the two delayed 

trains T1 and T4 respectively. T1 is delayed from 07:05:58 to 07:10:58 for 300 seconds and T4 

is delayed from 07:21:43 to 07:23:43 for 120 seconds. The 𝑥 axis is shown in hours and the y 

axis is shown in seconds. The observation window 𝑇 ranges from 07:00:00 to 08:00:00 ( 𝑡 ∈

𝑇 = [7 , 8]). In this scenario, a primary delay on T1 is detected at 07:05:58 ( 𝑡 = 7.099 ) and 

another on T4 is detected at 07:21:43 ( 𝑡 = 7.362 ). The real-time total delay measurement of 

the whole control region 𝑇𝐷𝑡, which equals the sum of lateness 𝐿(𝑡), shown as the green line 

in Figure 6-9. The recovery threshold is set to 60 seconds, and the time in which the delay has 

been totally absorbed is 07:35:51 ( 𝑡 = 7.598 ).  

 

Figure 6-9: Delay propagation in the example scenario 

6.3.2 L-PM 

The L-PM monitors the junction condition in real-time when the rescheduling results are 

received. The main measure for the junction condition is defined as the junction detection factor 
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(JD). Trains pass the junction area with a given order, the time when train 𝑡𝑟𝑖 is entering the 

junction area is defined as 𝑡𝑡𝑟𝑖
. The junction detection factor for this junction can be defined as 

Equation 6-4. 

𝐽𝐷𝑡 = {
1, 𝑤ℎ𝑒𝑛 𝑡 = 𝑡𝑡𝑟𝑖

,   𝑡𝑟𝑖  ∈ 𝑇𝑅

  0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

Equation 6-4 

At time 𝑡, if a train has been detected as reaching the edge of the junction area,  𝐽𝐷𝑡 = 1, or 

not,  𝐽𝐷𝑡 = 0; In this delayed scenario, with no rescheduling strategy applied, trains passed the 

junction based on the timetable or der: 𝑆 =  [𝑇1, 𝑇2, 𝑇6, 𝑇3, 𝑇4, 𝑇7, 𝑇5], and the junction 

detection times for each train are: 07:16:42 (𝑡 = 7.278), 07:18:36 (𝑡 = 7.31), 07:21:08 (𝑡 =

7.352) , 07:22:27  (𝑡 = 7.374) , 07:23:35  (𝑡 = 7.393) , 07:26:16  (𝑡 = 7.438)  and 

07:27:26  (𝑡 = 7.457) .  Figure 6-10 shows the junction detection times for the scenario 

described in the previous section; the time difference between the switching signals can be 

observed. 

 

Figure 6-10: Junction detection in the example scenario 
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6.4 Decision logic 

6.4.1 G-DL 

The global decision logic (G-DL) for the global control takes 𝑃𝐷𝐷𝑡, 𝑇𝐷𝑡 and 𝑅𝑇𝑡 as the inputs 

and the rescheduling calling signal, τ, as the output. τ takes the value “1” or “0”. The G-DL is 

defined with the following rules: 

Rule 1: If  𝑇𝐷𝑡 is beyond the tolerant limit, the output τ is defined as “1”; ( 𝑑𝑙𝑖𝑚𝑖𝑡 refers to the 

delay tolerant limit for the network). 

 𝑇𝐷𝑡 ≥ 𝑑𝑙𝑖𝑚𝑖𝑡 → 𝜏(𝑡) = 1 

Equation 6-5 

Rule 2: If  𝑇𝐷𝑡 has not reached the tolerant limit, but 𝑅𝑇𝑡 has exceeded the acceptable recovery 

time limit, the output τ is defined as “1”; (  𝑟𝑙𝑖𝑚𝑖𝑡  refers to the recovery time limit for the 

network.) 

{
 𝑇𝐷𝑡 < 𝑑𝑙𝑖𝑚𝑖𝑡

𝑅𝑇𝑡 ≥ 𝑟𝑙𝑖𝑚𝑖𝑡
 → 𝜏(𝑡) = 1 

Equation 6-6 

Rule 3: If  𝑇𝐷𝑡 has not reached the tolerant limit, and 𝑅𝑇𝑡 has not exceeded the acceptable time 

limit, the output τ is defined as “0”; 

{
 𝑇𝐷𝑡 < 𝑑𝑙𝑖𝑚𝑖𝑡

𝑅𝑇𝑡 < 𝑟𝑙𝑖𝑚𝑖𝑡
 → 𝜏(𝑡) = 0 

Equation 6-7 

Rule 4: Every time a primary delay has been detected, a new call is made.  
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𝑃𝐷𝐷𝑡 = 1 → 𝜏(𝑡) = 0  

Equation 6-8 

For the example in Section 6.3.1, the delay propagation and measures have been computed in 

the G-PM and an output 𝜏(𝑡) is launched after dealing with all measures in the G-DL. The delay 

tolerant limit dlimit is set to 300 seconds and the recovery time limit 𝑟𝑙𝑖𝑚𝑖𝑡 is set to 30 minutes.  

Figure 6-11 shows the G-DL output according to the decision logic rules stated above.  

 

Figure 6-11: G-DL output for the example scenario 

6.4.2 L-DL 

The inputs for the local decision logic (L-DL) are the calling signal 𝜏(𝑡) from the G-DL, and 

𝐽𝐷𝑡 from the L-PM. The local decision module aims to control the local rescheduling activities 

by giving the switching signal 𝜎. When 𝜎 is set to “1”, the running process is interrupted and a 

new rescheduling command is given to the local area along with the current train movement 

information. When 𝜎 stays at “0”, the DC keeps the current timetable and sends trains to the 
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junction based on the timetable order or the current rescheduled order. A new parameter is 

introduced into the L-DL, which is the rescheduling requirement (RR). Only when the RR has 

been satisfied, the order of rescheduling decision may be generated. The value helps to calculate 

the switching signal 𝜎 and it can be defined by analysing the calling signal 𝜏(𝑡) and the junction 

detection parameter 𝐽𝐷𝑡. Rule 5 and rule 6 presented below give a demonstration of how to 

define the value of 𝑅𝑅 and the corresponding 𝑡, and rule 7 combines these three parameters 

together to obtain the switching signal 𝜎. 

Rule 5: When the rescheduling calling signal 𝜏 is received as 0, which means the rescheduling 

status has been initialised, each train, no matter it was rescheduled or not, is available to accept 

a new rescheduling command. 

𝜏(𝑡) = 0 →  𝑅𝑅𝑡→∞ = 1 

Equation 6-9 

Rule 6: After receiving a calling signal 𝜏 = 1 from the G-DL, whenever a junction has detected 

a train reaching the edge of the junction area and this approaching train is available for 

rescheduling, the rescheduling command is made immediately, i.e., the switching signal σ is 

defined as 1. 

{
𝜏(𝑡) = 1
𝐽𝐷𝑡 =  1
𝑅𝑅𝑡 = 1

→  𝜎(𝑡) = 1 

Equation 6-10 

Rule 7: After receiving a switching signal 𝜎 = 1, a rescheduling command is made and all 

trains in the control region at the current time must follow the new schedule. These trains are 

not available for rescheduling when they reach the junction area since they have been 
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rescheduled already. However, once a train which has not been rescheduled before reaching the 

junction area, the rescheduling status is initialised. All trains currently in the control zone are 

available for the next rescheduling command. (𝑡′ refers to the junction detection time of the 

next train which has not been rescheduled before). 

𝜎(𝑡) = 1 →  𝑅𝑅𝑡+1→𝑡′−1 = 0 

Equation 6-11 

For the example scenario described in Section 6.3.1, the calling signal 𝜏(𝑡) (see Figure 6-11) 

and the junction detection signal 𝐽𝐷𝑡 (see Figure 6-10) are presented by the G-DL and the L-

PM. According to the decision logic rules stated above, Figure 6-12 shows that the switching 

signal σ(t) calculated by L-DL equals 1 at 07:16:42 (𝑡 = 7.278) and 07:22:27 (𝑡 = 7.374). 

 

Figure 6-12: L-DL output for the example scenario 
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6.5 Testing progress 

Supervisory control provides a way to combine more than one control strategy together to deal 

with dynamic situations (uncertain delays, mixed traffic patterns, dynamic traffic flows, etc.). 

An initial case study is prepared in the next section to realise performance-based supervisory 

control under a dynamic situation. The track layout is the same as the one in Section 5.1 and 

the nominal timetable has been slightly modified from that described in Section 5.3. In addition, 

the rescheduling process becomes more complex due to changes of the control strategy during 

operation.  The testing progress of a simulation model with multiple control strategies applied 

to a single junction are explained in this section. 

To analyse the performance of supervisory control on a single junction, a delayed scenario with 

dynamic information is tested with different control strategies applied.  In addition, this scenario 

is tested by adopting supervisory control with alternating algorithms.  The testing progress is 

illustrated in Figure 6-13. The upper part of this figure shows the rescheduling strategies applied 

on the single junction area, as well as the alternating algorithm obtained by applying 

supervisory control. The lower part of the figure gives the basic data of the railway network, 

which are infrastructure data, the nominal timetable and rolling stock characteristics.  The delay 

scenarios are created and tested in the simulator and the results are visualised and evaluated in 

MATLAB.  
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Figure 6-13: Testing process 

The supervisory control for rescheduling management includes two parts: control strategy 

(algorithm) selection and algorithm alternation. The test progress for the supervisory control in 

the simulation follows Step 1 to Step 6 below: 

Step 1: Run the nominal timetable with no advanced rescheduling strategy applied; 

Step 2: Run a disturbed timetable with no advanced rescheduling strategy applied; 

Step 3: Apply supervisory control to determine the algorithm changing time 𝑡 = [𝑡1,

𝑡2 , …  𝑡𝑛] in the junction area when switching signal 𝜎(𝑡) = 1; 

Step 4: Determine the earliest algorithm changing time  𝑡 = 𝑡1 , and select the 

rescheduling algorithm based on the algorithm recommendation provided by the local 

area; 

Step 5: Re-run the disturbed timetable with rescheduling at  𝑡 = 𝑡1 in junction area. 

Step 6: Repeat Step 3 to Step 5, until no more local rescheduling is needed.  
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6.6 Analysis of supervisory control on a single junction  

6.6.1 Scenario development 

Infrastructure and the working timetable 

The network layout is the same as the one discussed in Section 5.2.1, with all 28 services 

coming from the same direction between 7:00am and 9:00am. In the first time period, trains A1 

to A7 are presented. In the second time period the services are repeated, giving trains B1 to B7. 

In the third time period, trains C1 to C7 are present, and in the fourth time period, trains D1 to 

D7. Inspired by the real timetable published by Network Rail, an idealised model with high 

frequency services (services repeating every 10 minutes) is simulated in BRaVE. These services 

include two types of rolling stock: a fast train (vehicle type Class 313) and a slow train (vehicle 

type Class 59). The core junction area is located in Finsbury Park Station which is the same as 

the scenario described in Section 5.3. 

Within the main rescheduling area, all services in the network are arranged to pass the area 

according to a conflict-free timetable.  The timetable in Table 6-1 shows all 7 services in the 

time period with scheduled times: A1, A2 and A3, will stop at Brookmans Park Station and 

Alexandra Palace Station, then terminate at Kings Cross Station; A4 and A5 will stop at Hatfield 

Station and Kings Cross Station; A6 and A7 will stop at Bayford Station, Enfield Chase Station, 

and Palmers Green Station, and then terminate at Moorgate Station. 
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Timetable in Period 1 

Service ID/Train Name S1/A1 S2/A2 S7/A3 S9/A4 S10/A5 S8/A6 S11/A7 

Vehicle Type Class 313 Class 313 Class 313 Class 59 loco Class 59 loco Class 313 Class 313 

Start (F, W) (F, W) (F, W) (S, W) (S, W) (P, H) (P, H) 

Destination (F, K) (S, K) (P, M) (S, K) (P, M) (P, M) (P, M) 

Welwyn Garden City 07:00:00 07:02:00 07:04:00 07:00:00 07:02:00   

Hatfield - - - 07:05:00 07:08:00   

Brookmans Park 07:07:00 07:09:00 07:12:00 - -   

Hertfort        07:00:00 07:04:00 

Bayford       07:05:00 07:09:00 

Enfield Chase       07:13:00 07:17:00 

Palmers Green      07:17:00 07:21:00 

Alexandra Palace 07:17:00 07:19:00 07:22:00 - - - - 

Kings Cross 07:24:00 07:27:00  07:31:00    

Moorgate   07:33:00  07:38:00 07:31:00 07:35:00 

Table 6-1: Original conflict-free timetable for one period 
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Scenario design  

A delayed timetable is created to verify the supervisory control: Train B1 (the same service 

pattern as train A1 with an interval of 10 minutes) is delayed at Alexandra Palace Station for 8 

minutes from 07:27:00 to 07:35:00.  

- For this scenario, the delay on Train B1 influence the trains behind it on the same line 

(e.g. Train B2, B3, C1, C2, C3…), collisions may happen between delayed trains and 

scheduled trains at the Finsbury Park Junction. According to the testing progress, four 

tests are created with four different rescheduling strategies, which are TOE, FCFS, TS 

and alternating algorithms (AAs) obtained by supervisory control, are applied in this 

scenario.   

To evaluate the results, the delay propagations of different trains are presented in G-PM. 

Considering the cost function used for the rescheduling is designed to minimise the total delay 

penalty, the total weighted delay is used to help visualise and compare the results. Delays are 

weighted according to the train type: the weight for the freight train (Class 59) is 0.2 and that 

for the passenger train (Class 313) is set to 1. 

6.6.2 Results and analysis 

Result of TOE: 

The result of TOE is shown in Table 6-2. Figure 6-14 shows the weighted delay propagation 

obtained by TOE, which was to run the scenario with no advanced rescheduling strategy applied 

(TOE applied). The green line shows the total weighted delay for the whole railway network 

with 28 trains included. The six most delayed trains are also presented in the graph.  Figure 6-
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14 shows a very bad performance when TOE is applied because there is no rescheduling 

strategy used to help recover delay. 

Table 6-2: Result of TOE 

 

Figure 6-14: Weighted delay propagation when TOE is applied  

Result of FCFS: 

The result of FCFS is shown in Table 6-3. Figure 6-15 shows the weighted delay propagation 

obtained by FCFS, which runs the scenario with the FCFS strategy applied for the whole time 

(from 7:00:00). From the results we can see that the weighted delay is effectively restored by 

applying FCFS to the junction. The total weighted delay recovers more quickly than for other 

approaches. However, from time 𝑡 = 7.8 ℎ to 𝑡 =  7.9 ℎ and 𝑡 = 8.0 ℎ to 𝑡 = 8.1 ℎ, there are 

significant influxes in the total weighted delay to be observed. 

Rescheduling time Junction area Algorithm Solution/Order of the trains 

07:00:00 Finsbury Park 

Junction 

TOE Order = [A1, A2, A6, A3, A4, A7, A5, B1, 

B2, B6, B3, B4, B7, B5, C1, C2, C6, C3, C4, 

C7, C5, D1, D2, D6, D3, D4, D7, D5] 
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Table 6-3: Result of FCFS 

 

Figure 6-15: Weighted delay propagation when FCFS is applied  

 

Results of TS: 

The result of TS is shown in Table 6-4. Figure 6-16 shows the weighted delay propagation 

obtained by TS, which was to run the scenario with the TS strategy applied for whole time. The 

total weighted delay is observed to recover smoothly, albeit with a slight increase after 𝑡 =

 8 ℎ. That is because some trains must decelerate and accelerate a lot due to the trains in front 

of it are running late. The services are slower to recover than with FCFS. 

Rescheduling time Junction area Algorithm Solution/Order of the trains 

07:00:00 Finsbury Park 

Junction 

FCFS Order = [A1, A2, A6, A3, A4, A7, A5, B1, 

B4, B6, B7, B5, B2, B3, C6, C1, C2, C4, 

C7, C3, C5, D1, D6, D2, D3, D4, D7, D5] 

Rescheduling time Junction area Algorithm Solution/Order of the trains 
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Table 6-4: Result of TS 

 

Figure 6-16: Weighted delay propagation when TS is applied 

Results of AAs: 

Supervisory control is applied in this scenario to achieve the rescheduling by alternating 

algorithms. In this experiment,  𝑑𝑙𝑖𝑚𝑖𝑡 is set to 300 seconds and 𝑟𝑙𝑖𝑚𝑖𝑡 is set to 30 minutes. From 

the 𝑇𝐷(𝑡)graph obtained by G-PM, 𝑇𝐷(𝑡) is first observed to increase to 480 seconds at 𝑡 =

 7.58 ℎ (07:35:00). However, in reality, delay starts accumulating by the time it happens. 

Therefore, when calculating Equation 6-4,  𝑡 ≥ 7.5 ℎ (07:30:00) is acceptable (the primary 

delay on B1 starts at 07:27:00, and the secondary delay on train B2 starts at 07:28:00). 

Switching signal σ(t) is calculated to equal 1 for the first time at 𝑡 = 7.53 ℎ (07: 31: 49 ) from 

Equation 6-5 to Equation 6-11. According to the algorithm recommendation provided by the 

07:00:00 Finsbury Park 

Junction 

TS Order = [A1, A2, A6, A3, A4, A7, A5, B4, 

B6, B7, B1, B5, B2, B3, C6, C4, C1, C2, 

C7, C3, C5, D1, D6, D2, D4, D3, D7, D5] 
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local area, TS is chosen for the local rescheduling. Re-running the delayed timetable with TS 

applied at 07: 31: 49  and apply supervisory control to the new traffic flows, the switching 

signal σ(t) is calculated to equal 1 at 𝑡 = 7.843 ℎ (07: 50: 35 ). According to the algorithm 

recommendation provided by the local area, FCFS is chosen for the local rescheduling. Re-

running the delayed timetable with TS applied at 07: 31: 49 and FCFS applied at 07: 50: 35  

and applying supervisory control to the new traffic flows, no more rescheduling is needed. 

Finally, the alternating algorithm TS-FCFS is obtained by the supervisory control. The result 

of AAs is shown in Table 6-5. 

Figure 6-17 shows the weighted delay propagation obtained by AAs, which was to apply 

supervisory control in the junction area alternating algorithm between TS and FCFS. In Figure 

6-17, the total weighted delay is recovered smoothly and quickly. It takes slightly longer for 

total recovery than when applying FCFS for the whole time, but no significant increases in 

weighted delay are observed in the recovery from 𝑡 =  7.8 ℎ to 𝑡 = 7.9 ℎ.  

Table 6-5: Result of AAs 

Rescheduling time Junction area Algorithm Order of the trains 

07:00:00 Finsbury Park 

Junction 

TOE Order = [A1, A2, A6, A3, A4, A7, A5] 

07:31:49 Finsbury Park 

Junction 

TS Order = [B4, B6, B7, B1, B5, B2, B3, C6, 

C1, C4, C2, C7, C3, C5,] 

07:50:35 Finsbury Park 

Junction 

FCFS Order = [D1, D6, D2, D3, D7, D4, D5] 
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Figure 6-17: Weighted delay propagation when TOE-TS-FCFS is applied 

6.6.3 Summary 

 

Figure 6-18: A comparison of total weighted delays when different strategies applied 

Figure 6-18 gives a direct view on the instantaneous total weighted delays when different 

strategies applied to the same scenario. The green line (TOE is applied) shows the worst 
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recovery on the delay propagation since no reordering strategy has applied, and the delayed 

trains (e.g. B2, B3, C2, C3) block the tracks for a long time prevent other trains from passing. 

The blue curve (FCFS is applied) shows a higher lateness between 𝑡 = 7.75 to 𝑡 =  7.85 

because C2 is scheduled before C4. However, the pink curve (when TOE-TS-FCFS is applied) 

and the yellow curve (TS is applied) have a better recovery in this time period because C2 is 

scheduled after C4. The blue curve and the yellow curve both suffer a rebound after 𝑡 = 8 due 

to the lateness on D5 is accumulated because of some frequent accelerate and decelerate 

movements after D7. On the contrary, the pink curve is stably restored since D5 can run 

smoothly after D4. 

From each of the graphs shown, the results from the cost function (i.e. total delay penalty) and 

three KPIs of total weighted delay curves – maximum weighted lateness, time to recover and 

integral of delay – and the proportion of the maximum possible integral of delay value are 

collected and summarised in Table 6-6.   

Rescheduling 

strategy  

Total delay 

penalty (£) 

Max 

weighted 

Lateness (𝒔) 

Time to 

recover 

(𝒔) 

Integral Delay (𝒔𝟐) 

(normalised value 

(%)) 

Integral Delay 

Proportion 

(%) 

TOE 535.82 2987 2297 35488 (100) 51.723 

FCFS 297.58 2097 2003 21351 (60.16) 50.832 

TS 301.72 2097 2061 22065 (62.18) 51.054 

AAs 295.3 2097 2009 20732(58.42) 49.211 

Table 6-6: Comparison information of different strategies 

From the table shown above, TOE takes the biggest total delay penalty, and AAs takes the 

smallest value. The differences between FCFS, TS and AAs are quite small. FCFS, TS and AAs 

have the same max weighted lateness, and FCFS takes the shortest time to recover in this 

scenario. AAs takes a slightly longer time to recover than FCFS in this scenario. However, AAs 
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has the smallest integral delay, the smallest integral delay proportion in this case, which reflects 

the delay occupation and how severe the delays are relative to the maximum weighted lateness 

throughout the period of the time window.   

6.7 Conclusion 

It has been shown that supervisory control has the potential to provide a feasible means to solve 

problems with dynamic information by switching the control strategies.  A general introduction 

to the supervisory control is given and the different types of supervision were demonstrated in 

the first part of this chapter. 

A performance-based supervisory control on railway rescheduling management has been 

developed to solve the rescheduling problem by combining different algorithms together with 

a specified sequence and time of changing.  The BRaVE simulator and a specially developed 

visualisation tool are used to visualise and assess the results.  

BRaVE can output log files compatible with the visualisation tools (programmed with 

MATLAB). Stations and signals can be selected from a menu and set as timing points. In 

addition to timing points, the arrival and departure times at stations and passing times at selected 

signals can be recorded for all trains. From this information, details of the propagation of delays 

in the system can be derived by the visualisation method mentioned in Chapter 3. 

The case study in this section evaluates the performance of applying different algorithms alone, 

as well as the alternating algorithms provided by supervisory control.  It verifies the benefits in 

using more than one algorithm in solving complex, dynamic problems.
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CHAPTER 7  

STUDY OF MULTI-JUNCTION RESCHEDULING IN A 

LARGE SCALE RAILWAY NETWORK 

 

Railway dispatching and scheduling are conventionally modelled using classical technologies, 

such as constraint programming [122] and logic programming [123]. These approaches are 

good at modelling static situations where all resources are known in advance, and constraints 

are known (e.g. train timetabling problem (TTP)). However, they lack the ability to handle 

dynamic situations with partial information. Additionally, as the size of the area to be 

considered and the number of trains increases, it becomes more difficult to implement effective 

centralised control strategies that are able to satisfy the problem of real-time traffic 

management. These issues have led researchers to consider new distributed approaches. Often 

a distributed artificial intelligence (DAI) system is used to approach this problem with multiple 

distributed “problem solvers” [124] . 

DAI, in general, is a method to solve complex decision making problems. It usually requires 

the distribution of an intelligent process among independent entities, thus it is able to 

accomplish large scale computation resources [125]. DAI systems consist of distributed 

processing nodes (also called agents) at a large scale. Therefore, DAI systems do not require 

all the relevant information to be considered and coupled at one time; in contrary, these nodes 

can act independently and partial solutions are generated by communication between nodes, 

http://en.wikipedia.org/wiki/Intelligent_agent


137 

often asynchronously. What’s more, the source may change or be updated during the execution 

process.  

The main benefit of adopting a DAI system in the railway network rescheduling problem is that 

it allows the local, independent intelligent systems to collaborate and interact with each other 

to perform traffic management based on a real-time condition and it potentially removes the 

upper limit of the maximum railway network size. The challenges arising with distributed 

processing are discussed in the next section and a blackboard architecture for constructing DAI 

systems are presented. 

In this chapter, a DAI model consisting of multiple junctions is constructed to solve train 

rescheduling problems on a large scale railway network. A detailed description of each 

component of the model is presented. A case study of multi-junction rescheduling is presented 

to demonstrate the efficiency of the DAI model in solving train rescheduling problems in a large 

scale railway network. 

7.1 Problem statement  

Generally, the real-time rescheduling problem can be defined as follows: given a railway 

network, the position and speed of each train entering the control region is known by the 

dispatchers, and decisions covering a set of train routes and passing times at each relevant 

crossing point in the network must be made when a delay is detected that may result in a conflict 

with the optimisation objectives. The train rescheduling problem can be categorized into static 

and dynamic rescheduling. For static rescheduling, the entire information of the whole network 

and all rolling stock is known before solving the problem. This information includes train 

arrival times, train lengths, train speed, etc. For dynamic rescheduling, the dispatchers only 

know the information of the trains at the time they enter the network. The schedule of the newly 
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entered train is based on the information of the trains currently in the network. All the 

information of later arriving trains is unknown [126]. 

In previous chapters, it has already been shown how rescheduling strategies at junctions 

influence delay recoveries by visualising the delay propagation of the system. Junctions, as vital 

components of the railway infrastructure, need to be intelligently controlled in delayed 

scenarios. The main purpose of this chapter is to define a junction control system (control rules 

and module architecture) which can be applied to a large network with dynamic traffic flows. 

Compared with the centralised railway junction control, in order to consider all junctions in the 

network at one time, a distributed railway junction control system has to achieve dynamic real-

time rescheduling through one or several separated junctions working cooperatively; these 

junctions are treated as decision centres (DCs) in a distributed junction control system.                                                                                                                                                                

One main problem of utilising distributed processing is how to guarantee that decisions taken 

locally with incomplete information contribute to the global goal. Various approaches are 

possible for global control including [125]: 

- Do nothing; 

- Implement hierarchical control; 

- Use optimisation techniques; 

- Use a market approach; 

- Use a collaborative approach.  

Doing nothing means letting each agent make their own decision corresponding to sub-

problems and return the results to the calling agent. Hierarchical control is used in a ‘blackboard 
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architecture’ for controlling the sequencing of each agent. Optimisation techniques such as the 

genetic algorithm or taboo search are used to find additional solutions to a global problem. The 

‘market approach’ uses a monetary value to balance supply and demand. In a collaborative 

approach, agents are continually exchanging information, and collaborate with global goals. 

7.2 Blackboard architecture of DAI systems 

The general models of DAI systems include blackboard architecture, contract net, and actors. 

The blackboard architecture is proposed as an approach to organize and operate a large AI 

system and is used in this thesis to providing hierarchical control to each processing node. It 

consists of three major components (see Figure 7-1) [127]: 

 The specialist modules, which are called knowledge sources (KSs), can be considered 

as human experts in the real world, each one provides specific expertise to the 

application. 

 The blackboard is a shared storage of problems, solutions and information. The 

blackboard can be considered as a dynamic “warehouse” of all possible solutions to the 

current problem which are provided by different KSs. 

 In the blackboard architecture, the control shell is constructed to control the problem-

solving process in the system. These KSs need an operating system to organise them in 

the most effective manner, and this is provided by the control shell. 
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Figure 7-1: Blackboard architecture [127]  

The main advantages of the blackboard architecture are: (1) separate, independent knowledge 

sources; (2) shared memory between each KSs; and (3) the possibilities of parallel processing. 

The shared memory contains all the data, variables and information used to solve the problem 

at hand. Gathering knowledge into separate, independent knowledge sources allows for a simple 

form of parallel processing, which may increase the speed and efficiency of the overall process 

[128]. By using this model, the structure becomes parallel and asynchronous. 

7.3 An architecture for network rescheduling 

In this section, a DAI system architecture is developed for railway rescheduling in a large scale 

operational network. The structure represented in Figure 7-2 is based on a traditional blackboard 

model with individual decision centres (DCs). One decision centre (DC) is a local control centre 

which can make decisions based on the local information. It is formed of a sensor module, an 

intelligent local rescheduling system module, a decision execution system module and a 

supervisor.  

DCs gather information from the whole railway network database through a sensor interface. 

After an intelligent local rescheduling process, a rescheduled timetable is calculated and 



141 

returned back to the railway network. These DCs are distributed but they share the same railway 

network database. Once a new timetable is delivered to the network, the network database is 

updated so that the neighbouring agents can react to the new condition. A global control centre 

is built to control different DCs to gather a reliable and feasible global solution. 

Railway network database

DC-1

...

Global decision
Delay  

Monitoring  

Sensor
Decision 

execution  system

Intelligent local rescheduling system

Supervisor

DC-2

Global control

Sensor
Decision 

execution  system

Intelligent local rescheduling system

Supervisor

 

Figure 7-2: Architecture of railway network rescheduling 

7.3.1 Network database 

The railway network database consists of three main elements: users (trains), resources 

(infrastructure) and management constraints from the control centre [129]. 

1) User: the information about users (trains) includes static characteristics and 

dynamical information about their state. The static quantities include the train 

identifier, train class, train running timetable and vehicle characteristics (e.g. max 
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speed, max acceleration). The dynamic quantities give the information about the 

train’s current position, speed and delay. 

2) Resources: the network resources are what users need to fulfil their scheduled plan. 

Here, the track identifier, length and maximum line speed are presented as the 

resources’ static data. States (free/occupied/prepared) and signal states (red/green) 

are regarded as dynamic quantities. 

3) Management constraints: the traffic management constraints lead rescheduling 

results when a delay is detected by the control centre. Some of these constraints are 

static like minimum headway, minimum dwell time, and train delay penalty, which 

are given by the control centre; some of them are dynamic, such as the current speed 

of the train. For example, when a delay has occurred, the driver is allowed to 

increase the speed of the train to recover the delay along the journey.  

7.3.2 Decision centre (DC) 

DCs are the sites in the network where the control action on the user’s state can be performed. 

Generally, DCs are the stations, switches and points. In this work, DCs are regarded as core 

junction areas and rescheduling decisions can be performed on all approaching users in the 

control zone. The size of a control zone depends on the capability of a DC, and one user is 

considered by one DC at one time. Thus, the boundary is usually situated at a specific distance 

(for example 10 km) from the core junction area, or at the edge of neighbouring DCs.  
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Figure 7-3: Control boundary description 

For example, in the upper graph of Figure 7-3, at time 𝑡 = 𝑡1, train T1 and T2 are approaching 

decision centre DC-1 inside of the boundary of the control zone and train T3 is approaching 

decision centre DC-2 outside of the boundary of DC-2. DC-1 calculates and provides a 

rescheduling solution for train T1 and T2, for example, T1 is scheduled to pass the junction 

area before T2. At this time, DC-2 has no train to schedule. In the lower graph of Figure 7-3, at 

time 𝑡 = 𝑡2, T1 has exited DC-1 and is approaching DC-2, T3 has entered the control zone of 

DC-2 and is approaching DC-2. T1 and T3 will be considered by DC-2 and a rescheduled plan 

will be performed on them. At this time, DC-1 is still executing the previous rescheduling plan. 

A DC consists of four modules: sensor, intelligent local rescheduling system, decision 

execution system and supervisor.  DCs do not communicate with each other directly, but a 

supervisory control is given to each DC to manage coordination and cooperation. 

1) Sensor: 
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The sensor module is in charge of gathering information from the network database 

to the local DC. To make a local rescheduling decision, all real-time data in the 

control zone should be transmitted to the DC. The management constraints from the 

DC are also gathered and stored by the sensor. It is a local database which can filter 

and store the data in real-time. 

2) Intelligent local rescheduling system: 

An intelligent local rescheduling system module is the core module of the DC. It 

requires the following capability for problem solving: i) a dynamic planning ability 

which can adjust the real-time situation; ii) a fast response to the real-time data when 

called; iii) an ability to learn what improves its performance as more problem 

solving experiences are obtained.  Proenca and Oliveira have previously proposed 

an adaptable architecture for railway traffic control in a communication based train 

control system which consists of two sub-systems: “Control” and “Learning” [130]. 

The “Control” module is responsible for traffic management and the “Learning” 

module has the objective of analysing the previous information, identifying cases 

and giving control rules. To satisfy all requirements of an intelligent local 

rescheduling system, it contains a learning process with its control process. A flow 

chart that indicates how a rescheduling system operates is presented in Figure 7-4. 

During the network operation, a rescheduling command will be sent to the local 

rescheduling system from the supervisor. When this order is received, the data 

collected from the sensor will be passed to the rescheduling system, which is dealt 

with by an advanced algorithm. The learning module requests the control registry to 

record, evaluate and select an algorithm, which requires the identification of the 
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problem and a recommendation for the most efficient methods for the optimisation. 

Generally, the objectives for local rescheduling are defined by the local DC. 
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Figure 7-4: Intelligent Local Rescheduling System 

3) Decision execution system: 

After the rescheduling progress, a rescheduled plan for all existing trains in the local 

control zone will be sent to the decision execution system. This plan is regarded as 

the best current plan and is processed immediately. The local rescheduling system 

and decision execution system cannot work synchronously; once a new call is 

received, the decision execution system is interrupted and waits for a new 

rescheduling plan.  

4) Supervisor:  

The supervisor is an important part which links the global control to the local control, 

the supervisor is in charge of giving orders to the local rescheduling centre. The 
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order is simply ‘go’ or ‘no go’ (‘1’ or ‘0’) based on the global information and the 

local information at the junctions. Performance-based supervisory control is used to 

provide rescheduling orders to the local rescheduling system. A detailed explanation 

can be found in Section 6.2.  

7.3.3 Global control  

Due to the complexity and the scale of the system, the network rescheduling problem has been 

divided into several individual local rescheduling problems. Here, a global control, commonly 

referred to as supervisory control, is introduced to coordinate all DCs by controlling different 

supervisors.   

Delay propagation is monitored by the global control centre and adjustments to the control are 

made based on the observed performance. A detailed explanation was provided in Section 6.2, 

and also in Section 6.2, a mathematic model of supervisory control is built, and an illustrative 

case study is presented in Chapter 6 to demonstrate how it operates. 

7.4 Case study of multi-junction rescheduling on the southern part of ECML 

7.4.1 Introduction to the control regions 

This multi-junction case study is an extension of the single-junction case study introduced in 

Chapter 5 and 6. A southern part of the ECML, which is a major inter-city railway with mixed 

services, was used as the basis of the model, and shown in Figure 7-5. The entire network has 

been allocated to three DCs and each DC indicates a junction that the rescheduling strategies 

are applied on. DC-1 is located near Finsbury Park Station and consists of two adjacent flat 

junctions. Considering the capability of DC-1, its control zone includes the lines which come 

from Welwyn Garden City Station and Hertford Station to the core junction area, and the 
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boundaries of the control zone addressed at Welwyn Garden City Station and Hertford Station 

are approximately 28 km from the core junction area. DC-2 is a bi-direction junction which is 

located near Belle Isle Station. The control zone considers the trains which come from the north 

after they exit the junction area of DC-1 (about 2.5 km from the junction of DC-2), the trains 

that come from King’s Cross Station in the south (about 1.2 km from the junction of DC-2), 

and trains that enter the network from the direction of the Midland Road Junction (about 6.4 km 

from the junction of DC-2). DC-3 is another flat junction near Finsbury Park Station and it 

considers the trains that come from the south after they exit from DC-2 (about 2 km from the 

junction of DC-3), and trains that come from Moorgate Station in the south (about 2 km from 

the junction of DC-3). See Figure 7-5. 
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Figure 7-5: Control region and DCs specification 
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7.4.2 Introduction to the vehicles and nominal timetables 

The modelling is carried out with a simplified timetable with 37 services running from 7:00 am 

to 9:00am based on a timetable published by Network Rail [92] (see Appendix C). These 

services include four types of vehicles, which are Class 91, Class 317, Class 313 and TL39. 

The characteristics of each type are presented in Table 7-1, including the maximum speed of 

the train, the maximum braking and acceleration rates, and the train-specific delay penalties. 

All this information is used to simulate train running and calculate the cost function in the 

following sections.  

Type Class 91 Class 317 Class 313 TL39 

Maximum speed (𝑘𝑚/ℎ) 201 160 121 160 

Maximum braking rate (𝑚𝑠−2) 0.67 0.78 0.78 0.78 

Max acceleration (𝑚𝑠−2) 0.588 0.588 0.588 1 

Total mass (tonnes) 394 264 220 332 

Train length (m) 253.9 158.6 118 161.99 

Number of seats 400 400 231 231 

Penalty (£𝑠−1) 0.5 0.2 0.1 0.1 

Table 7-1: Vehicles parameters 

7.4.3 Introduction to the delay scenarios  

Scenario 1: Train E1 is delayed at Potters Bar Station for 930 seconds and at Finsbury Park for 

300 seconds. 

- For this scenario, one train is delayed before it passes through DC-1, and different 

rescheduling decisions could cause different delay scenarios in the other DCs. 
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Scenario 2: Train E1 is delayed at Potters Bar Station for 930 seconds and at Finsbury Park for 

300 seconds. Train J2 is delayed at Old Street Station for 510 seconds. 

- For this scenario, the delays of Train E1 and Train J2 result in knock-on delays at two 

DCs; different rescheduling decisions could lead to a different delay recovery situation. 

Three tests are created with three different rescheduling strategies, which are TOE, FCFS and 

alternating algorithms (AAs) obtained by supervisory control, applied to each scenario. To 

evaluate the results, the delay propagations of different trains are presented in G-PM. 

Considering the cost function to minimise the total delay penalty, the total weighted delay is 

used to help visualise and compare the results. Delays are weighted according to the train type: 

the weight for the passenger trains (vehicle types are Class 313 and TL39) is 1, for the premium 

passenger trains (vehicle types are Class 317) it is 2, and for high speed trains (vehicle types 

are Class 91) it is set to 5.  

7.4.4 Results and analysis 

The results of scenario 1 

TOE, FCFS and AAs obtained by supervisory control are applied to the scenario 1. Table 7-2, 

Table 7-3 and Table 7-4 show the results obtained by different rescheduling approaches, 

including the times to active rescheduling, places of rescheduling, rescheduling approaches and 

the planned order in which the trains pass the junction area. Here, the order planned by the 

algorithm is different from the order has been implemented, and trains is following the planned 

order until a new reschedule plan is received. Figure 7-6, Figure 7-7 and Figure 7-8 show the 

total weighted delay recovery graphs obtained by the different approaches. The green line 
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shows the total weighted delay for the whole railway network with 37 trains included. The ten 

most delayed trains are also presented in the graph.   

Rescheduling 

time 

Junction area Algorithm Order of the trains 

07:00:00 DC-1 TOE Order = [S11, S16, S12, S15, S13, S24, S14, 

S27, S21, S28, S22, S25, S37, S26, S39, 

S23, S40, S35, S36, S38] 

07:00:00 DC-2 TOE Order = [S17, S20, S15, S33, S30, S14, S28, 

S41, S42, S26, S40, S38] 

07:00:00 DC-3 TOE Order = [S17, S20, S18, S19, S34, S33, S30, 

S31, S32, S45, S41, S42, S44, S46] 

Table 7-2: The rescheduling results of scenario 1 of TOE  

 

Figure 7-6: the delay propagation graph of scenario 1 of TOE 
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Rescheduling 

time 

Junction area Algorithm Order of the trains 

07:00:00 DC-1 FCFS Order = [S11, S16, S12, S15, S24, S21, S13, 

S27, S14, S28, S22, S25, S37, S26, S39, S23, 

S40, S35, S36, S38] 

07:00:00 DC-2 FCFS Order = [S17, S20, S33, S30, S15, S14, S28, 

S41, S42, S26, S40, S38] 

07:00:00 DC-3 FCFS Order = [S17, S20, S18, S19, S34, S33, S30, 

S31, S32, S45, S41, S42, S44, S46] 

Table 7-3: The rescheduling results of scenario 1 of FCFS  

 

Figure 7-7: the delay propagation graph of scenario 1 of FCFS 

Rescheduling 

time 

Junction area Algorithm Order of the trains 

07:00:00 DC-1 TOE Order = [S11, S16] 

07:00:00 DC-2 TOE Order = [S17, S20, S33] 

07:00:00 DC-3 TOE Order = [S17, S20, S18, S19, S34] 
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07:33:00 DC-1 BF Order = [S12, S24, S15, S13, S21, S14, S22, 

S28] 

07:33:53 DC-2 TOE Order = [30] 

07:35:35 DC-3 TOE Order = [S33, S30, S31, S32] 

07:46:08 DC-1 TS Order = [S27, S13, S21, S14, S22, S28, S25, 

S23, S26] 

07:50:46 DC-2 TOE Order = [S15, S14] 

07:56:27 DC-1 TOE Order = [S28, S22, S25, S26, S23] 

08:00:56 DC-3 TOE Order = [S45] 

08:01:52 DC-2 TOE Order = [S28, S41] 

08:03:53 DC-2 TOE Order = [S42] 

08:05:35 DC-3 TOE Order = [S41, S42, S44, S46] 

08:11:08 DC-1 TOE Order = [S37, S26, S39, S23, S40, S35, S36, 

S38] 

08:18:49 DC-2 TOE Order = [S26, S40, S38] 

Table 7-4: The rescheduling results of scenario 1 of AAs 

 

Figure 7-8: the delay propagation graph of scenario 1 of AAs 
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In Table 7-4, the application of TOE applies at each time only to the order of services have 

entered the control area, which means, the trains out of the control area are deleted from the 

original TOE order. Figure 7-6 shows a very bad performance when TOE is applied to each DC 

because there is no rescheduling strategy used to help recover the delay. From Figure 7-7 we 

can see that the weighted delay is restored by applying FCFS to the junctions. However, there 

is a significant influx in the total weighted delay at time 𝑡 = 7.8 ℎ because of the fact that the 

disruption on E1 at Finsbury Park Station delays the trains behind it. Figure 7-8 shows the 

weighted delay propagation obtained by AAs. The total weighted delay is observed to last for 

some time and then to recover quickly. It takes longer to recover than when applying FCFS, but 

no significant increase in weighted delay is observed during the recovery. 

The results of Scenario 2: 

In this section, TOE, FCFS and AAs obtained by supervisory control are applied to scenario 2.  

Table 7-5 and Table 7-6 show the results obtained by TOE and FCFS respectively, Table 7-7 

shows the results obtained by AAs applied on DC-1, and TOE applied on DC-2 and DC-3. 

Table 7-8 presents the results by applying AAs on all DCs. Figure 7-9, Figure 7-10, Figure 7-11 

and Figure 7-12 show the total weighted delay propagation graphs obtained by different 

approaches. 

Rescheduling 

time 

Junction area Algorithm Order of the trains 

07:00:00 DC-1 TOE Order = [S11, S16, S12, S15, S13, S24, S14, 

S27, S21, S28, S22, S25, S37, S26, S39, 

S23, S40, S35, S36, S38] 

07:00:00 DC-2 TOE Order = [S17, S20, S15, S33, S30, S14, S28, 

S41, S42, S26, S40, S38] 



155 

07:00:00 DC-3 TOE Order = [S17, S20, S18, S19, S34, S33, S30, 

S31, S32, S45, S41, S42, S44, S46] 

Table 7-5: The rescheduling results of scenario 2 of TOE  

 

Figure 7-9: the delay propagation graph of scenario 2 of TOE 

Rescheduling 

time 

Junction area Algorithm Order of the trains 

07:00:00 DC-1 FCFS Order = [S11, S16, S12, S15, S21, S13, S27, 

S14, S28, S22, S25, S37, S26, S39, S23, 

S40, S35, S36, S38] 

07:00:00 DC-2 FCFS Order = [S17, S20, S33, S30, S15, S14, S28, 

S41, S42, S26, S40, S38] 

07:00:00 DC-3 FCFS Order = [S17, S20, S18, S19, S33, S30, S34, 

S31, S32, S45, S41, S42, S44, S46] 

Table 7-6: The rescheduling results of scenario 2 of FCFS  
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Figure 7-10: the delay propagation graph of scenario 2 of FCFS 

Rescheduling 

time 

Junction area Algorithm Order of the trains 

07:00:00 DC-1 TOE Order = [S11, S16] 

07:00:00 DC-2 TOE Order = [S17, S20, S15, S33, S30, S14, S28, 

S41, S42, S26, S40, S38] 

07:00:00 DC-3 TOE Order = [S17, S20, S18, S19, S34, S33, S30, 

S31, S32, S45, S41, S42, S44, S46] 

07:33:00 DC-1 BF Order = [S12, S24, S15, S13, S21, S14, S22, 

S28] 

07:46:08 DC-1 TS Order = [S27, S13, S21, S14, S22, S28, S25, 

S23, S26] 

07:56:27 DC-1 TOE Order = [S28, S22, S25, S26, S23] 

08:11:08 DC-1 TOE Order = [S37, S26, S39, S23, S40, S35, S36, 

S38] 

Table 7-7: The rescheduling results of scenario 2 of AAs applied on DC-1 
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Figure 7-11: The delay propagation graph of scenario 2 of AAs applied on DC-1 

Rescheduling 

time 

Junction area Algorithm Order of the trains 

07:00:00 DC-1 TOE Order = [S11, S16] 

07:00:00 DC-2 TOE Order = [S17, S20, S33] 

07:00:00 DC-3 TOE Order = [S17, S20, S18, S19, S34] 

07:33:00 DC-1 BF Order = [S12, S24, S15, S13, S21, S14, S22, 

S28] 

07:33:53 DC-2 TOE Order = [30] 

07:35:35 DC-3 BF Order = [S33, S34, S30, S31, S32] 

07:46:08 DC-1 TS Order = [S27, S13, S21, S14, S22, S28, S25, 

S23, S26] 

07:50:46 DC-2 TOE Order = [S15, S14] 

07:56:27 DC-1 TOE Order = [S28, S22, S25, S26, S23] 

08:00:56 DC-3 TOE Order = [S45] 

08:01:52 DC-2 TOE Order = [S28, S41] 

08:03:53 DC-2 TOE Order = [S42] 

08:05:35 DC-3 FCFS Order = [S41, S42, S44, S46] 
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08:11:08 DC-1 TOE Order = [S37, S26, S39, S23, S40, S35, S36, 

S38] 

08:18:49 DC-2 TOE Order = [S26, S40, S38] 

Table 7-8: The rescheduling results of scenario 2 of AAs applied on DCs 

 

Figure 7-12: The delay propagation graph of scenario 2 of AAs applied all DCs 

Figure 7-9 shows a bad performance when TOE is applied to each DC because there is no 

rescheduling strategy used to help to recover delay. From Figure 7-10 we can observe an 

improvement in the total weighted delay by applying FCFS to the junctions. As in Figure 7-7, 

there is an increase in the total weighted delay by applying FCFS because the delay on E1 at 

Finsbury Park Station delays the trains behind it. Figure 7-11 shows the weighted delay 

propagation obtained by applying AAs to DC-1; the total weighted delay is significantly 

restored. However, due to the delay situation, all DCs are influenced. When the delayed 

scenario is run by applying AAs on all DCs, Figure 7-12 shows a better performance on the 

total weighted delay propagation.  
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A summary of the KPIs for each graph in this section is presented in the next section, and a 

discussion about the performance of supervisory control on a large scale network is given at the 

end of this chapter. 

7.4.5 Summary  

 

Figure 7-13: A comparison of total weighted delays when different strategies applied in scenario 1 

Figure 7-13 gives a direct view on the instantaneous total weighted delays when different 

strategies applied to the scenario 1. The green line (when TOE is applied) has a large influx 

from 𝑡 = 7.8 to 𝑡 = 8 because trains from other lines on time are waiting at the junction until 

the delayed train E1/S15 has passed through. The blue line (when FCFS is applied) still has an 

influx because train E1/S15 has been given the authority to pass the junction before the second 

delay happened. The pink line (when AAs is applied) shows a good recovery without any 

significant influx. 

For each of control strategy, the result from the cost function (i.e. total delay penalty) and the 

three KPIs of the delay propagation - maximum lateness, time to recover and integral of delay 
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of each scenario are collected and summarised in Table 7-9  and Table 7-10.  It can also be 

given as a proportion of the maximum possible integral of delay as: Integral of delay proportion 

= Integral of delay/ (Maximum lateness* Time to recover). This value gives an indication of 

how severe the delays were relative to the maximum lateness throughout the period of delay. 

Rescheduling 

strategy  

Total delay 

penalty (£) 

Maximum 

weighted 

Lateness (𝐬) 

Time to 

recover 

(𝐬) 

Integral Delay ( 𝐬𝟐 ) 

(normalised value 

(%)) 

Proportion 

of   

Integral 

Delay (%) 

TOE 674.3 7165 3055 7943800 (100) 36.29 

FCFS 371 5345 2352 5917500 (74.49) 47.07 

AAs 229.2 2737 2829 4845800 (61) 62.58 

Table 7-9: Comparison information of different strategies of scenario 1  

Table 7-9 shows that TOE takes the biggest total delay penalty, and AAs takes the smallest 

value, and AAs also has the smallest value of Maximum total weighted lateness, but FCFS takes 

the shortest time to recover from the disturbed situation. The integral delay shows that the 

system suffers less delay during the time of observation when AAs is applied, and the 

proportion of integral delay indicates there are no significant increases or decreases on the total 

weighted lateness when AAs is applied. 
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Figure 7-14: A comparison of total weighted delays when different strategies applied in scenario 2 

Figure 7-14 gives a direct view on the instantaneous total weighted delays when different 

strategies applied to the scenario 2. The green line (when TOE is applied) has the worst 

performance compare with other three due to no rescheduling strategy has been applied, which 

leads to the trains from other lines on time should wait at the junction until the delayed trains 

has passed through. The blue line (when FCFS is applied) still has an influx because of the 

same reason as in scenario 1. The orange line (when AAs is applied on DC-1) shows a better 

recovery compare with the green line and the blue line, however, the delays on J2/S34 still 

influence the traffic flows in DC-2 and DC-3. The pink line (when AAs is applied on all DCs) 

shows a good recovery without any significant influx because all DCs are controlled with 

rescheduling strategies. 

Rescheduling 

strategy  

Total delay 

penalty (£) 

Maximum 

weighted 

Lateness (𝒔) 

Time to 

recover 

(𝒔) 

Integral Delay (𝒔𝟐) 

(normalised value 

(%)) 

Proportion of   

Integral Delay 

(%) 

TOE 738.1 8056 3102 10597535 (100) 42.41 



162 

FCFS 422.6 6225 3244 7823300 (73.82) 38.74 

AAs on DC-1 425.8 4211 3102 7498280(70.75) 57.4 

AAs on all DCs 262.8 3390 3045 6133000(57.87) 59.41 

Table 7-10: Comparison information of different strategies of scenario 2 

Table 7-10 shows that TOE takes the biggest total delay penalty, and AAs on all DCs takes the 

smallest value. AAs on DC-1 takes the second biggest total delay penalty, and FCFS takes a 

slight smaller value. Even through FCFS takes smaller total delay penalty compared with AAs 

on DC-1, the values of three KPIs are bigger than AAs on DC-1. Table 7-10 shows the smallest 

value of Maximum total weighted lateness can be found when AAs are applied to all DCs, and 

this also gives the shortest time to recover. A better performance on delay recovery in the system 

is achieved by implementing AAs to all DCs. 

7.5 Conclusions  

In this chapter, a Distributed Artificial Intelligence (DAI) system is chosen to solve the railway 

network rescheduling problem due to the complexity and scale of the network. The concept of 

DAI is given and a typical model (the blackboard architecture) used to construct DAI are 

described. 

The global rescheduling problem has been divided into several individual local rescheduling 

problems and a blackboard architecture for railway network rescheduling based on a distributed 

artificial intelligence (DAI) system is proposed and structured to solve this problem. The whole 

network has been divided into different control centres (DCs) and each DC indicates a core 

junction area along the network. These DCs work individually and independently, but the 

network database and control memories are shared by all of them. The components of this 

architecture are detailed and illustrated with examples.  
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Finally, a case study using the ECML is presented to verify the feasibility and efficiency of this 

control architecture to the multi-junction train rescheduling problem. The advantages are that 

this method may increase the efficiency of rescheduling in a large scale network because all 

DCs are processing in parallel and asynchronously, and this method achieves coordination 

between each DC by controlling their supervisor through the global control shell. The 

rescheduling results are proven to be feasible and efficient for a multi-junction rescheduling 

problem with continuous traffic flows and dynamic traffic. The disadvantage is that global 

optimisation cannot be guaranteed because of the distributed architecture, and boundaries of 

the DCs should be carefully defined, which will influence the final results.
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CHAPTER 8  

CONCLUSION AND FURTHER WORK 

 

8.1 Conclusion 

The occurrence of disruptions leads to a chain of knock-on delays in the railway network due 

to the growth of traffic demands and limited resources. In this thesis, rescheduling approaches 

are studied to minimise the effect of these delays. The purpose of real-time train rescheduling 

is to find a conflict-free operating schedule for the services in a given area and a given time 

horizon during operations, providing a solution that is compatible with the actual traffic 

conditions and infrastructure constraints. The main objective of this thesis is to provide the 

dispatchers with better decision support by considering the delay propagation of the whole 

railway network with continuous traffic flows and mixed services after disruptive events.  

Firstly, the resilience of a railway network is defined at three levels: stable, robust and 

recoverable according to the system response to a delay. By analysing the train running 

information from the simulator, a time-based delay propagation graph is developed to visualise 

and evaluate the delay recovery performance.  

A number of existing railway rescheduling optimisation approaches have been introduced and 

applied in a series of scenarios for minimising the delays. A common benchmark case study is 

designed to compare the goodness of different rescheduling algorithms. The results have 

determined the appropriate applications for each algorithm by comparing them in the same 
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delay scenario. A cost function of total delay penalty (TDP) and the computation time (CT) are 

used to evaluate the performance of each algorithm.  

The characteristics of the applications for each algorithm can be concluded from their 

comparison, and some suggestions for choosing algorithms to use in the dynamic rescheduling 

can be formulated. Table 5-5 shows an example of choosing algorithms for different networks 

and delay conditions after considering the characteristics of each algorithm set out in Chapter 

5.  

In addition, a performance-based supervisory control on railway rescheduling management has 

been developed to solve the rescheduling problem by combining different algorithms together 

with a specified sequence and time of changing. This control method provides a way of 

changing algorithms to deal with continuous traffic flows and mixed services after disruptive 

events. Algorithms are selected by the local area based on the current network and delay 

conditions. A case study is provided to show the efficiency of alternating algorithms to support 

a complicated scenario.  

Finally, to deal with the multi-junction train rescheduling problem, a DAI system architecture 

of train rescheduling in a large scale network is introduced. This system is constructed based 

on a blackboard model with individual decision centres (DC) and a global control shell. The 

DC is formed of a sensor module, a local rescheduling module, a decision execution module 

and a supervisor. The sensors are in charge of collecting information from the whole railway 

network database. The local rescheduling systems generate reschedule plans based on the local 

information, the execution modules take charge of transmitting new production plans and the 

supervisors are responsible for selecting algorithms and determining the time of application. 

All DCs work individually and independently, but the network database and control memories 
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are shared by all DCs. A case study using the ECML is presented to verify the feasibility and 

efficiency of this control architecture to the multi-junction train rescheduling problem. The 

advantages are that this method may increase the efficiency of rescheduling in a large scale 

network because all DCs are processing in parallel and asynchronously, and this method 

achieves coordination between each DC by controlling their supervisor through the global 

control shell. The rescheduling results are proven to be feasible and efficient to a multi-junction 

rescheduling problem with continuous traffic flows and dynamic situation. The disadvantage is 

that global optimisation cannot be guaranteed, and boundaries of the DCs should be carefully 

defined, which may influence the final results. 

8.2 Further Work 

Based on the case studies of the optimal single-junction rescheduling and the multi-junction 

control approach, further tasks are proposed to extend the work. 

(1) The reported research focuses on the reordering of trains in the junction area. Some 

operational management measures such as train rerouting, platforming at the junctions, 

cancelling a service or reallocating a driver could be considered in the future in order to 

develop a more comprehensive decision support system. 

(2)  The supervisory control system selects algorithms based on some rules which have 

been derived through a comparison of a number of advanced algorithms used in 

different scenarios in this thesis. The reliability of these rules will impact the decision 

made by the control centre. One area of future work is to investigate the relationship 

between the network conditions and the appropriateness of using the algorithms. This 

will give a clearer understanding of algorithm application, and it will help to select more 

appropriate algorithms. 
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(3) Although the supervisory control system was tested on the ECML with three junctions 

included, the generalisation of this approach to a larger railway network with a more 

complicated topological structure should be studied and justified. In addition, the 

rescheduling process, including transmission of network conditions, conflict detection, 

the prediction of train current state, as well as the delivery of solution plans, can also be 

evaluated in more detail. 

(4) This preliminary research on train rescheduling for railway networks was based on an 

off-line laboratory test environment with computer simulation experiments. Due to the 

limitations of simulation modelling, differences exist between the modelling and real 

railway traffic management. The validation of the algorithms and control architectures 

proposed in this research to practical railway traffic systems could be necessary in future. 

(5) Considering the energy efficiency, a dispatching system should be able to control the 

speed of the train, reduce unnecessary train stops and smooth the traffic flow of the 

junction area in the railway network in order to lower carbon emissions and improve 

the quality of service; further work should take optimal energy consumption into 

account.
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APPENDIX A 

HERMES: A MICROSCOPIC SIMULATIOR OF 

RAILWAY TRAFFIC 

 

The Holistic Environment for Rail Modelling and Experimental Simulation (HERMES) 

simulator is an object-oriented microscopic railway simulator produced by the British 

company GRAFFICA that models all aspects of a railway operation [131]. The simulation 

model consists of six different components respectively representing the infrastructure 

(signals, points and stations), the rolling stock, the signalling systems, the interlocking, 

the timetable and the human behaviour (driver/passenger behaviour or dispatcher 

decisions). 

Figure A-0-1 shows the user view of the simulator, including track information, train 

types, timing window, routing decision window, and train running characteristics. 

HERMES is highly flexible, allowing the modification of many parameters. For example, 

the timetable information, train and routing information are all editable in the simulation. 

Moreover, it is equipped with an open set of APIs that allow the users to introduce traffic 

disturbances, infrastructure disruptions and/or customise functions relative to the driver 

behaviour or the route setting. The simulator is used in this thesis to run trains on a section 

of a railway network. It may be run as timetabled, and also with a delay that is inserted 

artificially. HERMES can then calculate the running of trains after the introduction of the 

delay. The times of arrival and departure at stations and passing times at selected signals 

can be recorded for all trains. These points are called timing points in this study. From 
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this information, details of the propagation of delays and of the resilience of the system 

can be derived. 

 

Figure A-0-1: User interface of the HERMES simulator. 

To summary, HERMES is an interface to the dispatchers to provide data of event types, 

subscriptions and the actual state of the network during simulation [132]. The key benefits 

of HERMES include [131]: 

 Provides a microscopic platform to provide a high-fidelity simulation of railway 

operations; 

 Simulates the actions and models the behaviour of the driver; 

 Reproduces the characteristics of train operation of railway networks; 

 Predicts potential conflicts between trains at junctions; 

 Provides support for timetable development and validation; 

 Accurately negotiates the operational mechanisms behind the aspects of railway 

signalling;  

 Models ATO in ERTMS Levels 1, 2 and 3; 

 Provides support for accurate and detailed mapping of rail infrastructure.
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APPENDIX B 

RESULTS OF THE CASE STUDY IN CHAPTER 5 

 

(a)  Results analysis for scenarios 1.1 to 1.4.1 

The results include two main indictors which are TDP and CT for each algorithm, and are 

recorded to address different scenarios, Table B-1 show the results for scenarios 1.1 to 

1.4.1. 

Approaches TDP(pence) 

& CT(ms) 

Numbers of trains  

7  10  13  14  

TOE TDP 372.0 465.0 569.0 671.0 

CT 1 1 1 1 

FCFS TDP 268.0 308.0 356.0 382.8 

CT 1 1 1 1 

FLFS TDP 372.0 465.0 569.0 671.0 

CT 9 12 18 23 

BF TDP 263.0 298.0 342.0 361.4 

CT 1104 17117 513252 10685345 

DP TDP 263.0 298.0 342.0 361.4 

CT 399 7991 235449 2811818 

DTBE TDP 263.0 298.0 342.0 361.4 

CT 185 1460 17986 119640 

ACO TDP 263.0 298.0 342.0 367.4 

CT 146 272 1049 5794 

GA TDP 263.0 300.14 356.23 364.01 

CT 226 727 4958 20074 

SA TDP 263.0 298.0 342.0 404.164 

CT 243 952 9214 19835 
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TS TDP 263.0 298.0 342.0 362.6 

CT 15 35 299 2072.1 

LS TDP 263.0 298.0 342.0 378.602 

CT 53 239 3837 21030 

Table B-1: Results of scenarios 1.1 to 1.4.1 

According to the total delay penalty results, we can rank different algorithms by the 

quality of the solutions. The ranks of different algorithms by comparing their TDP in 

different delayed scenarios are represented below: 

 For scenario 1.1 the rank is BF = DP = DTBE = ACO = GA = SA = TS = LS < 

FCFS < FLFS = TOE.  

 For scenario 1.2 the rank is BF = DP = DTBE = ACO = SA = TS = LS < GA < 

FCFS < FLFS = TOE. 

 For scenario 1.3 the rank is BF = DP = DTBE = ACO = SA = TS = LS < FCFS < 

GA < FLFS = TOE. 

 For scenario 1.4.1 the rank is BF = DP = DTBE < TS < GA < ACO < LS < FCFS 

< SA < FLFS = TOE. 

(b)  Results analysis for scenarios 1.4.1 to 1.4.6 

Table 4.7 shows the results for scenarios 1.4.1 to 1.4.6. All scenarios are 14-train 

scenarios with the same original timetable, with an increasing delay on train 01. The total 

delay penalty and computation time for the different algorithms are recorded in Table 4.7 

with a delay size from 2 minutes to 30 minutes. 

Approa

ches 

TDP(pence) 

& CT(ms) 

Delay on Train 01 (minutes) 

2 5 10 15 20  30 

TOE TDP 671.0 2555.2 5783.0 9023.0 12263.0 18743.0 
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CT 1 1 1 1 1 1 

FCFS TDP 382.8 1500.8 3400.6 4757.0 6298.0 9898.0 

CT 1 1 1 1 1 1 

FLFS TDP 671.0 1568.4 3252.8 4592.2 6284.0 9884.0 

CT 23 20 17 18 18 20 

BF TDP 361.4 1283.0 2813.8 4592.2 6284.0 9884.0 

CT 10685345 7437426 9265637 8142909 6993564 6987316 

DP TDP 361.4 1283.0 2813.8 4592.2 6284.0 9884.0 

CT 2811818 2650093 2630334 2563068 2808200 2874303 

DTBE  TDP 361.4 1283.0 2852.6 4592.2 6284.0 9884.0 

CT 119640 77077 38778 30530 24494 20590 

ACO TDP 367.4 1536.91 3291.56 4738.61 6284 9884 

CT 5794.162 6092.14 6951.22 6900.71 5486.28 5394.49 

GA  TDP 364.01 1424.08 2962.35 4650.72 6284 9884 

CT 20073.63 16967.66 16413.58 18023.05 12813.32 12786.87 

SA  TDP 404.164 1421.3 3013.96 4670.55 6284 9884 

CT 19835.29 17501.34 15301.22 14524.89 14315.48 15004.79 

TS  TDP 362.6 1323.32 3340.6 4744 6284 9884 

CT 2072.28 2042.05 1975.55 1637.94 1515.13 1595.14 

LS TDP 378.602 1312.00 2817.81 4598.90 6284 9884 

CT 21029.96 13497.07 10947.47 10477.87 7072.28 6906.99 

Table B-2: Results of scenarios 1.4.1 to 1.4.6 

According to the results of the total delay penalty of each column, we can rank the 

different algorithms as below:  

 In scenario 1.4.1, the rank is BF = DP = DTBE < TS < GA < ACO < LS < FCFS 

< SA < FLFS = TOE. 
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 In scenario 1.4.2, the rank is BF = DP = DTBE < LS < TS < SA < GA < ACO < 

FCFS < FLFS < TOE. 

 In scenario 1.4.3, the rank is BF = DP < LS < DTBE < GA < SA < FLFS < ACO 

< TS < FCFS < TOE. 

 In scenario 1.4.4, the rank is BF = DP = DTBE = FLFS < LS < GA < SA < ACO 

< T S < FCFS < TOE. 

 In scenario 1.4.5, the rank is BF = DP = DTBE = FLFS = ACO = GA = SA = TS 

= LS < FCFS < TOE. 

 In scenario 1.4.6, the rank is BF = DP = DTBE = FLFS = ACO = GA = SA = TS 

= LS < FCFS < TOE. 

(c) Results analysis for scenarios 2.1 to 2.3 

Table 4.8 shows the results for scenarios 2.1 to 2.3. These are all 14-train scenarios with 

the same original timetable; the speed of train 01 is kept as 80%, 50% and 20% of the 

original speed due to engine failure. Total delay penalty and computation time for 

different algorithms are recorded in Table 4.8 with the remaining speeds. 

Approaches TDP(pence) 

&CT(ms) 

Remaining speed /original speed 

80% 50% 20% 

TOE TDP 903.4 7656.8 37991 

CT 1 1 1 

FCFS TDP 450.8 4078.0 19397 

CT 1 11 1 

FLFS TDP 903.4 3868.2 19397 

CT 13 15 12 

BF TDP 427.4 3865 19493 

CT 7771248 9976705 10991864 

DP TDP 427.4 3865 19493 

CT 2585475 3419362 3603199 
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DTBE  TDP 427.4 3914 19493 

CT 112912 53938 37413 

ACO TDP 435.068 4041.11 19493 

CT 4443.8 5982.04 97331.71 

GA  TDP 434.94 3884.042 19500.35 

CT 15864.83 16083.06 29954.31 

SA  TDP 464.154 3934.854 19493 

CT 15122.09 13181.71 23528.17 

TS  TDP 428.84 4006.52 19493 

CT 1458.79 1423.83 2184.49 

LS TDP 437.888 3871.166 19493 

CT 12800.35 8850.8 18069.1 

Table B-3: Results of scenarios 2.1 to 2.3 

According to the results giving the total delay penalty of each column, we can rank 

different algorithms by their performance.  

 In scenario 2.1, the rank is BF = DP = DTBE < TS < GA < ACO < LS < FCFS < 

SA < FLFS = TOE. 

 In scenario 2.2, the rank is BF = DP < FLFS < LS < GA < DTBE < SA < ACO < 

TS < FCFS < TOE. 

 In scenario 2.3, the rank is FCFS = FLFS < BF = DP = DTBE = ACO =TS = LS 

= SA <GA <TOE. 

(d) Results analysis for scenarios 3.1 to 3.5 

Scenarios 3.1 to 3.5 deal with different initial delays which occur on different trains, and 

results are shown in the Table 4.9 below. 

Approaches TDP(pence) 

&CT(ms) 

Delay  on Train 01 + Delay on Train 04 (minutes) 

2+2  2+5  2+10  5+2  10+2  

TOE TDP 695.8 850.6 1408.6 2570.8 5783.0 
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CT 1 1 1 1 1 

FCFS TDP 401.6 457.4 704.4 1394.6 3283.8 

CT 1 1 1 1 1 

FLFS TDP 695.8 749.6 975.4 1584.0 3304.8 

CT 19 18 16 23 19 

BF TDP 386.2 441.2 689.4 1298.6 2876.8 

CT 10486682 10454257 10794885 10063199 10931261 

DP TDP 386.2 441.2 689.4 1298.6 2876.8 

CT 3208596 3612387 2889143 3357818 2931350 

DTBE  TDP 386.2 441.2 689.4 1298.6 3001.4 

CT 155719 132986 111959 82317 38520 

ACO TDP 386.2 441.2 689.4 1440.566 3152.858 

CT 6484.83 6734.3 5009.66 5268.29 4942.29 

GA  TDP 395.144 444.19 734.47 1376.48 2917.21 

CT 22512.46 19868.95 17187.18 14574.38 13714.54 

SA  TDP 429.604 448.01 705.12 1391.81 2983.912 

CT 23183.97 21148.16 18656.5 16143.99 12891.45 

TS  TDP 386.2 441.2 689.4 1344.488 3001.63 

CT 2286.63 1753.67 1653.96 1502.57 1302.91 

LS TDP 398.608 445.4 689.4 1328.714 2877.824 

CT 18188.85 18372.44 16332.18 9443.93 7919.01 

Table B-4: Results of scenarios 3.1 to 3.5 

According to the results showing the total delay penalty of each column, we can rank the 

different algorithms by their performance.  

 In scenario 3.1, the rank is BF = DP = DTBE =ACO =TS < GA < LS < FCFS < 

SA < FLFS = TOE. 

 In scenario 3.2, the rank is BF = DP = DTBE =ACO =TS < GA < LS < SA< FCFS 

< FLFS < TOE. 

 In scenario 3.3, the rank is BF = DP = DTBE =ACO =TS= LS < FCFS < SA< GA 

< FLFS < TOE. 
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 In scenario 3.3, the rank is BF = DP = DTBE < LS < TS < GA < SA < FCFS < 

ACO< FLFS < TOE. 

 In scenario 3.3, the rank is BF = DP< LS < GA < SA < DTBE < TS < ACO < 

FCFS < FLFS < TOE. 

(e)  Results analysis for scenarios 4.1 to 4.3 

Considering a multiple additive delay situation, scenarios 4.1 to 4.3 are designed with 

additive delays caused by engine failure which occurs to multiple trains. Table 4.10 shows 

the results for different algorithms in these three scenarios. The columns are formed as 

percentage + percentage, which means the remaining speed / original speed on train 01 + 

remaining speed / original speed on train 04. 

Approaches TDP(pence) 

& CT(ms) 

Remaining speed / Original speed on Train 01 + Remaining 

speed / Original speed on Train 04 

 80%+50% 50%+50% 20%+50% 

TOE TDP 3117.8 8754.8 49520.1 

CT 1 1 1 

FCFS TDP 1460.6 4720.6 20497.6 

CT 1 1 1 

FLFS TDP 1937.6 4706.6 20497.6 

CT 9 13 10 

BF TDP 1468.6 4706.6 20497.6 

CT 7816483 11539756 14072195 

DP TDP 1468.6 4706.6 20497.6 

CT 2633280 3828622 3562152 

DTBE  TDP 1465.6 4706.6 20497.6 

CT 107735 114516 116832 

ACO TDP 1454.61 4112.43 20497.6 

CT 4342.5 5333.45 4963 

GA  TDP 1471.82 4878.196 20497.6 

CT 14830.35 14926.78 13250 
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SA  TDP 1462.18 4706.6 20497.6 

CT 15758.6 14777.58 13211.2 

TS  TDP 1453.6 4706.6 20497.6 

CT 1293.63 1177.8 2000.9 

LS TDP 1457.44 4706.6 20497.6 

CT 12590.99 6054.03 7140 

Table B-5: Results of scenarios 4.1to 4.3 

According to the results for total delay penalty of each column, the different algorithms 

can be ranked by their performance. 

 In scenario 4.1, the rank is TS < ACO < LS< FCFS < SA < DTBE < BF = DP < 

GA < FLFS = TOE. 

 In scenario 4.2, the rank is ACO < BF = DP = DTBE = SA=TS=LS =FLFS < 

FCFS<GA <TOE. 

 In scenario 4.3, the rank is BF = DP = DTBE =ACO =TS= LS = SA= GA= FCFS 

=FLFS < TOE. 
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APPENDIX C 

NOMINAL TIMETABLE OF THE CASE STUDY IN 

CHAPTER 7 

 

The model in Chapter 7 is carried out with a simplified timetable with 37 services running 

from 7:00 am to 9:00am based on a practical timetable published by Network Rail [92]. 

The following tables give the information of these 37 services, including the Train 

numbers, Service IDs/Train IDs, Types of vehicles, Departure time at the stations, 

Minimum and Maximum dwell time at the stations and Arrival time at the termination. 

Timetable 1: Hertford to Moor Gate 

 1 2 3 4 5 

S12/A1 S21/A2 S22/A3 S23/A4 S35/A5 

Class 313 Class 313 Class 313 Class 313 Class 313 

Hertford 07:00:00 07:15:00 07:30:00 07:45:00 08:00:00 

Bayford 

 

07:04:21 

30s~30s 

07:19:21 

30s~30s 

07:34:21 

30s~30s 

07:49:21 

30s~30s 

08:04:21 

30s~30s 

Cuffley 

 

07:09:00 

30s~30s 

07:24:00 

30s~30s 

07:39:00 

30s~30s 

07:54:00 

30s~30s 

08:09:00 

30s~30s 

Crews Hill 

 

07:12:00 

30s~30s 

07:27:00 

30s~30s 

07:42:10 

30s~30s 

07:57:10 

30s~30s 

08:12:10 

30s~30s 

Gordon Hill 

 

07:16:00 

60s~60s 

07:31:00 

60s~60s 

07:46:00 

60s~60s 

08:01:00 

60s~60s 

08:16:00 

60s~60s 

Enfield Chase  

 

07:18:30 

60s~60s 

07:33:30 

60s~60s 

07:48:30 

60s~60s 

08:03:30 

60s~60s 

08:18:30 

60s~60s 

Grange Park 

 

07:20:30 

30s~30s 

07:35:30 

30s~30s 

07:50:20 

30s~30s 

08:05:20 

30s~30s 

08:20:20 

30s~30s 
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Winchmore 

Hill 

07:22:30 

30s~30s 

07:37:30 

30s~30s 

07:52:30 

30s~30s 

08:07:30 

30s~30s 

08:22:30 

30s~30s 

Palmers 

Green 

 

07:25:00 

30s~30s 

07:40:00 

30s~30s 

07:55:00 

30s~30s 

08:10:00 

30s~30s 

08:25:00 

30s~30s 

Bowes Park 

 

07:27:30 

30s~30s 

07:42:30 

30s~30s 

07:57:30 

30s~30s 

08:12:30 

30s~30s 

08:27:30 

30s~30s 

Alexandra  

Palace 

07:30:30 

60s~60s 

07:45:30 

60s~60s 

08:00:23 

60s~60s 

08:15:23 

60s~60s 

08:30:23 

60s~60s 

Hornsey  … … … … … 

Harringay … … … … … 

Finsbury park 

 

07:35:30 

60s~75s 

07:50:30 

60s~75s 

08:05:32 

60s~75s 

08:20:32 

60s~75s 

08:35:32 

60s~75s 

Drayton Park 

 

07:38:30 

60s~60s 

07:53:30 

60s~60s 

08:08:33 

60s~60s 

08:23:33 

60s~60s 

08:38:33 

60s~60s 

Highbury & 

Islington 

… … … … … 

Essex Road 

 

07:41:22 

30s~30s 

07:56:22 

30s~30s 

08:11:22 

30s~30s 

08:26:22 

30s~30s 

08:41:22 

30s~30s 

Old Street 

 

07:45:30 

60s~60s 

08:00:30 

60s~60s 

08:15:30 

60s~60s 

08:30:30 

60s~60s 

08:45:30 

60s~60s 

Moor Gate 

(Arrive Time) 

07:48:00 

 

08:03:00 

 

08:18:00 

 

08:33:00 

 

08:48:00 

 

 

Timetable 2: Welwyn Garden City to Moorgate 

 

 

 

6 7 8 9 10 11 

S11/C1 S24/C2 S37/C3  S13/B1 S25/B2 S36/B3 

Class 91 Class 91 Class 91 Class 313 Class 313 Class 313 

Welwyn 

Garden 

City 

07:00:00 07:30:00 08:00:00 07:06:00 07:36:00 

 

08:06:00 

 

Hatfield 

 

… … … 07:10:36 

30s~30s 

07:40:36 

30s~30s 

08:10:36 

30s~30s 
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Welham 

Green 

… … … 07:14:00 

30s~30s 

07:44:00 

30s~30s 

08:14:00 

30s~30s 

Brookman

s Parks 

… … … 07:16:30 

30s~30s 

07:46:30 

30s~30s 

08:16:30 

30s~30s 

Potters 

Bar 

 …  …  … 07:20:30 

75s~90s 

07:50:30 

75s~90s 

08:20:30 

75s~90s 

Hadley 

Wood  

… … … 07:24:00 

30s~30s 

07:54:00 

30s~30s 

08:24:00 

30s~30s 

New 

Barnet 

… … … 07:27:00 

30s~60s 

07:57:00 

30s~60s 

08:27:00 

30s~60s 

Oakleigh 

Park 

… … … 07:29:30 

30s~60s 

07:59:30 

30s~60s 

08:29:30 

30s~60s 

New 

Southgate 

… … … 07:32:45 

30s~30s 

08:02:45 

30s~30s 

08:32:45 

30s~30s 

Alexandra  

Palace 

… … … 07:36:00 

30s~30s 

08:06:00 

30s~30s 

08:36:00 

30s~30s 

Hornsey  

 

… … … 07:38:00 

30s~30s 

08:08:00 

30s~30s 

08:38:00 

30s~30s 

Harringay 

 

… … … 07:40:15 

30s~30s 

08:10:15 

30s~30s 

08:40:15 

30s~30s 

Finsbury 

park 

… … … 07:43:00 

30s~60s 

08:13:00 

30s~60s 

08:43:00 

30s~60s 

Drayton 

Park 

… … … 07:45:30 

30s~60s 

08:15:30 

30s~60s 

08:45:30 

30s~60s 

Highbury 

& Islington 

… … … … … … 

Essex 

Road 

… … … 07:49:30 

30s~30s 

08:19:30 

30s~30s 

08:49:30 

30s~30s 

Old Street … … … 07:53:00 

30s~60s 

08:23:00 

30s~60s 

08:53:00 

30s~60s 

Moor Gate 07:20:00 07:50:00 08:20:00 07:56:01 08:26:01 08:56:01 
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Timetable 3: Welwyn Garden City to Kings Cross 

 

 

 

12 13 14 15 16 17 

S16/F1 S27/F2 S39/F3 S14/D1 S26/D2 S38/D3 

Class 91 Class 91 Class 91 Class 317 Class 317 Class 317 

Welwyn 

Garden 

City 

07:05:00 07:35:00 08:05:00 07:10:00 07:40:00 08:10:00 

Hatfield … … … 07:15:00 

30s~60s 

07:45:00 

30s~60s 

08:15:00 

30s~60s 

Welham 

Green 

… … … … … … 

Brookman

s Parks 

… … … … … … 

Potters 

Bar 

… … … 07:23:15 

30s~60s 

07:53:15 

30s~60s 

08:23:15 

30s~60s 

Hadley 

Wood  

… … … … … … 

New 

Barnet 

… … … … … … 

Oakleigh 

Park 

… … … … … … 

New 

Southgate 

… … … … … … 

Alexandra  

Palace 

… … … 07:38:30 

30s~45s 

08:08:30 

30s~45s 

08:38:30 

30s~45s 

Hornsey  … … … … … … 

Harringay … … … … … … 

Finsbury 

park 

… … … 07:45:10 

30s~60s 

08:15:10 

30s~60s 

08:45:10 

30s~60s 

Holloway … … … … … … 

Belle Isle … … … 07:49:30 

60s~60s 

08:19:30 

60s~60s 

08:49:30 

60s~60s 

Kings 

Cross 

07:21:00 07:51:00 08:21:00 07:52:30 08:22:30 08:52:30 
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Timetable 4: Welwyn Garden City to Midland Road Junction 

 

 

 

18 19 20 

S15/E1 S28/E2 S40/E3 

TL 39 TL 39 TL 39 

Welwyn Garden 

City 

07:01:00 07:31:00 08:01:00 

Hatfield 07:05:30 

30s~30s 

07:35:30 

30s~30s 

08:05:30 

30s~30s 

Welham Green … … … 

Brookmans 

Parks 

… … … 

Potters Bar 07:11:30 

30s~60s 

07:41:30 

30s~60s 

08:11:30 

30s~60s 

Hadley Wood  07:15:00 

30s~30s 

07:45:00 

30s~30s 

08:15:00 

30s~30s 

New Barnet 07:18:00 

30s~60s 

07:48:00 

30s~60s 

08:18:00 

30s~60s 

Oakleigh Park 07:20:00 

30s~30s 

07:50:00 

30s~30s 

08:20:00 

30s~30s 

New Southgate 07:23:00 

30s~30s 

07:53:00 

30s~30s 

08:23:00 

30s~30s 

Alexandra  

Palace 

… … … 

Hornsey  … … … 

Harringay … … … 

Finsbury park 07:30:00 

30s~60s 

08:00:00 

30s~60s 

08:30:00 

30s~60s 

Holloway … … … 

Belle Isle … … … 

Midland Road 

Junction 

07:34:00 08:04:00 08:34:00 
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Timetable 5: Kings Cross to Welwyn Garden City 

 

 

 

21 22 23 24 25 26 

 S942/K1  S29/K2 S43/K3 S20/H1 S30/H2 S42/H3 

Class 91 Class 91 Class 91 Class 317 Class 317 Class 317 

Kings 

Cross 

07:00:00 07:30:00 08:00:00 07:03:00 07:33:00 08:03:00 

Belle Isle … … … … … … 

Holloway … … … … … … 

Finsbury 

park 

… … … 07:13:00 

75s~90s 

07:43:00 

75s~90s 

08:13:00 

75s~90s 

Harringay … … … … … … 

Hornsey … … … … … … 

Alexandra  

Palace 

… … … 07:22:00 

75s~90s 

07:52:00 

75s~90s 

08:22:00 

75s~90s 

New 

Southgate 

… … … … … … 

Oakleigh 

Park 

… … … … … … 

New 

Barnet 

… … … … … … 

Hadley 

Wood  

… … … … … … 

Potters Bar … … … 07:42:30 

30s~60s 

08:12:30 

30s~60s 

08:42:30 

30s~60s 

Brookmans 

Parks 

… … … … … … 

Welham 

Green 

... ... ... … … … 

Hatfield … … … 07:52:30 

30s~60s 

08:22:30 

30s~60s 

08:52:30 

30s~60s 

Welwyn 

Garden 

City 

07:18:00 07:48:00 08:18:00 07:56:00 

 

08:26:00 

 

08:56:00 
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Timetable 6: Moor Gate to Welwyn Garden City 

 

 

 

27 28 29 

S18/I1 S31/I2 S44/I3 

Class 313 Class 313 Class 313 

Moor Gate 07:00:00 07:30:00 08:00:00 

Old Street 07:02:30 

30s~30s 

07:32:30 

30s~30s 

08:02:30 

30s~30s 

Essex Road 07:06:00 

30s~30s 

07:36:00 

30s~30s 

08:06:00 

30s~30s 

Highbury & 

Islington 

… … … 

Drayton Park 07:09:00 

30s~60s 

07:39:00 

30s~60s 

08:09:00 

30s~60s 

Finsbury park 07:12:00 

75s~90s 

07:42:00 

75s~90s 

08:12:00 

75s~90s 

Harringay 07:15:00 

30s~30s 

07:45:00 

30s~30s 

08:15:00 

30s~30s 

Hornsey 07:16:45 

30s~30s 

07:46:47 

30s~30s 

08:16:47 

30s~30s 

Alexandra  

Palace 

07:19:00 

30s~60s 

07:49:00 

30s~60s 

08:19:00 

30s~60s 

New Southgate 07:27:20 

30s~30s 

07:57:20 

30s~30s 

08:27:20 

30s~30s 

Oakleigh Park 07:31:00 

30s~30s 

08:01:00 

30s~30s 

08:31:00 

30s~30s 

New Barnet 07:33:00 

30s~30s 

08:03:00 

30s~30s 

08:33:00 

30s~30s 

Hadley Wood  07:36:00 

30s~30s 

08:06:00 

30s~30s 

08:36:00 

30s~30s 

Potters Bar 07:40:00 

30s~60s 

08:10:00 

30s~60s 

08:40:00 

30s~60s 

Brookmans 

Parks 

07:43:00 

30s~30s 

08:13:00 

30s~30s 

08:43:00 

30s~30s 

Welham Green 07:45:30 

30s~30s 

08:15:30 

30s~30s 

08:45:30 

30s~30s 
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Hatfield 07:49:30 

30s~60s 

08:19:30 

30s~60s 

08:49:30 

30s~60s 

Welwyn Garden 

City 

07:53:00 08:23:01 08:53:01 

 

Timetable 7: Moor Gate to Hertford 

 

 

 

30 31 32 33 34 

S19/J1 S34/J2 S32/J3 S45/J4 S46/J5 

Class 313 Class 313 Class 313 Class 313 Class 313 

Moor Gate 07:05:00 07:20:00 07:35:00 07:50:00 08:05:00 

Old Street 07:07:30 

30s~30s 

07:22:30 

30s~30s 

07:37:30 

30s~30s 

07:52:30 

30s~30s 

08:07:30 

30s~30s 

Essex Road 07:11:00 

30s~30s 

07:26:00 

30s~30s 

07:41:00 

30s~30s 

07:56:00 

30s~30s 

08:11:00 

30s~30s 

Highbury & 

Islington 

… … … … … 

Drayton 

Park 

07:14:30 

60s~60s 

07:29:30 

60s~60s 

07:44:30 

60s~60s 

07:59:30 

60s~60s 

08:14:30 

60s~60s 

Finsbury 

park 

07:18:00 

75s~90s 

07:33:00 

75s~90s 

07:48:00 

75s~90s 

08:03:00 

75s~90s 

08:18:00 

75s~90s 

Harringay 07:20:50 

30s~30s 

07:35:50 

30s~30s 

07:50:50 

30s~30s 

08:05:50 

30s~30s 

08:20:50 

30s~30s 

Hornsey 07:22:00 

30s~30s 

07:37:00 

30s~30s 

07:52:00 

30s~30s 

08:07:00 

30s~30s 

08:22:00 

30s~30s 

Alexandra  

Palace 

07:25:10 

30s~30s 

07:40:10 

30s~30s 

07:55:10 

30s~30s 

08:10:10 

30s~30s 

08:25:10 

30s~30s 

Bowes Park 07:27:30 

30s~30s 

07:42:30 

30s~30s 

07:57:30 

30s~30s 

08:12:30 

30s~30s 

08:27:30 

30s~30s 

Palmers 

Green 

07:29:40 

30s~30s 

07:44:40 

30s~30s 

07:59:40 

30s~30s 

08:14:40 

30s~30s 

08:29:40 

30s~30s 

Winchmore 

Hill 

07:32:20 

30s~30s 

07:47:20 

30s~30s 

08:02:20 

30s~30s 

08:17:20 

30s~30s 

08:32:20 

30s~30s 

Grange Park 07:34:30 07:49:30 08:04:30 08:19:30 08:34:30 
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30s~30s 30s~30s 30s~30s 30s~30s 30s~30s 

Enfield 

Chase 

07:37:00 

60s~60s 

07:52:00 

60s~60s 

08:07:00 

60s~60s 

08:22:00 

60s~60s 

08:37:00 

60s~60s 

Gordon Hill 07:40:30 

60s~60s 

07:55:30 

60s~60s 

08:10:30 

60s~60s 

08:25:30 

60s~60s 

08:40:30 

60s~60s 

Crews Hill 07:42:30 

30s~30s 

07:57:30 

30s~30s 

08:12:30 

30s~30s 

08:27:30 

30s~30s 

08:42:30 

30s~30s 

Cuffley 07:45:30 

30s~30s 

08:00:30 

30s~30s 

08:15:30 

30s~30s 

08:30:30 

30s~30s 

08:45:30 

30s~30s 

Bayford 07:51:30 

30s~30s 

08:06:30 

30s~30s 

08:21:30 

30s~30s 

08:36:30 

30s~30s 

08:51:30 

30s~30s 

Hertford 07:55:00 08:10:01 08:25:01 08:40:01 08:55:01 

 

Timetable 8: Midland Road Junction to Welwyn Garden City 

 

 

 

35 36 37 

S17/G1 S33/G2 S41/G3 

TL 39 TL 39 TL 39 

Midland Road 

Junction 

07:02:00 07:32:00 08:02:00 

Belle Isle … … … 

Holloway … … … 

Finsbury park 07:09:30 

60s~210s 

07:39:30 

60s~210s 

08:09:30 

60s~210s 

Harringay … … … 

Hornsey … … … 

Alexandra  

Palace 

… … … 

New Southgate 07:15:00 

30s~30s 

07:45:00 

30s~30s 

08:15:00 

30s~30s 

Oakleigh Park 07:18:00 

30s~30s 

07:48:00 

30s~30s 

08:18:00 

30s~30s 

New Barnet 07:20:30 

60s~60s 

07:50:30 

60s~60s 

08:20:30 

60s~60s 
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Hadley Wood  07:23:10 

30s~30s 

07:53:10 

30s~30s 

08:23:10 

30s~30s 

Potters Bar 07:27:00 

60s~60s 

07:57:00 

60s~60s 

08:27:00 

60s~60s 

Brookmans 

Parks 

… … … 

Welham Green … … … 

Hatfield 07:33:30 

60s~60s 

08:03:30 

60s~60s 

08:33:30 

60s~60s 

Welwyn Garden 

City 

07:37:00 08:07:00 08:37:00 
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APPENDIX D 

PUBLICATIONS 

 

[1]  L. Dai, G. Nicholson, L. Chen, et al. (2013) "Visual Methods to Analyse Railway 

System Resilience", presented at IAROR, Copenhagen. 

[2]  M. Lu, G. Nicholson, F. Schmid, L. Dai, et al. (2013)"A Framework for the 

Evaluation of the Performance of Railway Networks", International Journal of 

Railway Technology, 2(2), 79-96. 

[3]  L. Dai, G. Nicholson, D. Kirkwood, et al. (2016) "Dynamic train rescheduling using 

alternating algorithm", accepted by ICIRT, Birmingham. 
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