534 research outputs found

    Torque Sensors for Robot Joint Control

    Get PDF

    Performance of modified jatropha oil in combination with hexagonal boron nitride particles as a bio-based lubricant for green machining

    Get PDF
    This study evaluates the machining performance of newly developed modified jatropha oils (MJO1, MJO3 and MJO5), both with and without hexagonal boron nitride (hBN) particles (ranging between 0.05 and 0.5 wt%) during turning of AISI 1045 using minimum quantity lubrication (MQL). The experimental results indicated that, viscosity improved with the increase in MJOs molar ratio and hBN concentration. Excellent tribological behaviours is found to correlated with a better machining performance were achieved by MJO5a with 0.05 wt%. The MJO5a sample showed the lowest values of cutting force, cutting temperature and surface roughness, with a prolonged tool life and less tool wear, qualifying itself to be a potential alternative to the synthetic ester, with regard to the environmental concern

    An anthropomorphic soft skeleton hand exploiting conditional models for piano playing.

    Get PDF
    The development of robotic manipulators and hands that show dexterity, adaptability, and subtle behavior comparable to human hands is an unsolved research challenge. In this article, we considered the passive dynamics of mechanically complex systems, such as a skeleton hand, as an approach to improving adaptability, dexterity, and richness of behavioral diversity of such robotic manipulators. With the use of state-of-the-art multimaterial three-dimensional printing technologies, it is possible to design and construct complex passive structures, namely, a complex anthropomorphic skeleton hand that shows anisotropic mechanical stiffness. We introduce a concept, termed the "conditional model," that exploits the anisotropic stiffness of complex soft-rigid hybrid systems. In this approach, the physical configuration, environment conditions, and conditional actuation (applied actuation) resulted in an observable conditional model, allowing joint actuation through passivity-based dynamic interactions. The conditional model approach allowed the physical configuration and actuation to be altered, enabling a single skeleton hand to perform three different phrases of piano music with varying styles and forms and facilitating improved dynamic behaviors and interactions with the piano over those achievable with a rigid end effector

    Robonaut 2 - The First Humanoid Robot in Space

    Get PDF
    NASA and General Motors have developed the second generation Robonaut, Robonaut 2 or R2, and it is scheduled to arrive on the International Space Station in late 2010 and undergo initial testing in early 2011. This state of the art, dexterous, anthropomorphic robotic torso has significant technical improvements over its predecessor making it a far more valuable tool for astronauts. Upgrades include: increased force sensing, greater range of motion, higher bandwidth and improved dexterity. R2 s integrated mechatronics design results in a more compact and robust distributed control system with a faction of the wiring of the original Robonaut. Modularity is prevalent throughout the hardware and software along with innovative and layered approaches for sensing and control. The most important aspects of the Robonaut philosophy are clearly present in this latest model s ability to allow comfortable human interaction and in its design to perform significant work using the same hardware and interfaces used by people. The following describes the mechanisms, integrated electronics, control strategies and user interface that make R2 a promising addition to the Space Station and other environments where humanoid robots can assist people

    A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems

    Get PDF
    Small-scale rotorcraft unmanned robotic systems (SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years (2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem, trends, and challenges are described from three aspects. Conclusions of the paper are presented, and the future of SRURSs is discussed to enable further research interests

    A review on design of upper limb exoskeletons

    Get PDF

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 344)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance
    • …
    corecore