11,726 research outputs found

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Strategic Intelligence Monitor on Personal Health Systems (SIMPHS): Report on Typology/Segmentation of the PHS Market

    Get PDF
    This market segmentation reports for Personal Health Systems (PHS) describes the methodological background and illustrates the principles of classification and typology regarding different fragments forming this market. It discusses different aspects of the market for PHS and highlights challenges towards a stringent and clear-cut typology or defining market segmentation. Based on these findings a preliminary hybrid typology and indications and insights are created in order to be used in the continuation of the SIMPHS project. It concludes with an annex containing examples and cases studies.JRC.DDG.J.4-Information Societ

    How to create value with unobtrusive monitoring technology in home-based dementia care: a multimethod study among key stakeholders

    Get PDF
    BACKGROUND: There is a growing interest to support extended independent living of people with dementia (PwD) via unobtrusive monitoring (UM) technologies which allow caregivers to remotely monitor lifestyle, health, and safety of PwD. However, these solutions will only be viable if developers obtain a clear picture of how to create value for all relevant stakeholders involved and achieve successful implementation. The aim of this study was therefore to explore the value proposition of UM technology in home-based dementia care and preconditions for successful implementation from a multi-stakeholder perspective. METHODS: We conducted an expert-informed survey among potential stakeholders (n = 25) to identify key stakeholders for UM technology in home-based dementia care. Subsequently, focus groups and semi-structured interviews were conducted among 5 key stakeholder groups (n = 24) including informal caregivers (n = 5), home care professionals (n = 5), PwD (n = 4), directors and managers within home care (n = 4), and policy advisors within the aged care and health insurance sector (n = 6). The sessions addressed the value proposition- and business model canvas and were analyzed using thematic analysis. RESULTS: Stakeholders agreed that UM technology should provide gains such as objective surveillance, timely interventions, and prevention of unnecessary control visits, whereas pains mainly included information overload, unplannable care due to real-time monitoring, and less human interaction. The overall design-oriented need referred to clear situation classifications including urgent care (fall- and wandering detection), non-urgent care (deviations in eating, drinking, sleeping), and future care (risk predictions). Most important preconditions for successful implementation of UM technology included inter-organizational collaboration, a shared vision on re-shaping existing care processes, integrated care ICT infrastructures, clear eligibility criteria for end-users, and flexible care reimbursement systems. CONCLUSIONS: Our findings can guide the value-driven development and implementation of UM technology for home-based dementia care. Stakeholder values were mostly aligned, although stakeholders all had their own perspective on what UM technology should accomplish. Besides, our study highlights the complexity of implementing novel UM technology in home-based dementia care. To achieve successful implementation, organizational and financial preconditions, as well as digital data exchange between home care organizations, will be important. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12877-022-03550-1

    Med-e-Tel 2017

    Get PDF

    VCare: A Personal Emergency Response System to Promote Safe and Independent Living Among Elders Staying by Themselves in Community or Residential Settings

    Get PDF
    ‘Population aging’ is a growing concern for most of us living in the twenty first century, primarily because many of us in the next few years will have a senior person to care for - spending money towards their healthcare expenditures AND/OR having to balance a full-time job with the responsibility of care-giving, travelling from another city to be with this elderly citizen who might be our parent, grand-parent or even community elders. As informal care-givers, if somehow we were able to monitor the day-to-day activities of our elderly dependents, and be alerted when wrong happens to them that would be of great help and lower the care-giving burden considerably. Information and Communication Technology (ICT) can certainly help in such a scenario, with tools and techniques that ensure safe living for the individual we are caring for, and save us from a lot of worry by providing us with anytime access into their lives or activities, and as a result check their functional state. However, we should be mindful of the tactics that could be adopted by harm causers to steal data stored in these products and try to curb the associated service costs. In short, we are in need of robust, cost-effective, useful, and secure solutions to help elders in our society to ‘age gracefully’. This work is a little step taken towards that direction. ‘Population aging’ is a growing concern for most of us living in the twenty first century, primarily because many of us in the next few years will have a senior person to care for - spending money towards their healthcare expenditures AND/OR having to balance a full-time job with the responsibility of care-giving, travelling from another city to be with this elderly citizen who might be our parent, grand-parent or even community elders. As informal care-givers, if somehow we were able to monitor the day-to-day activities of our elderly dependents, and be alerted when wrong happens to them that would be of great help and lower the care-giving burden considerably. Information and Communication Technology (ICT) can certainly help in such a scenario, with tools and techniques that ensure safe living for the individual we are caring for, and save us from a lot of worry by providing us with anytime access into their lives or activities, and as a result check their functional state. However, we should be mindful of the tactics that could be adopted by harm causers to steal data stored in these products and try to curb the associated service costs. In short, we are in need of robust, cost-effective, useful, and secure solutions to help elders in our society to ‘age gracefully’. This work is a little step taken towards that direction. Advisor: Tadeusz Wysock

    Survey on Wireless Sensor Networks for Reliable Life Services and Other Advanced Applications

    Get PDF
    Wireless is an old technology; however with the advancement of science and technology it has enabled us to send signals to one or more devices without tangible wire connections and reduced complexity. The increasing human needs have lead to the integration of different technologies into a single unit and Wireless Sensor Network (WSN) is one such integration where sensors are integrated with wireless system to form a network. This network is used for a plethora of applications in sectors like defence, agriculture, medical, environment and industry

    From Wearable Sensors to Smart Implants – Towards Pervasive and Personalised Healthcare

    No full text
    <p>Objective: This article discusses the evolution of pervasive healthcare from its inception for activity recognition using wearable sensors to the future of sensing implant deployment and data processing. Methods: We provide an overview of some of the past milestones and recent developments, categorised into different generations of pervasive sensing applications for health monitoring. This is followed by a review on recent technological advances that have allowed unobtrusive continuous sensing combined with diverse technologies to reshape the clinical workflow for both acute and chronic disease management. We discuss the opportunities of pervasive health monitoring through data linkages with other health informatics systems including the mining of health records, clinical trial databases, multi-omics data integration and social media. Conclusion: Technical advances have supported the evolution of the pervasive health paradigm towards preventative, predictive, personalised and participatory medicine. Significance: The sensing technologies discussed in this paper and their future evolution will play a key role in realising the goal of sustainable healthcare systems.</p> <p> </p
    corecore