1,624 research outputs found

    Fixture Design with FIXES: the Automatic Selection of Positioning, Clamping and Support Features for Prismatic Parts

    Get PDF
    FIXES is a computer aided system for the automatic generation of set-ups and for fixture design for prismatic parts, to be used in an integrated process planning environment. The generation of set-ups having been described in a previous paper [9], this paper concentrates on fixture design, in particular the automatic selection of the faces for the positioning, clamping and support of workpieces. The selection procedures described are based on both the topology of the prismatic part and the geometric relations between the different part elements (features). The geometric relations are evaluated with the aid of a so-called Converted Tolerance Scheme

    Active fixturing: literature review and future research directions

    Get PDF
    Fixtures are used to fixate, position and support workpieces and represent a crucial tool in manufacturing. Their performance determines the result of the whole manufacturing process of a product. There is a vast amount of research done on automatic fixture layout synthesis and optimisation and fixture design verification. Most of this work considers fixture mechanics to be static and the fixture elements to be passive. However, a new generation of fixtures has emerged that has actuated fixture elements for active control of the part–fixture system during manufacturing operations to increase the end product quality. This paper analyses the latest studies in the field of active fixture design and its relationship with flexible and reconfigurable fixturing systems. First, a brief introduction is given on the importance of research of fixturing systems. Secondly, the basics of workholding and fixture design are visited, after which the state-of-the-art in active fixturing and related concepts is presented. Fourthly, part–fixture dynamics and design strategies which take these into account are discussed. Fifthly, the control strategies used in active fixturing systems are examined. Finally, some final conclusions and prospective future research directions are presented

    Recent research on flexible fixtures for manufacturing processes

    Get PDF
    Fixtures, are used to fixate, position and support workpieces, and form a crucial tool in manufacturing. Their performance influences the manufacturing (and assembly) process of a product. Furthermore, fixturing can form a significant portion of the needed investment and total process planning time for the manufacturing system. Many fixturing concepts, as contribution to increase the flexibility of the manufacturing system, are reported in the literature. The flexible fixturing designs can be classified into the following seven categories: modular fixtures, flexible pallet systems, sensor-based fixture design, phase-change based concepts, chuck-based concepts, pin-type array fixtures and automatically reconfigurable fixtures. It is observed that the more intelligent and automated fixturing systems are designed with the demands for automation in certain industries in mind. Furthermore, different fixturing solutions suit the engineering demands for different manufacturing areas, this means that for the foreseeable future all technologies will remain current. From the self-reconfigurable fixturing techniques a new fixturing capability is emerging: in process reconfigurability for the optimal placement of clamps and supports during the whole process time. These several concepts together with some recent patents are studied here. The paper concludes with some prospective research directions in the field of flexible fixturing

    Fixture knowledge model development and implementation based on a functional design approach

    Get PDF
    The development of a knowledge model applied to fixture design is a complex task. The main purpose of such model is the development of a knowledge-based application to assist fixture designers. It comprises a detailed specification of the types and structures of data involved in the execution of the inference process needed to create a fixture solution for machining a raw part. A development method together with a knowledge model for automating fixture design is proposed. The development was divided into three parts: Design Process Model, definition of Top-level functional functions and Product Knowledge Model. Adopting a functional design approach, the fixture design solution was created in two levels: functional and detailed. The functional level is based on fixture functional elements and the detailed one is based on fixture commercial elements. The definitions and concepts used in the application are specified in several Units of Knowledge (UoK) that comprises the Fixture Knowledge Model. Common Knowledge Analysis and Design Structuring (CommonKADS), Methodology and software tools Oriented to KBE Applications (MOKA), Integrated DEFinition for Function Modelling (IDEF0) and Unified Modelling Language (UML) are the methodologies and techniques used in the proposed method. Finally, a prototype KBE application for fixture design was developed

    Eco-efficient process based on conventional machining as an alternative technology to chemical milling of aeronautical metal skin panels

    Get PDF
    El fresado químico es un proceso diseñado para la reducción de peso de pieles metálicas que, a pesar de los problemas medioambientales asociados, se utiliza en la industria aeronáutica desde los años 50. Entre sus ventajas figuran el cumplimiento de las estrictas tolerancias de diseño de piezas aeroespaciales y que pese a ser un proceso de mecanizado, no induce tensiones residuales. Sin embargo, el fresado químico es una tecnología contaminante y costosa que tiende a ser sustituida. Gracias a los avances realizados en el mecanizado, la tecnología de fresado convencional permite alcanzar las tolerancias requeridas siempre y cuando se consigan evitar las vibraciones y la flexión de la pieza, ambas relacionadas con los parámetros del proceso y con los sistemas de utillaje empleados. Esta tesis analiza las causas de la inestabilidad del corte y la deformación de las piezas a través de una revisión bibliográfica que cubre los modelos analíticos, las técnicas computacionales y las soluciones industriales en estudio actualmente. En ella, se aprecia cómo los modelos analíticos y las soluciones computacionales y de simulación se centran principalmente en la predicción off-line de vibraciones y de posibles flexiones de la pieza. Sin embargo, un enfoque más industrial ha llevado al diseño de sistemas de fijación, utillajes, amortiguadores basados en actuadores, sistemas de rigidez y controles adaptativos apoyados en simulaciones o en la selección estadística de parámetros. Además se han desarrollado distintas soluciones CAM basadas en la aplicación de gemelos virtuales. En la revisión bibliográfica se han encontrado pocos documentos relativos a pieles y suelos delgados por lo que se ha estudiado experimentalmente el efecto de los parámetros de corte en su mecanizado. Este conjunto de experimentos ha demostrado que, pese a usar un sistema que aseguraba la rigidez de la pieza, las pieles se comportaban de forma diferente a un sólido rígido en términos de fuerzas de mecanizado cuando se utilizaban velocidades de corte cercanas a la alta velocidad. También se ha verificado que todas las muestras mecanizadas entraban dentro de tolerancia en cuanto a la rugosidad de la pieza. Paralelamente, se ha comprobado que la correcta selección de parámetros de mecanizado puede reducir las fuerzas de corte y las tolerancias del proceso hasta un 20% y un 40%, respectivamente. Estos datos pueden tener aplicación industrial en la simplificación de los sistemas de amarre o en el incremento de la eficiencia del proceso. Este proceso también puede mejorarse incrementando la vida de la herramienta al utilizar fluidos de corte. Una correcta lubricación puede reducir la temperatura del proceso y las tensiones residuales inducidas a la pieza. Con este objetivo, se han desarrollado diferentes lubricantes, basados en el uso de líquidos iónicos (IL) y se han comparado con el comportamiento tribológico del par de contacto en seco y con una taladrina comercial. Los resultados obtenidos utilizando 1 wt% de los líquidos iónicos en un tribómetro tipo pin-on-disk demuestran que el IL no halogenado reduce significativamente el desgaste y la fricción entre el aluminio, material a mecanizar, y el carburo de tungsteno, material de la herramienta, eliminando casi toda la adhesión del aluminio sobre el pin, lo que puede incrementar considerablemente la vida de la herramienta.Chemical milling is a process designed to reduce the weight of metals skin panels. This process has been used since 1950s in the aerospace industry despite its environmental concern. Among its advantages, chemical milling does not induce residual stress and parts meet the required tolerances. However, this process is a pollutant and costly technology. Thanks to the last advances in conventional milling, machining processes can achieve similar quality results meanwhile vibration and part deflection are avoided. Both problems are usually related to the cutting parameters and the workholding. This thesis analyses the causes of the cutting instability and part deformation through a literature review that covers analytical models, computational techniques and industrial solutions. Analytics and computational solutions are mainly focused on chatter and deflection prediction and industrial approaches are focused on the design of workholdings, fixtures, damping actuators, stiffening devices, adaptive control systems based on simulations and the statistical parameters selection, and CAM solutions combined with the use of virtual twins applications. In this literature review, few research works about thin-plates and thin-floors is found so the effect of the cutting parameters is also studied experimentally. These experiments confirm that even using rigid workholdings, the behavior of the part is different to a rigid body at high speed machining. On the one hand, roughness values meet the required tolerances under every set of the tested parameters. On the other hand, a proper parameter selection reduces the cutting forces and process tolerances by up to 20% and 40%, respectively. This fact can be industrially used to simplify workholding and increase the machine efficiency. Another way to improve the process efficiency is to increase tool life by using cutting fluids. Their use can also decrease the temperature of the process and the induced stresses. For this purpose, different water-based lubricants containing three types of Ionic Liquids (IL) are compared to dry and commercial cutting fluid conditions by studying their tribological behavior. Pin on disk tests prove that just 1wt% of one of the halogen-free ILs significantly reduces wear and friction between both materials, aluminum and tungsten carbide. In fact, no wear scar is noticed on the ball when one of the ILs is used, which, therefore, could considerably increase tool life

    An integrated computer-aided modular fixture design system for machining semi-circular parts

    Get PDF
    Productivity is one of the most important factors in manufacturing processes because of the high level of market competition. In this regard, modular fixtures (MFs) play an important role in practically improving productivity in flexible manufacturing systems (FMSs) due to this technology using highly productive computer numerical control (CNC) machines. MFs consist of devices called jigs and fixtures for accurately holding the workpiece during different machining operations. The design process is complex, and traditional methods of MF design were not sufficiently productive. Computer-aided design (CAD) software has rapidly improved as a result of the development of computer technology, and has provided huge opportunities for modular fixture designers to use its 3D modelling capabilities to develop more automated systems. Computer-aided fixture design (CAFD) systems have become automated by the use of artificial intelligence (AI) technology. This study will investigate the further improvement of automated CAFD systems by using AI tools. In this research, an integrated CAFD is developed by considering four main requirements: · a 3D model of the workpiece, · an expert system, · assembly automation of MFs, · an efficient feature library. The 3D model is an important factor that can provide the appropriate specification of the workpiece; SolidWorks is used the CAD environment for undertaking the 3D modelling in this study. The expert system is applied as a tool to make right decisions about the CAFD planning process, including locating and clamping methods and their related element selection. This helps achieve a feasible fixture design layout. SolidWorks API and Visual Basic programming language are employed for the automating and simulation of the assembly process of MFs. A feature library of modular fixture elements is constructed as a means to simplify the fixture design process

    Fixture planning in a feature based environment

    Get PDF

    Fixturing information models in data model-driven product design and manufacture

    Get PDF
    In order to ensure effective decisions are made at each stage in the design and manufacture process, it is important that software tools should provide sufficient information to support the decision making of both designers and manufacturing engineers. This requirement can be applied to fixturing where research to date has typically focused on narrow functional support issues in fixture design and planning. The research reported in this thesis has explored how models of fixturing information can be defined, within an integrated information environment, and utilised across product design as well as manufacture. The work has focused on the definition of fixturing information within the context of a wide-ranging model that can capture the full capability of a manufacturing facility. [Continues.

    Thin-Wall Machining of Light Alloys: A Review of Models and Industrial Approaches

    Get PDF
    Thin-wall parts are common in the aeronautical sector. However, their machining presents serious challenges such as vibrations and part deflections. To deal with these challenges, di erent approaches have been followed in recent years. This work presents the state of the art of thin-wall light-alloy machining, analyzing the problems related to each type of thin-wall parts, exposing the causes of both instability and deformation through analytical models, summarizing the computational techniques used, and presenting the solutions proposed by di erent authors from an industrial point of view. Finally, some further research lines are proposed
    corecore