7,913 research outputs found

    "Last-Mile" preparation for a potential disaster

    Get PDF
    Extreme natural events, like e.g. tsunamis or earthquakes, regularly lead to catastrophes with dramatic consequences. In recent years natural disasters caused hundreds of thousands of deaths, destruction of infrastructure, disruption of economic activity and loss of billions of dollars worth of property and thus revealed considerable deficits hindering their effective management: Needs for stakeholders, decision-makers as well as for persons concerned include systematic risk identification and evaluation, a way to assess countermeasures, awareness raising and decision support systems to be employed before, during and after crisis situations. The overall goal of this study focuses on interdisciplinary integration of various scientific disciplines to contribute to a tsunami early warning information system. In comparison to most studies our focus is on high-end geometric and thematic analysis to meet the requirements of small-scale, heterogeneous and complex coastal urban systems. Data, methods and results from engineering, remote sensing and social sciences are interlinked and provide comprehensive information for disaster risk assessment, management and reduction. In detail, we combine inundation modeling, urban morphology analysis, population assessment, socio-economic analysis of the population and evacuation modeling. The interdisciplinary results eventually lead to recommendations for mitigation strategies in the fields of spatial planning or coping capacity

    Flood risk management in sponge cities:The role of integrated simulation and 3D visualization

    Get PDF
    The Sponge City concept has been promoted as a major programme of work to address increasing flood risk in urban areas, in combination with wider benefits for water resources and urban renewal. However, realization of the concept requires collaborative engagement with a wide range of professionals and with affected communities. Visualization can play an important role in this process. In this research, a sponge city flood simulation and forecasting system has been built which combines hydrological data, topographic data, GIS data and hydrodynamic models in real-time and interactive display in a three-dimensional environment. Actual and design flood events in a pilot sponge city have been simulated. The validation results show that the simulated urban water accumulation process is consistent with the actual monitoring data. Use of advanced virtual reality technology can enable simulations to be placed in the wider design context including enhanced awareness of multiple functions of urban ecosystems. This procedure can therefore reduce the information communication gap and encourage innovation regarding low impact development required for sponge city construction

    A BIM-based Approach for Predictive Safety Planning in the Construction Industry

    Get PDF
    The number of safety incidents in the construction industry is higher than that in most of the other industries. These safety incidents can be attributed to a lack of information and training. The new line of thinking in management has been moving toward predictive decision-making methods with the aid of artificial intelligence (AI). In this regard, the construction industry has been lagging on embracing modern management concepts. Hence, it is vital to re-engineer construction management to be on par with industries such as manufacturing. Building Information Modelling (BIM) can be recognized as the most promising technology that is introduced to the construction sector in the recent past. The information contained in a BIM model can be manipulated to aid construction safety management. This research presents BIM-based methods for predictive safety planning in the construction industry. At first, a comprehensive review of construction management challenges was conducted. This review revealed that although there are some studies regarding BIM-based predictive decision-making, still some knowledge gaps can be mentioned in the safety management of construction workers and building residents. To address the mentioned challenges, at first, this study integrates BIM with fuzzy logic to improve predictive safety planning to reduce the safety incidents in the construction projects. A Fuzzy Inference System (FIS) was developed based on the causality of safety incidents. The FIS extracts construction project data from BIM models while automatically assessing the risk of each potential hazard and also the total risk of a project. The proposed method enables construction managers to prevent construction incidents and enhance the health and safety of construction workers. Furthermore, this study develops a methodological framework for rule checking and the safety-focused ruleset for BIM-enabled building construction projects in Ontario, Canada. Identified safety standards were defined in Solibri Model checker software as a ruleset. The outcomes of this section will ensure the occupantā€™s safety through a proper design. Moreover, the findings of this will support promoting BIM in the Canadian construction industry

    Patient-specific virtual reality simulation : a patient-tailored approach of endovascular aneurysm repair

    Get PDF

    Technology capabilities for an automated and connected earthwork roadmap

    Get PDF
    Purpose: The development of communication and artificial intelligence technologies has raised interest in connectivity and increased autonomy of automated earthmoving equipment for earthwork. These changes are motivating work to reduce uncertainties, in terms of improving equipment object detection capability and reducing strikes and accidents on site. The purpose of this study is to illustrate industrial drivers for automated earthwork systems; identify the specific capabilities which make the transformation happen; and finally determine use cases that create value for the system. These three objectives act as components of a technology roadmap for automated and connected earthwork and can guide development of new products and services. Design/methodology/approach: This paper used a text mining approach in which the required data was captured through a structured literature review, and then expert knowledge was used for verification of the results. Findings: Automated and connected earthwork can enhance construction site and its embraced infrastructure, resilience by avoiding human faults during operations. Automating the monitoring process can lead to reliable anticipation of problems and facilitate real-time responses to unexpected situation via connectedness capabilities. Research findings are presented in three sections: industrial perspectives, trends and drivers for automated and connected earthwork; capabilities which are met by technologies; and use cases to demonstrate different capabilities. Originality/value: This study combines the results of disintegrated and fragmented research in the area of automated and connected earthwork and categorises them under new capability levels. The identified capabilities are classified in three main categories including reliable environmental perception, single equipment decision-making toward safe outcomes and fleet-level safety enhancement. Finally, four different levels of automation are proposed for earthwork technology roadmap

    Proceedings of the Second FAROS Public Workshop, 30th September 2014, Espoo, Finland

    Get PDF
    FAROS is an EC FP7 funded, three year project to develop an approach to incorporate human factors into Risk-Based Design of ships. The project consortium consists of 12 members including industry, academia and research institutes. The second FAROS Public Workshop was held in Dipoli Congress Centre in Otaniemi, Espoo, Finland, on the 30th of September 2014. The workshop included keynotes from industry, papers on risk models for aspects such as collision and grounding, fire and the human element, descriptions of parametric ship models and the overall approach being adopted in the FAROS project

    Assessing V and V Processes for Automation with Respect to Vulnerabilities to Loss of Airplane State Awareness

    Get PDF
    Automation has contributed substantially to the sustained improvement of aviation safety by minimizing the physical workload of the pilot and increasing operational efficiency. Nevertheless, in complex and highly automated aircraft, automation also has unintended consequences. As systems become more complex and the authority and autonomy (A&A) of the automation increases, human operators become relegated to the role of a system supervisor or administrator, a passive role not conducive to maintaining engagement and airplane state awareness (ASA). The consequence is that flight crews can often come to over rely on the automation, become less engaged in the human-machine interaction, and lose awareness of the automation mode under which the aircraft is operating. Likewise, the complexity of the system and automation modes may lead to poor understanding of the interaction between a mode of automation and a particular system configuration or phase of flight. These and other examples of mode confusion often lead to mismanaging the aircraft"TM"s energy state or the aircraft deviating from the intended flight path. This report examines methods for assessing whether, and how, operational constructs properly assign authority and autonomy in a safe and coordinated manner, with particular emphasis on assuring adequate airplane state awareness by the flight crew and air traffic controllers in off-nominal and/or complex situations

    "Last-Mile" preparation for a potential disaster - Interdisciplinary approach towards tsunami early warning and an evacuation information system for the coastal city of Padang, Indonesia

    Get PDF
    Extreme natural events, like e.g. tsunamis or earthquakes, regularly lead to catastrophes with dramatic consequences. In recent years natural disasters caused hundreds of thousands of deaths, destruction of infrastructure, disruption of economic activity and loss of billions of dollars worth of property and thus revealed considerable deficits hindering their effective management: Needs for stakeholders, decision-makers as well as for persons concerned include systematic risk identification and evaluation, a way to assess countermeasures, awareness raising and decision support systems to be employed before, during and after crisis situations. The overall goal of this study focuses on interdisciplinary integration of various scientific disciplines to contribute to a tsunami early warning information system. In comparison to most studies our focus is on high-end geometric and thematic analysis to meet the requirements of smallscale, heterogeneous and complex coastal urban systems. Data, methods and results from engineering, remote sensing and social sciences are interlinked and provide comprehensive information for disaster risk assessment, management and reduction. In detail, we combine inundation modeling, urban morphology analysis, population assessment, socioeconomic analysis of the population and evacuation modeling. The interdisciplinary results eventually lead to recommendations for mitigation strategies in the fields of spatial planning or coping capacity.DFG/03G0666A-
    • ā€¦
    corecore