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Introduction to the Proceedings of the Second FAROS Public 
Workshop 

Romanas Puisa, Research Project Manager, Brookes Bell LLP, 
romanas.puisa@brookesbell.com 

The ultimate technical objective of the FAROS project is to quantify and 

integrate the human error—which is found to be responsible for some 90% of 

maritime accidents—into risk-based ship design. Risk-based design is a design 

process supported by systematic risk assessment so that all significant design 

decisions are risk-informed. The FAROS project focuses on the concept design 

stage and adopts a system approach to the human error problem. The basic 

assumptions of the system approach are that the crew are fallible and errors 

are to be expected. Such errors are seen as consequences rather than causes; 

with their origins rooted in ship design on both meso (i.e. deck layout, 

arrangement of equipment and accessibility) and macro levels (i.e. hull and 

structural arrangement determining levels of ship motions, whole body 

vibration, and noise). Hence the broader operational aim of the project is to 

improve the conditions under which the crew works, thereby reducing the 
occurrence of human error and mitigating its consequences. 

Since October 2012 when the project kicked-off, much of valuable work has 

been in done towards the project objectives. In summary, the key technical 
deliverables of the first project period are: 

• Comprehensive literature review on human (crew) performance 

affected by ship motions, noise, whole body vibration, deck layout and 

arrangement of equipment and accessibility. The summary report is 

publically available on the project website. 

• High-level, scientifically backed framework that enables quantification 

of affected human performance and consequently human error. 

• Results of experiments on bridge simulators and engine room 

simulated in Virtual Reality. 

• Personal and societal risk models with the human error integrated. The 

risk models can be used in risk-based design, cost-benefit analysis of 

risk control options, inference of prescriptive design guidelines, etc. 

• Parametric models of oil tanker and RoPax ships to be optimised for 
low overall risk, high economic performance and energy efficiency. 
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The project findings and deliverables can already be used to enhance the 

training of crew members, upgrade internal safety procedures as a part of 

continuous improvement under the International Safety Management (ISM) 

Code, implement revisions and changes to plan approval processes, and 
improve ship design practices.  

Project FAROS organises a public workshop near the end of each project year. 

In total three public events are planned for. This way the consortium 

publicises project results obtained over each year of research and 
development.  

This year, we are meeting in Dipoli Congress Centre in Otanemi, Espoo, just 

outside Helsinki for the 2nd workshop. During the event delegates are invited 

to confer about the findings summarised above and learn about the research 

results at first hand. The event also serves as a good networking opportunity 

with the audience comprising representatives from shipyards, ship operators, 
design offices, various consultancies, class societies and other regulators.  

I would like to thank the local organising committee members Prof. Pentti 

Kujala, Dr. Jakub Montewka, and Seppo Kivimaa from AALTO University and 

VTT, as well as consortium partners Jose Gonzalez Celis (Lloyds Register) and 

Dr. Rachel Pawling (UCL) for gathering the material and compiling the 
proceedings.  

I would like also take this opportunity to promote the project website, 

www.project-faros.eu, where detailed descriptions of the majority of project 

findings can be found in public reports. I also invite you to include the project 

into your professional network on LinkedIn 

(http://www.linkedin.com/company/3194994), to stay up to speed with the 

progress.   

Dr Romanas Puisa,  

Project Coordinator 
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Ultra Light Arctic Ship Design – Critical Cause and Effect in Basic 
Processes and ULIVES Project dd 2008-2012. 

Veikko Hintsanen, Master Mariner,EMLog Project Manager of EU Martec 
“ULIVES” multinational ship design project yy 2008-2012 

Executive Summary  

Laffcomp is a privately owned start-up company, which was founded October 

2007.  The company operates in ultra-light fresh water vessel design and 
development for Finnish and European transport areas and river traffic. 

The company has been in co-operation with the German engineering company 
SMK and the Fraunhofer Institute, also from Germany ; since 2007.  

Laffcomp’s innovation project is based somewhat on the “Blue Ocean” idea.  

Not less due to the fact that the design bases differs so much from 

conventional Arctic ship Design.  In conventional Arctic ship design You need 

not to take into similar consideration  and  analyses of  the weight issues, 

operational safety (simultaneous ballasting operations /draft etc..) due to 

weight reducing of   the hull fi. design weight from 6000 tons of  steel  down to 
target of 600 tons hull weigh with the about same length of the vessel. 

Laffcomp plans to bring a new product to a new market place; Bioship ULIVES 
type vessels  

The ultra-light fresh water vessel’s most important features are ultra-light hull 

structure and ability to operate in icy inland water areas without conventional 
berths.  conditions, while minimizing waves in operation.  

Laffcomp’s case can be translated into Porter’s terms as well (Porter, 2000). 

The value innovators achieve sustainable competitive advantage through 

strategic positioning: performing different activities from rivals or similar 
activities in different ways.  

The main objectives of the design of the vessel were  

• Replacing road transfers with water transfers according to EU traffic 

strategy  

• Reduction in fuel costs / transferred tonnage  

• Reduction in CO2 
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• Reduction of total manufacturing costs of the vessel (especially in 

series production). 

• Radical reduction in the weight of the vessel (compared to 

conventionally manufactured steel vessels). 

• Increase of transfer capacity without increasing operational depth of 

the vessel.  

• Safe operation in shallow waters with minimum manning even when 
mooring/unmooring the vessel every two hours. 

The design was successful not only in terms of operational view but also in 

terms of safety processes of the vessel and the number of personnel in 
operations.   

The best evidence of the successful design was the State research report 

37/737/2009, in which there were up to 7 items of innovation during the 

design processes; to reduce effort and make safer human work when operating 

daily in several locks, with repeated vessel mooring, loading & discharging.  

The innovations make year round 24/7 operation safe and possible with 
minimum manning in shallow rivers, channels with locks and icy waters.  

The state research centre proposed, on the basis of innovative ideas and 

feasibility studies performed, Finnish Government innovation support to 

Laffcomp ship construction up to 800,000 Euros, following to EU rules and 
legislation. 

In addition to the massive design work described above, LCA /LCC studies was 

performed with Lappeenranta University for the vessels’ life cycle, 

consumption and emissions compared to trucking in Keitele-Päijänne cargo 

operations:  The result showed that the ship is a competitive alternative to 

trucking and ready for construction.    

References 

Michael E. Porter, What Is Strategy?, Harvard Business Review, January-February 

2000  
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The opportunities and challenges for bringing sophisticated 
modelling and analysis into the formative stages of design 
development, and design optimisation of ship concept. 

Antonios Mantouvalos, Naval Architecture Progress (NAP), Greece 

George Pratikakis, Naval Architecture Progress (NAP), Greece 

Naval Architecture Progress (NAP) has for years applied naval architecture 

knowledge into the design and modification of many ship types. Currently 

NAP is in the process of adopting an integrated ship design and optimisation 
system in order to benefit the better service quality to our customers. 

Many opportunities arise: 

1. More complex ship types can be designed. 

2. Reduce carbon footprint (Because it is becoming a currency on its 

own and has environmental impacts). 

3. Increase crew and passenger comfort and safety. 
4. Perform research studies. 

Many challenges arise: 

1. Train NAP staff to use sophisticated modelling and analysis tools. 

2. Using a Personal Computer or Server to run the tools. 

3. Persuade customers it is worth paying extra in order to search for 

an altogether better solution. 
4. Choose the right tool for our portfolio of ship types. 

NAP carries out 10-20 design studies every year for many different types of 

ships (such as bulbous bow modification after collision to achieve better 

performance). Currently being partners in EU projects gives us state-of-the-art 

know-how of products and services available within the EU where we can get 

better support. NAP is looking forward to adopting sophisticated modelling 
and analysis tools in the initial design process to reduce design time.  

The next stage for NAP is to include the Human Factor (HF) in the design in 

order to optimise it further. By adopting new and state-of-the-art techniques 

we believe we can better service our clients’ needs while at the same time 

offering the best possible quality of service, and all this in a cost-effective 

manner. 
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Modelling information flow on ship bridges as cooperative socio-
technical systems 

Dr. Cilli Sobiech, Project Manager CASCADe, OFFIS – Institute for 
Information Technology, cilli.sobiech@offis.de 

Ship bridges as socio-technical systems 

In CASCADe, the European FP7-Project “Model-based Cooperative and 

Adaptive Ship-based Context Aware Design”, the ship bridge is seen as a 

cooperative socio-technical system. This system consists of the ship bridge as a 

technical system and control centre of the ship that communicates with other 

ships, the shipping company or VTS stations.  Furthermore, we have crew 

members and human-machine interaction on the bridge as cooperative 

decision making is involved. For maritime safety, the ability of ship's 

personnel to co-ordinate activities and work as an effective team is vital during 

emergency situations or even during routine sea passages and port 

approaches. While watch keeping for example, a task with high visual 

workload, attention has to be paid to numerous additional instruments which 

can lead to visual overload and to “human-out-of-the-loop” situations. Thus, 

bridge design should also involve cognitive capacities of humans and nature of 
the tasks at hand.  

The development of ship bridge systems, workstations, displays and controls 

on the one hand and procedures on the other hand is characterized by being 

non-harmonious and far from guaranteed to be of optimal design for the 

actual users of them. Existing regulations for system and procedure design are 

disconnected and defined on a level which is not informative for bridge design. 

Research has shown clearly, that in many cases, accidents and incidents were 

caused by human error, e.g. due to non-optimal design of the human-machine 
interaction leading to degraded situation awareness (e.g. Tang et al 2013). 

CASCADe addresses the study and design of bridges as an integrated whole to 

improve overall safety and resilience on ship bridges. We use the cooperative 

system design methodology to develop an Adaptive Bridge System to 

permanently or semi-permanently adapt the information content, distribution 

and presentation on user interfaces. This holistic cooperative system 

perspective allows detecting and solving potential conflicts, i.e. inconsistencies 

and redundancies of information presented on screens leading to human 

errors, already during design time. The human-centred design methodology 
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hereby supports the analysis of crew performance at early development stages 

and leads to a bridge system development that considers human errors by 
improving the information flow between crew and machines on the bridge. 

Human-centred design methodology 

We develop, demonstrate and evaluate a new methodology enabling the design 

of a highly Adaptive Bridge System (ABS) from a cooperative system 

perspective. The methodology integrates techniques and tools for 

harmonization of system development, procedure development and human 

factors fostering a holistic and affordable human-centred approach to ship 

bridge design. Based on task analysis and optimal situation awareness 

distribution of seafarers, it should help to provide the most important 

information, in the most effective way at the most useful time. Besides the 

Physical Simulation Platform of the ABS, a bridge simulator, we develop a 

functionally equivalent Virtual Simulation Platform that is purely based on 

computational models of the human and machine agents, i.e. individual 

seafarers or automated bridge systems. By using models of virtual seafarers 

that mimic task execution and the human-machine cooperation of real 

seafarers, the Virtual Simulation Platform allows us to evaluate bridge designs 

and information flow at early development stages. In addition to experiments 

with real seafarers on the Physical Simulation Platform, the Virtual Simulation 

Platform facilitates simulating many more scenarios and the investigation of 

extreme scenarios, sometimes impossible or too costly on a Physical 
Simulation Platform.  

The methodological approach is shown in Figure 1: the bridge system is 

analysed as a cooperative socio-technical system. In selected test scenarios we 

identify all participating human and machine agents, such as Master, OOW, 

ECDIS or Radar, the resources as well as the human or machine agent´s 

procedures to fulfil an ongoing task such as port approaching or collision 

avoidance. The aim is to study and optimize the way in which these different 

agents perform and share tasks e.g. according to procedures. The socio-

technical bridge system as a whole is analysed in terms of how it has to assess 

situations e.g. with an incoming ship on a collision course, associated sub-

tasks have to be distributed to currently available agents, human and machine, 

and a decision has to be made as to who will perform them based on currently 
available resources. 

The analysed scenarios are studied and implemented on the Virtual and 

Physical Simulation Platform (c.f. Figure 1). By using the Physical Simulation 

Platform, a bridge simulator and mock-ups to test different ship bridge 

designs, we can evaluate new design ideas together with seafarers. The test 

scenarios are conceptually relevant to the two key ideas in CASCADe, i.e. the 

cooperative system perspective, and ‘adaptiveness’, in particular at the level of 

user interfaces. Furthermore, it is necessary for scenarios to involve human-

machine cooperation and allow design improvements in terms of adaptive user 
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interfaces. During evaluation of new design ideas, we asked seafarers and 
pilots to perform tasks while using also the equipment of the ABS.  

 

Figure 1: Human-centred design methodology 

The Virtual Simulation Platform (VSP) is used to simulate all necessary 

components of a ship´s bridge in the selected target scenarios. The VSP is a 

virtual and functionally equivalent replica of the Physical Simulation Platform, 

i.e. it is purely based on computational models of the involved 

human/machine agents and varying bridge designs of the ABS (c.f. Figure 1). 

It enables the analysis of the cooperative bridge system purely based on 

models, in particular executable task models and cognitive models which 

mimic decision making and situation awareness processes of real human 

seafarers. According to the new bridge design ideas, especially new user 

interfaces or workstations, developed on the Physical Simulation Platform can 

functionally be realised on the VSP. During simulation runs, the cognitive 

models are interacting with the represented user interfaces and workstations 

to evaluate task performance of the system at early development stages. 

Therefore the VSP realizes the ship bridge components and agents as a 

cooperative socio-technical system. Agents, whether human or machine, are 

the main information processors and cooperatively achieve the tasks assigned 

to the bridge system as a whole. Thus, the platform allows a very careful 
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evaluation of the Adaptive Bridge System to research solutions for adaptation 

which provide benefits (e.g. increase situation awareness) that outweigh their 

costs (e.g. cognitive disruption). All elements of the VSP provide interfaces 

based on the High Level Architecture Standard (HLA) for integrated and 
distributed simulation defined under IEEE Standard 1516. 

Hereby, CASCADe addresses the effect of human performance that has to be 

considered in future bridge designs, as there remains a disconnect between the 

guidelines for system design and the guidelines for procedure design. This can 

only be achieved by treating the equipment, the mariners and the tasks as an 

integrated whole. Our approach allows adapting the information content, 

distribution and presentation of the whole cooperative system to the current 
situation, relevant procedures and the needs of the individual seafarer.  

Simulation and evaluation of information flow on ship bridges 

To improve overall safety and resilience on ship bridges, our methodology 

brings together the capabilities of humans, the nature of seafarers´ tasks and 

ship bridge design. In our target scenarios we especially focus on information 

overload and decreased situation awareness that can lead to “human-out-of-

the-loop” situations. In a first step we learned about the way seafarers interact 

with each other and with bridge technology during simulator observations and 

surveys with seafarers. We derived hypotheses concerning how the bridge, as a 

cooperative system, processes information. This also allowed us to set up a 

first version of the Virtual Simulation Platform with task models of virtual 

seafarers and representations of bridge components to study the system´s 

information flow. By testing various scenarios and actual ship bridge designs 

in our VSP, we are able to evaluate how well a design supports seafarers in 

completing an on-going task and/or situation, already at the design phase. 

Furthermore, we can test the new bridge design ideas on the Physical 

Simulation Platform. By involving seafarers that perform certain tasks of 

scenarios, we are able to answer analysis questions in terms of the optimal 

distribution of information and the optimal level of cooperation between 

system components. Thus, varied approaches are applied to test whether 

necessary information is provided in the most effective way and how to 
measure the improvements made by the project.  

Seafarers´ opinions 

By conducting surveys, focus groups and observations of seafarers, the 

purpose was to build up a conceptualisation of the bridge from the end-users 

perspective, with a particular focus on identifying those areas where there are 

currently problems and therefore scope for improvement. In our target 

scenarios, we also brought in new user interfaces of the Adaptive Bridge 

System designs that support information exchange and communication. The 

participating seafarers were invited to provide feedback on design ideas being 

developed in the project. From this a picture emerged concerning where it 
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might be most beneficial for CASCADe to focus. This can be seen as a 

‘seafarers-eye-view’ of the bridge; an identification of areas for improvement 

based on the direct experience of seafarers. In a broad sense, the most 

promising area for potential innovation appeared to be around 
communication. 

By using the Physical Simulation Platform, a bridge simulator and mock-ups 

to test different ship bridge designs, we are able to evaluate new designs 

together with seafarers. It was possible to gain valuable feedback that could be 

fed into the design process for the first mock-up. For example, seafarers were 

concerned about information over-load on the displays and about the over-

reliance on technology by new seafarers. The participants were generally 

reluctant to encourage seafarers to use electronic aids at the expense of old 

fashioned and reliable watch keeping techniques (see also Sub-Committee on 

Safety of Navigation 2009). 

Seafarers´ task simulation 

To set up scenarios on the Virtual Simulation Platform, we developed 

hypotheses concerning how the bridge, as a cooperative system, processes 

information. Once the human and machine agents and tasks were described in 

the selected scenarios of CASCADe, the Virtual Simulation Platform enabled 

us to simulate the ship bridge as a cooperative system. This process involved 

the development of executable task models e.g. of the participating human 

agents, including cognitive capabilities of humans, the representation of all 

necessary information displays as well as traditional and/or new bridge 

designs to be used in the selected scenarios.  

As such, the VSP allows evaluating whether the various bridge design ideas 

provide appropriate information to seafarers and/or support the seafarers to 

obtain task-specific optimal situation awareness (c.f. Sobiech et al 2014). 

Besides some generic questions on socio-technical information exchange, our 

analysis questions are task-dependent as seafarers require specific information 
in order to achieve certain goals or tasks e.g.: 

• How much effort is needed to gather all necessary information? 

• What kind of information do the seafarers consider as 

important/critical in the scenario?  

• Has information presentation matched the information needs of the 

seafarers at all times during the scenario? Is further communication 

necessary? 

• How well does the current understanding of a given situation from a 
seafarer’s perspective match reality? 

On our VSP we do not focus on low-level cognitive actions of seafarers. 

Basically, we analyse and model what information a seafarer needs to obtain 

in order to execute a certain task and how much effort is needed to get this 

information in terms of e.g. location on the bridge or system mode. However, 
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to achieve these goals, certain behaviours need to be implemented within the 

Virtual Simulation Platform, e.g. actions to change the modes of displays, gaze 

actions, communication or movements of the human agents to gather 
information. 

In the scenarios selected within CASCADe, we are now able to evaluate 

different functional and actual ship bridge design solutions concerning their 

ability to provide necessary information to seafarers and support the seafarers 

to obtain task-specific optimal situation awareness. In comparison to the 

Physical Simulation Platform, this can be done already during very early 
design stages and with more extreme scenarios. 

Thus, the VSP allows model-based simulations and rapid prototyping of 

different design solutions for existing and new workstations without the need 

to implement actual workstations and displays in a first step. In our approach 

symbolic representations of workstations can be used to simulate where the 

information is provided, i.e. the areas of interest presenting specific 

information and can be rearranged amongst the different applications, modes 
and areas of interest to better fit the end user´s requirements. 

Conclusion 

In the framework of the project CASCADe we propose an approach to human-

centred bridge study and design based on surveys with seafarers and simulator 

studies. Currently, we are evaluating new design ideas for improved 

information processing on ship bridges as socio-technical systems with 

seafarers on a physical mock-up and with task models on a virtually and 

functionally equivalent replica of the mock-up. The results of the project will 

contribute to the improvement of safety in maritime transport through: a new 

Adaptive Bridge System that will recognise, prevent and recover from human 

errors by increasing cooperation between crew and machines on the bridge 

and a new human-centred design methodology supporting the analysis of 
information flow at early development stages. 
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Understanding the impact of ship design on human performance  

Gemma Innes-Jones, Senior Consultant, Lloyd’s Register Consulting, Bristol, 
UK, gemma.innes-jones@lr.org 

Douglas Owen, Principal Consultant, Lloyd’s Register Consulting, Bristol, 
UK, douglas.owen@lr.org 

The FAROS project preselected a number of ship design factors that were 

thought to influence crew performance and could contribute to the unwanted 

outcomes of collision, grounding, fire and personal injury on board. These 

performance-shaping factors, known within FAROS as Global Design Factors 
(GDFs), are listed below: 

• Ship Motion (i.e. motion-induced sickness (MIS) and motion induced 

interruption (MII)) 

• Noise 

• Vibration 
• Deck layout, equipment arrangement and accessibility (DLEAA) 

The objective of this paper is to describe the theoretical frameworks that have 

emerged from the scientific literature that facilitated the development of the 

human performance component of risk models. This represents an evidence-

based approach based on what is known about human performance when 
exposed to GDFs. This paper covers the following: 

• The challenges in defining the link between GDF exposure and human 

performance from the scientific literature 

• An overview of viable frameworks that have emerged from the 

scientific literature describing the effects of exposure to the GDFs to 

support human performance risk model development 
• An approach to human performance risk model validation in FAROS 

Challenges Linking GDF Exposure to Unwanted Outcomes 

The scientific literature of most interest to FAROS describes the effects of GDF 

exposure on individual cognitive capabilities associated with task performance 

and human error. Humans contribute to the risk of the unwanted outcomes in 

FAROS at task level, i.e. an unwanted outcome may be fully or partially 
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dependent on whether human performance on safety critical tasks is sufficient 
or insufficient1. 

In FAROS, the main challenge is that data on the specific GDF effects of ship 

motion (with the exception of MII2), noise, vibration and DLEAA on human 

performance are sparse. Furthermore, in many (but not all) cases this data has 

been generated under very specific, often non-marine, conditions. The data 

that exists shows that there is certainly evidence for GDFs having some effect 

on human performance. However, the direct effects of GDF exposure on 

human performance tend to be weak, whereas secondary effects acting 

through another mechanism (e.g. fatigue, MIS) tend to be stronger and more 

pervasive (see Figure 2 as an example describing the effects of exposure to 

ship motion). In addition, a given level of exposure to GDFs of a certain 

intensity or duration may not affect all individuals equally; for example, while 

a given frequency and amplitude of ship motion may be generally MIS-

inducing, individuals experiences may range from significant nausea to no 

negative effects whatsoever, depending on their underlying susceptibility to 
MIS and the degree to which they have acclimatised. 

 

Figure 2: Relationship of ship motion to human performance (Colwell 2005). 

Moreover, with the possible exception of secondary effects on human 

performance caused by fatigue (attributable to sleep disruption), a holistic 

view cannot readily be derived from the individual findings.  As such it is 

inappropriate to extrapolate these data to crew performance in the marine 

environment in general. The marine simulator and virtual reality experiments 

performed within WP4 of FAROS are designed to address some of these issues. 

                                                        
1 Task performance in conceived to have two levels within FAROS: 

Sufficient:  Timely and correct (but not necessarily optimal) performance 

Insufficient: Includes, but is not limited to error. However, within FAROS we are only interested in 
erroneous performance 
2 MII is well understood (see Baitis, Holcombe, Conwell, Crossland, Colwell, Pattison & Strong, 1995; 
Crossland & Rich, 2000) and is a physical phenomenon related to loss of balance motor control events 
due to ship motion. While ship motion can affect task performance through MII, it does in the same way 
as DLEAA by increasing task demands (i.e. making the task more difficult) but does not affect the 
underlying cognitive capabilities of the human.
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However, until this experimental output is available, the FAROS approach 

must be guided by the relevant theoretical models available in the scientific 
literature. 

Ship Motion, Noise, Vibration GDF Exposure & Human Performance 

The literature on the effects of exposure to ship motion, noise and vibration 

GDFs has directed us towards an approach that provides a workable 

framework for human performance risk modelling and accounts for both 

strong and weak effects. It is based on three related theories described in the 
GDF literature. 

The approach that emerged combines the principles of the Dynamic 

Adaptability Model (DAM – Hancock & Warm, 1989), the Cognitive Control 

Model (CCM – Hockey, 1997), and the Malleable Attentional Resources Theory 

(MART - Young & Stanton, 2002). Taken together, these theories describe a 

mechanism that accounts for the impact of what Hancock & Warm (1989) 

describe as a ‘trinity of stress’ on human performance, based on the principles 
of attention management.  

Under the DAM paradigm, GDFs are seen as types of physical stressor that 

affect human capabilities associated with maintaining a desired level of task 

performance either directly or indirectly (e.g. via fatigue). When exposed to 

GDFs, CCM describes humans compensating through the effortful direction 

more cognitive resources at the task, typically at the cost of performance in 

other areas. Despite the sophisticated (and potentially subconscious) strategies 

humans have at their disposal, there is a limit to how much an individual can 

compensate without experiencing degradation in primary or secondary task 
performance. 

In addition, the extent to which human can compensate for task demands is 

not fixed. MART describes this compensatory capability changing as a function 

of task demands and associated arousal an individual experiences (See Figure 

3) – attentional resources available vary as a function of load. When humans 

are in a state of under-load (i.e. bored) their pool of attentional resources is 

relatively small and will increase proportionately with the demands placed on 

them. However, there is a limit to how much the pool of attentional resources 

can grow. When task demands exceed the pool of attentional resources 

available (either transiently or when the upper attentional resource limit is 

exceeded), performance can breakdown and errors may be made. 

Generally, task performance is only expected to degrade and become 

insufficient when compensatory mechanisms have failed. However, the 

literature does not allow prediction of how and when (chronologically) an 

operator would fail, under what conditions of GDF exposure, and what the 
specific effect on behaviour (i.e. type of error) would be.  

These theories encapsulate the idea of the ‘adaptive human performer’, 

whereby humans are active agents in their world and are capable of adapting 
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to environments when motivated to do so, such as required by (safety critical) 
task completion (Teichner, 1968, Hockey, 1997).  

 

Figure 3: The proposed model of Malleable Attentional Resources Theory according to the 
correlation between task demand and performance (adapted from Young and Stanton, 2002). 

In terms of risk modelling, an approach based on attention management 

theory allows representation of the effect of GDF exposure as a stressor that 

sits either above or below the threshold of attentional capacity for any given 

task. If the stressor exceeds the attentional capacity then a negative effect is 

expected, whereas no negative effect on human performance would result if 

the stressor can be managed within the available attentional capacity. This is a 

simple but flexible approach that takes into account the variable attentional 
resource pool that changes as a function of task demands described by MART. 

Deck Layout Equipment Arrangements & Accessibility (DLEAA) GDF 
Exposure & Human Performance 

The mechanism that underpins DLEAA effects on human performance is 

qualitatively different to that of the other GDFs. Again, there is lack of 

empirical literature on the effects of DLEAA or the general physical design of a 

work environment upon crew performance on-board ships. Unlike the other 

GDFs, the arrangement of spaces and equipment does not directly affect an 

individual’s underlying cognitive capabilities. Rather, features of DLEAA affect 

human performance through changing the task demands themselves (making 

tasks easier or more difficult). Changes in DLEAA would typically leave an 
individual’s underlying cognitive capability to do a given task unchanged. 

However, an understanding of the general principles of user-centred design 

would suggest that DLEAA presents challenges to seafarers with regard to the 

difficulty (i.e. task demands) and safety with which a vessel can be traversed 

and work can be undertaken. Within FAROS, it only appears reasonable to 
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consider DLEAA as a causal factor related to the unwanted outcome of 
personal injury. 

Literature on DLEAA shows effects may be found due to the following design 
characteristics on board: 

• Room geometry 

• Space allocation 

• Location of areas (i.e. segregation / co-location) 
• Accessibility / circulation 

DLEAA parameters such as room geometry, size, space, location and access 

can act as performance shaping factors that may impact performance of the 

task undertaken. Evidence from maritime studies suggest that restrictions to 

movement due to confined space & obstructions, physical expenditure of effort 

due to the distance traversed and overcoming impaired access, and task 

interruptions due to the separation of functional areas may be the 

predominant features of a design that contribute to performance and risks to 
personal safety. 

Psychological studies have explored the effects of task interruption and the 

application of memory in recovering from interruption. Tasks that straddle 

segregated functional areas on board are effectively interrupted each time the 

individual moves between each area. This affects the ability of seafarers to 

retain and use information when having to move between work spaces. 

Specifically, moving between segregated areas may be especially problematic 

to engineers as it can impact their overall awareness of the operational status 

of the room and the efficiency with which they can perform engineering tasks 
(Wagner, 2008). 

It is recognised that suboptimal ship design seen in the location of walkways 

and functional areas may reinforce unwanted seafarer behaviour by 

encouraging the taking of shortcuts to save time. By violating rules associated 

with route selection between areas, crew may pose risks to themselves either 

by passing through hazardous areas, or pose a risk to the vessel where their 
behaviour may compromise its safety (e.g. by leaving watertight doors open). 

It could be argued that the rule violation examples given above are a result of 

expediency and a strategy to save time and effort. A time pressure workload 

model (Pickup & Wilson, 2002) could provide a simplistic way of identifying 

circumstances when there is a high propensity for taking short-cuts. Time 

pressure workload models determine the time taken to complete a scenario as 

a proportion of the time available. In circumstances when this nears or 

exceeds 100%, it could be speculated that people may take shortcuts in order 

to save time and alleviate their workload. Models incorporating the effects of 

self-imposed or external pressure on safe behaviours could be applied to 

determine the likelihood of violations when there is a need to traverse from 

one area of the vessel to another. 
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Integrating the theory in to the FAROS Risk Models  

In principle, representing ship motion, noise and vibration GDFs as stressors 

interacting with an individual’s attention management capabilities may 

provide a viable, evidence-based mechanism that describes the impact on 

human performance for integration into the risk models. Similarly, 

representing the effects of DLEAA in terms of time pressure on route selection 

may provide an effective, defensible way to represent its effects on unwanted 
outcomes. 

However, a gap existed in the definition of probabilities describing the 

likelihood of failure given the task demands generated by exposure to the 

GDFs. Due the limitations in data on the effects of GDF exposure on human 

performance, such values are not available in the scientific literature. Hence, 

probabilistic representation of the human performance component in the risk 

model was potentially problematic. 

A solution was found in Human Reliability Analysis (HRA) techniques. While 

HRA techniques do not typically cover the specific GDFs or the maritime 

environment, the human error probabilities generated by HRA allow sensible 

bounds to be determined and compared against FAROS risk model output. 

While HRA cannot provide the specific human error probabilities for nodes 

with the Bayesian Belief Network, it can provide an approximation of human 

error probability based on tasks that are analogous to those found in marine 

operations that may lead to the unwanted consequences within the scope of 

FAROS. While imperfect, and stretching the application of HRA tools, this 

approach allowed the calibration of probabilities in the risk models against 
established generic human error probability values. 

Conclusion 

The task posed by FAROS is extremely challenging due to the paucity of data 

on the GDF effects of GDF exposure on human performance. The specific 

nature of the threat of GDF exposure presents to the generation of collision, 

grounding, fire and personal injury, while certainly present, is neither known 
nor predictable based on available data in current scientific literature. 

In terms of probabilistic modelling, this is a source of both structural 

uncertainty and probabilistic uncertainty. Chen and Pollino (2012) note both 

types of uncertainty provide challenges for the Bayesian Belief Network (BBN) 

approach to risk modelling within FAROS. However, these challenges can be 

managed through the development of viable causal frameworks and the 

calibration of probabilities through HRA techniques. The frameworks 

represent human performance in a way that allows a link between GDFs and 

the unwanted outcomes in FAROS to be modelled and HRA techniques will 
allow validation of the output of human performance sub-model output. 

Despite the challenges FAROS has presented, the pragmatic, evidence-based 

theoretical frameworks identified to underpin risk model development here 
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are generalizable to other areas seeking to link specific performance-shaping 
factors (i.e. GDFs) to specific outcomes in operational settings. 
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Introduction 

Two sets of experiments were carried out in bridge simulator (at HSW 

Warnemunde) and virtual reality environments (at CIS Galicia).  Their 

purpose was to inform the risk models as these developed, and to test specific 

hypotheses. The bridge simulator experiments involved 24 master mariners 

undertaking navigation tasks, whilst the virtual reality experiments involved 

12 ships’ Engineers undertaking tasks involving movement around a simulated 

engine room environment.  Each set of experiments will be described in turn. 

Physical experiments 

Members of the consortium from Wismar University and the Unversity of 

Strathclyde together developed 40 minute long navigation scenarios for tanker 

(VLCC ‘Lagena’) and RoPax (‘Mecklenburg-Vorpommern’) vessels which were 

designed to have a high degree of realism, in terms of being located in 

appropriate sea areas (Baltic sea, Dover Channel, Singapore strait), using 

appropriate motion characteristics for each type of vessel, appropriate 

configurations of bridges for the two types of vessel, and with realistic tasks for 

the mariners to undertake (grounding avoidance in the case of the tanker 

vessel and collision avoidance in the case of the Ropax vessel). These scenarios 

were each conducted at a simulated time of 8am. This time was selected 

during the pilot testing phase of the experiments as being associated with the 

optimal lighting conditions to maximise the visual effect of waves in order to 

maximize the chances of inducing motion sickness.  An example scenario is 
shown below: 
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Figure 1 Example Tanker Scenario: Dover Strait Westbound (loaded): Black dashed line 
depicts grounding limit line. 

In order to make the scenarios as realistic as possible, HSW scheduled various 

events such as external communications and alarms in the lead up to a critical 

scenario involving a potential threat of collision with a selected target vessel or 

a potential grounding at a selected part of the route. Mariners were instructed 

to maintain a constant speed of the ship to ensure that the timings of the 
events would coincide with the planned timing of events within the scenarios. 

The scenarios and simulated vessels were combined with different 

environmental conditions (sea state, motion and noise) for benchmarking the 

risk models for grounding and collision. Four conditions were therefore 
created: 

N0 – baseline condition, low noise (61 dB RoPax, 65 dB tanker) low sea 
motion (sea state 2 on the Jonswap spectrum) 

N1 – intermediate noise condition (70 dB RoPax, 76 dB tanker), low sea 
motion (sea state 2 on the Jonswap spectrum) 

N2 – loudest noise condition (80 dB RoPax, 85 dB tanker), low sea motion 
(sea state 2 on the Jonswap spectrum) 

M –  low noise (61 dB Ropax, 65 dB tanker) plus a greater degree of sea motion 
(sea state 7 on the Jonswap spectrum) 

24 Mariners, 12 from Estonia experienced in the handling of passenger vessels 

and 12 mariners from Greece experienced in the handling of tanker vessels 
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were involved in the simulator test trials. The participants completed one set 

of 4 RoPax scenarios as described above after a full night of sleep and another 

set under restricted sleep conditions. Tanker scenarios were conducted in the 

full sleep condition only. Therefore, 12 scenarios were undertaken in total by 

each mariner. These lasted for 40 minutes each to allow five minutes for hand 

over and adequate time to allow a potentially threatening situation to develop. 

Collision and grounding threats occurred within a predefined epoch in the 

second half of the scenario. Whilst somewhat simplified and of short duration, 

the design of the scenarios was constrained in terms of time and resources and 

the requirement to have 40 minute scenarios that had to be standardised 

across GDF and fatigue variables. Ethical approval for the experiment was 

granted by the University of Strathclyde Ethics Committee. Twenty mariners 

participated in four scenarios each day at regular intervals for the full 12 

sessions. Another two mariners completed only eight sessions on the first two 

days because they were not fully comfortable with engaging in the sleep 
deprivation stage. 

Having read the participant information sheet and signed the consent form, 

participants were asked to complete a sleep diary a week before the testing 

week for a week to establish a baseline of sleeping patterns. This provided 

information on general sleep patterns, which would alert the researchers to 

any anomalies that may suggest an abnormal sleeping pattern but no 

anomalous cases were found on analysis of these, so the baseline data was not 

analysed further. Participants were asked to attend the simulator centre each 

day for a period of three consecutive days. After the simulator exercise, 

participants went to a separate room to complete the Motion Sickness 

Assessment Questionnaire (MSAQ; Gianaros, Muth, Mordkoff, Levine and 

Stern, 2001) and the Karolinska sleepiness scale (Akerstedt and Gilberg, 

1990). Following this, participants were asked to complete a 10 minute long 

psychomotor vigilance task (PVT) (in which accuracy rates and reaction times 
for identification of an LED display were recorded). 

Participants had been told at the beginning of scenarios to keep a safe distance 

from other vessels and from grounding limit lines of 1nm. Results were then 

measured in terms of the closest point of approach (CPA) to potential collision 

threats in metres; the frequency of crossing the safe limit threshold; the 

deviation from planned course at the point of CPA and at the end of the 

scenario as well as the time of the CPA. These measures were gained by 

computing the recorded simulator data using the SIMDAT 5.4 software 
analysis package from ISSIMS Gmbh (www.issims.gmbh.de). 

The track deviation mean figures for tanker vessels do conform to the expected 

pattern of greater values for noise and motion conditions relative to 

baseline.  There was a high rate of violation (22 mariners out 24 doing so 

across N0, N1 and N2 conditions and 23 doing so in the motion condition) of 

the safe grounding limit across all conditions, suggesting a high level of task 

difficulty. However, the overall effects of Global Design Factors are very small 
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and statistically non-significant on either the Closest Point of Approach mean 

figures (in metres: N0 – 974.8, N1 – 822.0, N2 – 970.1, M – 942.4) or the 

track deviation figures at CPA (N0 – 401.6, N1 – 565.2, N2 – 686.6, M – 
519.6) or at end point (N0 – 352.7, N1 – 493.8, N2 – 647.5, M – 455.8). 

For RoPax vessels in the full sleep condition, the CPA data demonstrated the 

expected pattern (with the baseline or N0 condition being associated with the 

highest mean CPA value of 1406.4m, and the N1, N2 and M conditions having 

lower mean CPA values – 1376.2, 1183.0, and 1190.0 respectively). the ANOVA 

results demonstrated that these differences were not significant. Similarly, the 

main effects of track deviance were non-significant across conditions. 

Violations of the safe distance from a collision varied slightly across conditions 

(with the numbers of mariners violating the safe distance being 19 in N0, 21 in 

N1, 22 in N2 and 21 in M conditions). Again however this variation was not 

statistically significant. 

When the analysis of the RoPax data was extended to include the sleep 

restricted condition, again no significant effect of GDFs was found, nor was 

there any significant sleep X GDF interaction. However, there was a significant 

main effect of sleep restriction, such that sleep restricted mariners exhibited 

significantly higher CPA values, suggesting that the mariners might have been 

attempting to compensate for the effect of fatigue on navigation performance 

by sailing at a greater distance from the collision threat than they did in the 

full sleep condition. It should be noted that the results from the Karolinska 

sleepiness scale indicated that mariners reported themselves to be significantly 

more sleepy in the restricted sleep conditions although again there was no 
effect of GDF on reported levels of sleepiness.  

There was no significant overall effect of GDF on the numbers of mariners 

crossing the safe limit in both full sleep and restricted sleep conditions in the 

RoPax conditions, but the main effect of sleep restriction on numbers of 

mariners crossing the safe limit approached significance (p = 0.06) such that 

fewer mariners who had had restricted sleep violated the safe line limit 

compared to mariners who had slept fully, again suggesting the use of a 

compensatory strategy. In the vigilance (PVT) task, sleep restriction had no 

significant difference on performance on the number of lapses in attention on 

RoPax scenarios since the rate was generally very low but it did significantly 

slow reaction times in all conditions, indicating that sleep reduction not only 

made mariners feel more sleepy as the self-report data suggested but that their 

responses were also significantly slowed down as a function of sleep reduction. 

This may help to explain why they appeared to employ compensatory 
strategies when navigating. 

In summary, there were no significant effects of global design factors (GDFs, 

i.e. noise and motion) across Tanker scenarios.  In RoPax scenarios, again 

there were no significant effects of GDFs, but CPAs were significantly wider in 

the sleep restricted compared to full sleep condition. This may indicate the 
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employment of a compensatory strategy when participants were tired, which 
paradoxically improved performance.  

Virtual Reality Experiments 

The virtual Reality experiments addressed two issues: crew members’ use of 

watertight doors (specifically, the frequencies with which they closed or left 

open WTDs, and the frequency with which they made potentially unsafe 

crossings of WTD thresholds when the doors were partially open), and their 

movement around hazardous objects located within the room space within 
which they were operating. 

Twelve experienced Ropax Engineers were recruited. Factors manipulated in 

the WTD scenarios included compartment layout around the engine room (i.e., 

the relative locations of the control room and the workshop) with manually 

operated and automatic door closure WT door mechanisms. Three 

experimental scenarios were designed to investigate the effect of WT door 

crossing frequency as a function of compartment layout. These were conducted 

in a CAVE virtual reality platform, which is a visualization system consisting of 

4 screens (3 walls and a floor) and provides an immersive environment where 

users are surrounded by virtual images. Special glasses provide high quality 

stereoscopic visualization and a tracking system attached to one pair of glasses 

provides a perspective adapted to the position of the research participant. 

Tasks were devised which required participants to move between an engine 

room, an auxiliary engine room, a workshop, a separator room, and a control 

room. Participants had to attend to numerical displays within each room, and 

to add up the 3-digit numbers displayed on these to yield a final 4-figure total. 

Three different arrangements of the rooms were devised in order to create 

situations involving a minimal (8) number of WTD crossings, an intermediate 
(14) or a maximum number (26) of WTD crossings (see Figure 2 below): 
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Figure 2: arrangements of Engine Room, Auxiliary Engine Room, Workshop, Engine Control 
Room, and Separator room in the three different scenarios, and the sequence of movements 
between compartments required in order to complete the assigned task. 

The results, although demonstrating a very high door closure rate nevertheless 

provide some tentative support for the hypothesis that higher frequencies of 

encounters may be associated with a higher frequency of failure to close doors: 

although the majority of doors were closed, only 1 participant (9% of the 

sample) failed to close 100% of doors on the 8 crossing (low frequency) 

scenario but 3 participants (27% of the sample) left at least one door open 

during the exercise on 14 crossing (moderate frequency) and 26 crossing (high 

frequency) scenarios.  These results are necessarily tentative due to the sample 

size, but could be argued to suggest that reducing the frequency of door 

crossings may be associated with fewer incidences of crew members failing to 

ensure that all doors are closed as they navigate round their route. 

Furthermore, reducing required door crossing frequencies and locating 

compartments that are most heavily commuted between close to each other 

appear to be associated with considerable time savings on task completion. 

Based on these conclusions, reducing the frequency of door crossings during 

the design stages of arranging engine room compartments may reduce societal 
and personal injury risks.  

A further three experimental scenarios were conducted using a Head Mounted 

Display (HMD) platform. The aim of these experiments was to investigate the 

influence of engine room passage widths on both collisions with, and 

proximity to hazards. Essentially the question addressed here was the 

likelihood of crew members to use additional passing space when it was 
available. 

Hazard scenarios were performed using a head mounted HMD display device 

that had a small display optic in front of each eye. It operates in 

communication with an Intersense IS-900 tracking system to translate the 

user head movements into the virtual simulations. The position and 
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orientation of the head in relation to the virtual scene was recorded in addition 
to the collisions with hazards and proximity to them.  

An engine room hazard simulation was devised with three different widths of 

passageways. Passing distances have been computed from the mean width 

(0.84m) found from a sample of 100 RoPax vessels by project partners, Naval 

Architecture Project (NAP) who provided this data from their internal 

database. This constituted the moderate passage width used in the 

experiments. The maximum width was derived from taking one standard 

deviation above the mean (1.15m) and the minimum width was one standard 

deviation (0.52m) below the mean passage widths found on the tank top of 

200m RoPax vessels. The minimum passage width found across the sample of 

vessels was 0.38m and the largest was 2.05m, and therefore the values 
adopted for the experiment fell within these limits.  

Hazards included floor pipes and tools lying around, presenting a trip hazard, 

an overhead pipe presenting a head injury hazard, and missing floor plates, 

which presented the danger of falling through an aperture in the floor (Figure 

3). Participants navigated the route in both directions leading to 16 
observations of behaviour around hazards for each participant. 

It was hypothesised that increased space would be associated with reduced 

proximity to hazardous objects and with a faster navigation time around the 

space where objects have been noticed. Accordingly, it was predicted that Case 

1 (maximum passage width) would provide the optimal design of those 
presented. 

Again results from hazard scenarios are tentative but the patterns were 

generally consistent across the sample. For example, the mean percentages of 

objects collided with was 58.2 in the simulation with the widest  

 
Figure 3 Hazards in HMD scenarios 

passageways, 68.9% in the simulation with the intermediate width 

passageways, and 85.3% in the narrowest passageways. The mean proximity to 

hazards was lowest in the case of wide passageways (0.09metres) intermediate 

in the medium width passageways (0.05m) and highest in the case of narrow 

passageways (0.02m), suggesting that if mariners are provided with extra 
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space adjacent to a hazard they will use that space to create a greater distance 

between themselves and the hazard. The results therefore indicated that 

increasing engine room passageway widths in areas where hazardous objects 

are likely to be found may be likely to reduce proximity to and collisions with 
hazardous objects, thereby reducing personal risk.  

Overall conclusions and outlook to next steps 

Both the physical and the virtual experiments provided data that largely 

conformed to the predicted patterns but the variation involved across GDF 

conditions did not attain statistical significance in those cases where statistical 

analysis was possible. There are several possible reasons for this: for example, 

the length of time during which mariners were exposed to GDFs was very 

short; the mariners themselves may have, despite careful instruction to the 

contrary, been concerned that the outcome of their individual performance 

might be reported to their employers and therefore made extra effort at the 

tasks, hence for example the very high frequencies of closure of watertight 

doors in the various conditions of the WTD task; individual differences in 

approach to the tasks may have diluted the effects of GDFs given the small 

sample size; and so on.  These considerations will inform the design of the 
experimental studies to be undertaken in Work Package 7.  
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One of the aims of FAROS project is to develop risk models that would suit the 

purpose of risk-based ship design process (RBD). The risk model described in 

this paper addresses the specific question about the effect of several 

performance-shaping factors, known as global design factors (GDF), on 

human performance and the subsequent probability of crew injury and death. 

The GDFs we are interested in are ship motion, noise, whole-body vibration 
(WBV) and Deck Layout, Equipment Arrangement and Access (DLEAA).  

A pragmatic, evidence-based approach to human performance risk modelling 

emerged from the literature on the effects of exposure to the GDFs. This 

approach combines the principles of three theories; the Dynamic Adaptability 

Model (DAM – Hancock & Warm, 1989), the Cognitive Control Model (CCM – 

Hockey, 1997), and the Malleable Attentional Resources Theory (MART - 

Young & Stanton, 2002). Taken together these theories describe a mechanism 

that accounts for the impact of stressors on human performance, based on the 

principles of attention management. Regarding the effect of DLEAA, an 

approach was taken based on the assessment of vessel design characteristics 
and their potential effects on human performance. 

This approach, in conjunction with expert knowledge and a review of personal 

injury accident data allowed us to develop a risk model that quantifies the 

effect of GDF on the probability of crew injury or death. The risk model for 

personal injury of the crew was designed to provide a predictive measure of 
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risk of personal injury due to exposure of operators to GDFs during vessel 

operations. The model is intended for use as a means of comparative 

assessment of the personal injury risk posed by the GDFs associated with two 
or more vessel designs. 

Personal Injury risk model development 

In FAROS, a definition for personal injury of the crew was required that could 

reflect the potential effects of GDFs exposure leading to an unwanted outcome 

of injury or death of a crew member. We have defined personal injury as a 

physical injury of the body of a crew member as the result of an incident on 

board (excluding acts of violence and suicide). This personal injury ranges 

from minor abrasions causing temporary pain and inconvenience, to the 

permanent loss of limbs or other bodily function, disability and fatality. 

Personal injury logical causal chain 

Requisite to the development of the risk model is an understanding of the 

process through which exposure to GDFs can influence the occurrence of a 

personal injury. This necessitated the identification of a causal pathway that 

links the input (exposure to GDFs) with the output (crew injury and death) 

through the mediating agent of the crew member. The casual path from the 

exposure to GDFs, though human performance to the occurrence of a personal 

injury, is summarised in Figure 4. Two main paths connecting GDFs to a 
personal injury have been identified: 

• The injury could result from a direct exposure to the GDF (e.g. hearing 

damage due to loud noise) and this is considered to be work-

independent effect. 

• GDFs can affect the ability of a crew to carry out their task in a safe 

manner which could result in an injury. Noise, vibrations and ship 

motions impact work performance through their effect on the 

perceptual, cognitive and physical capabilities of the crew, while the 

effect of the DLEAA (deck layout, equipment arrangements and access) 

is understood to be through the changes in the task demand (i.e. adds 

constraints). In this case the effect of the GDFs is considered to be 
work-dependent.  

The personal injury risk model focuses on this work-dependent causal path. 
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Figure 4: Work-dependent and work-independent causal paths describing the effect of GDF on 
human performance and safety behaviour, and the occurrence of personal injury. 

The work-dependent causal path shows how GDF exposure affects human 

performance, which in turn influences the performance of safety behaviour. 

For the purposes of the personal injury risk model, we assume that human 
performance has two levels: 

• Sufficient: Human performance which is timely and correct (but 

not necessarily optimal). 

• Insufficient: Human performance which includes errors (but is not 
necessarily limited to them). 

Safety behaviour performance can be unrelated to the specific task being 

performed and is linked to its intrinsic safety behaviour component (e.g. 

holding a banister while on stairs, using fall arrest equipment). However, 

insufficient safety behaviour performance alone does not determine whether 

or not an incident occurs (e.g. the act of not holding a handrail while walking 

down stairs does not mean you will always have an incident). Based on this, we 

have defined insufficient performance of a safety behaviour as one that 

generates the opportunity for an incident in combination with the presence of 

contextual factors. The contextual factors can be described as the 

circumstances that exist at the time the negative outcome (personal injury) 

occurs.  

The insufficient performance of safety behaviours creates the antecedent for 

the occurrence of a certain incident type (e.g. fall from height, hit by moving 

object) and then exposes the crew member to a hazard (kinetic, thermal, 
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chemical, etc.). Finally, if the hazard exposure results in a level of energy 

transmitted to the individual that is sufficient to be injurious, then injury or 

fatality may occur. For example, an individual will be exposed to a greater 

amount of hazard (kinetic energy) if they were to trip whilst descending stairs 

in comparison to a trip whilst walking on level ground. It is much more likely 

that the former will expose the individual to a sufficient amount of kinetic 
energy to be injurious.  

Review of personal injury accident data 

To aid the development of the personal injury risk model, accident data was 

examined with the aim of identifying the causal and contributing factors to 

personal injuries of crew on-board vessels. Overall, there is a lack of consistent 

data on seafarer injuries and fatalities, especially of the type that can be used 

for the development of risk models. To better inform risk model development, 

a further qualitative analysis of accidents was then performed using reports 

from the MAIB (UK), BEAmer (France) and JTSB (Japan) records to gain a 

deeper understanding of the situational antecedents that contribute to 

personal injury outcomes. The most frequent and severe reported incident 
types, and focus of the FAROS personal injury risk model, are: 

• Slips, trips and falls 

• Falls from height 

• Hit by moving (included dropped) object 

• Manual handling (handling, lifting or carrying) 
• Entering enclosed spaces 

This information was used to develop conceptual models to assist the final risk 
model development. 

Personal Injury risk model  

The FAROS Generic Personal Injury Model (FGPIM) BBN (see Figure 5) was 

developed to reflect the work-dependent causal mechanism underlying 

personal injury defined above. The risk model was developed using Bayesian 

Belief Networks (BBNs), which are probabilistic tools being capable of 

representing background knowledge about the personal injury phenomena, 

the quantification of associated uncertainties, efficient reasoning and updating 

in light of new evidence. BBNs have already been used in the maritime context 

to model risk. In particular in the EU funded project SAFEDOR, where they 

were used for structural integrity and collisions and grounding. In FAROS, and 

based on the experience gained in SAFEDOR, the fire, collision and grounding 
risk models are also modelled with BBN. 

Risk model structure 

The structure of the BBN is essentially based on the causal chain for the 
impact of GDFs on the occurrence of Personal Injury explained above.  
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The generation of personal injury outcomes is ultimately determined by the 

sufficient or insufficient performance of safety behaviours for a single instance 

where safety behaviours are required (i.e. time is not modelled within the 

FGPIM). Insufficient performance of safety behaviours exposes an individual 

to hazards, and therefore the possibility of personal injury (green, dark yellow 

and red/white nodes). Three mechanisms combine to determine the whether a 
safety behaviour is successfully performed or not: 

• GDF exposure results in degradation of a crew members attention 

management capability via a stressor effect (yellow node) 

• GDF exposure directly influences task performance via a physical effect 

(red node) 

• DLEAA characteristics affect the task demands associated with safety 
behaviour (blue node) 

The output of the risk model quantified the probability associated with the 

outcomes to the crew in line with the definition of personal injury adopted by 

FAROS (i.e. Fatality, Injury, No injury), and as such, enables comparative 
assessment of ship designs. 

Model inputs 

Where possible, the input level values for each GDF (grey nodes) of ship 

motion, noise and WBV, and the probability of their effect have been 

determined from the literature review conducted earlier in the project. The 

data available rarely describe the effects probabilistically, therefore estimation 

was required to attribute the probability of GDF exposure having an effect of 
some kind.  

To best represent the effects of ship motion, noise and WBV GDF exposure as 

described in the literature, a threshold of effect was set as a Boolean variable 

(purple nodes). GDF exposure was therefore represented either above or below 

the level of a stressor effect (with subsequent impact on attention 

management) or direct physical effects. In reality, the threshold of effect may 

be different for all individuals, but what is important from a human 
performance perspective is whether an individual experiences an effect. 
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Figure 5: FAROS Generic Personal Injury Model (FGPIM) BBN. 
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The effects of DLEAA exposure (blue node) was also represented based on 

expert judgement of the DLEAA characteristics. Here, four levels (‘no effect’, 

‘low’, ‘medium’ and ‘high’) have been defined to approximate the combination 

of potential effects resulting from the strength of DLEAA input parameters. 

The qualitative assessment of DLEAA characteristics used criteria based on an 

extensive literature review. The highest rated of the four characteristics was 
taken as the input level feeding into the rest of the model. 

Integrating human reliability assessment in the risk model 

During the risk model development, a gap existed in the definition of 

probabilities describing the likelihood of ‘insufficient’ safety behaviour 

performance given the demands generated by exposure to the GDFs. 

Limitations in data on the effects of GDFs on human performance means that 
such values are not available in the scientific literature.  

A solution was found in Human Reliability Analysis (HRA) techniques. While 

HRA techniques do not typically cover the specific GDFs or the maritime 

context, the human error probabilities (HEPs) generated by HRA allow 

sensible bounds to be determined for FAROS risk model nodes. The 

integration of the HRA method HEART (Human Error Assessment & 

Reduction Technique; Williams, 1986) provided a means to determine the 
probability of insufficient safety behaviour represented as human error.  

HEART was used to determine a baseline human error rate (Nominal 

Unreliability Value – NUV) to set the safety behaviour HEP unaffected by GDF 

exposure. One of the limitations of the application of HEART in this context 

was highlighted by the difficulty in selection of the task from the predefined 

list within HEART. The task selected represented safety behaviours associated 

with the incident types and defined the associated NUV. To limit the 

complexity of the model, a single generic task type was sought to represent all 

possible safety behaviours. The best fit was determined to be: Task M – 
Miscellaneous tasks for which no description can be found (NUV = 0.03). 

This then allowed probabilistic estimation of the effect of GDF exposure on 

HEPs over the baseline error rate for the chosen task type. HEPs affected by 

GDFs were represented through the selection of appropriate Error Producing 

Conditions (EPCs) and associated Proportion of Affect (POA). EPCs from 

HEART best fitting the attention management and DLEAA paths were 

selected. The EPCs selected to represent the stressor effects on attention 

management capability and the effects of DLEAA are shown in Table 1. The 

potential strength of effect of the each EPC was set using the POA variable (see 
Table 1). 
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Table 1: Maximum POA Value Caps for EPCs associated with Attention Management and 
DLEAA paths. 

GDF effect 

path 

HEART 

EPC Ref 
HEART EPC description 

Max 

POA cap 

Justification for max 

POA cap 

Attention 

Manageme

nt 

EPC No. 

8 

A channel capacity overload, 

particularly one caused by 

simultaneous presentation of 

non-redundant information 

unintended action. 

0.1 

(low) 

GDF effects on cognitive 

performance are 

generally weak. 

DLEAA 
EPC No. 

5 

No means of conveying spatial 

and functional information to 

operators in a form which 

they can readily assimilate. 

0.1 

(low) 

Spaces on board vessels 

are not complex from a 

perceptual standpoint. 

 
EPC No. 

6 

A mismatch between an 

operator's model of the 

system and that imagined by a 

designer. 

0.1 

(low) 

Design does not often 

incorporate a strong 

model for DLEAA. It 

provides options for 

access / movement 

reducing the possibility 

of a designer/operator 

model mismatch. 

 
EPC No. 

12 

A mismatch between 

perceived and real risk. 
1 (high) 

Risk perception is a key 

causal factor in personal 

injury incidents. 

 
EPC No. 

21 

An incentive to use other 

more dangerous procedures. 

0.1 

(low) 

Crew may use route 

short cuts to save time or 

reduce effort when 

moving between areas 

resulting from design 

decisions to collocate or 

segregate work areas. 

 

The HEART calculation is done in two stages and allows inclusion of multiple 

EPCs. Firstly, actual effect of each EPC calculated based on the following 

formula: 

Actual effect = [(Max. effect -1) x POA] +1 

The final error probability for the task is then determined by multiplying each 

actual EPC effect with each other and with the NUV of the selected generic 

task: 

HEP = NUV x (Actual effect 1) x (Actual effect 2) 

HEART was not used to represent the direct physical effect exposure some 

GDFs may have as physical aspects of task performance is out the scope the 

intended application of the method. 
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BBN sensitivity & uncertainty analysis 

A sensitivity and uncertainty analysis of the personal injury risk model was 
performed as part of the model validation process.  

The sensitivity analysis have shown that the FGPIM is responsive to changes in 

the GDF nodes which are reflected in changes in the probability of ‘no injury’, 

injury’ and ‘death’ of the ‘personal injury’ node outcome. The output of the 

FGPIM also broadly reflects personal injury outcome incident data in terms of 

the low relative frequency of deaths versus injuries observed within the marine 

industry. When all the GDFs are set to their lowest effect (i.e. best) state, the 

probability of ‘No Injury’ is at its highest. When all the GDFs are set to their 

worst state the probability of ‘Death’ (although very low) and the probability of 

‘Injury’ both increase by 94% (when compared to the best case). This would 
suggest that the GDFs have an effect on the state of the outcome node. 

In absolute terms, the FGPIM estimates the probability of ‘no injury’, ‘injury’ 

and death as shown in Table 2 for the base, worst and best cases respectively. 

This data demonstrates how vessel designs with different GDF characteristics 
may impact personal injury risk. 

Table 2: Absolute probabilities of 'No Injury', 'Injury' and 'Death' outcomes generated by the 
FGPIM for the base, best and worst cases. 

Probability Base Case Worst Case Best Case 

No Injury 0.718 0.711 0.982 

Injury 0.281 0.288 0.018 

Death 0.001 0.001 0.0001 

 

When changing the state of a GDF one a time, there is a small change in the 

probability of the outcome as expected because the general effect of GDFs 

acting through the stressor pathway is weak. The greatest effect has been 

found through the DLEAA pathway that impacts the task demands. This is 

followed in strength by the physical pathway, especially from lateral 

accelerations, reflecting a potentially stronger effect of task disruption from 

physical disturbance associated with lateral accelerations. 

The evidential uncertainty analysis qualitatively assessed the evidence 

underpinning each node identified in the sensitivity analysis as being highly 

sensitive. Each of these nodes was rated as having either minor, moderate or 
significant uncertainty based on pre-defined criteria. 

The results of the sensitivity and uncertainty analyses were combined in a 

parameter importance analysis to provide a summary of the most sensitive and 

uncertain nodes within the model. A high importance rating identifies the 

nodes that have both a high uncertainty rating and sensitivity rating. These 

nodes are important in the interpretation of the model as they reflect 

influential nodes about which relatively little may be known. The results of 

these analyses are shown in Table 3. This analysis shows that the only GDF 
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that is rated as having high importance is the Motion - Lateral Acceleration 

node, while the other DLEAA GDFs are rated ‘Moderate to high’. The other 

nodes rated ‘high’ reflect the overall topology of the model whereby the final 

personal injury outcome is generated exclusively by the antecedent nodes of 
‘Safety Behaviour’ and ‘Injurious Hazard Exposure’. 

Table 3: Sensitivity, Uncertainty and Parameter importance assessment results 

Node (Parameter) 
Sensitivity 

rating 

Evidential 

uncertainty rating 

Importance 

rating 

Safety Behaviour High Moderate High 

Injurious Hazard 

Exposure 
High Significant High 

Incident Type High Moderate High 

Attention Management Moderate Significant High 

Room Geometry Low Significant Moderate to high 

Space Allocation Low Significant Moderate to high 

Location of Areas Low Significant Moderate to high 

Accessibility / 

Circulation 
Low Significant Moderate to high 

Motion - Lateral 

Acceleration 
Moderate Moderate High 

 

The states of the nodes with a ‘high’ and ‘moderate to high’ importance rating 

should be set especially carefully when comparing different ship designs as 

small changes in these parameters will have a large impact on the model 

output. However, as the model is only intended to compare vessel designs and 

not to provide a nominal estimate of the risk, this is only a caveat for 
applications outside of FAROS.  

Conclusion 

The FGPIM was created to model the risk of personal injuries of crew when 

exposed to the GDFs of ship motion, noise, whole body vibration (WBV) and 

DLEAA for both large passenger (RoPax) and cargo (tanker) vessels. The 

FGPIM provides a representation of personal injury risk in this context, 

utilising available research to its maximum extent. The FGPIM achieves its 

objective to provide a predictive measure of risk of personal injury due to 
exposure of operators to GDFs during vessel operations. 

The FGPIM BBN is a stand-alone model that behaves in response to GDF 

inputs as intended and broadly reflects personal injury incident data from the 

marine industry. As with all models, the FGPIM comes with a number of 

assumptions, exclusions and caveats for use; however the facility to 

probabilistically assess and compare vessel designs based on personal injury 

risk was achieved. Subsequent work within FAROS sought to integrate the 

FGPIM with other risk models for collision, grounding and fire. 
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Introduction 

One of the aims of FAROS project is to develop risk models that would suit the 

purpose of risk-based ship design process (RBD). The risk models have to 

address specific question about the effect of specific performance-shaping 

factors known as global design factors (GDF) on human performance thus the 

probability of an accident and resulting consequences. These GDFs comprise 

ship motion, noise and whole-body vibrations (WBV). A workable approach 

for human performance risk modelling has emerged from the literature on the 

effects of exposure to ship motion, noise and vibration GDFs focussing on 

attention management, (Kivimaa et al. 2014). It is based on three theories: the 

Dynamic Adaptability Model, - (Hancock 1989) - Cognitive Control Model - 

(Robert and Hockey 1997) - and Malleable Attentional Resources Theory - 

(Young and Stanton 2002). The concept of Attention Management along with 

the experts’ knowledge allowed us to develop two models that quantify the 

effect of GDF on the annual probability of collision and grounding for a RoPax 

and a tanker navigating along predefined routes. The models were developed 

with the use of Bayesian Belief Networks, which are powerful modelling 
techniques in the risk assessment (Fenton and Neil 2012).  
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Furthermore, the probability of an accident itself or combined with the 

consequences of the accident in terms of fatalities and the size of an oil spill 

allows us to determine the risk metric, which can be later used in the RBD as 
one of the objectives. 

Methods 

The risk models presented here are developed using Bayesian Belief Networks 

(BBNs), which are probabilistic tools being capable of representing 

background knowledge about the collision and grounding phenomena, the 

quantification of associated uncertainties, efficient reasoning and updating in 

light of new evidence. The models presented here are stand-alone that behave 

in response to GDF inputs as intended. The results are comparable with other 

existing models, and the data from the marine industry, (Porthin, Innes-Jones, 

and Puisa 2014). The models can enable comparative assessment of ship 
designs, which is their primary intention. 

Adopted risk perspective 

In this paper we adopted an uncertainty perspective of risk, where risk is seen 

as follows, (Aven and Renn 2009): 

R ∼ C&U       (1) 

This means that risk assessment is an expression of an assessor’s uncertainty 

(U) about the occurrence of events and the associated consequences (C). 

Following this perspective, risk assessment can always be performed, as the 

risk model is seen as a tool to describe and convey uncertainties rather than a 

tool to uncover the truth. For this purpose, the risk model encompasses the 
events and their potential consequences.  

General structure of the risk model 

To describe the process through which exposure to GDFs causally affects the 

probability of the specified unwanted outcomes, a causal pathway was 

developed through the mediating agent of the crewmember. Importantly, the 

causal chain represents the effects of GDFs exposure on human performance 

in a way that could be developed and elaborated in the risk model. Two main 

paths linking GDF exposure to human behaviour, and subsequently to 
collision and grounding, have been identified: 

• Path 1: Stressor effects. Exposure to a GDF acts as a stressor and can 

affect the perceptual, cognitive and physical capabilities of an 

individual (e.g. attention management), which can subsequently 

impair the performance of the individual (i.e. the actual behaviour 
produced). 
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• Path 2: Physical effects. Exposure to a GDF can have specific and 

direct effects on the behaviour produced. For example, Ship motion 

can result in Motion-Induced Interruptions (MII). MII does not affect 

the underlying human capabilities of balance or fine motor control, 

but it exceeds the ability of the human to compensate and produce the 

intended behaviour. Similarly, WBV can directly impact the actual 
behaviour produced. 

These two paths show how GDF exposure affects human behaviour, which in 

turn influences the performance of safety critical tasks, as depicted in Figure 1. 

It is the outcomes of an individual’s actions and behaviour that determine the 

success or failure of a safety critical task. Insufficient performance of the safety 

critical tasks associated with maintaining safe vessel navigation and avoiding 

collision or grounding create an antecedent for the unwanted outcome. 

However, insufficient task performance alone does not determine whether or 

not a collision or grounding occurs; the vessel must also be exposed to the 

collision or grounding hazard, as follows: a) for a collision to occur, another 

vessel must be on a collision course; b) for a grounding to occur, the ship must 
be in shallow water. 

 

Figure 1: Causal chain describing the relationship between crew GDF exposure and unwanted 
outcomes, (Montewka, Goerlandt, Innes-Jones, et al. 2014) 
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Human performance model 

The approach taken here to describe a mechanism that accounts for the impact 

of stressors on human performance, has been based on the principles of 

attention management, (Owen, Pozzi, and Montewka 2014). It combines the 
principles from three theoretical models: 

1. Dynamic Adaptability Model (DAM), (Hancock 1989). 

2. Cognitive Control Model (CCM), (Robert and Hockey 1997). 

3. Malleable Attentional Resources Theory (MART), (Young and Stanton 
2002).  

Generally, task performance is only expected to degrade and become 

insufficient when compensatory mechanisms have failed. However, the 

literature does not allow prediction of how and when (chronologically) an 

operator would fail, under what conditions of GDF exposure, and what the 

specific effect on behaviour (i.e. type of error) would be. 

In the risk models presented here, the main task around which the models 

revolve is to perform the accident evasive action. This task is complex and 

distributed in time, but it can be decomposed into three major phases: a) 

detection, b) assessment, c) action. These three phases reflect the basic 

cognitive functions of observation, interpretation and planning, and execution, 
see for example (Hollnagel 1998; He et al. 2008).  

In terms of risk modelling, an approach based on attention management 

theory allows representation of the effect of GDF exposure as a stressor that 

sits either above or below the threshold of attentional capacity for any given 

task. If the stressor exceeds the attentional capacity then a negative effect is 

expected, whereas no negative effect on human performance would result if 
the stressor can be managed within the available attentional capacity. 

Integration of Human Reliability Assessment in the risk model 

Due to limitations in data on the effect of GDF exposure on human 

performance, one can't precise values in the scientific literature. Therefore, the 

HRA method Nuclear Action Reliability Assessment (NARA) was selected to 

provide the human error probabilities (HEPs) associated within collision and 

grounding model, (Spitzer, Schmocker, and Dang 2004). NARA was adopted 

to select validated (albeit non-marine specific) HEPs associated with task 

characteristics that are compatible with tasks performed by the Officer of the 

Watch (OOW) and helmsman. NARA also provided baseline error rates for a 

given Generic Task Type (GTT) unaffected by GDFs. This allowed probabilistic 
estimation of the effect of GDF exposure on HEPs. 

However, NARA was not used to represent the direct physical effect exposure 

some GDFs may have as physical aspects of task performance. This is out the 

scope the intended application of the NARA method. The probability of 
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insufficient human performance resulting from physical effects of GDF 
exposure was estimated based on judgement alone. 

NARA categorises the factors that negatively influence human performance as 

one of eighteen Error Producing Conditions (EPCs). The EPC that best 

represented the causal mechanism from GDF exposure to human performance 

was EPC No. 15: Poor Environment. This EPC represents the stressor effect of 

GDF exposure on attention management capability. The potential strength of 

effect of this EPC was set using the Assessed Proportion of Affect (APOA) 

variable. The APOA level was set based on the application of the NARA 

methodology to subjectively determine an appropriate value, nominally 

between 0 (no effect) and 1 (maximum effect). However, based on the 

guidance available for NARA, it was decided to cap the maximum APOA 
associated with the EPC to 0.1. 

To limit the complexity of the model, a single GTT was sought to represent all 

relevant navigational tasks performed by the OOW that are important in 

managing collision or grounding risk. The GTT that is most analogous is: Task 

C1 – Simple response to alarms/indications providing clear indication of 

situation (Simple diagnosis required) Response might be direct execution of 

simple actions or initiating other actions separately assessed. (Nominal HEP 
= 0.0005) 

A second GTT was identified to account for possibility that a helmsman may 

also be present. In this case the helmsman is steering the ship based on verbal 

instructions communicated by the OOW. The GTT that is most analogous is: 

Task D1 - Verbal communication of safety critical data. 

Having a helmsman present may introduce the possibility of a 

miscommunication error with the OOW. NARA also recognises a mitigating 

effect of a team. The NARA Human Performance Limiting Value for ‘Actions 

taken by a team of operators’ was used to cap the potential error rate at 1E-4 

for the condition where a helmsman is present. The same value is taken for the 

probability of potential error of not performing evasive action by another ship 

involved in the encounter. The NARA calculation allows inclusion of multiple 

EPCs and an Extended Time Factor (ETF). In this risk model for collision and 

grounding, GDFs are represented using only one EPC and there is little 

justification to include the ETF. Thus, the HEP was calculated based on the 
following formula: 

HEP = GTT x [(EPC-1) x (APOA + 1)]      (2) 

Following this logic one can estimate the probability of a failure in performing 

safety critical tasks (accident avoidance action) by a bridge team consisting of 

maximum two people (officer and the helmsman). The situation where an 

officer needs to take action in order to avoid an accident will be referred to as 

an encounter. The structures of the models estimating the probability of an 

accident per encounter are depicted in Figure 4 and 5. In order to assess the 
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annual probability of an accident, the number of encounters that ship is 
exposed to over one year needs to be estimated.  

Elicitation of collision and grounding encounters along predefined 
routes 

To estimate the annual number of encounters for a ship the experts’ 

knowledge was elicited in the course of two sessions. During the sessions we 

gathered bridge officers having vast experience in navigating RoPax and 

tankers along two routes as anticipated in the project. The routes are depicted 

in figures 2 and 3. Also the relevant information were collected about the 

bridge manning, traffic regulations and traffic monitoring services, as these 

affect the probability of human error. Collision encounter is defined here as a 

situation, where two ships meet on a collision course, and an evasive action is 

needed in order to avoid a collision. Grounding encounter is understood as a 

situation, where a ship can ground if her course is not altered, within 4 hours 

before the landfall, where the 4 hours corresponds to duration of a bridge 

watch. The numbers of encounters were assessed per one trip of a ship and 

then multiplied by the number of trips that a ship makes per year. Thus, the 

annual number of encounters for a given route was obtained. The detailed 

description of the elicitation method and the obtained results are given in 
(Montewka and Puisa 2014). 

Figure 2: Tanker route from Port of Rachid (UAE) to Chiba (Japan) - to the left. Traffic density
plot for the analysed area obtained from the Automatic Identification System – to the right. Total
length of the route is 6452 NM. 

Figure 3: RoPax route from Helsinki (Finland) to Travemunde (Germany) - to the left. Traffic
density plot for the analysed areas obtained from the Automatic Identification System – to the
right. Total length of the route is 617 NM. 
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Quantification of accident probability 

To make the task of encounter estimation more manageable for the experts, 

the routes were split into legs according to the traffic characteristics, and the 

numbers of encounters were estimated for each leg separately. Any specific 

seasonal activities were mentioned, that may occur along a leg, and affects the 

number of encounters. When the annual number of encounters has been 

obtained, the annual probability of collision and grounding for each leg of the 

routes has been calculated. To calculate the annual probability of an accident 

along the route, we applied rules, following the methodology presented in (He 

et al. 2008). Therein the human error probability is quantified for a task, 

which is composed of sub-tasks. In our case, a trip between two harbours is 

seen as a task, and each leg along the route is a sub-task, and the probability of 

an accident is associated with the lack of or improper human action. To 

calculate the probabilities we use the equation listed in Table 1, and the 
following logic: 

For sequential subtasks with high or complete dependence, we use the 

maximum probability of all subtasks, meaning that the task would fail when 

any of the subtasks fails, thus the highest failure probability of the subtasks is 
assigned as the failure probability of the whole task. 

The task presented here (ship transit along the route), consists of sequential 

subtasks, where the failure in one of them (collision or grounding in any leg) 

leads to the failure in the task. Navigating a ship through a leg can be seen as a 

sub-task, carried out by a single bridge team, if the length of the leg is no 

longer than the distance covered by a ship during a watch, which are 4 hours 

for tankers and 6 hours for RoPax. If the leg length is greater than that, more 

than one bridge team carries out the sub-task. Thus, the number of encounters 
is split among the corresponding numbers of shifts that occur along that leg.  

Table 1 Rules for calculating the probability of an accident along the route 

Logic relation between 

sub-tasks 

Dependence between 

sub-tasks 

The probability of not 

completing a task 

Only failure of all sub-

tasks would fail the task 

(parallel subtasks) 

High dependence 

Independent / low 

dependence 

Pcoll ≈ Min(Pcoll-leg) 

Pcoll = ∏ Pcoll-leg 

Failure of one sub-task 

leading to failure of the 

task (sequential sub-tasks) 

High dependence 

Independent / low 

dependence 

Pcoll ≈ Max(Pcoll-leg) 

Pcoll = 1-∏(1- Pcoll-leg) ≈ ∑Pcoll-leg 

 

The probability of an accident per leg - where a leg is tantamount to a subtask - 
is obtained as follows: 

Pcoll-leg=1-e-pn       (3) 
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where n is a number of encounters over a given leg during one year and p 

stands for the probability of an accident per encounter. Following the logic 

presented in Table 1 the annual probability of an accident along the route 
(Pcoll), composed of several legs yields: 

Pcoll=Max(Pcoll-leg)      (4) 

Models and results 

The logic of the developed risk models accounting for the effect of GDFs on the 

probability of collision and grounding is presented in figures 4 and 5. With the 

use of the models and adopting the experts elicitation techniques to arrive at 

the number of encounters, we obtained the annual probability of collision and 

grounding for a RoPax and tanker navigating along predefined routes, as 

presented in tables 2 and 3. The results, which were obtained in the course of 

the modelling, showed good agreement with the statistical data for collisions 

for both types of ship analysed here. However, in the case of grounding 

accidents the model systematically overestimates the probability for this type 

of an accident, compared to the available statistical frequencies. The following 

reasons have been defined as possible causes for this bias, attributed mostly to 
the adopted method to estimate the HEP: 

• In the model, grounding happens when a ship course is not altered as 

planned and ship navigates off the track and she grounds. In the 

modern bridge systems, there is a sequence of alarms, beginning with 

one that informs an officer that the ship is approaching a waypoint, 

another when a ship is in waypoint and subsequent, when the ship 

goes beyond the waypoint. To run aground an officer should not 

respond to any of these alarms (the sequences of failures), whereas the 
model presented does not account for such sequential failures. 

• The grounding model does not account for the fact, that an officer 

navigating a ship is aware of the potential spots for grounding along 
the route.  

These imply an increased awareness, which is not reflected in the model, and 

can be seen as a major reason for the model bias. Despite the evident bias, the 

proposed risk models can be directly used for the quantification of the effect of 

GDFs on risk in a comparative manner. However, if the model is to be used for 

the cost-benefit analysis, a correcting factor needs to be applied, which will 
remove the bias to a large extent. 
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Figure 4: Risk model for ship-ship collision 

 
Figure 5: Risk model for ship grounding 

Table 2 The annual probability of an accident (collision and grounding) for a RoPax along 
Helsinki-Travemunde route benchmarked against Incident frequencies for RoPax ships (GT > 
4,000) for the period 1990-2013, (Montewka, Goerlandt, Owen, et al. 2014) 

Type of an accident 
The average probability 

from the model 

Frequency from the 

statistics 

Collision 5.1E-3 1.3E-3 

Grounding 3.0E-1 7.0E-3 

Table 3: The annual probability of an accident (collision and grounding) for a tanker along a 
route from Port of Rachid to Chiba benchmarked against Incident frequencies for tankers for the 
period 1990-2013, (Montewka, Goerlandt, Owen, et al. 2014) 

Type of an accident 
The average probability 

from the model 

Frequency from the 

statistics 

Collision 8.0E-4 1.12 - 1.56 E-3 

Grounding 2.6E-2 0.56 - 1.59E-3 

Discussion 

The models presented in this paper offer a novel, evidence-based approach to 

modelling risk of ship-ship collision and grounding. They provide a flexible 

framework that could readily be extended to encompass the actions of third 

parties and mechanical failures in the future. The flexibility to extend the 

model’s application is provided by the causal mechanism represented within 
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the model that describes occurrence of an accident as the result of insufficient 
performance of an individual when exposed to hazardous situation.  

The integration of NARA to support the calculation of HEPs within the risk 

models has clear positives and negatives. On the one hand, it provided a 

facility to generate ‘reasonable’ HEPs using a well-known method, which 

would not have been possible otherwise. On the other hand, the application of 

NARA to physical tasks associated with physical effect of the GDFs on 

Detection, Assessment and Execution of Simple Actions, is stretching its 
application to, and perhaps beyond, its limit.  

Despite the limitations and the paucity in data supporting certain hypotheses, 

the application of BBNs as a modelling tools, allows for clear representation of 

the modelled problem and comprehensive distribution of all the recognised 

uncertainties. By adopting BBNs and performing the importance analysis, we 

learned that the crucial elements of the models are the nodes, where the 

human error probabilities are quantified. Whereas the detailed quantification 

of the levels of GDFs associated with a given ship design or their effect on the 

attention management capability is less important, (Montewka, Goerlandt, 
Innes-Jones, et al. 2014).  

Finally, comparative assessment of vessel designs based on manipulation of 

the GDF input nodes is possible in principle. The models are responsive to 

changes in the GDF nodes as expected. Naval architects, vessel designers, and 

vessel system designers may use the models as intended, provided access to 

human factors expertise is available to assist with application and 

interpretation. It is important to recognise the relevance of human factors 

input during its eventual application. Human factor provides the 

understanding of the complexities of human behaviour in operational settings, 
its interdependencies and interactions. 
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Fire ignition modelling 

Romanas Puisa, Research Project Manager, Brookes Bell LLP, 
romanas.puisa@brookesbell.com 

Background 

Project FAROS has the ultimate goal of understanding, integrating and 

demonstrating the role of human factors in risk-based ship design. To that 

end, the risk models for each principal hazard are enhanced with human error 

and other human factors related aspects. Such models are then used in the 

ship design process, specifically focusing on assessment of initial design 

alternatives. The initial design stage is indeed most critical, for significant 

design modifications at this early stage are most cost effective. The project 
focuses on three principal hazards to crew and passengers onboard: 

• Personal injuries (crew only), addressed in report D4.5 (Owen et al., 

2014) 

• Flooding, following collision and grounding events as described in 

report D4.6 (Montewka, 2013a) 

• Fire, addressed in report D4.8 (Puisa et al., 2014) of which part is 
summarised in this paper.    

Report D4.8 contributes to understanding of fire root causes, precursors and 

outbreak conditions. It specifically presents probabilistic ignition models, 

ignition scenarios and ignition statistics for various onboard spaces with 

human factors playing a decisive role in causing or insufficiently preventing 

the fire outbreak. Additionally, the report addressed the integration of human 

factors (e.g. human error) into the ignition models, where appropriate. In turn, 

the human factors were linked to the following global design factors (GDFs) 
addressed in project FAROS: 

• Noise 

• Vibration 

• Ship motions 
• Deck layout, equipment arrangement and accessibility (DLEAA)  

In this work, human errors are assumed to cause either ignition preconditions 

(fuel or heat source) or technical faults which, with time, may lead to such 

preconditions. Figure 1 outlines the assumed causal chain that links GDFs, 
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human performance, human errors and their consequences. The link between 

GDFs and human performance is addressed in report in D3.5 and D3.6 

(Montewka, 2013b, 2013c), whereas the remaining part of the causal chain is 
treated in this paper.  

 

Figure 1: Used causal chain in the developed ignition models 

Thus, modelling of fire ignition probabilities for various spaces on RoPax and 

tanker ships is the ultimate outcome of this work, as far as its application in 

FAROS is concerned. The modelled probabilities are then combined with the 

fire consequence model (Guarin and Logan, 2011) to calculate fire risk which is 

defined as the expected number of fatalities (or Potential Loss of Life (PLL), 

ref. MSC 83/INF.2) resulting from fire events. The integration of the ignition 

and consequence models is described in public report D5.1 (Montewka and 
Puisa, 2014).  

There are a number of caveats which concern the validity of the modelled 

ignition probabilities. First, the estimated ignition probabilities should not be 

confused with fire accident probabilities (or relative frequencies) inferred from 

historical records. The latter normally correspond to medium and large scale 

fires with failed fire detection or/and suppression systems. The probability of 

such fire accidents would always be much smaller than corresponding 

probabilities of ignition. Second, estimated probability values cannot be 

guaranteed to be entirely accurate (probabilities are imprecise), although their 
order of magnitude is thought to be representative.  

Introduction 

Fires onboard are reoccurring events, causing losses of life and property. 

SOLAS3 Chapter II-2 outlines basic ship design requirements for fire 
                                                        

3 International Convention for the Safety of Life at Sea (SOLAS) 

 

GDFs 

Deteriorated human 
performance  

Human error during inspections, 
overhauls, and repairs 

Prolonged availability of flammable material 
and heat sources, malfunctioning and 
premature breakdown of ship systems, etc.  

Ignition 
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protection, detection and extinction. The requirements are further expanded 

by class rules, international standards (e.g. FSS Code4 , ISM5 Code ) and other 

safety measures. Fire has also been one of the main topics in the research 

community, involving the industry, academia and various research-driven 

SMEs6 . In this topic, the European Commission (EC) has funded such 

research projects as PHOENIX, SAFETY FIRST, SAFEDOR, FIRE-EXIT, 
FIREPROOF, to name a few.  

Past research projects have shed light on different aspects of fire risk, starting 

from a general probabilistic framework and consequence modelling (e.g., 

SAFEDOR) and ending with final stages such as evacuation and debarkation 

(FIRE-EXIT). As the fire phenomenon is highly complex and stochastic by 

nature, the subject is generally under-researched, remaining with many grey 

areas and knowledge gaps (Babrauskas, 2007, 2003). One of such grey areas is 

the fire inception. Regulation 4 of SOLAS Chapter II-2 explicitly refers to 

probability of ignition to be addressed in design and operation. A few existing 

probabilistic models, e.g. (Hakkarainen et al., 2009; Lindgren and Sosnowski, 

2009), that allow estimating ignition probabilities in various onboard 

compartments are either over simplified or too complex and hence have 
limited engineering utility.   

This paper provides a summary of the contribution—achieved in D4.8—to 

understanding of fire root causes, precursors and outbreak conditions in 

engine rooms. Fire inception is a primary part of fire risk and if suppressed, 

would irradiate the entire chain of events that follow, consequently reducing 
the cost of fire safety systems installed to tackle them.  

Used data sources 

Development of risk models, which are inherently probabilistic constructs, is 

challenging. A risk model, or just its part, is a collection of assumptions that 

have to be backed by evidence. Perhaps the most problematic part of this 

process is the derivation of probabilities, especially when the data is scant, as 

the case in the maritime domain (Grabowski et al., 2009; Wang et al., 2011). In 
this work we utilised the following sources of evidence and data:    

• Accident records 

• Ignition discipline, e.g. (Babrauskas, 2003) 

• First principle computer simulations 

• Human error probability databases 
• Expert option 

                                                                                                                                                  

4 The international code for fire safety systems (FSS Code) 
5 International Management Code for the Safe Operation of Ships and for Pollution Prevention (ISM 
Code) 
6 Small and medium enterprise (SME)
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Accident records 

Sea-web7 contains a large number of records over many years and different 

shiptypes worldwide. However, they do not contain detailed information such 

as the fire origin and root causes, and hence can be used for trend 
identification and other high level statistics only. 

 

Figure 2: Used sources of fire incident records. 

FIREPROOF8 database contains quite substantial number of records, namely 

1522, from 71 cruise ships from 3 cruise ship operators over the period of 9 

years. The database contains fairly detailed descriptions of fire accidents. This 

database was mostly used to derive basis ignition frequencies for public and 

other spaces in this report. However, as narratives of accidents are missing, 

many details still remain unrevealed.  

FAROS database contains 150 records collected based on detailed analysis of 

accident investigation reports. As accident narrative was accessed, detailed 

information about fire circumstances and root causes was extracted. The 

database was used to gain deeper understanding about plausible ignition 

scenarios, their precursors, and feasible assumptions to be then used in the 
process of mathematical modelling.  

Mariners' Alerting and Reporting Scheme of the Nautical Institute was used 
to get access to accident investigation reports.  

Ignition science 

Another source of evidence and data came from the current understanding of 

the ignition phenomenon. On the one hand, the ignition modelling is quite 

limited in the maritime domain, although there are always examples that 

break the rule, e.g. (Li et al., 2010). On the other hand, the ignition discipline 

is pretty well developed (Babrauskas, 2003) and there is a multitude of various 

ignition models available, although, as noted in (Babrauskas, 2007), the 

                                                        
7 www.sea-web.com 
8 FIREPROOF is a recently completed EU project on fire safety of passenger ships.
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majority of these models has little engineering utility, i.e. they are either 
inaccurate or too complex and hence impractical in everyday use.    

CFD simulation 

We also used first principle computer simulations, specifically CFD 

simulations, to work out physical behaviour of flammable oils transported in 

pressurised piping systems. Specifically, we were interested in determining the 
extent of spray (leak) when a pipe or other component develops a crack.   

Human error probability database 

Human error probability (HEP) databases and corresponding methods such as 

HEART (Williams, 1988, 1985) were used to work out HEPs under given 

circumstances such as the effect of the global design factors, time pressure and 
others.  

Expert opinion 

Expert opinions were gathered through structured questionnaires about the 

time to failure and failure modes of system components in engine rooms. 

Specifically, chief and 2nd engineers were asked to provide the sought 

estimates. The collected data was then processed using formal techniques 

(Cooke, 1991; Cooke and Goossens, 2008) to converge at failure probability 

distributions.  

Data analysis through statistical inference  

The evidence and data were combined and processed using methods of 
statistical inference.  

Frequentist inference (FI) implies of drawing conclusions from sample data by 

the emphasis on the frequency or proportion of the data. FI is associated with 

the frequency interpretation of probability, specifically that any given 

experiment can be considered as one of an infinite sequence of possible 

repetitions of the same experiment, each capable of producing statistically 

independent results (Everitt and Skrondal, 2002). FI can be considered as a 

classical method in the maritime domain to arriving at probabilities of 

accidents solely based on accident records available and is widely exercised 

within the research community, e.g. (Kristiansen, 2005), and also at IMO. 

However, Bayesian inference, as an alternative to FI, has noticeably started 
earning its popularity as well, e.g. (Trucco et al., 2008).  

Bayesian inference (BI) (incl. Bayesian networks) is a method of inference in 

which Bayes' rule is used to update the probability estimate for a hypothesis as 

additional evidence is acquired. The rationale behind using BI is to have a 

formal means of quantifying studied phenomena for which quantitative data is 

limited. Such quantification can then be improved once new data or evidence 
is available.  

The interchangeable use of both inference methods allowed for greater 

flexibility, and the amount and quality of available historical data and evidence 

determined the choice of a specific method. Thus for example, Bayesian 
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inference was used when historical accident records were either missing or 

very limited, otherwise frequentist inference was preferred. It is important to 

note that in light of generally limited historical data, the modelling was aimed 

to answer the question of what can happen rather than what has happened. In 

technical terms this means that the existing limited data and knowledge of 

modelled phenomena were used to support assumptions about probability 
distributions, rather than probabilities themselves.  

Ignition Models 

The space of fire origin can be anywhere onboard. However, some spaces have 

higher fire risk than others. The engine room is one of such spaces. It has been 

reported for both cargo and passenger ships that 2/3 of all fires onboard are 

likely to happen in engine rooms (DNV, 2000), as shown in Figure 3. Ship 

owner operating 20 cargo vessels can expect one major engine room fire every 

ten years. For cruise vessels, the frequency is twice as high (Tuva Kristine 

Flagstad-Andersen, 2013). Therefore, the overall fire risk would significantly 

decrease, if ignition probability and its consequences in merely machinery 
spaces were reduced. 

 

Figure 3: Distribution of fire origin on passenger ships. 

Due to size constraints, this paper presents a summary of the engine room 

ignition model only. The complete set of the ignition models is found (Puisa et 
al., 2014).  

Engine rooms 

Evidence 

Around 60% of all incidents in the engine room originate from oil 

leakages/spray on hot surfaces (Tuva Kristine Flagstad-Andersen, 2013), as 
shown in Figure 4. Other main contributors to risk of fire and explosion are:  

• Excessive blow-by, causing scavenging-space fires or crankcase 

explosions,  
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• Hot-running of bearings,  

• Leakages of hot gas due to bad pipe fixations or connections. 

• Fires caused by oil leakage/hot spots are in general more serious than 

fires caused by other factors. Sources for oil leakage are many and 

difficult to reduce, whereas it is relatively easy to identify and remove 

hot surfaces. 

 

Figure 4: Fire causes in engine rooms (ref. DNV (DNV, 2000)). 

 
a) Heat sources in machinery spaces 

 
b) Leak sources of flammable oils 
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c) Distribution of hot surfaces (TC – turbo charger) that ignited leaked flammable oils 

 

d) Frequencies of contribution of human error to appearance of oil leaks, high 
temperature surfaces, or both 

Figure 5: Some statistics on fire origins and scenarios in engine rooms (source: FAROS DB; 
absolute numbers of records are given). 

Passenger vessels seem to have a higher fire frequency than other types of 

vessels. This could be because the focus on passenger vessels is high and such 

fires are usually reported in the media. In addition, passenger vessels normally 

have more compact engine rooms, with more machinery and equipment. 

Larger engine rooms may improve fire safety as the distance is greater between 
the source of ignition and the potentially combustible material.   

The engine room is the main source of vibration and noise on the ship. It has 

been observed that vibration caused fatigue, pressure pulses in the fuel system 

are the primary culprits in the generation of leaks (Galpin and Davies, 1997; 

Goodwin, 2003; MSC.1/Circ.1321, 2009), with the human error as a likely 

precursor to a leakage incident. This often relates to installation, monitoring 

and maintenance errors. This could be, for example, insufficient care of high 

pressure pipe mating surfaces during engine overhauls, or a physical damage 

from contact with engine spare parts during storage. Thus, Figure 5 d) 

indicates that amongst all fire incidents attributed to the human error, the 
contribution to oil leaks is the most significant.  
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Figure 5 shows some interesting statistics on fire scenarios, which indicate 
that: 

• The predominant majority of ER ignitions have happened within the 

exhaust area of a diesel engine, which can be either the main engine 

(primary mover) or a diesel generator used in the diesel-electric 

configuration. Thus, although there are other potential heat sources 

(e.g., overheated surfaces of electric motors and boilers), the number of 

heat sources is limited to a dozen or so (Tuva Kristine Flagstad-

Andersen, 2013). 

• Ignited flammable oils (e.g. HFO, MDO, and MGO) have mainly leaked 

from fuel supply lines. The lubrication line is another common source 

of leaks. Both sources are directly connected to the engine and are in 

close proximity to the exhaust piping.  

• Human error during scheduled and unscheduled overhauls is a critical 

factor that affects reliability, or service time, of maintained systems.  

• Based on the above, the ignition model in engine rooms can be solely 

based on the auto-ignition scenario when a hot surface, as the heat 

source, comes in direct contact with flammable oil vapour or mist 

(Holness and Smith, 2002), which is vaporised flammable oil due to a 

prior contact with the hot surface, for example.  

Modelling 

The IMO guidelines for measures to prevent fires in engine rooms and cargo 

pump rooms (ref. MSC.1/Circ.1321) outline specific requirements that help 

control availability of fuel, heat source and oxygen as essential elements of the 

fire triangle. The guidelines refer to control of flammable oils and ignition 

sources etc., alluding to the measures minimising their probabilities. This 

offers a basic modelling framework that deals with the logical conjunction of 

events displayed in the fire triangle. Thus, auto-ignition probability for a 

specific heat source (a high temperature surface with T > 220 °C as per 

MSC.1/Circ.1321) is written as    

 

 

(1) 

 Conditional probability of ignition once the flammable 

oil and a hot surface have come in contact. This 

probability is affected by ambient properties in the 

room (i.e., temperature, pressure, humidity etc.) and 

physical properties of the flammable vapour (i.e., 

concentration of flammable oil in the air, temperature 

etc.) and the surface (i.e., temperature, area etc.).  

 Conditional probability of flammable oil and the high 

temperature surface to come in contact. This 

probability is mainly driven by design of the engine 

room. Specifically, the relative distances between 

pressurised oil systems and the surface affect it.  
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 Marginal probability of flammable oil availability in 

the engine room. This probability relates to failures of 

leak/spry shields in pressurised piping systems 

(flexible pipes, hoses and hose assemblies, expansion 

joints, filters and strainers, oil level gauges etc.). More 

specifically, it is leak probability from any component 

of pressurised system.  

 Marginal probability of any high temperature surface 

(above 220°C), in the engine room. This relates to 

insulation failure of exhaust gas piping and manifolds, 

cylinder head indicator cocks, superheated steam 

pipes etc.  

 

Conditional probability of ignition, P(I�contact∩FO∩H), is expressed as 

 

 

 

(2) 

 Temperature of a high temperature surface, which is 

assumed to be equal to exhaust gas temperature of 314-340 

°C (MAN, 2010; Wärtsilä, 2004).   
 Expected ignition temperature of released flammable oil, i.e. 

expected auto-ignition point in the leak zone. This 

temperature is an integral over pressurised components 

transmitting various flammable oils with individual ignition 

temperatures (MSC.1/Circ.1321).   

 

Contact probability P(contact┤|FO∩H) is expressed as 

 

 

 

(3) 

 Probability of leak spray in direction of hot surface. This 

probability was linked to systems’ arrangement in the engine 

room.  

 Probability of physical overlap between the spray and a high 

temperature surface. The physical overlap between the spray 

and the engine is affected by the distance between the engine 

and the leaking component, and the extent of the leak (i.e. 

spray radius) as shown in Figure 6. This probability is 

linked to the size of the engine room.  
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Figure 6: Effect of the component proximity, to potential 

hot surfaces, and leak extent on the overlap probability (r 

stands for the expected spray radius which was estimated 

based on CFD simulations). 

Probability of the actual contact between the flammable 

spray and a high temperature surface, provided the overlap 

exists. It is proportional to the projected area of the exhaust 

manifold, and other related components liable to 

overheating due to failure. 

Marginal probability of flammable oil availability in the engine room is 
modelled based on the event tree-like interpretation of the event (Figure 7). 

 

Figure 7: Event tree-like representation of availability probability of flammable oil. 

Thus, probability of flammable oil to be available as a result of a leak / spray 
from component i is expressed as 

 

  (4) 

 Probability of a leak / spray, which is expressed as a combination 

of event probabilities shown in  

Figure 7. The explicit expressed in shown in Eq. (5). 
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Figure 7: Fault tree representation of leak probability.  

 

Joint probability of successfully detecting and immediately 

repairing the leak. The probability of the joint event is a 

combination of marginal detection probability and conditional 

probability of immediate repair once the problem has been 

detected. The engine room components are inspected regularly 

(ref. MSC.1/Circ.1321), at least once a day. Detection probability is 

hence driven by the frequency and quality of the inspection. 

 

Probability of a leak / spray is formally written as 

 

  (5) 

 Probability of a leak of flammable oil (e.g., MDO, HFO, LO). 

 Marginal probability of human error during maintenance in the 

engine room. 

 Conditional probability of damage due to quicker aging which 

accelerated because of earlier made maintenance / installation 

errors by the crew.  

 Conditional probability of a damage due to aging / fatigue as a 

result of vibration, pressure pulses etc. 

 

The following assumptions were made to arrive at the above expression: 

• Any damage to the oil supply / storage system with internal pressure 

above the ambient pressure leads to a leak  

• The presence, in the engine room, of fatigue causing and related factors 

such as long term vibration, pressure pulses, and also factors such as 

manufacture and design faults is always positive. 

• The immediate leak due to the human error during maintenance is 

possible, but its possibility was ignored because of immediate 

 

Leak 

Damage 

Human 
error 

Material 
fatigue 
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rectification made by the crew, unless the leak has not been noticed, 
which is highly improbable. 

Damage probability of a piping system due to aging, P(D�A), is modelled as 

probability of damage between two inspections, provided the component had 

been operational before the first inspection. Thus, we are modelling a time to 

failure (TTF) as a random variable. Regardless what probability distribution is 
used to represent TTF, the probability of interest is expressed as 

 

  (6) 

 Time to failure (TTF) 

 Period of time since the beginning of exploitation (i.e., t=0) until an 

inspection of interest. This corresponds to ship age. 

 Period of time since the inspection until the next one 

 Cumulative distribution function (CDF) of TTF 

 

It is important to note that probability P(t_F≤t+Δt�t_F>t) depends on the 

absolute time of inspection or ship age, t, only if the failure rate is variable, e.g. 

the failure rate increases with time due to the aging process as the component 

wears out. If the failure rate was constant, i.e. no aging is assumed, then 

P(t_F≤t+Δt�t_F>t)=P(t_F≤Δt), which would leads to the expression with 

one less factor.  

Damage of ship systems that transport/store flammable oil may happen due to 

cyclic loads, which gradually lead to the growth of cracks of which 

development rate is proportional to their size (ref. Paris’ law). In other words, 

such ship systems/components are subjected to the aging process with the 

increasing failure rate over time. For this reason, the Weibull probability 

distribution function (PDF) was selected to represent TTF. PDFs were derived 

according to the method by Cooke and Mendel–Sheridan (Cooke, 1991; Cooke 

and Goossens, 2008; Goulet et al., 2009; Mendel and Sheridan, 1989) based 

on empirical data elicited from 16 chief and 2nd rank engineers providing 

experiential estimates of TTF. A sample results of such data elicitation and 
processing is shown in Figure 9, Figure 10, and Figure 11. 
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Figure 9: CDFs for TTF for components liable to leaking flammable oil (4 strokes machinery). 

 

Figure 8: Fluctuation of the damage / leak probability of any component group (4 strokes 
machinery). The peak period is approx. 8 years. 

 

Figure 11: Normalised probability of leak before next day inspection (4 strokes machinery). The 
figures estimated for 15.5 years old vessel.  
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As for conditional probability of damage due to quicker aging which 

accelerated because of earlier made maintenance / installation errors by the 

crew, P(D�AA), it was modelled in a similar fashion as the probability of 

damage due to ageing. Thus, we assumed that maintenance errors affect the 

time to failure (TTF) of maintained system components. Specifically, TTF is 

shortened and the amount by which it is reduced corresponds to the scale of 

detrimental effect (SDE). Thus for example, when SDE=0.5, then the TTF of a 

given component has been shortened by half and when SDE=0, the TTF is not 

affected at all. It is important to note that SDE can be interpreted as 

conditional probability of reducing the service time of a repaired component, 

provided an error has happened during repair works. One can notice that the 

scale parameter of the Weibull distribution is the main determinant of the 

expected TTF value, or TTF value in general. This property of the Weibull 

distribution allowed us to make an assertion that SDE affects the scale 

parameter only. In this case, the affected scale parameter, �^', would simply 
be worked out as 

 (7) 
 

Using SDE=0.5, Figure 12 demonstrates the difference between the derived 

damage probability due to maintenance mistakes and damage probability due 
to aging for the 4-stoke machinery configuration. 

 

Figure 12: Fluctuation of probability of oil leak (before next day inspection) due to aging and 
maintenance mistakes which are assumed to accelerate the aging process. 

Marginal probability of any high temperature surface, P(H), was estimated 

following the same process as for the marginal probability of flammable oil 

availability in the engine room. That is, a similar mathematical framework was 

employed, and experiential data was elicited from marine engineers serving on 

RoPax and tanker ships. This also applied to the probability of insulation 
damage due to human error.  



Fire ignition modelling 

67 

As there are two insulation types of high temperature surfaces: removable 

(blankets, flexible jackets) and permanent, the engineers were asked to give 

estimates for both of insulation types. Figure 13 shows cumulative probability 

distribution functions for various isolated components, whereas Figure 14 

shows fluctuation of the failure probity over ship’s lifetime. Bearing the 

number of components analysed, there are 16 unique configurations of 

insulating these components, e.g. exhaust gas piping (removable), exhaust gas 

manifolds (permanent), cylinder head indicator cocks (removable), 

superheated steam pipes (permanent). Based on this, one can compare 

insulation configurations in terms of the number of failure over the ship’s 

lifetime (Figure 15). Configuration 9 has highest reliability: exhaust gas piping 

(permanent), exhaust gas manifolds (removable), cylinder head indicator 
cocks (removable), superheated steam pipes (removable). 

 

Figure 13: CDFs for TTF of thermal insulation of different components 

 

Figure 14: Fluctuation of the insulation failure probability before next day inspection from 
across all four components for insulation configuration #9. The peak period is approx. 6.4 years 
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Figure 15: Total number of failures over all component insulations within a typical ship’s lifetime 
of 30 years. The min values correspond to 95% percentiles of lifetime periods of individual 
component insulations, whereas the max values correspond to the expected lifetime periods 
(i.e. mean values of Weibull distributions).  

In the engine room ignition mode, there are two human error types 
considered:  

• The first one is related to failure to properly detect and asses a 

problem. This probability is generic, i.e. space and ship independent.  

• The second type is related to any human error made during 
maintenance of ship systems 

These probabilities are linked to the global design factors (GDFs) considered 

in the project, and the links are implemented by means of a Bayesian network 

shown in Figure 16. Note that the marked part of the network is described in 
deliverable D4.6 (Montewka, 2013a). 

 

Figure 16: Bayesian network for estimating probability of sufficient detection, assessment and 
maintenance task performance. Note the marked part of the network in described in D4.6 
(Montewka, 2013a). 
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The main input to this model is probabilities of insufficient space allocation 

and unreasonable collocation of functional areas. As described in deliverable 

D3.4 (Hifi and Garner, 2013), the deck layout, equipment access and 

arrangements (DLEAA) affects human performance directly and indirectly. It 

is clear that DLEAA presents certain physical and cognitive demands upon the 

seafarer which they must be able to meet in order to perform a task. These may 

be physical, due to factors such as confined space or impaired accessibility, or 

cognitive and working memory demands, due to factors such as the distance 

and separation between functional areas. As for the physical demands, DLEAA 

affects task performance, making specific tasks easier or harder to complete. 

Therefore the effect is relatively easy to grasp and quantify, assuming it 

manifests itself in physical obstacles that impede freedom of movement 

necessary for easy and therefore successful (supposedly) task execution. 
Examples of such physical obstructions are: 

• Lack of space around the equipment under inspection / repair; 

• Narrow pathways that require a mariner to slow down to avoid 

accidental and injurious contacts, especially when carrying heavy 

equipment; 

• Obstructions on the way from one space to another (e.g., watertight 

doors, stairs and ladders), reducing the average walking speed and 

hence delaying execution of the task, which in turn may lead to time 
pressure.  

Probability of insufficient space allocation was modelled as being proportional 

to the ratio of necessary space to space available around inspected / repaired 

equipment (e.g. according to the HSE guidelines9 , the required space for safe 

and productive work is 11m3 per person). Probability unreasonable collocation 

of functional areas was modelled being proportional to the ratio of normal 

walking speed to expected walking speed along the vessel during repair and 

other tasks. That is, the more watertight doors an engineer has to cross to get 

from one functional space to another while completing a specific task (e.g. a 
repair in engine room), the more unreasonable allocation of spaces is.  

Benchmarking and sensitivity analysis 

By randomly varying input to the ignition model, a histogram of outputs was 

created and compared with the historical average obtained from the sea-web 
database (see Figure 17). 

                                                        
9 http://www.fbu.org.uk/wp-content/uploads/2011/08/HSE-Workplace-HSW-ACOP.pdf 
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Figure 17: Histogram of ignition probability in the engine room per shipyear, when comparing 
with the historical average. 

The simulation results have indicated that the ignition model delivers results 
of same order of magnitude but approx. 6 times lower values than the 
historical average given in (Puisa et al., 2014). However, as the historical 
average corresponds to frequencies of fully developed fires, whereas the 
ignition model is limited to fire inception event only, the ignition model did 
under predict the ignition probability. This meant that certain quantitative 
assumptions in the model had to be revised, which was done by introducing a 
corrective multiplier as described in (Montewka and Puisa, 2014).      

Figure 18 shows the results of sensitivity analysis, specifically showing 
correlation between the ignition probability and its covering parameters used 
as input to the model. 

 

Figure 18: Results of sensitivity analysis. Main effects of a linear regression model are shown. 

From Figure 18 one can observe that: 

• Occurrence of human error, i.e. human factors and organisational 

failures, represents the principal cause for ignition in engine rooms.  

• Ship age is another important factor, although its effect is orders of 

magnitude lower than the human error related factors.  

• Both the thermo insulation configuration and pressure in the piping 

system (the latter affects the spray radius of flammable oil) have 

negligible effect on the ignition probability. In other words, the contact 
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between leaked flammable oils and high temperature surfaces will 

eventually occur as long as both flammable oil and high temperature 

surface are present. Improving reliability of thermo insulation should 

be a choice measure to further reducing the likelihood of contact 

between them. 

• The direct effect of the ER floor area—being as a measure of proximity 

between potential leaks and hot surfaces—is negligible, as shown in the 

figure. However, its indirect effect through human error is much more 
significant, as explained found in the study.  

Conclusions 

The presented empirical model for the engine room ignition probability was 

developed following the bottom-up approach (starting from basic events and 

moving up to their assemblies). This allowed to control the level of granularity 

and hence occupancy of the model, although this increased its complexity. 

Sensitivity analysis of the model confirmed that human error during scheduled 

and unscheduled overhauls / repairs is the prevailing factor that affects 

reliability (service life) of maintained systems. This echoes observations in 

accident investigation reports and indicates the structural validity of the 
model.  

The model can be used for design purposes by optimising the size of the engine 

room and interlocution of ship systems in the engine room. This is a prime 

application of the model in project FAROS. The model can also be used for 

scheduling of overhauls by looking at fluctuations of leak and insulation 

damage probabilities. Also, the fluctuation of the inter ignition probability can 

also be analysed for specific vessel configuration. For example, Figure 19 

shows the fluctuation of annual ignition probability in the engine room of 140 

m long RoPax. The distribution of peaks is affected by lifetimes of piping 

system and thermo insulation components, as well as other factors considered 
in the ignition model. 

 

Figure 19: Variation of ignition probability in the engine rooms of a RoPax ship.  
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Introduction 

In practice, risk wise comparison of ships has to be categorical. That is, the real 

question is which ship remains safe, should any hazardous incident happen, as 

opposed to the question which ship is safe with respect to hazard A, B, C, etc. 

The former question is particularly significant for the society who primarily 

concerns about the sheer fact that the life is lost, rather than what caused the 

loss. In contrast, the latter is more important for ship operators and 

regulators, for they are looking for preventive measures. To compare safety of 

ships categorically, the total risk level, which ought to reflect all potential 
hazards, has to be estimated.  

The total risk will be treated as an extra performance indicator, alongside with 

economic and environmental performance metrics, while assessing multi-
disciplinary ship performance in the following WP6.  

It is important to note that by combining different risk aspects into a basically 

one number to be used for comparison of alternative designs, the information 

on individual risk aspects will not be lost. This information will still be 
available and used for detailed comparison of designs.  

In this paper we present an approach taken to synthetize the individual risk 

models developed in the course of FAROS project into an overall risk model. 

Furthermore the results obtained form the experiments conducted with the 

use of bridge simulator and Virtual Reality are presented and integrated into 
the risk model.  
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Taxonomy of risk 

Risk should at least be judged from two viewpoints. The first point of view is 

that of the individual, which is dealt with the Individual Risk (aka Personal 

Risk). The second point of view is that of society, considering whether a risk is 
acceptable for (large) group of people. This is dealt with the Societal Risk. 

This risk expression is used, when the risk from an accident is to be estimated 

for a particular individual at a given location. Individual Risk considers not 

only the frequency of the accident and the consequence (here: fatality or 

injury), but also the individual’s fractional exposure to that risk, i.e. the 

probability of the individual of being in the given location at the time of the 

accident. The purpose of estimating the Individual Risk is to ensure that 

individuals, who may be affected by a ship accident, are not exposed to 
excessive risks. 

Societal Risk is used to estimate risks of accidents affecting many persons, e.g. 

catastrophes, and acknowledging risk averse or neutral attitudes10. Societal 

Risk includes the risk to every person, even if a person is only exposed on one 

brief occasion to that risk. For assessing the risk to a large number of affected 

people, Societal Risk is desirable because Individual Risk is insufficient in 

evaluating risks imposed on large numbers of people. Societal Risk 

expressions can be generated calculated for each type of accident (e.g. 

collision), or a single overall Societal Risk expression can be obtained, e.g. for a 

ship type, by combining all accidents together (e.g. collision, grounding, fire). 
Societal Risk may be expressed as, (IMO 2002): 

• FN-diagrams showing explicitly the relationship between the 

cumulative frequency of an accident and the number of fatalities in a 

multi-dimensional diagram11.  

• Annual fatality rate: frequency and fatality are combined into a 

convenient one-dimensional measure of societal risk. This is also 
known as Potential Loss of Life (PLL).  

Societal Risk expressed in an FN-diagram allows a more comprehensive 

picture of risk than Individual Risk measures. The FN-diagram allows the 

assessment not only of the average number of fatalities but also of the risk of 
catastrophic accidents killing many people at once. 

However, unlike Individual Risk, both FN-diagrams and PLL values give no 

indication of the geographical distribution of a particular risk. Societal Risk 

represents the risk to a (large) group of people. In this group, the risk to 

individuals may be quite different, depending e.g. on the different locations of 

the individuals when the accident occurs. The Societal Risk value therefore 

represents an average risk. There is a general agreement in society that it is not 

                                                        
10 Only criteria reflect societal risk attitudes, not the statistics used for risk quantification. 
11 This corresponds to the distribution of frequency F for occurrence of N or more number of fatalities per 
ship per year.
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sufficient to just achieve a minimal average risk. It is also necessary to reduce 

the risk to the most exposed individual. It is therefore adequate to look at both 
Societal Risk and Individual Risk to achieve a full risk picture. 

Methodology to synthesize the risk models 

In this project we adopted an uncertainty perspective of risk, where risk is seen 
as follows (Aven and Renn 2009): 

R ∼ C&U       (8) 

The thorough analysis of various risk concepts has been reported in 

(Montewka 2013a), therefore this section contains only abridged explanation 
of the risk perspective adopted for the purpose of FAROS. 

Adopting the uncertainty perspective of risk we express an assessor’s 

uncertainty (U) about the occurrence of events and the associated 

consequences (C). Following this perspective, risk assessment can always be 

performed, as the risk model is seen as a tool to describe and convey 
uncertainties. 

The adopted risk perspective allows defining the plethora of consequences and 

associated uncertainties. This makes it possible to expand the model with 

desired consequences, which can be very specific, depending on the ship type 

under analysis. For instance, in case of a RoPax ship, the focus is on the 

human losses, therefore the risk will be expressed through the probability of a 

number of fatalities, see for example (Montewka, Ehlers, et al. 2014). Whereas, 

in case of a tanker, environmental impact of an accident may be a key issue, 

therefore the risk is expressed as the probability of oil spill of certain size 
(Goerlandt and Montewka 2014).  

In WP4, the focus of risk modelling was on the assessment of the probabilities 

of events such as unsafe behaviour, ship-ship collision, ship grounding and fire 

ignition onboard. Hence, the consequence part of the risk models was not 

worked on in the project and it was instead adopted from the literature 

(mainly EU funded projects over the last decade). The FAROS reports with risk 

models, except the personal risk model, include descriptions of consequence 

models as well. Thus, both parts of risk models are available and will be linked 
in Task 5.3.  

The way all risk elements are assembled is illustrated in the flowchart of 

Figure 9. Note that the colour coding explains which WP risk parts come 
from. 
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Figure 9: Synthesis of the overall risk model 

The risk model presented in this report incorporates both societal risk (fatality 

due to collision, grounding and/or fire) and the personal risk (injury or fatality 

during normal working conditions), as shown in Figure 9. Some of the features 
of the overall risk model are: 

• The Personal risk component: 

o Provides estimates of both fatalities and injuries  

o Considers crew members only (i.e. it does not consider 

passengers) 

o Covers all tasks performed as per normal operations only (i.e. it 

does not consider emergency situations such as flooding, fire, 

explosion etc.) 

• The Societal risk component: 

o Provides an estimate of expected fatalities only (i.e. it does not 

consider injuries) 

o Considers both crew members and passengers on board 

o Covers emergency situations only (i.e. collision, grounding and 

fire events).  

• As such, the overall model does not consider: 

o Fatalities or injuries to passengers during normal operations 

o Non-fatal injuries to crew and passengers during emergency 

situations 

• As normal operations and emergency situations cannot co-occur, the 

Societal risk component and the Personal risk component are mutually 
exclusive as each one covers a different operational mode. 

The above features allow us to deal with the two types of risk (societal and 
personal) as mutually exclusive events and express them as a sum: 
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 (9) 

 

To sum addressed risk contributions as shown above, they have been 

expressed as the expected number of fatalities per shipyear, aka Potential 

Loss of Life (PLL) per shipyear (MSC 83/INF.2). Therefore formally, the 
overall risk can be written as a total expectation, i.e. 

 
(10) 

 

 Potential loss of life from societal risks per shipyear 

 Expected number of fatalities per shipyear (either of 
hazardous events) 

 Expected number of fatalities during an accident involving 
collision between more than one ship.  

 Expected number of fatalities during an accident involving 
grounding. 

 Probability of collision accidents per shipyear 

 Probability of grounding accidents per shipyear 

 Expected number of fatalities during an accident involving 
a fire  

 Probability (or expected frequency) of fire per shipyear 

 Expected number of fatalities from insufficient safety 
behaviour. Expected number of injuries is not considered as 
it can be integrated as shown above; the figure should be 
kept separately.  

 Probability of insufficient safety behaviour (see FAROS 
report D4.5 for details) of crew members during normal 
operation. Such behaviour leads to various hazards such as 
slips, fall, trips etc. and hence compromises personal safety.  

It is important to emphasise that all three risk components have to be 

expressed in PLL per ship-year. The following sections address the issue of 
compatibility and describe solutions to resolve it.  

Societal risks 

The models behind incident probabilities/frequencies and expected fatalities 

(consequence models) have been described in D4.6 (Montewka 2013a) and 

D4.8 (Puisa, Malazizi, and Gao 2014). As the FAROS project focuses on the 

effect of global design factors (GDFs) on human performance in an accident 

evasive action, the probabilities of collision and grounding are defined per 

encounter12 rather than shipyear. However, it is straightforward to update to 

                                                        
12 The encounter is understood therein as a situation where an evasive action is needed to pass safely 
with the other ship or a shoal. The encounter can be understood as exposure to the hazards. In order to 
express risk on a yearly basis, as required by project, a number of exposures over a year has to be 
estimated. 
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annual probability of collision/grounding, provided the number of encounters 

per year within given geographical location is known. The process of assessing 

the number of encounters along the selected routes is presented in 

(Montewka, Goerlandt, et al. 2014). In FAROS two shipping routes have been 
selected (Zagkas and Pratikakis 2012): 

• A ferry route from Helsinki (Finland) to Travemunde (Germany),  

• A tanker route from Rashid (UEA) to Chiba (Japan). 

Once the annual number of encounter has been determined, the risk 
magnitude is calculated as (Jasionowski 2011) 

 (11) 

 

 Probability of a collision or grounding accident per ship-
year 

 Probability that a ship has the capacity of up to 
persons (crew and passengers) in the fleet of given 

ship types. 
 Probabilistic subdivision index (SOLAS2009) 

 Number of persons considered (e.g. number of crew, or 
number of passengers, or both, onboard the ship) 

 

The above risk formulation is applied to both ship types and both routes, 

whereas the environmental risk (Montewka 2013a) is assessed for tanker ships 
navigating along the second route.  

 

Figure 2: Probability distribution of the number of persons onboard RoPax ships, 
 (Jasionowski 2011) 

Personal risk 

As indicated, the personal risk is also expressed in PLL per shipyear. To start, 

we can turn to MSC 83/INF.2 which offers the following expression for the 
personal risk: 

 (12) 
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 Individual (personal) risk per shipyear 

 Frequency of an undesired event per shipyear (e.g., unsafe behaviour). 
This figure is individual independent.  

 Conditional probability of individual casualty (e.g., death) for 
individual Y given the fractional exposure to the risk and the undesired 
event has occurred. 

 Individual’s fractional exposure to that risk, i.e. conditional probability 
of the individual of being in the given location at the time of the 
accident. 

 

An illustration explaining the above personal risk formulation is taken from 

MSC 83/INF.2: The risk for a person to be killed or injured in a harbour area, 

due to a tanker explosion is the higher the closer the person is located to the 

explosion location, and the more likely the person will be in that location at the 

time of the explosion. Therefore, the Individual Risk for a worker in the 

vicinity of the explosion will be higher than for an occupant in the 
neighbourhood of the harbour terminal. 

Eq. (12) can also be expressed (using the chain rule of probabilities) in a more 

generic and formal probabilistic form for better understanding of its formal 

rationale, i.e. 

 
(13) 

 Probability of casualty, exposure and hazard to happen at the 
same time over one year for a given individual.  

 Conditional probability of casualty (e.g. death, injury) given 
that an individual has been exposed to an injurious hazard. 
 
The relevant question is: 
Given unsafe behaviour and a hazard present (e.g., 
walking/running on a slippery surface while wearing 
inappropriate footwear), what is the probability of falling 
and fatally injuring oneself?  
 
This probability is the output variable of the personal risk 
model developed in deliverable D4.5.  

 Conditional probability for a given individual to be at the 
location of the hazard in question.  
 
The relevant question is: 
Given unsafe behaviour of a crew member, what is the 
probability of exposure to a hazard associated with this 
unsafe behaviour (e.g. probability of a slippery surface 
while wearing inappropriate footwear)? This also 
corresponds to probability of exposure to such hazards.  
As the presence of a hazard is independent of unsafe 
behaviour, this probability can be interpreted as just 
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probability of exposure to a hazard itself. For example, this 
would be probability of 

• walking on a slippery surface 

• working on heights 
• weight lifting and carrying 

• significant engine repairs  

• etc. 
 
Additionally, as we are interested in annual probabilities of 
events, then the above is probability to get exposed to a 
hazard over one year. The probability equals to one when the 
number of exposures over a year is one or more.    
 
It would be reasonable to assume the exposure to all such 
hazards to be certain over the enter year. So has been 
assumed in D4.5, which did not include the hazard variable 
into the BBN model therefore.  
 
With the above in mind, , i.e. probability of 
exposure to a hazard such as walking on a slippery surface 
etc., provided unsafe behaviour is present. 

 Marginal probability (individual independent) for unsafe 
behaviour to happen within one year.  
The relevant question is: 
What is the probability of one or more unsafe behaviours 
per person-year (e.g., prob. that inappropriate footwear is 
worn)?  
Probability of unsafe behaviour (or insufficient safe 
behaviour) has been addressed in D4.5: 
If we assume that GDFs and other affecting factors have same 
average values (e.g. vibration level etc.) over a year, then this 
probability of unsafe behaviour would be valid for that year.  

 

The above expressions can be interpreted in terms of an event tree shown in 

Figure 10. As can be seen, there is only one scenario resulting in personal risk 

and this very scenario is expressed using the formula above. 
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Exposure to hazard Casualty Risk 

yes 

0.3 9.00E-06 

Yes   

0.1   

  no 

  0.7 

Unsafe behaviour   

3.00E-04   

  yes 

  0 

No   

0.9   

no 

1 

Figure 10: Event tree representation of the personal risk given in Eq. (13) (note: used values 
are hypothetical) 

Thus, the above personal risk figure corresponds to annual probability for an 

individual to be fatally injured by a given hazard. If we assume that there are n 

crew members who are equally exposed to this hazard (i.e. unsafe behaviour), 
one can on average expect  

 
(14) 

 

fatalities per year, assuming that the event involving a personal injury/fatality, 

exposure to hazard (e.g. fall, slip) and unsafe behaviour per year is binomially 

distributed with probability . Eq. (14) corresponds to the expected 

value of a binomial variable or the annual potential loss of life, in the context 
of personal risk. In view of Eq. (10), the above expression for  can be 

rewritten as 

 
(15) 
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NB: The above expression can analogically be applied to injuries. However, the 

expected number of injuries will not be integrated within the overall risk 
model and will be kept separately while comparing designs.   

The number of crew members varies from shiptype to shiptype. Additionally, 

crew numbers may vary depending on the trading pattern, e.g. for short 

voyages in the North Sea, these numbers are increased by 2-3 persons. 

According to FAROS deliverable D3.1 (Zagkas and Pratikakis 2012), the 

selected VLCC and AFRAMAX tankers have 30 crew members each, whereas 

the selected large (200 m in length) and medium size (140 m in length) RoPax 

ships have 126 and 78 crew members, respectively. Below the additional 
indications of crew numbers on tankers are given.  

The expected number of crew exposed to personal risk per year should be 

different to the number of crew onboard because there are hours when 

seafarers are resting and hence not affected by hazards considered in the 

personal risk model. Thus, the crew number exposed to risk can be expressed 
as follows.  

 (16) 

 

 Annual number of crew members exposed to personal risk. This is 
the expected (average) number.  

 Cumulative (total) number of crew members serving on the ship 
over the year. For example, if there are 3 rotations with 30 
members each, then . This is the total number of 
crew members can be injured over the year.  

 Probability for a crew member (out of  members) to be awake on 
any day of the year.  

 Number of annual crew rotations 

 Total number of hours per year, . 
 Sleep hours per year per crew member 

 Number of sleep hours per week per crew member. The number 
168 corresponds to the total hours per week.  
 
Currently, ILO allows working up to 91 hours per week, STCW 
allows 98 hours per week (but not longer than for two weeks).  
 
Thus, assuming that 8 hours per 24 hours is a typical sleeping 
pattern, a crew member still has up to 3 hours of spare time per 
day. Hence,  hours per week is used.  

 Number of crew members onboard at any time, i.e. per annual 
rotation (see above). The number 52.1775 corresponds to the 
number of weeks per year.  
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The above formulation results in the expected number of 20 crew members 

exposed to personal risk per year, if 30 members onboard who are awake for 
2/3 of time are assumed. That is,  

 (17) 

 

However, taking into account the uncertainty around sleeping hours as the life 

onboard goes all around the clock and there is nothing like sleeping hours for 

all the crew, a conservative approach is adopted. It is assumed that the annual 

expected number of crew exposed to personal risk is equal to the number of 
crew onboard, i.e. 

 (18) 

Integration of experiment results 

The objectives of the virtual reality (VR) experiments were to study the effect 

of various arrangements of deck layout on very specific aspects of crew 

behaviour. In particular, the experiments studied the frequency of closing 

watertight doors (WTDs)—of which number and arrangement varied from 

deck layout to deck layout—and the likelihood of the engineer to avoid contact 

with hazardous objects in the engine room as the distance to them was 
manipulated.  

These results indicate that deck layout may affect crew behaviour. In 

summary, a deck layout arrangement with fewer WTDs to cross and larger 

distances to hazardous objects in confined spaces (e.g. more spacious engine 

rooms) represents a preferable design alternative. Table 1 summarises the 
experiment results. 

Table 1: Summary of VR findings (confirmed hypotheses) 

# Findings 

VR1 The fewer WTDs to cross when crew have repetitive tasks, the higher the probability 

for crew to close them all.  

Open WTDs compromise watertight integrity of the ship; this finding contributes to 

the societal risk addressed in the risk model. 

VR2 If more space around hazardous equipment in the engine room is available, crew will 

indeed use this space to reduce the risk of contact. This relates to a possibility to get 

injured by moving, high temperature or any other hazardous object. 

VR3 Lower WTD crossing frequency may be associated with lower chance of doors being 

crossed at an unsafe degree of aperture. This relates to a possibility to get trapped by 

automatically closing WTD, which can be injurious and even fatal. 
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Physical experiments on bridge simulators (ref. (Butler 2014)) 

The objectives of the physical experiments on a bridge simulator were to assess 

the effect of Global Design Factors (GDFs), namely noise and perceived ship 

motion, on human performance in wakeful and tired states. Twelve RoPax and 

twelve Tanker Officers of the Watch were involved in simulated bridge RoPax 

and Tanker scenarios. The specific experimental aims were to test the effects of 

noise and motion on collision or grounding avoidance measured in terms of 

the mean value of the closest point of approach (CPA). Table 2 lists key 
observations from the experiment results.  

Table 2: Summary of experiment findings on the bridge simulators  

# Findings 

BS1 The contribution of noise and ship motions did seem to compromise navigation 

performance of fully rested mariners a little but not significantly.  

BS2 When noise and ship motions were present, navigation performance was still better 

of fatigued mariners, as opposed to fully rested mariners. 

BS3 The best performed was observed with fatigued mariners and no noise and ship 

motions present 

BS4 Thus, ship motions and noise may have slightly compromised the compensatory 

strategy, i.e. capability to compensate degradation in performance due to lack of 

rest 

 

Figure 3: Graphical illustration of experiment findings on the bridge simulators. 

In summary, it was noticed that mariners showed better navigation 

performance when they were tired (fatigued) following controlled sleep 

deprivation, which is perceived as a factor of compensation. However, this 

performance was less noticeable when bridge noise levels increased or when 

perceived motion was exacerbated due to higher waves. Figure 3 illustrates the 

causality observed during the experiments with the compensation capability 

(the shaded area) degrading as nose and/or ship motions intensify. However, 

the interpretation in Figure 3 remains hypothetical, for more research is 
necessary to confirm it with full confidence.  
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Discussion 

The integration of the experiment results is considered in two ways. First, it is 

done in terms of design recommendations, then and then, in terms of their 
utilisation in the developed risk models. 

Design recommendations 

Based on findings VR1, VR2 and VR2 the following design recommendations 
are proposed and they will also be followed during the design exercise in WP6: 

1. Areas frequently visited during normal operation (e.g. during 

scheduled overhauls) should have a minimum number of watertight 

doors. To achieve this, corresponding functional spaces have to be 

collocated and if possible jointed.  

2. Damage stability calculations may involve checking the ship’s flooding 

survivability with certain watertight doors open.  

3. Maximum distances to hazardous objects in confined spaces (e.g. more 

spacious engine rooms) have to be maintained, as long as practicable 

i.e. cost effective.  

Risk models 

Collision / grounding risk model and finding VR1    

This finding is related to the consequence part of the risk model. Consequence 

model takes into account the probabilistic index of damage stability (aka Index 

“A”), which corresponds to probability of surviving any damage case causing 

flooding of the vessel. Currently, the Index “A” is calculated assuming all 

watertight doors being closed. To take the finding into account and therefore 

produce a more robust and resilient ship design in the subsequent WP6, some 

watertight doors (chosen randomly or based on other considerations) will be 
keep open during damage stability calculations. 

Collision / grounding risk model and findings BS1, BS2, BS3, and BS4 

The experiments did not rejected the initially assumed effect of GDFs on crew 

performance, as described in (Montewka 2013a; Montewka 2013b). Therefore, 

the risk model were left to take into account the slight degradation of 

navigation performance with the intensity of GDFs, reflecting the causality 
represented by the continuous line in Figure 3. 

The dashed line Figure 3 remains unconsidered in the model. The primarily 

reason stems from the fact that the experiments have only indicated the 

possible causal relationships, but have not been sufficient provide their 

quantification. Thus, it remains unknown by how much the navigation 

performance of a sleep deprived mariner is better than of a fully rested 

mariner, and what is its degradation rate as the GDFs intensify. Large scale 

experiments on bridge simulators and possibly at sea, which were not planned 

in FAROS, are required to provide the needed quantification. This is the 
subject of follow-up research.    
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Personal risk model and findings VR2 and VR2 

The findings are related to the effect of deck layout on the personal risk. As 

with other results, the experiments have only indicated the possible causal 

relationships, but have not been sufficient provide their quantification. It 

hence remains unknown what would the minimum distance to hazardous 

objects be, for example. However, if the above indicated design 
recommendations are followed, the personal risk may be reduced.  

Conclusions 

The paper has presented the process behind integration of the personal and 

societal risk models, which were previously developed in WP4 of the project, 

into an overall risk model. The proposed mathematical approach is simple and 
easy to implement as a software tool. 

The integration of the experiment results in the form of design 

recommendations and updated risk models has been described. Generally, the 

integration has been effective but limited due to lack of quantitative data. The 

experiments have only indicated the possible causal relationships, but have 

not been sufficient provide their quantification. Therefore, more research—
outside project FAROS—is necessary to overcome this deficiency.  
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Introduction 

The ultimate objective of the FAROS project is to understand, integrate, and 

demonstrate the role of human factors in risk-based ship design. The focus is 

on human error, which is an integral part of the causal chain leading to 

societal and personal risks on board a ship from collision, grounding, crew 
personal injury and fire. 

To achieve the above objective, FAROS has developed a series of risk models 

that describe the impact of vessel Global Design Factors (GDFs) on human 

performance and the subsequent occurrence of unwanted outcomes (personal 

injury, collision, ground and fire). These were then synthesised into a single 
comprehensive risk model, see Figure 1. 
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Figure 1: Structure of the overall risk model. The benchmarked quantities are marked with red 
ovals. 

Following the development of the risk models, the next step was to verify the 

ability of these models to provide valid output. This paper describes in short 

the benchmarking exercise that has been performed to assure the credibility of 

the FAROS risk models. The objective was to study whether they produce 

results of similar magnitude as observed in historical data, while detailed 

validation of the models was beyond the scope of the study. For further details, 
see (Innes-Jones et al., 2014). 

Methodology 

The general approach to benchmarking the model was to determine how 

accurately the model predicts the unwanted outcomes using simulated model 

input. The adopted technical approach comprised three main steps: First, 

random model inputs are generated using Monte Carlo (MC) simulations. 

Second, these were then propagated through the risk model in order to 

generate model outputs. Third, the model outputs generated were compared 

against benchmarking data. Relevant historical and empirical data as well as 

As Low As Reasonably Practicable (ALARP) and target values set out by the 

International Maritime Organization (IMO, 2007) were utilised as the 

benchmarking data. A specific acceptance criterion was used: The model was 

judged acceptable if at least 5% of the simulated MC samples fall within the 

interval , where  is the historical average and  is 5% of the 
observed data range of the MC samples (i.e. 0.05 ⋅ [max(x) – min(x)]). 

Where the model output data was consistent with the benchmarking data, it 

provided assurance that the risk models deliver credible results. Where the 

model output data was inconsistent with the benchmarking data, correcting 

factors were developed for the risk model to ensure that acceptable outputs 
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can be achieved. The simple solution of correcting factors scaling the outputs 

to the desired level was seen acceptable, since no new information with which 

to amend the model assumptions was produced during the benchmark study. 
Table 1 shows the model output measures considered in the benchmarking. 

Table 1: Output measures of the risk models considered for benchmarking. 

Risk Model Measure Ship Type 

Individual (personal) 

risk 

Probability of fatality of crew 

member per shipyear 
Not ship type specific 

Collision Probability per shipyear 

VLCC 

AFRAMAX 

Handy-Size RoPax 

Large RoPax 

Collision 
Potential loss of lives per 

shipyear 

VLCC 

AFRAMAX 

Handy-Size RoPax 

Large RoPax 

Grounding Probability per shipyear 

VLCC 

AFRAMAX 

Handy-Size RoPax 

Large RoPax 

Grounding 
Potential loss of lives per 

shipyear 

VLCC 

AFRAMAX 

Handy-Size RoPax 

Large RoPax 

Fire 
Outbreak probability per 

shipyear 

Tanker (VLCC / AFRAMAX) 

RoPax (Handy-Size / Large) 

Fire 
Potential loss of lives per 

shipyear 

Tanker (VLCC / AFRAMAX) 

RoPax (Handy-Size / Large) 

Fire 
Engine room ignition probability 

per shipyear 
Not ship type specific 

Results 

The benchmarking exercise demonstrated that the personal risk and collision 

risk models deliver results that are to the most part consistent with the 

benchmarking data and pass the acceptance criterion. The risk models 

accurately represented the expected level of risk to crew members and the 

expected collision probability. Figures 2 and 3 show the histograms from the 

MC sampling of individual risk per shipyear and collision probability per 
shipyear for large RoPax, respectively. 
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Figure 2: MC results for individual (personal) risk per shipyear with respect to the ALARP 
region. The red line to the left represents the lower bound of the ALARP region, while the one to 
the right represents its upper bound. The box shows the numerical mean and standard 
deviation obtained from the MC simulations. 

 

Figure 3: Histogram of collision probability per shipyear for large RoPax. The red line shows the 
historical average identified as the benchmarking criteria and the dotted line the mean value 
obtained from the MC sampling. The box shows the numerical mean and standard deviation 
obtained from the MC simulations. 

However, the results regarding potential loss of lives (PLL) due to collision 

were less accurate. Although being within the same order of magnitude as the 

historical data, the model tends to slightly underestimate the PLL for tankers 

(failing the acceptance criterion) and overestimate for RoPax ships (passing 

the acceptance criterion). For this part of the collision model, corrections were 

proposed, so cost-benefit analyses based on the risk model would deliver 

acceptable results. The proposed corrections did not require redevelopment or 

any other algorithmic adjustments to the risk model, rather a correcting 
multiplier was applied to the final result, see Table 2. 
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The model outputs from the grounding and fire risk models were not 

consistent with the benchmarking data and did not pass the acceptance 

criterion. The grounding risk model tends to overestimate the risk by 

approximately two orders of magnitude, see Figure 4. The fire risk model 

underestimates the PLL by approximately one order of magnitude (Figure 5) 

and the fire outbreak probability by approximately two to four orders of 

magnitude. This means that while it is not appropriate to use the grounding 

and fire model outputs to determine absolute risk, they can be used in ranking 

different design alternatives. For these models, corrections were proposed 
using the same approach as for the collision caused PLL, see Table 2. 

 

Figure 4: Histogram of grounding caused PLL per shipyear for AFRAMAX. The red line shows 
the historical average identified as the benchmarking criteria and the dotted line the mean value 
obtained from the MC sampling. The box shows the numerical mean and standard deviation 
obtained from the MC simulations. 

 

Figure 5: Histogram of fire caused PLL per shipyear when comparing with the historical 
average (log scale). The red line shows the historical average identified as the benchmarking 
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criteria. The box shows the numerical mean and standard deviation obtained from the MC 
simulations. 

Table 2: Summary of corrections for the Collision, Grounding and Fire risk models. 

Risk Model 

 

Correcting multiplier 

VLCC AFRAMAX 
Handy-

Size RoPax 

Large 

RoPax 

Collision 
Risk (PLL) per 

shipyear 
3.4 2.7 1.01E-01 

1.70E-

01 

Grounding 
Risk (PLL) per 

shipyear 
6.29E-03 5.28E-03 3.61E-03 

6.50E-

03 

Fire 
Risk (PLL) per 

shipyear 
8.28 3.73E+01 

Conclusion 

The benchmark study showed that some parts of the overall risk model 

produced results that are in line with historical data, while other parts did not. 

To those parts not in line with historical data correcting multipliers were 
suggested. 

The benchmarking results are to be applied in subsequent work of the project. 

Specifically, the benchmarked overall risk model, along with the benchmarked 

individual risk models are planned to be used to make comparison of design 

alternatives of RoPax and tankers ships. The designs can then be optimised 
with respect to risk, commercial viability, and environmental impact. 
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Background 

Amongst other objectives, project FAROS aims at developing optimised 

concepts for RoPax and tanker ships, based on existing baseline designs. For 

the optimisation process to end up with robust design solutions, future 

variations in exogenous factors that govern commercial performance of the 

ship will be integrated in the design process. To this end, literature reviews has 
been carried out to collect information about such exogenous factors as: 

• Future market trends in terms of cargo and passenger volumes, freight 

rates, fuel prices etc. 

• Future changes in statutory and class design requirements (e.g., new 

safety criteria, environmental constraints) that might be applied 
retrospectively. 

The literature review has identified certain (e.g., adopted future caps on 

emissions by IMO) and less certain exogenous factors—usually expressed in a 

few plausible development scenarios—such as cargo and passenger volumes, 

fuel price, freight rates, and changes to stability and other requirements in the 

aftermath of recent European (e.g., FP7 GOALDS 09/2009 - 08/2012, 

EMSA/OP/08/2009) and other research projects. The accumulated 

information has been processed and fed into a newly developed methodology 

(presented in this paper) that ensures a target performance of optimised ship 

concepts against any plausible state of the future in terms of exogenous 
factors.  

This paper is based on public FAROS report D6.3 (Puisa, 2014) available on 
the project website13. 

                                                        
13 www.faros-project.eu 
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Introduction  

Ships are designed to very specific design requirements imposed by ship 

owners and regulators. However, fuel prices, cargo volumes, freight rates etc. 

are likely to change over ship’s lifetime. Additionally, there are could new 

regulatory requirements to be applied retrospectively to existing ships. If the 

knowledge about such future changes in design requirements is available at 

the early design stage, new vessels must be designed with them in mind—as 

long as economically justified—so they become robust to external influences. 

This would allow the operators to remain competitive and offset often 

significant cost of refurbishment or/and service interruption. 

The difficulty to quantify the future arises when uncertainty is deep 

(O’Riordan and Jäger, 1996). The term deep uncertainty refers to the 

condition where decision makers do not know or cannot agree upon the 

system model relating actions to consequences or the prior probabilities on 

key parameters of the system model (Lempert et al., 2002). In such 

circumstances, all assumptions, future scenarios etc. are accepted with “a grain 

of salt”. In the maritime domain, policy analysts and strategic planners are 

aware that they are facing deep uncertainty. But most of them still develop 

plans based on the assumption that the future can be predicted. They develop 

a static “robust” plan using a few future scenarios (e.g. low, reference, and 

high), often based on the extrapolation of trends. A more frequent situation is 

when a static “optimal” plan is developed simply based on a single “most 
likely” future.  

This strategy, however, is deeply flawed. Such a plan will likely to fail if the 

future turns out to be different, and it is easy to demonstrate that the 

probability for the future to be different is much greater than to be as 

predicted. McInerney et al. (McInerney et al., 2012) compared this strategy to 

“dancing on the tip of a needle”. Thus, the performance of a plan optimised for 

a most likely future can deteriorate very quickly due to small deviations from 

the most likely future, let alone in the face of surprise (Walker et al., 2013). 

Even analysing a well-crafted handful of scenarios will miss most of the 

future’s richness and provides no systematic means to examine their 

implications (Annema and Jong, 2011; Goodwin and Wright, 2010). Too often, 

analysts ask “what will happen?” and trap themselves in a losing game of 

prediction, instead of the question they really would like to have answered: 

“Given that one cannot predict, which actions available today are likely to 
serve best in the future?” (Walker et al., 2013).   

Broadly speaking, the literature offers four (overlapping, not mutually-

exclusive) ways for dealing with deep uncertainty in making sustainable plans 

(van Drunen et al., 2009; Walker et al., 2013): 

• Resistance: plan for the worst possible case of future situation. 

• Resilience: whatever happens in the future, make sure that the system 

can recover quickly. 
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• Static robustness: aim at reducing vulnerability in the latest possible 

range of conditions. 

• Dynamic robustness (or flexibility): plan to change over time, in case 
conditions change. 

 

The first two approaches use mathematical models to produce forecasts, 

whereas the other two do not. The first approach is likely to lead to very costly 

plans and might not work well because of surprises (aka “Black Swans”) 

(Taleb, 2010). The second approach accepts temporal system malfunctioning, 

and focuses on recovery. The third and fourth approaches aim to determine a 

plan which is robust, i.e. the one which can achieve reasonable level of 

goodness across a wide spectrum of plausible futures. In the majority of cases, 

dynamic robust plans demonstrate higher efficacy than their static 

counterparts, e.g. (Kwakkel et al., 2010). However, static robust plans are of 

interest when the plan is in early stages of development and only a fraction of 

all factors governing the plan itself are known. This is the case during the 
concept ship design stage which is considered in the FAROS project.      

A static robust plan (i.e. a ship concept) can be developed in various ways 

(Walker et al., 2013). In this paper we focus on Robust Decision Making 

(RDM) as an approach for its development. We consider conjugating the RDM 

with such data mining techniques as Scenario Discovery performed by Patient 

Rule Induction Method (PRIM) (Bryant and Lempert, 2010). Robust 

optimisation methods, which have been applied to optimisation of ship 

concepts under uncertainty, e.g. (Diez and Peri, 2010; Sundaresan et al., 1995), 

are considered to be irrelevant. Firstly because these methods deal with 

uncertainty in plan governing parameters, which is of little interest in our case. 

And secondly, they are computationally expensive and are outside of 
computational strategy adopted in project FAROS.  

Robust Decision Making in a Nutshell 

RMD is composed of four steps as shown in Figure 1 (Lempert et al., 2002): 

• Problem definition, decision choices under consideration, and utility 

functions to express decision criteria (step 1).  

• Using computer simulations and mathematical modelling, RDM takes 

a design plan and puts it to the test against thousands of plausible 

futures (step 2). 

• The resulting data (typical thousands of records) is statistically 

analysed by means of data mining techniques to find out what is most 

important for plan’s success and failure (step 3). 

• This provides the evidence for decision makers to design more robust 

strategies (back to step 1), i.e. to make the plan more robust so it 

performs well no matter what the future holds. Or trade-off analysis is 
performed to check if decisions are worth adopting (step 4). 
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Figure 1: Iterative, participatory steps of an RDM analysis; adopted from (Lempert and et al., 
2013)  

By embracing many plausible futures within a quantitative analysis, RDM can 

help reduce overconfidence and the deleterious impacts of surprise, can 

systematically include imprecise information in the analysis, and help 

decision-makers and stakeholders with differing expectations about the future 

reach a well-grounded consensus on action, even when uncertainties are deep 
(Lempert and et al., 2013).  

An illustrative example of RDM application is shown in Figure 2. The example 

shows the conventional input and one of possible outputs from the RDM 

process. One of the conventional outputs is conditions (aka discovered 

scenarios) of poor performance of the plan. This helps identify its 

vulnerabilities in order to go back to the drawing board and improve it. 

 

Figure 2: Illustration of RDM application 
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Implementation in FAROS 

In FAROS the application of RMD with Scenario Discovery (SD) is 

conceptually different but algorithmically the same as the conventional 

approach. As described in FAROS report D5.4 (Puisa and Pawling, 2014), the 

design space, which is defined by numerous design parameters, will be 

sampled to produce hundreds of distinct design alternatives. Each design 

alternative (ship concept) represents a unique plan (using the RMD 

terminology) to be put to the test against plausible states of the future, using a 

holistic performance criterion defined by some utility function. The objective 

is not to find future conditions under which a given design will fail, as it is 

conventionally done. Instead, conditions for design parameters will be sought 

to demarcate regions in the design space with low (utility < target utility) and 

high (utility ³ target utility) utility values. The high utility regions will be used 

to define feasible ranges for design parameters, whereas the low utility regions 
will be analysed to learn about design vulnerabilities.  

The utility function is defined as probability for a design concept to be 
successful (to have target commercial performance) in any state of the future: 

 Eq. 1 

The success probability corresponds to part of the area under the probability 

distribution function (PDF) of expected NPV values, denoted as . Thus, 

once the database of future states has been populated (see Figure 2), k future 

states—corresponding to each financial year in ship’s lifetime, for example—

for exogenous parameters are randomly selected to calculate a corresponding 

eNPV. This operation is repeated many times to produce a set of expected 

NPV, its histogram and then PDF which is then used for calculation of the 
success probability.   

The expected NPV is a modified form of the conventional NPV formula. The 

modification is done to account for potential financial liabilities arisen from 

maritime accidents leading to people fatalities, environmental pollution (for 

oil tankers only), and major ship repair work (total loss is not considered, 

assuming the insurance will fully cover it). In this respect, the modified NPV 

expression becomes akin to the classic risk-adjusted NPV, rNPV, where the 

annual cash flow is multiplied by probability that it will actually occur (Stewart 
et al., 2001).  

To illustrate the above described approach, we take a simple two-variable 

example of deciding on commercially viable capacity (in range of 4k – 11k 

TEU) and operational speed (in 17 – 25 kn) for a new container ship14, subject 

to volatility in banker cost (100 – 1000 $/ton) and capacity utilisation (50% – 

100%). The ultimate outcome is the feasibility ranges for the cargo capacity 

                                                        
14 Note, this example is used for the sake of illustration only, and it was not aimed to accurately solve the 
presented decision problem. 
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and speed. A full description of the example is found in the public report 

(Puisa, 2014). Note, a container ship was selected due to availability of cost 

data (Stopford, 2009) and relative simplicity, and yet absent results from 
FAROS RoPax and tanker ship concepts when this paper was written.  

During the simulation, we checked 1,500 unique combinations for the 

container’s capacity and operation speed. For each combination, 1,000 

plausible futures in terms of banker cost and capacity utilisation were 

considered, forming histograms and corresponding PDFs as shown in Figure 

12. The success probability was then calculated from the PDFs (Figure 13) and 

used to make both design parameters (capacity and speed) confine the feasible 
region (success > 60%) of the design space (Figure 14).    

 
TEU = 9,185, speed = 18 kn,  

success = 59% 

 
TEU = 10,346, speed = 19 kn, 

success = 4% 
Figure 12: Two design sample cases with different success rates (the red vertical line denotes 
the NPV threshold, whereas blue dashed lines represent PDFs) 

  

Figure 13: Success probability vs. ship’s capacity and operation speed 
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Figure 14: Resulting the region in the design space (speed < 17.5 kn, TEU > 4,614) with the 
commercial success probability above 60% 

Conclusions 

This paper has presented a rigorous scientific methodology that allows 

integrate uncertainties in future exogenous factors into the ship design 

process. The methodology is based on the Robust Decision-Making (RDM) 

which has been successfully applied in civil engineering, policymaking and 

other fields where decision makers face with deep uncertainty15 about the 

future performance of their decisions. Thereby we asserted that ship-owners 

are facing the same challenge when it comes to predicting the future state of 
the market, either its separate trends or as a whole. 

In the context of project FAROS, this methodology will be applied in 

conjunction with the following exogenous factors (they are the result of 

sociopolitical pressures and macroeconomic changes): 

• Future market trends in terms of cargo and passenger volumes per ship 

(number of vessels at sea, i.e. overall supply of capacity), freight rates, 

fuel prices etc. 

• Future changes in statutory and class design requirements (e.g., new 

safety criteria, environmental constraints) with retrospective effect (i.e. 
no Grandfather Clause applicable). 

The work is limited to only the above exogenous factors, ignoring others 

influences such as climate change, macro and micro economic cycles, political 

                                                        
15 Deep uncertainty refers to conditions where the parties to a decision do not know or do not agree on 
the system model(s) relating actions to consequences or the prior probability distributions for the key 
input parameters to those model(s). 
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conflicts and others which might affect world or local economies and 

regulatory regimes. However, the presented methodology is generic and can be 

successfully extended to encompass such factors, provided corresponding 

mathematical models linking exogenous influences to ship’s economy are 
available. 
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Introduction 

The Design Research Centre (DRC), a part of the Marine Research Group of 

the Department of Mechanical Engineering of UCL 

(http://www.ucl.ac.uk/mecheng/research/marine) is involved in Work 

Packages 5 and 6 of the FAROS project. These involve the development of 

parametric cargo ship models, the integration of the design and design 

evaluation tools, including those developed in FAROS to represent the human 

element, and the optimisation of the cargo ship designs using the suite of 
analysis tools. 

Parametric Cargo Ship Models 

The DRCs’ main area of research is concept ship design, in particular the 

application of the Design Building Block approach (DBBa) (Andrews and 

Pawling, 2003), an architecturally-centred approach to concept ship design 

that has been applied to a wide range of concept ship design studies and 

research projects, including the EC FP7 funded FIREPROOF project, 

examining fire safety in passenger carrying ships (Andrews and Pawling, 

2006; Andrews and Pawling, 2009; Pawling et al, 2012). The UCL developed 

approach has been implemented in the commercially available ship design 

software Paramarine and this tool is being used to develop parametric models 

of two tankers; an Aframax and a VLCC. This position paper focusses on the 

VLCC as it is currently at a more advanced stage of development. These 

models have three main levels of parameterisation; hullform; 

compartmentalisation; and arrangement.  
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Hullform 

A baseline hullform was provided by the project partner NAP. This hullform 

was then recreated in Paramarine using its Hull Generator module. The 

resulting hullform is shown in Figure 1 below. The red curves in Figure 1 were 

provided by NAP while the black curves were generated by the user in 

Paramarine in order to achieve the required hullform.  

Figure 1: VLCC Parametric hullform model 

The hullform is parameterised at two levels; main dimensions; and local hull 

features. The overall size of the hull is scaled to meet input overall main 

dimensions such as length, beam and depth. Local features such as the shape 

of the bow and stern are controlled using a scaling factor that allows the 

fineness of the forward and after sections to be changed. The overall topology 

of the hullform is not changed however – it still has a bulbous bow and single 

screw. The use of a small number of input parameters leads to a model that 

will generate hullforms over a wide range of values, but will not necessarily be 

able to precisely match combinations of target hullform parameters (such as 

CB, CW). This trade-off between flexibility and accuracy is necessary due to 

both the available programming resources and the number of parameters that 

can be assessed in an exploration or optimisation campaign of practical 
duration. 

Compartmentalisation  

The VLCC subdivision model is illustrated in Figure 2 with the transverse 

watertight bulkheads and decks visible. It should be noted that the two 
longitudinal bulkheads are not shown in the figure for clarity. 

Figure 2: VLCC Parametric compartmentalisation model 

The location of the subdivisions can be varied by the designer or by 

optimisation tools. These subdivisions are used for damaged stability analysis 

and define the location of internal spaces. They also define the structure and 
so may be used to input into noise and vibration analysis at a later date. 
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Arrangement 

The internal arrangement of the cargo ships is modelled using the Design 

Building Block objects in Paramarine. DBBs are objects in the design space 

that may be assigned numerical and geometric properties, and parameterised 

by connection to each other or to other features of the design, such as the 

subdivisions shown in Figure 2. Figure 3 shows the characteristics of a typical 

DBB representing an accommodation area, along with a screenshot showing 

the local arrangement of accommodation spaces (green) and access 

passageways (purple). As with the hullform, there is a trade-off to be made 

between the flexibility and speed of editing the model and its absolute 

accuracy. In the case of the arrangement, adjacent spaces with similar roles 

have been grouped as “Super Design Building Blocks”, e.g. a group of cabins, 
rather than modelling the individual cabin spaces. 

 

 

Figure 3: Example of a DBB representing a group of cabins in the superstructure 

VLCC Ship Product Model and Analysis Tools 

Figure 4 illustrates the complete VLCC Ship Product Model (SPM). In total, 

the SPM contains over 150 DBBs. A range of numerical performance analysis 

tools, such as stability (intact and damaged), resistance and powering and 

seakeeping, are built into the Paramarine software and are being used in the 

FAROS studies. Additional analysis tools to examine the various elements of 

risk have been developed in the FAROS project and are not being integrated 

with the Paramarine model. Instead, they remain independent and data is 

transferred between the models and tools using the .spiral software integration 

framework developed by the Ship Stability Research Centre of the University 
of Strathclyde. 
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Figure 4: Complete SPM of the VLCC in Paramarine 

Software Integration for Optimisation Studies 

The .SPIRAL tool allows the automation of the entry of the various input 

parameters for the ship model, the extraction of output data from the model 

and Paramarine analysis tools and the transfer of that data to FAROS specific 

risk analysis tools. The .spiral Network Editor illustrates the connections and 

workflow in an interactive flowchart and that for the current optimisation 
toolset is shown in Figure 5. 

 

Figure 5: Integrated Network Editor of .spiral showing tools used 
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In Figure 5, each tool integrated in the .spiral model is represented by a 
labelled green box. The tools on the top part of the network, shown in series, 
communicate with Paramarine in order to input various parameters and 
extract outputs. Paramarine is linked to .spiral through ParaMessenger, a 
small utility which allows external programs to communicate with Paramarine 
by means of a Kernel Command Language script. The tools at the bottom of 
the network, in parallel, are the risk design software provided by the FAROS 
project partners. The general process may be summarised as: 

• Open the design file; 

• Make changes to certain parameters; 

• Extract numerical data on the resulting design; 

• Post process this for transfer to risk models; 

• Transfer data to risk models; 

• Run risk models; 

• Update input files with values of parameters to be changed. 

The overall functionality of this interface method has been successfully 

demonstrated. However, there are a large number of detail tasks to complete 

before the risk models can be regarded as fully integrated. Even with the 

current state of model development is it is possible to map out the design 

exploration and optimisation campaign to be undertaken as part of Work 
Package 6. 

Selection of Parameters for Exploration and Optimisation 

As noted in the description of the parametric model, there is a trade-off to be 

made between the number of parameters that can be assessed in any 

systematic exploration and the time available to carry it out. Further, it should 

be noted that, being primarily designer-driven and not automated, the models 

developed in Paramarine are of a fixed topology (number of decks, bulkheads, 

relative positions of spaces in internal arrangements, etc.). The input design 

variable space available for design exploration and optimisation is thus 

constrained to some extent, and can be evaluated at the same three levels of 

parameterisation described above: hullform; compartmentalisation; and 
arrangement.  

The key points of the exploration optimisation plan are to: identify the 

parameters that will be used as inputs to drive the design variation; define the 

limits on continuous variables & numerical parameters; define the options that 

will be assessed for discrete variables or topological alternatives; and 

determine the order in which assessments will be made, particularly if 

combinations of variables are to be used. It should be noted that this paper is a 

discussion of the possibilities for exploration and optimisation, not a complete 

description of the plans within FAROS, as these are currently under 
development. 
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Hullform Optimisation 

The hullform is described by purely numerical parameters and so the hullform 

dimensions can be varied around a baseline. The shape of the forward and 

after sections can also be varied. The current structure of the model would 

hold the installed engine power constant and allow the design speed to vary 

with ship size and hull shape. Iterating the design to make power meet a fixed 

design speed would add complexity to the model, so an alternative approach of 

assessing each hullform design with different installed power and recording if 

the power is sufficient will be used. This is easier to program as the tool does 

not need to make design decisions, and can discard options with insufficient 
power. 

Compartmentalisation 

The size of the different compartments shown in Figure 2 can be varied. 

Currently the number of compartments is fixed, but if the overall length is to 

be changed enough to warrant a change in the number of cargo tanks then 

those alternative topologies would be implemented. It is also possible to 

investigate alternative overall arrangements, such as moving the 

superstructure forward (with some tanks aft of the superstructure) to improve 
motions in the working areas.  

Arrangement 

The opportunities for arrangement exploration and optimisation for the tanker 

designs are different from those for a RoPax. Most operations involving 

personnel take place in a relatively small area of the tanker, which is highly 

constrained in arrangements by the need to maximise the tankage capacity 

and broader functional requirements on arrangement topology. Although the 

hullform may be continuously varied over a range of numerical values, the 

highly constrained arrangement makes the exploration of a limited set of 

discrete options (topologies) more appropriate. 

Currently only a limited number of numerical geometric parameters have been 

identified for variation, such as the passageway width. Changing the 

arrangement topology (moving spaces around) is difficult as the DBB model 

does not contain any automation or logic and cannot automatically 

compensate for the changing size of operational spaces. However, it is possible 

to carry out exploration of certain changes to the topology. The overall 

arrangement of the superstructure can easily be changed by moving complete 

decks, allowing the investigation of a different “stacking” of the superstructure. 

It is also possible to implement multiple arrangement topologies representing 

different internal arrangements for the superstructure, based on the 
arrangement “styles” found in practice. 
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Assessing Performance 

Although the input parameters will be a mix of numerical and topological 

options, the output parameters used to assess the performance of the design 

variants will be purely numerical. These include both the technical and 

economic performance of the vessels evaluated in Paramarine and the 

quantification of the personal and societal risk generated by the risk models 
developed for FAROS.  

Summary and the Way Ahead 

UCL is developing parametric models of a baseline VLCC and Aframax tanker 

for use in design exploration and optimisation studies in WP 5 and 6 of the 

FAROS project. The .spiral software integration tool has been used to integrate 

these models with third-party analysis tools developed by members of the 

FAROS consortium to allow the holistic analysis of risk, including the human 
factors element.  

Although this integration task is still ongoing, it is possible to draw up the 

overall plan for the exploration and optimisation tasks. The fundamental 

nature of the parametric vessel models permits a limited range of numerical 

continuous variables to be explored. It also permits a range of discrete 
variables, in the form of alternative arrangement topologies, to be assessed.  

Current work is focussed on completing the software integration to allow the 

exploration phase of the WP6 investigations to begin. This phase is significant 

in that it will assist in the development of the full optimisation plan, by 

allowing the selection of the variables and topologies that will be allowed to 
vary as part of the optimisation process. 
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Background 

One of the key objectives of project FAROS is to demonstrate how personal 

and societal risks onboard can cost-effectively be mitigated by design. To this 

end, risk models were developed in WP4 and integrated in WP5 into a multi-

disciplinary performance assessment process. The process is essentially a 

design process which allows to assess the effect of any design modification to 

risk, cost, profitability, environmental impact and other performance metrics 

(Puisa and Pawling, 2014). As such, this design process is referred to as risk-
based ship design, because all major design decisions are risk-informed.   

It is important to note that this multi-disciplinary performance assessment 

process is automated. This was achieved by integrating individual software 

tools that can run automatically. These are design and performance 

assessment tools. As for the former, specialised CAD software tools with 

parameterisation capabilities have conventionally been used to automate 

design modification. The term parameterisation refers to definition of ship’s 

geometry and attributes (e.g. materials and their properties) in such a way that 

they are automatically (usually but not always) modified in response to 

changes in design parameter values (usually real and integer numbers). Design 

parameterisation is hence a prerequisite for optimisation of RoPax ships 

selected and described in FAROS public report D3.1 (Zagkas and Pratikakis, 
2012).  

This paper is based on FAROS report D6.2 (Puisa, 2014) which describes an 

adopted methodology for design parameterisation of RoPax ships, specifically 
focusing on the hull shape and general arrangement.  

Introduction 

Design of a ship, as of any other engineering artefact, is defined in terms of 

geometric and other parameters. The ultimate objective of a naval architect is 
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to decide on the optimal values for design parameters so that the ship fulfils 

functional and non-functional (aka performance) requirements in the desired 

way or degree. The innate parametric description of ship’s design definition 
theoretically enables the designer to achieve this goal.  

In practice however, the pursuit for truly optimal values ought to be 

computerised to achieve it. This stems from the fact that the tuning process of 

design parameters towards their optimal values is time consuming. It is not 

only the right design decision itself which takes time to find, but it is also the 

assessment of its effect on the multi-disciplinary ship performance which has 

to be done. This cause-and-effect cycle, or the modify-and-check loop, is 

tedious and laborious process, unless it is automated, as described in public 

FAROS report D5.4 (Puisa and Pawling, 2014). The report specifically 

describes how the automation is actually implemented and then used to arrive 

at optimal design solutions in FAROS.  

Automatic design modification (i.e. design modifications without manual 

input) is essential for automated design optimisation, and therefore only 

design software (aka computer aided design or simply CAD) with automation 

capabilities should be used. This paper, addresses this very issue. The paper 

describes the work carried out to parameterise designs of two RoPax ships so 
they become part of the automated process of design optimisation. 

Adopted methodology 

Design parameterisation, which may also be seen as design discretisation, can 

be done to different levels of granularity. The finer the parameterisation, the 

more flexibility the designer gains in optimising the design. However, very fine 

parameterisation results in many parameters, i.e. many dimensions, and 

hence in more resources required to solve the design problem. Therefore, a 
trade-off between flexibility and practicability has to be sought.  

Figure 1 shows the four levels of parameterisation that can be achieved. In 

project FAROS only three first levels are considered, whereas the fourth level, 

System, will be addressed only partly. It will cover main system equipment 

such as main engines and/or diesel generators and various tanks of which 
locations and sizes are parameterised. 

With this in mind, the project focuses on the macro and meso levels of the 

design definition. The macro level covers main dimensions, location and 

number of bulkheads etc., i.e. the design features that affect the performance 

across and along the vessel. The meso-level (aka middle-level) encompasses 

such design features as equipment dimensions, equipment location, number 

and locations of openings / doors etc.       
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Figure 1: Parameterisation of ship design on four (4) levels. 

There are many software tools that allow describing the ship parametrically. 

One of those is NAPA16 . NAPA has gained its popularity due to its flexibility in 

defining the design and manipulating design information by means of NAPA 

macros, i.e. programming codes written in the native language NAPA BASIC. 

Another great advantage of NAPA compared to its counterparts—according to 

our experience—lies in its high speed of calculations, especially stability 

calculations. Because of these reasons, NAPA has been a popular tool for 

defining parametric arrangements to be then optimised or used in research 
studies (e.g. (Puisa et al., 2013, 2012)).  

However, the cost of NAPA’s flexibility is a relatively long time—might take 

months—required for development of a parametric design. Although a part of 

NAPA macros can always be reused, the best part of the code still has to be 

tailored—often by substantial modifications—to new functional requirements. 

Because of this bottle neck in the process, development of some 

parameterisation aiding method was deemed necessary to overcome it. A 

generic parametric modeller (GPM) was therefore developed to facilitate the 

process of parameterisation in NAPA. The GPM acts as a pre-processor to 

NAPA and allows defining any parametric internal arrangement in a short 
period of time; typically within a few days, depending on a design complexity.  

Generic Parametric Modeller (GPM) 

As seen in Figure 2, the GPM takes into account the functional requirements 

and produces a set of NAPA macros, passed in the form of text files, which are 

read by NAPA, resulting in a complete NAPA project. Internally, the PM 

requires the input from the user in a particular order, which may resemble an 

onion-like hierarchical process, as shown in Figure 3. First, main particulars 

and the hull geometry has to be described, then a 3D grid of bulkheads 

(transverse and longitudinal) is defined within the main particulars, and only 

then tanks, casings and rooms are defined within the 3D grid. All entities in 
this hierarchy are parametrically controlled. 

                                                        
16 www.napa.fi 
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Figure 2: The role of the parametric modeller and its place in the overall design development 
process. 

 

Figure 3: The onion-like architecture of the parametric modeller. 

A few GPM screenshots are shown in Figure 4 - Figure 9, whereas a detailed, 

but not exhaustive. One can notice horizontal line segments just above the 

bulkheads (see Figure 5, for example). The segments correspond to variation 

intervals, defined by the designer, for the bulkheads. The longer horizontal 

lines that connect bulkheads (see Figure 6, for example) define the 

dependency between bulkheads: when one bulkhead moves, the dependent 

bulkheads follow. A similar approach is applied to other elements as shown in 
other screenshots below.    

 

Figure 4: Location definition of the collision bulkhead. 
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Figure 5: Location definition of Fire Zone bulkheads. 

 

Figure 6: Definition of intermediate bulkheads. The green bulkhead is set to be in the middle 
between the fire zone bulkheads, and it will move as they move. 

 

Figure 7: Definition of decks. 

 

Figure 8: Definition of longitudinal bulkhead (cylinder option is shown). 
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Figure 9: Centre tank configuration – two tanks. Tanks, casings and rooms are linked to 
adjacent bulkheads and decks directly or by offsets. 

Parametric Napa model  

This section explains what exactly is parameterised in both baseline RoPax 

designs detailed in (Zagkas and Pratikakis, 2012). Additionally, the section 

clarifies how the parametric models are handled during the actual 
optimisation process.  

Hull shape 

Two principal hull shapes will be explored during the optimisation process: 

• Conventional hull shape 

• Unconventional hull shape, which is also referred to as the UFO hull, is 

displayed in Figure 10. Benefits of the UFO shape are presented in 

(Puisa et al., 2013) and they essentially are the significantly increased 

damage stability and relocated (or extra) cargo space from lower decks. 

More precisely, the UFO hull allows distributing the watertight volume 

high and wide on the ship, thereby significantly increasing the damage 

stability. Furthermore, the design as a whole becomes simpler: as there 

is enough cargo space on car decks, the notorious long lower hold 

becomes redundant, and the transverse subdivision of lower decks can 

be less densely subdivided, potentially joining functional spaces and 

reducing the number of watertight doors thereby. Certainly, the UFO 

hull introduces new engineering challenges, e.g. structural difficulties 

and slamming risk, but they are deemed to be solvable. 
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Figure 10: Unconventional hull shape (aka the UFO hull). 

The list of design parameters to be varied during the optimisation process is 

shown in Table 1. Note, the variation ranges / options might be reconsidered 

during the optimisation and their actual values will be reported in the 

deliverable D6.4.  

Table 1: Hull shape alternating parameters. 

Parameter 

Envisaged ranges / options17 

Comments Handy-size 

RoPax 
Large RoPax 

Hull type 
Conventional, UFO hull (+3 or +6 

metres on each side) 

Indicates what hull 

type is used in 

calculations. 

Waterline breadth 

(baseline 21 and 25.8 m) 

19, 20, 21, 22, 

23 

24, 25, 25.8, 27, 

28 
 

Depth up to main deck, 

(baseline 7.5 and 9.8 m) 
[6, 9] [8, 12]  

Hull length overall 

(baseline 142 and 200.65 

m) 

[138, 145] [197, 203]  

General arrangement 

There are three fundamental parameters which control the functional and 
geometric representations of the GA (see also Figure 11): 

• Number of spaces overall and of particular type (compartments / 

rooms including cargo spaces) 

• Size of spaces (dimensions of compartments) 

• Location of spaces (global locations on the ship, or locations with 

respect to other spaces, i.e. colocation or separation by other spaces or 
decks). Location can also be altered by changing the space type. 

                                                        
17 Ranges (i.e. min and max value) are specified for real parameters, whereas options (i.e. values the 
parameter can take) are prescribed for integer (discrete) parameters.   
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Figure 11: Visualisation of concepts of Number, Size, and Location. The outer frame 
boundaries can be seen as the deck boundaries. 

It is important to note that generally these parameters are dependent. Thus for 

example, for given ship’s breadth and length, the increased number of spaces 

inevitably reduces their sizes, and vice versa. In turn, the location can be 

affected by the space size, as there could be area requirements (i.e. max area) 

for certain functional spaces or their groups. The problem becomes more acute 
when breadth and length are also varied. 

This dependency is also hierarchical, as shown in Figure 12. Essentially, the 

size of spaces is overwritten by the number and location, which define the GA 

topology (aka configuration). That is, if during the optimisation all three 

parameters were varied at once, any change in space sizes would in principle 

be cancelled by changes in the topology. Due to this hierarchical dependency, 

these parameters cannot be optimised simultaneously, and a specific order of 
optimisation, which reflects the hierarchy, should be considered.  

 

Figure 12: Hierarchical dependency of GA parameters. 

Thus, Figure 12 also shows that the topology is designed to primarily reflect 

functional requirements of the GA, e.g. number of fresh water tanks, number 

of engine rooms, presence of absence of long lower hold etc. To optimise the 

performance of a given topology, its sizing (or sizes of spaces and equipment) 

should be carried out to achieve target values of performance requirements 

(aka non-functional requirements). This sequence results in a two-stage 

optimisation processes which also takes into account the discussed 

hierarchical dependency between the parameters by decoupling them.   
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The difficulty with this two-stage optimisation lies in its big demands of 

computational resources. Specifically, if we had N number all topology 

alternatives (this number can be in the order of thousands (Puisa et al., 2012)), 

we would need to perform N sizing optimisations with each of them usually 

taking days or even weeks to complete. Even with only one day per sizing 

optimisation, the whole process would exceed one year.  

An alternative, more time-efficient approach is to use certain criteria for 

selecting just one topology, as opposed to many of them, and undertake its 

sizing optimisation. It is important to note that the selection criteria have to be 

based on performance metrics and be invariant with respect to design 

modifications during the sizing optimisation. It appears that part of capital 

cost of the vessel, i.e. total capital cost minus the cost of the hull, can be used 

as such a criterion. This part of the capital cost is fully determined by the GA 

topology and hence it does not change during the subsequent sizing 
optimisation. 

 

Figure 13: Two-stage optimisation process adopted to optimise the parametric models. 



Parameterisation and integration of RoPax concepts 

122 

Figure 13 summaries the above considerations into a two-stage, time-efficient 

optimisation process which will be applied to the parametric models described 

in this report. Note, optimised objectives and satisfied constraints and not 

indicated in this diagram as they are detailed in (Puisa and Pawling, 2014). 

The exact variations ranges are not provided in this report because they might 

change in the course of the optimisation exercise, and, therefore, will be 
reported in later public deliverable D6.6.  

Ship systems 

As indicated earlier, parameters of main and auxiliary engines will be subject 

to optimisation. The engines, or their configuration sets, will be selected from 

the lookup tables (Figure 14) that contain their design parameters, 

interpolating or approximating values between records if necessary. The 

selection will aim to deliver the cheapest and hence most compact engine 
configuration that satisfies the following requirements: 

• Main fuel type: HFO, MDO or other; 

• Propulsion configuration: diesel, diesel-electric or other; 

• Required propulsive power; 

• Required auxiliary power; 
• Given dimensions of the engine room. 

 

Figure 14: Lookup table for diesel engines / generator sets used for main and auxiliary power 
generation. 
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Figure 15: Histogram of rated power values for diesel engines included in the lookup table in 
Figure 14. The distribution shows the ranges of rated power available in the table. 

• Due to changes in fuel oil sulphur limits (expressed in terms of % m/m 

– that is by weight) from 2015 in sulphur emission control areas 

(SECAs), shipowners have to consider several design alternatives for 

operating in SECAs: 

• Switching to marine gas oil (MGO). This option will probably be most 

popular due to the fact that using marine distillate in the main engines 

does not pose a major technical challenge; 

• Using alternative fuels such as LNG; 
• Installing scrubbers. 

The use of MGO has some safety implications. MGO has lower viscosity than 

conventional heavy fuel oil (HFO) and hence requires higher pressure piping 

systems with associated risks of leaks. It has been established that a contact 

between leaked flammable oil and high temperature surfaces (>220° C) is the 

prevailing fire scenario in engine rooms (Puisa et al., 2014). These options will 

also be investigated in project FAROS in the design optimisation exercise. I 

particular, the choice of the alternatives will be included into the ship stability 
and cost models.  

Application context 

As aforementioned, parametric RoPax models are created by the General 

Parametric Modelled and then passed to NAPA to be integrated into a multi-

disciplinary optimisation process (see Figure 13). The process will be serviced 

by software integration platform .spiral™ (Puisa and Mohamed, 2011) which, 

amongst others, automates the processes of data exchange between software 
tools. The software platform automates the laborious processes of 
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• tool integration and data exchange between them (e.g., files are 

automatically transferred), 

• data storage and retrieval (a mysql database is used for this purpose),  

• sequential/parallel tool execution for each design variation, and 
• data analysis.  

 

Figure 16: Promotional screenshot of software .spiral™.  

Figure 16 shows a screenshot of the software, displaying the integrated process 

(note, behind each box there is a software tool automatically run in the order 

implied by the arrows), data access, and visualisation capabilities. It is 

important to note that the visualised data pertains to numerous design 

alternatives stored in a database. As Figure 17 shows, each design alternative 

(i.e. version) has input and output information of which generation, storage, 

and retrieval is automated.    

 

Figure 17: Storage of design information. 

Figure 18 demonstrates the explicit multi-disciplinary assessment process in 

.spiral™ to be used for optimisation of RoPax ships in FAROS. NAPA with 
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parametric models is shown as a yellow box passing down calculation results 

to other software tools waiting on these results. The data between tools is 

exchange by means of text files. This is a conventional implementation of data 

exchange and was successfully used in numerous research projects in the past, 

e.g. (Puisa and Zagorski, 2012). The callouts refer to FAROS reports where 

corresponding models have been described. 

 

Figure 18: Specific implementation of the automated multidisciplinary asssesment in FAROS 
(screenshot of .spiral™ is shown). 

It is useful to mention one of the integrated tools adopted for FAROS needs. 

Designer-NOISE™18 is a software program designed to allow for quick and 

accurate predictions of noise levels on surface ships and other stiffened plate 

structures. The core solver uses a hybrid Statistical Energy Analysis approach 

to predict spreading of vibration throughout the vessel. Architectural acoustic 

methods are used to predict the spreading of airborne noise. Solution time for 

most models is on the order of seconds. The prediction accuracy is very high, 

usually within 3 dB for A-weighted noise levels. Noise and vibration 
calculations are necessary for risk models used in FAROS.  

Conclusions 

The paper has presented only main aspects behind design parameterisation of 

the selected RoPax ships. Thus, certain technical details have been excluded to 
                                                        

18 www.noise-control.com/designernoise.php 
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maintain clarity and conciseness. Additionally, these technical details might 

change in the course of application, and hence their mention in this report 

could prove misleading. Nevertheless, partners of related tasks will have access 
to all technical information necessary to achieve the objectives of the project.  

The development of the Generic Parametric Modeller (GPM) took the best part 

of time. These GPM features helped overcome the technical bottlenecks of 

NAPA and save considerable amount of time. NAPA, however, remains the 

main tool for design representation, modification and evaluation. It is 

important to note that GPM is not only generic, i.e. can be used to quickly 

parameterise any shiptype, but—by virtue of its flexibility—also allows quickly 

correcting any mistake or adding extra functionality to parametric models 
developed. This will be very helpful during the application stage of GPM.     

The parameterisation was done on macro (e.g., hull dimensions, number of 

bulkheads and their positions) and meso- (e.g., sizes and location of 

equipment in spaces, distribution of openings) levels. The micro level (e.g. 

design of watertight doors, piping and other components of ship systems) was 

considered irrelevant due to the focus on the early ship design stages, such as 
concept design.  
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