40 research outputs found

    A distributed multi-agent framework for shared resources scheduling

    Get PDF
    Nowadays, manufacturers have to share some of their resources with partners due to the competitive economic environment. The management of the availability periods of shared resources causes a problem because it is achieved by the scheduling systems which assume a local environment where all resources are on the same site. Therefore, distributed scheduling with shared resources is an important research topic in recent years. In this communication, we introduce the architecture and behavior of DSCEP framework (distributed, supervisor, customer, environment, and producer) under shared resources situation with disturbances. We are using a simple example of manufacturing system to illustrate the ability of DSCEP framework to solve the shared resources scheduling problem in complex systems

    Towards a conceptual design of intelligent material transport using artificial intelligence

    Get PDF
    Reliable and efficient material transport is one of the basic requirements that affect productivity in industry. For that reason, in this paper two approaches are proposed for the task of intelligent material transport by using a mobile robot. The first approach is based on applying genetic algorithms for optimizing process plans. Optimized process plans are passed to the genetic algorithm for scheduling which generate an optimal job sequence by using minimal makespan as criteria. The second approach uses graph theory for generating paths and neural networks for learning generated paths. The Matla

    Koncepcijsko projektiranje inteligentnog unutarnjeg transporta materijala korištenjem umjetne inteligencije

    Get PDF
    Reliable and efficient material transport is one of the basic requirements that affect productivity in industry. For that reason, in this paper two approaches are proposed for the task of intelligent material transport by using a mobile robot. The first approach is based on applying genetic algorithms for optimizing process plans. Optimized process plans are passed to the genetic algorithm for scheduling which generate an optimal job sequence by using minimal makespan as criteria. The second approach uses graph theory for generating paths and neural networks for learning generated paths. The Matlab© software package is used for developing genetic algorithms, manufacturing process simulation, implementing search algorithms and neural network training. The obtained paths are tested by means of the Khepera II mobile robot system within a static laboratory model of manufacturing environment. The experiment results clearly show that an intelligent mobile robot can follow paths generated by using genetic algorithms as well as learn and predict optimal material transport flows thanks to using neural networks. The achieved positioning error of the mobile robot indicates that the conceptual design approach based on the axiomatic design theory can be used for designing the material transport and handling tasks in intelligent manufacturing systems.Pouzdan i efikasan transport materijala je jedan od ključnih zahtjeva koji utječe na povećanje produktivnosti u industriji. Iz tog razloga, u radu su predložena dva pristupa za inteligentan transport materijala korištenjem mobilnog robota. Prvi pristup se zasniva na primjeni genetskih algoritama za optimizaciju tehnoloških procesa. Optimalna putanja se dobiva korištenjem optimalnih tehnoloških procesa i genetskih algoritama za vremensko planiranje, uz minimalno vrijeme kao kriterij. Drugi pristup je temeljen na primjeni teorije grafova za generiranje putanja i neuronskih mreža za učenje generirane putanje. Matlab© softverski paket je korišten za razvoj genetskih algoritama, simulaciju tehnoloških procesa, implementaciju algoritama pretraživanja i obučavanje neuronskih mreža. Dobivene putanje su testirane pomoću Khepera II mobilnog robota u statičkom laboratorijskom modelu tehnološkog okruženja. Eksperimentalni rezultati pokazuju kako inteligentni mobilni robot prati putanje generirane korištenjem genetskih algoritama, kao i da uči i predviđa optimalne tokove materijala zahvaljujući neuronskim mrežama. Ostvarena pogreška pozicioniranja mobilnog robota ukazuje da se koncepcijski pristup baziran na aksiomatskoj teoriji projektiranja može koristiti u projektiranju transporta i manipulacije u inteligentnom tehnološkom sustavu

    Towards a conceptual design of intelligent material transport using artificial intelligence

    Get PDF
    Reliable and efficient material transport is one of the basic requirements that affect productivity in industry. For that reason, in this paper two approaches are proposed for the task of intelligent material transport by using a mobile robot. The first approach is based on applying genetic algorithms for optimizing process plans. Optimized process plans are passed to the genetic algorithm for scheduling which generate an optimal job sequence by using minimal makespan as criteria. The second approach uses graph theory for generating paths and neural networks for learning generated paths. The Matla

    Integration of process planning, scheduling, and mobile robot navigation based on triz and multi-agent methodology

    Get PDF
    U radu je predstavljena metodologija za razvoj softverske aplikacije za integraciju projektovanja tehnološkog procesa, terminiranja proizvodnje i navigacije mobilnog robota u tehnološkom okruženju. Predložena metodologija je bazirana na primeni teorije inventivnog rešavanja problema i multiagentske metodologije. Matrica kontradikcije i inventivni principi su se pokazali kao efektivan alat za otklanjanje kontradiktornosti u koncepcijskoj fazi razvoja softvera. Predložena multiagentska arhitektura sadrži šest agenata: agent za delove, agent za mašine, agent za optimizaciju, agent za planiranje putanje, agent za mašinsko učenje i agent mobilni robot. Svi agenti zajedno učestvuju u optimizaciji tehnološkog procesa, optimizaciji planova terminiranja, generisanju optimalnih putanja koje mobilni robot prati i klasifikaciji objekata u tehnološkom okruženju. Eksperimentalni rezultati pokazuju da se razvijeni softver može koristiti za predloženu integraciju, a sve u cilju poboljšanja performansi inteligentnih tehnoloških sistema.This paper presents methodology for development of software application for integration of process planning, scheduling, and the mobile robot navigation in manufacturing environment. Proposed methodology is based on the Russian Theory of Inventive Problem Solving (TRIZ) and multiagent system (MAS). Contradiction matrix and inventive principles are proved as effective TRIZ tool to solve contradictions during conceptual phase of software development. The proposed MAS architecture consists of six intelligent agents: job agent, machine agent, optimization agent, path planning agent, machine learning agent and mobile robot agent. All agents work together to perform process plans optimization, schedule plans optimization, optimal path that mobile robot follows and classification of objects in a manufacturing environment. Experimental results show that developed software can be used for proposed integration in order to improve performance of intelligent manufacturing systems

    The Ant Lion Optimization Algorithm for Flexible Process Planning

    Get PDF
    Obtaining an optimal process plan according to all alternative manufacturing resources has become very important task in flexible process planning problem research. In this paper, we use a novel nature-inspired algorithm called Ant Lion Optimizer (ALO) to solve this NP-hard combinatorial optimization problem. The network representation is adopted to describe flexibilities in process planning and mathematical model for the minimization of the total production time and cost is presented. The algorithm is implemented in Matlab environment and run on the 3.10 GHz processor with 2 GBs of RAM memory. The presented experimental results show that the proposed algorithm performs better in comparison with other bio-inspired optimization algorithms

    Solving Weighted Number of Operation Plus Processing Time Due-Date Assignment, Weighted Scheduling and Process Planning Integration Problem Using Genetic and Simulated Annealing Search Methods

    Get PDF
    Traditionally, the three important manufacturing functions, which are process planning, scheduling and due-date assignment, are performed separately and sequentially. For couple of decades, hundreds of studies are done on integrated process planning and scheduling problems and numerous researches are performed on scheduling with due date assignment problem, but unfortunately the integration of these three important functions are not adequately addressed. Here, the integration of these three important functions is studied by using genetic, random-genetic hybrid, simulated annealing, random-simulated annealing hybrid and random search techniques. As well, the importance of the integration of these three functions and the power of meta-heuristics and of hybrid heuristics are studied

    Integration of Process Planning and Scheduling Using Modified Particle Swarm Optimization Algorithm

    Get PDF
    Process planning and scheduling are two of the most important manufacturing functions which are usually performed sequentially in traditional approaches. Considering the fact that these functions are usually complementary, it is necessary to integrate them so as to improve performance of a manufacturing system. This paper conceptualizes a multi-agent methodology by considering four intelligent agents (job, machine, tool, and optimization agent) and presents developed modified particle swarm optimization (mPSO) algorithm to solve this combinatorial optimization problem effectively. In order to improve the search efficiency and increase ability to find global optimum, proposed mPSO algorithm has been enhanced with new crossover and mutation operators. Experimental results show applicability of the proposed approach in solving integrated process planning and scheduling problem

    Concurrent solution of WATC scheduling with WPPW due date assignment for environmentally weighted customers, jobs and services using SA and its hybrid

    Get PDF
    After industrial revolution environmental problems increased drastically. Air, water and soil pollution became a serious threat for the mankind. In order to overcome this threat everyone should take responsibility and try to preserve environment as much as possible. Environmentally conscious actions, people, law and foundations should be supported. When it came to determining due dates and scheduling, one of the important criteria should be the supporting the environment. In this study environmentally conscious customers, jobs, and services are rewarded, on the other hand unconscious customers, jobs, and services are penalized, while determining due dates and schedules. Simulated annealing and its hybrid with random search are applied to get environmentally better due dates and schedules
    corecore