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Original scientific paper 
Reliable and efficient material transport is one of the basic requirements 
that affect productivity in industry. For that reason, in this paper two 
approaches are proposed for the task of intelligent material transport by 
using a mobile robot. The first approach is based on applying genetic 
algorithms for optimizing process plans. Optimized process plans are 
passed to the genetic algorithm for scheduling which generate an optimal 
job sequence by using minimal makespan as criteria. The second approach 
uses graph theory for generating paths and neural networks for learning 
generated paths. The Matlab© software package is used for developing 
genetic algorithms, manufacturing process simulation, implementing 
search algorithms and neural network training. The obtained paths are 
tested by means of the Khepera II mobile robot system within a static 
laboratory model of manufacturing environment. The experiment results 
clearly show that an intelligent mobile robot can follow paths generated 
by using genetic algorithms as well as learn and predict optimal material 
transport flows thanks to using neural networks. The achieved positioning 
error of the mobile robot indicates that the conceptual design approach 
based on the axiomatic design theory can be used for designing the 
material transport and handling tasks in intelligent manufacturing systems. 
 
Koncepcijsko projektiranje inteligentnog unutarnjeg transporta 
materijala korištenjem umjetne inteligencije 

Izvornoznanstveni članak 
Pouzdan i efikasan transport materijala je jedan od ključnih zahtjeva koji 
utječe na povećanje produktivnosti u industriji. Iz tog razloga, u radu su 
predložena dva pristupa za inteligentan transport materijala korištenjem 
mobilnog robota. Prvi pristup se zasniva na primjeni genetskih algoritama 
za optimizaciju tehnoloških procesa. Optimalna putanja se dobiva 
korištenjem optimalnih tehnoloških procesa i genetskih algoritama za 
vremensko planiranje, uz minimalno vrijeme kao kriterij. Drugi pristup je 
temeljen na primjeni teorije grafova za generiranje putanja i neuronskih 
mreža za učenje generirane putanje. Matlab© softverski paket je korišten 
za razvoj genetskih algoritama, simulaciju tehnoloških procesa, 
implementaciju algoritama pretraživanja i obučavanje neuronskih mreža. 
Dobivene putanje su testirane pomoću Khepera II mobilnog robota u 
statičkom laboratorijskom modelu tehnološkog okruženja. 
Eksperimentalni rezultati pokazuju kako inteligentni mobilni robot prati 
putanje generirane korištenjem genetskih algoritama, kao i da uči i 
predviđa optimalne tokove materijala zahvaljujući neuronskim mrežama. 
Ostvarena pogreška pozicioniranja mobilnog robota ukazuje da se 
koncepcijski pristup baziran na aksiomatskoj teoriji projektiranja može 
koristiti u projektiranju transporta i manipulacije u inteligentnom 
tehnološkom sustavu. 
 

1. Introduction 
 
For the last thirty years manufacturing concepts have 
had several redefinitions. In the eighties and nineties, 
the concept of flexible manufacturing systems (FMS) 
was introduced. The manufacturing enterprises of the 
21st century are in an environment where markets are 
frequently shifting, new technologies are continuously 
emerging, and competition is globally increasing. All 

these requirements indicate that we need a methodology 
for the technological migration [1] from flexible 
manufacturing systems (FMS) to intelligent 
manufacturing systems (IMS). Many design 
methodologies that can be used for this migration are 
developed and proposed in [2]. Some of them are the 
axiomatic design theory, design decision-making 
methods, TRIZ (Theory of Inventive Problem Solving), 
etc.   
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Design and optimization of intelligent material transport 
system within IMS are big challenges and they can be 
achieved by implementing artificial intelligence. 
According to the literature published by CIRP and other 
manufacturing periodicals during the past decade [3, 4], 
nearly 34 modern manufacturing systems and 
production modes have been proposed and 35 
mathematical methods have been used for the 
development of intelligent systems. Some of the 
methods are: Genetic Algorithms (GAs), Neural 
Networks (NNs), Fuzzy Logic, Machine Learning, 
Graph Theory, Heuristic Search (HS), Multi Agent 
Systems (MAS), Simulated Annealing (SA), etc. 
Evolutionary computation (i.e. GAs [5], genetic 
programming (GP), evolutionary programming, and 
evolutionary strategies) and NN are among the most 
widespread [6]. 
The intelligent material transport implies solving a path 
generation problem and controlling the movement of an 
intelligent agent - a mobile robot. The path that a mobile 

robot tracks can be generated and optimized in many 
ways. Firstly, the path directly depends on process 
planning and scheduling. Because most jobs may have a 
large number of feasible process plans and optimality of 
scheduling depends on the result of process planning, 
many researches proposed integration of process 
planning and scheduling. 
Some of them applied an agent-based approach for 
integrated process planning and scheduling. An agent-
based approach presented in [7] has been developed to 
facilitate the integration of these two functions. In this 
approach, the two functions are carried out 
simultaneously and an optimization agent based on an 
evolutionary algorithm is used to manage the 
interactions and communications between agents. The 
development of an agent-based negotiation protocol for 
negotiations between the part agents and the machine 
agents is presented in [8], and online hybrid agent-based 
negotiation multi-agent system to integrate process 
planning with scheduling/rescheduling is given in [9]. 

Symbols/ Oznake 
 
FMS - Flexible Manufacturing System 

- Fleksibilni tehnološki sustav 
TW - processing time of operation 

- vrijeme trajanja operacije 

ITS - Intelligent Manufacturing System 
- Inteligentni tehnološki sustav 

TT - transportation time  
- vrijeme transporta  

GA - Genetic Algorithm  
- Genetski algoritam 

TP - production time  
- proizvodno vrijeme  

NN - Neural Network 
- Neuronske mreže 

M  - vector of machines 
- vektor strojeva 

{FR} - Functional Requirement Vector 
- vektor funkcionalnih zahtjeva 

J - vector of jobs 
- vektor tehnoloških zadataka 

{DP} - Design Parameter Vector 
- vektor parametara projektiranja 

pij - parameter in MJM matrix 
- parametar u MJM matrici 

[A] - design matrix 
- matrica projektiranja 

R - matrix of distances between machines 
- matrica udaljenosti između strojeva 

pc - crossover probability 
- vjerojatnost križanja 

A* - search algorithm 
- algoritam pretraživanja 

pm - mutation probability 
- vjerojatnost mutacije 

xt - state vector at time instant t  
- vektor stanja sustava u trenutku t 

n  - number of jobs 
- broj tehnoloških zadataka 

x,y - position at time instant t  
- pozicija u trenutku t 

q - maximum number of operations 
- maksimalan broj operacija 

θ - angle orientation at time instant t 
- kut orijentacije u trenutku t 

G - total number of process plans 
- ukupan broj tehnoloških procesa 

x’,y’ - position at time instant t’ 
- pozicija u trenutku t’ 

t - 1, 2, 3, …, M generations 
- broj generacija 

θ’ - angle orientation at time instant t’ 
- kut orijentacije u trenutku t’ 

o - operation  
- operacija 

 Δs - incremental path lengths  
- pređeni put kotača 

P - number of operations in process plan  
- broj operacija u tehnološkom procesu 

MSE - Mean Square Error 
- srednja kvadratna pogreška 
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Dynamic flexible job shop scheduling problem with 
alternative process plans essentially involves deciding 
the order or priority for the jobs waiting to be processed 
on each machine. The concept of multi-agent systems is 
also applied to integrate dynamic process planning and 
dynamic production scheduling [10, 11].  
On the other hand, integration of process planning and 
scheduling can be done by using artificial intelligence 
techniques. Evolutionary algorithms (GAs, SA, and HS) 
have recently been employed to generate optimal or 
nearly optimal plans satisfying the constraints and 
objectives of process planning and scheduling 
simultaneously. In [12] GA based algorithm is 
developed to solve the integrated process planning and 
scheduling problem. Simulation based GAs approach to 
integrate process planning and scheduling is proposed in 
[13]. In order to simultaneously optimize the production 
plan and the schedule, an improved hybrid genetic 
algorithm (HGA) is given in [14]. The new 
coevolutionary algorithm, called symbiotic evolutionary 
algorithm, given in [15], can simultaneously deal with 
the two problems of process planning and job shop 
scheduling. In [16], a modified two-phase GA approach 
is used to optimize process planning and scheduling 
simultaneously. In the first step, considering production 
time as an objective, three to five nearly optimal process 
plans for each job are determined. Then, the scheduling 
problem (by using the selected process plans) is 
optimized. A unified representation model and a SA-
based approach have been developed to facilitate the 
integration and optimization process [17]. 
Process planning and scheduling can be viewed as an 
integrated problem but they can be solved separately as 
well. Evolutionary algorithms (GAs [18-21], GP [22]) 
and other intelligent methods, such as the fuzzy, and 
NNs are also widely used for both the process planning 
and the job-shop scheduling process. Minimal 
production time and minimal production cost are the 
most widespread criteria for process plans optimization 
and the minimal makespan, mean tardiness, mean 
lateness, manufacturing cost, minimal mean flow time, 
the balanced level of machine utilization, etc. are used 
as job-shop scheduling criteria.  
The imprecise or fuzzy nature of the data introduced in 
real-world job shop scheduling problems is modelled 
with fuzzy processing time [23], or with both  fuzzy 
processing time and fuzzy due date [24, 25]. They put 
forward a GA for job shop scheduling problem with 
fuzzy processing time and fuzzy due-date. A fuzzy logic 
rule-based scheduler, proposed in [26], uses the 
prevailing conditions in the job shop to select 
dynamically the most appropriate dispatching rule from 
several candidate rules. 
NN has also been used in modelling and solving 
scheduling problems. The development of NN scheduler 
for scheduling job-shops is presented in [27]. In this 
hybrid intelligent system, GA is used to generate 
optimal schedules to a known benchmark problem and 

NN is used to capture the predictive knowledge 
regarding the assignment of an operation’s position in a 
sequence. A new adaptive neural network and heuristics 
hybrid approach for job-shop scheduling is presented in 
[28]. The adaptive NN has the property of adapting its 
connection weights and biases of neural units during the 
iterations while obtaining the feasible solution. In [29] 
the job-shop scheduling problem is translated in an 
integer linear programming format which facilitated 
translation in an adequate neural network structure. This 
NN is capable of solving deterministic scheduling 
problems and always generates feasible solutions. A 
hybrid approach involving combination of NNs with a 
GA is proposed in [30]. The GA is used for the 
optimization of a sequence and a NN is used for the 
optimization of operation start times with a fixed 
sequence. 
After the job sequence generation in job-shop planning 
and scheduling phase, each job needs to be transported 
between machines by using single or multiple transport 
robots. The job shop scheduling problem with the 
consideration of transportation tasks performed by a 
single robot is given in [31, 32], where effective tabu 
HS procedures are developed. NN and simulation 
modelling (scheduling) of manufacturing systems are 
used for making control decisions in specific 
applications of rail-guided vehicle systems [33]. There 
are few papers which consider simultaneously 
scheduling of jobs and vehicles [34-36]. The problem of 
simultaneous scheduling of machines and automated 
guided vehicles (AGVs) is solved by using a disjunctive 
graph for modelling the joint scheduling problem and 
memetic algorithm for scheduling machines and AGVs 
[34]. In [35] a hybrid GA is presented for the integrated 
simultaneous scheduling of machines and AGVs, by 
using a makespan as a minimization objective. A hybrid 
multi-objective GA approach is proposed in [36].  
This paper presents two approaches for conceptual 
design of intelligent material transport, both based on 
axiomatic design theory. In the first approach, optimal 
process plans and schedules are obtained by using a 
GA-based approach. The optimization objective for 
process planning is to minimize production time, while 
minimum makespan and balanced level of machine 
utilization are two objective functions used for 
scheduling. In the second approach, optimal process 
plans are generated by using GA and appropriate job 
sequences are further generated by using graph 
algorithms applying minimal distance criteria. NN are 
used for learning generated paths and online prediction 
of optimal material transport flows. A single mobile 
robot is used to track the generated trajectories as well 
as to transport parts (jobs) between machines in an 
experimental manufacturing environment. 
The remainder of this paper is organized as follows. In 
Section 2, the axiomatic design methodology is 
presented. A GA for process plan optimization is 
described in Section 3. Both GA job shop scheduling 
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and NN–graph based scheduling approach are explained 
in Section 4. Experimental results for the two 
experiments are reported in Section 5 and discussion is 
provided in Section 6, which is followed by the 
concluding remarks in Section 7. 
 

2. Axiomatic design theory 
 
Axiomatic design theory is an attempt at synthesis of 
the basic principles of design in various engineering 
fields and in all phases of design. This design 
methodology is based on identifying customer needs 
and their transformation into correspondent functional 
requirements in the physical domain. According to [37], 
going from one domain to another is called mapping 
and it happens in each design phase: the conceptual, the 
product and the process design phase, respectively. For 
each hierarchical level the design process is done 

through the iterative mapping between the functional 
requirements (FRs) in the functional domain, and the 
design parameters (DPs) in the physical domain (Figure 
1). The relationship between the FRs and DPs is 
expressed as [37]: 

{FR} = [A] ⋅ {DP},    (1) 

where {FR} denotes the functional requirement vector, 
{DP} denotes the design parameter vector, and [A] 
denotes the design matrix that characterizes the design 
process. The structure of the matrix [A] defines the type 
of design being considered and for the three hierarchical 
levels particular design matrices [A] are presented in 
Table 1. It can be concluded that [A] matrices in both 
the second and the third hierarchical levels (Table 1) are 
diagonal and each of the FRs can be fulfilled 
independently by means of one DP. Such design is 
called an uncoupled design [37]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Concept of domain, mapping and axiomatic decomposition  

Slika 1. Koncept domena, mapiranje i askiomatska dekompozicija 
 
 

3. Genetic algorithms for process plans 
optimization 

 
3.1. Representations for flexible process plans  
 
In process planning, three types of flexibilities are 
given: operation, sequencing, and processing flexibility 
[19, 38]. Graphs, Petri net and networks are some of the 
numerous methods used to describe these types of 
flexibilities. In this paper, a network representation 
method is adopted. Generally, there are three node types 
in the network representation: the starting node, the 
intermediate node and the ending node. The starting and 
the ending node indicate the beginning and the end of 
the manufacturing process of a job and an intermediate 
node represents an operation. The intermediate node 
contains a set of alternative machines that are used to 

perform the operation and the processing time for the 
operation according to the machines. All nodes are 
connected with arrows that represent the precedence 
between them. For each job, every alternative path in 
the network starts with an OR-connector and ends with 
a join-connector. OR-links are used for making 
decisions as to which of the alternative manufacturing 
process procedures will be selected. All links that are 
not connected by OR-connectors must be visited [19, 
38]. Figure 2 shows process plan networks for four 
alternative jobs.  
 
3.2. Mathematical model of flexible process planning  
 
In this paper the optimization objective of the flexible 
process planning problem is to minimize the production 
time which consists of processing time and 
transportation time. In accordance with the assumptions 
given in [19], the mathematical model of flexible 
process planning is described as follows: 

 
 
Customer needs/ 
Potrebe kupca 
  
 

 
  

 

 

 

Customer Domain/  
Domena kupca 

Functional Domain/ 
Funkcionalna domena 

Physical Domain/ 
Fizička domena 

Functional Requirements {FRs}/ 
Funkcionalni zahtjevi 

 

Customer Attributes {CAs}/ 
Atributi kupca 

 

Design Parameters {DPs}/ 
Parametri projektiranja 

 
 

FR1 

 
 

FR11 
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FR14 
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n – total number of jobs; 
Gi – total number of process plans of the i-th job; 

t – 1, 2, 3,..., M generations; 
oijl – j-th operation in the l-th process plan of the 

i-th job; 
Pil – number of operations in the l-th process plan 

of the i-th job; 
k – alternative machine corresponding to oijl; 

TW(i,j,l,k) – processing time of operation oijl on the k-th 
alternative machine; 

TP(i,t) – production time of i-th job in the t-th 
generation; 

  
TT(i,l,(j,k1),(j+1,k2)) –  

 
the transportation time between the 
 k1-th and the k2-th alternative  
machine 

The production time is calculated as shown in equation 
(2). 

1

1 2
1 1

( , ) ( , , , ) ( , , ( , ), ( 1, )),
−

= =

= + +∑ ∑
il ilP P

j j
TP i t TW i j k l TT i l j k j k

 [1, ], [1, ], [1, ].il ii n j P l G∈ ∈ ∈

                 

(2) 
 
Two constraints given in [19] are also used.  The first 
constraint is that each machine can handle only one job 
at a time and the second is that the operations of one job 
cannot be processed simultaneously. The objective 
function is given as follows: 
 

1max ( , ) ,
( , )

=f i t
TP i t

 (3) 

 
and it defines the alternative process plan with the 
minimum production time TP(i). 

 

Table 1. List of the functional requirements, corresponding design parameters and [A] matrices 

Tablica 1. Spisak funkcionalnih zahtjeva, korespodentnih parametara projektiranja i [A] matrice 
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FR1: Intelligent material transport/ 
Inteligentan transport materijala 

X        

  FR11: Process plan optimization/ 
Optimizacija tehnološkog procesa  

 X 0 0 0    

  FR12: Path planning/ 
Planiranje putanje 

 0 X 0 0    

  FR13: Path following/ 
Praćenje putanje 

 0 0 X 0    

  FR14: Machine learning of material transport paths/ 
Strojno učenje transportnih tokova materijala 

 0 0 0 X    

    FR121: Generating path nodes (criteria 1)/ 
 Generiranje čvorova putanje (kriterij 1) 

     X 0 0 

    FR122: Generating path nodes (criteria 2)/ 
 Generiranje čvorova putanje (kriterij 2) 

     0 X 0 

    FR131: Motion model (position and orientation)/ 
 Model kretanja (pozicija i orijentacija) 

     0 0 X 
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Figure 2. Process plans networks for four jobs 

Slika 2.  Mreže alternativnih tehnoloških procesa za četiri tehnološka zadatka 
3.3. Genetic components for process planning   
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3.3.1. Encoding and decoding 
 
Each chromosome in process planning population 
consists of two parts with different lengths (head 
substring and tail substring [38]), as shown in Figure 3. 
The first part of the chromosome is the process plan 
string [19]. It is made up of Genes and each Gene is a 
structure made up of two numbers. The first position in 
Gene defines number of an operation. It can represent 
all operations of one job, even those that may not be 
carried out due to alternative operation procedures. This 
can be resolved by using the tail substring. The tail 
encodes OR-connects as the binary numbers of 0 and 1. 
Zero denotes the right OR-link path and one denotes the 
left OR-link path. The second number in the Gene is the 
alternative machine on which the given operations are 
processed. Figure 3 shows an example of an individual 

for job 1. If we take the first Gene (1,2) for example, the 
operation number is 1 and 2 is the alternative machine 
that corresponds to operation 1. Process plan string 
shown in Figure 3 is made up of eight Genes and the 
OR string is made up of two discrimination values. The 
encoding is directly decoded. The selection of the OR-
link paths defines which machining sequence will be 
chosen from the whole process plan substring. In the 
encoding example shown in Figure 3, the OR1-link 
takes value 1 which means that the left OR1-link path of 
the job1 is selected and the OR2-link takes value 0 (the 
right OR2-link path is selected). The Genes that belong 
to the unselected OR-link paths are first removed from 
the chromosome and the final result is the next 
operation-machine sequence (1,2)–(2,3)–(4,6)–(5,8)–
(8,7).

 

Figure 3. Chromosome encoding for process plan  

Slika 3. Kodiranje kromosoma za tehnološki proces 
 
3.3.2. Initial population 
 
GA starts by randomly generating an initial population 
of chromosomes. When generating the individuals for 
an initial population, feasible operation sequence in a 
process plan is taken into account. Feasible operation-
machine sequence means that the order of elements in 
the encoding does not break constraints on precedence 
relations of operations and machines in the network 
representation. After randomly assigning each 
operation-machine sequence in head substring, a tail 
substring of chromosome is initiated by randomly 
generating 0 or 1 for each component of the substring.  
 
3.4. Genetic operators for process planning 
 
3.4.1. Selection  
 
After deciding on an encoding phase and generating an 
initial population, we need to a make decision how to 
choose individuals in the population that will create 
offspring for the next generation. This phase is called 
selection and it is a process of selecting two parents 
from the population for crossing. We adopted the 
fitness-proportional, roulette wheel selection, where the 
probability of selection is proportional to an individual’s 
fitness. 
3.4.2. Crossover 
 

According to the defined crossover probability pc, some 
individuals are picked out for crossover. For each pair 
of selected parent chromosomes, a single crossover 
point is randomly generated and applied for the 
recombination of process planning individuals. The first 
part of parent1 (the part left from the cutting-crossover 
point) is the same as the first part of offspring1. The 
second part of parent2 (the part right from the cutting-
crossover point) is passed to the same position on 
offspring1. Analogously, the first part of parent2 is 
passed to the same position on offspring2 and the 
second part of parent1 is the same as the second part of 
offspring2. Figure 4 shows how two offspring are 
produced from a parent’s pair in terms of the crossover 
operation. Traditional single point crossover is also 
applied to the tail substring of selected chromosomes.  
 
3.4.2. Mutation 
 
After the crossover the strings are subjected to mutation. 
According to the defined mutation probability pm, some 
individuals are randomly selected to be mutated. For 
each selected chromosome a mutation point is randomly 
chosen and an appropriate operation-machine Gene is 
obtained. An offspring is generated when a selected 
machine in parent string Gene is replaced with one from 
all alternative machines for the selected operation. In 
the example illustrated in Figure 5, the Gene (7,5) is the 
one which is randomly selected and machine 5 can be 

 
 Process plan (head substring)/ 

Tehnološki proces (glavni podniz) 

OR (tail substring)/ 
OR (pomoćni podniz) 

   

Chromosome/ Kromosom: (1,2) (2,3) (3,4) (4,6) (5,8) (6,1) (7,5) (8,7)  1 0 

Alternative machines/ 
Alternativni strojevi 

Number of operation/ 
Broj operacije 
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replaced with machines 6 or 7, which are alternative 
machines for operation 7 of job 1 (see Figure 2). In the 
same way, one of the two OR-links’ values in the tail 

string is chosen randomly and it is converted to the 
opposite value.  

 

Parent1/ Roditelj1: (1,2) (2,3) (3,4) (4,6) (5,8) (6,1) (7,5) (8,7)  1 0 

   
Offspring1/ Potomak1: (1,2) (2,3) (3,4) (4,6) (5,8) (6,2) (7,7) (8,8)  1 1 

   
Parent2/ Roditelj2: (1,3) (2,2) (3,6) (4,8) (5,1) (6,2) (7,7) (8,8)  1 1 

   
Offspring2/ Potomak2: (1,3) (2,2) (3,6) (4,8) (5,1) (6,1) (7,5) (8,7)  1 0 

   
Parent1/ Roditelj1: (1,2) (2,3) (3,4) (4,6) (5,8) (6,1) (7,5) (8,7)  1 0 

Figure 4. Crossover for process planning 

Slika 4. Križanje kromosoma za tehnološki proces 
 

Parent/ Roditelj: (1,2) (2,3) (3,4) (4,6) (5,8) (6,1) (7,5) (8,7)  1 0 

   
Offspring/ Potomak: (1,2) (2,3) (3,4) (4,6) (5,8) (6,1) (7,7) (8,7)  1 1 

Figure 5. Mutation for process planning 

Slika 5. Mutacija kromosoma za tehnološki proces 

 
 

4. Modules for path planning, following 
and learning 

 
To explain a mobile robot motion and actions in a 
manufacturing environment three modules are 
developed. 

4.1. Path planning module  
 
4.1.1. Genetic algorithm for scheduling (criteria 1) 
 
The scheduling process determines the job (operation-
machine) sequence and the processing time on the 
appropriate machines. Here, the GA based scheduling is 
the first way to generate optimal path that a mobile 
robot should follow. Considering the n job and the m 
machine problem (section 3), one process plan from 
three alternative process plans is randomly selected 
(Table 2). Using the methodology given in [19], genetic 
components for the scheduling process are determined. 
In this example, there are four jobs and nine machines 
(n=4 and m=9). The length of the scheduling plan 
chromosome is determined by the number of jobs and 
the maximum number of operations q. Parameter q is 
the maximum number of operations for all alternative 
process plans (i.e. q=4). Therefore, the scheduling plan 
string is made up of 16 (n×q) elements and the process 
plan string is made up of four elements. For job 1, the 
process plan contains four operations and so four 
elements of scheduling plan string are equal to 1. 
Similarly, for job 4, the process plan consists of three 
operations and three elements of the scheduling plan are 
equal to 4. In the same way we generate elements for 

the second and the third job. Therefore, the scheduling 
plan string is made up of four 1s, four 2s, four 3s and 
three 4s. The other elements of this string are 0 and the 
number of 0s is equal to 1 (16−4−4−4−3=1). All these 
elements are arrayed randomly to generate a scheduling 
plan string, as shown in Figure 6.  
 
Table 2. Selected alternative process plans for each job 

Tablica 2. Odabrani tehnološki procesi za svaki tehnološki 
zadatak 

Job/  
Tehnološki zadatak 

Selected process plans/ 
Odabrani tehnološki procesi 

1 (1,3)-(2,3)-(3,3)-(8,8) 
2 (1,5)-(5,3)-(6,3)-(8,9) 
3 (1,3)-(2,6)-(3,5)-(8,5) 
4 (1,9)-(2,5)-(8,6) 

 
In this paper, two objective functions of the scheduling 
problem are calculated by using these equations: 

1 max( )( ( , )),ij ij d ij ijobject c c T s c= ∈  (4) 

1
2 1 ( ) ,

=

= + − ∈∑ ∑
m

ij ij a
a

object object p avgmt o M  (5) 

where cij is the earliest completion time of operation oij, 
sij the earliest starting time of operation oij, ∑ ijp is the 
total processing time for a machine and avgmt is the 
average processing time of all machines [19]. The goal 
of minimizing objective functions object1 and object2 is 
lined on the synthetic consideration of the makespan 
and balanced level of machine utilization, respectively. 
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4.1.2. Genetic algorithm for scheduling  
 
All steps of the crossover and mutation procedures for 
scheduling are extensively described in [19]. Here, we 
will give only examples of those operators characteristic 
for the aforementioned problem (n=4 and m=9). Firstly, 
the crossover phase is conducted. After selecting a pair 
of chromosomes (parent1 and parent2), we initialize two 
empty offspring. When the crossover procedure for the 
process string is carried out, the process plan string of 
parent1 is compared with the process plan string of 
parent2. The same elements in both strings are first 
detected and then saved. These elements in the process 
plan string of parent1 are copied to the same positions in 
offspring1, and in the same way the saved elements 
from the process plan string of parent2 are copied to 
offspring2. The remaining elements in parent1 are 
copied to offspring2, while the remaining elements in 
parent2 are copied to offspring1. In that way, we 
generate process plan strings for two offspring.  
After process plan strings generation, the crossover 
procedure for the scheduling string is done. The saved 
elements of parent1 (2, 4 and 0) are appended to the 
same positions in offspring1 and these elements in 
parent2 are appended to the same positions in 
offspring2. In this example, the number of the 
remaining elements in the scheduling plan of parent1 is 
n1=0, and the number of the remaining elements in the 
scheduling plan of parent2 is n2=0. Knowing that n1=n2 
there is no empty positions in offspring 1 and offspring 
2. Figure 7 shows the described crossover procedure for 
generating two offspring.  
Two mutation operators are used for the mutation 
procedure. The first one is a two-point swapping 
mutation shown in Figure 8 and it is carried out in three 
steps. In step 1, a selection of one parent chromosome is 
done. Then, in step 2, we select two points in the 
scheduling plan string of the parent randomly and in the 
end, we generate a new chromosome offspring by 
interchanging these two elements. The second mutation 
is used for generating new offspring by changing one 
job's alternative process plan. After selecting one parent 
chromosome in step 1, one point in the process plan 
string of a parent is selected randomly. The next step 
changes the value of this selected element to another 
one in the selection range (for example: the first 
alternative process plan for job 4 is replaced with the 
third one, Table 5). In accordance with this change and 
because the number of operations of the third alternative 
process plans for job 4 is greater than the first one, the 
one 0 is selected randomly in the scheduling plan string 
and its value is changed to 4, as shown in Figure 9. 

4.1.3. Graph algorithms for path planning (criteria 2)  
 
Graph theory based algorithms were recognized as the 
alternative to generating optimal job scheduling 
sequence by using GA and minimizing total production 
time as criteria. The robot path planning optimization is 

very common in the field of robotics [39]. Here, the 
criteria are a reduction of energy consumption achieved 
by minimizing the total mobile robot transport paths. 
The first step in this approach is the analysis of material 
transport in a manufacturing environment. First of all, a 
job-shop layout is adopted. The process plans from 
Table 2 are chosen and the data about machines, jobs 
and the processing time of operations on the machine 
are adopted and analyzed. After that we need to define 
the quantitative relations between the adopted data. This 
dependence can be presented with matrix [MJM], which 
is written by using vector [M] (vector of machines) and 
vector [J] (vector of jobs) [40, 41]. The time 
dependence between machines and jobs is described 
with matrix [T]. In the end, we define matrix [R] 
(matrix of distances between machines) by using the 
graph theory. 

4.1.4. Path planning algorithms  
 
Three algorithms are developed and implemented for 
the mobile robot path planning task. The first one is A* 
search algorithm [42, 43, 44] that is used for finding the 
shortest path between the start and goal points. It 
combines the Dijkstra algorithm and the bread-first 
search algorithm. Using the MJM matrix, the second 
algorithm determinates the sequence of machines for 
each job and chooses a machine the robot should visit in 
accordance with the minimal distance criteria. Finally, 
the third algorithm is used to simulate the 
manufacturing process and to determine the sequence of 
machines in accordance with the simulated 
manufacturing process. This algorithm generates 
characteristic time parameters of the manufacturing 
process (the duration of the operation on the machine) 
and time parameters related to part transport to the 
machine (time needed for mobile robot part transport 
between machines). 

4.2. Path following module    
 
4.2.1. Motion model 
 
The position of the mobile robot is determined by the 
system state vector xt = (x, y, θ) and its evolution is 
given by simple odometry (6): 
 

' cos( / 2)
' sin( / 2) ,
'

x x s
y y s

∆ θ+ ∆θ     
     = + ∆ θ+ ∆θ     
     θ θ ∆θ     

 (6) 

 
where x', y' and θ' are the components of the state vector 
at time t', x, y and θ components at time t; Δs the 
incremental path lengths [43, 45].  
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Figure 6. Chromosome of scheduling plan 

Slika 6. Kromosom za plan vremenskog planiranja 

 
 

Figure 7. Crossover for scheduling 

Slika 7. Križanje za vremensko planiranje 
 
 

Figure 8. Mutation for scheduling 

Slika 8. Mutacija za vremensko planiranje 
 

Figure 9. Mutation for scheduling 

Slika 9. Mutacija za vremensko planiranje 
 

4.3. Machine learning of material transport paths by 
using neural networks 

 
Engineering processes generally do not have a 
deterministic nature. The processes that are important 
for the material transport task in terms of duration are 
the machining process and the process of robotized 
material transport between the defined nodes 
(machines). Considering the fact that these processes 
have stochastic nature, we can conclude that nominal 
time duration of operations, as well as time of transport 
from one node to another, are different for each job. For 
that reason, uniform distribution is chosen to model 
stochastic nature of the nominal time duration. 

The NNs are powerful statistical tools used for 
classification, prediction and functional approximation 
[8]. Prediction of the next node (machine) in the path, 
where a robot needs to go and deliver the part, is based 
on past values of the system state and the current values 
of the system state. So, the previous robot pose, the time 
parameters of the process and the time of robot 
movement between the machines are the inputs of NN 
and the next node is the output of NN. For NN training 
the Matlab Neural Network Toolbox is used, with 
supervised learning algorithm (Levenberg-Marquardt) 
and the sigmoid activation function [46]. After a 
number of trials the best results were obtained with two 
layered architecture 4 [8-4]2 1 with an achieved error 
during optimization MSE=7,04·10-7. 

 Scheduling plan/  
Plan vremenskog planiranja 

 
Process plan/ 
Tehn. proces 

Chromosome/ 
Kromosom: 

   

4 3 3 1 2 4 3 2 2 1 3 0 4 1 2 1  1 2 3 1 

Parent1/ Roditelj1: 4 3 3 1 2 4 3 2 2 1 3 0 4 1 2 1  1 2 3 1 
                      

Offspring1/Potomak1: 4 1 3 1 2 4 3 2 2 3 1 0 4 1 2 1  3 2 3 1 
                      

Parent2/ Roditelj2: 1 2 4 3 1 2 2 3 3 1 0 4 1 2 4 1  3 1 3 2 
                      

Offspring2/Potomak2: 3 2 4 3 1 2 2 3 1 3 0 4 1 2 4 1  1 1 3 2 
                      

Parent1/Roditelj1: 4 3 3 1 2 4 3 2 2 1 3 0 4 1 2 1  1 2 3 1 

Parent/ Roditelj: 4 3 3 1 2 4 3 2 2 1 3 0 4 1 2 1  1 2 3 1 

                      

Offspring/ Potomak: 4 3 3 1 2 3 3 2 2 1 4 0 4 1 2 1  1 2 3 1 

Parent/ Roditelj: 4 3 3 1 2 4 3 2 2 1 3 0 4 1 2 1  1 2 3 1 

                      

Offspring/ Potomak: 4 3 3 1 2 4 3 2 2 1 3 4 4 1 2 1  1 2 3 3 
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5. Experimental results  
 
In order to verify the proposed approach, two 
experiments are performed. The GA parameters used for 
optimization of process planning and scheduling are 
given in Table 3 and transportation time between 
machines is given in Table 4. Using these input 
parameters three alternative process plans for all jobs 
are generated according to an objective function given 
by equation (3). Generating three alternative process 
plans for all jobs by using GA approach is the same for 
both experiment 1 and experiment 2. 
 

5.1. Experiment 1 
 
The first experiment starts with randomly selecting one 
from the three alternative process plans for each job 
given in Table 5. GA for scheduling then generates a 
jobs-machine sequence in accordance with two 
objective functions: object1 (Figure 11 (a)) and object2 
(Figure 11 (b)). In that way the path that a mobile robot 
follows is generated by using GA for scheduling with 
minimization of production time TP as criteria. Testing 
the accuracy of the mobile robot following a path is 
carried out in a static laboratory model of manufacturing 
environment, where positions of the machines are 
known a priori. Experimental model, the Khepera II 
mobile robot and parts of the whole path (3,3)-(1,3)-
(4,9)-(1,3)-(1,3)-(3,6)-(2,5)-(3,6)-(3,6)-(4,6)-(3,5)-(2,3)-
(2,3)-(1,8)-(0,/)-(2,9)-(4,6) are shown in Figure 12. 
While executing the transport task, the robot uses 
simple odometry, [43, 45, 47], to determine its pose and 
A* algorithm to optimizes the path between the 
machines. The mean position errors during the first 
experiment in x and y directions are Δx=0,53 [cm] and 
Δy=2,35 [cm]. 
 

5.2. Experiment 2 
 
The best alternatives from all four jobs are selected and, 
by using graph algorithms in path folowing module as 
well as the minimal distance criteria, the nominal path 
job-machine sequence is generated (1,3)-(3,3)-(2,5)-
(4,9)-(2,5)-(2,3)-(1,8)-(4,9)-(4,5)-(3,3)-(3,6)-(4,5)-(4,6)-
(2,3)-(2,9)-(3,6)-(3,5). The experiment 2 starts but the 
coordinates of the goal point are not known at the 
beginning. This parameter depends on the time the robot 
needs to travel from one machine to another and the 
processing time of the operation on the machine. When 
the robot finishes the transport of the last part to the 
machine for the first operation, its current pose, 
previous pose, time parameters (total transportation time 
and total machining time) are passed to NN. Based on 
this information, NN predicts the nearest machine where 
the manufacturing operation is completed and generates 
information about future robot movement [43]. One 
predicted sequence is (1,3)-(3,3)-(2,5)-(4,9)-(1,3)-(1,8)-
(2,5)-(3,3)-(3,6)-(4,9)-(4,5)-(3,6)-(3,5)-(2,3)-(2,9)-(4,5)-
(4,6). 

Table 3. GA parameters  

Tablica 3. Parametri za GA 

Parameters/ 

Parametri 

Process 
planning / 

Tehnološki 
proces 

Scheduling / 

Vremensko 
planiranje 

The size of the population, S/ 
Veličina populacije 40 500 

Total number of generation, M/ 
Ukupan broj generacija 30 100 

Probability of crossover 
operation, pc/ 
Vjerojatnost za križanje 

0,60 0,80 

Probability of mutation 
operation, pm / 
Vjerojatnost za mutaciju 

0,10 0,10 

 

Table 4. Transportation time between machines  

Tablica 4. Vrijeme transporta između strojeva 

 

Table 5. Experimental results of process planning   

Tablica 5. Eksperimentalni rezultati tehnološkog procesa 

  Job/ 
  Teh. 
 zadatak 

Alternative process 
plans/ 
Alternativni 
tehnološki procesi 

Fitness/ 
Funkcija 
cilja  
 

Production 
time/ 
Proizvodno
vrijeme  

1 
(1,3)-(2,3)-(3,3)-(8,8) 0,0116 86 
(1,2)-(2,3)-(3,3)-(8,8) 0,0101 99 
(1,5)-(2,3)-(3,3)-(8,8) 0,0087 115 

2 
(1,5)-(5,3)-(6,3)-(8,9) 0,0076 131 
(1,6)-(5,3)-(6,3)-(8,9) 0,0070 142 
(1,5)-(5,3)-(6,3)-(8,8) 0,0066 151 

3 
(1,3)-(2,6)-(3,5)-(8,5) 0,0096 104 
(1,3)-(2,6)-(3,6)-(8,5) 0,0094 106 
(1,4)-(2,4)-(3,5)-(8,5) 0,0075 134 

4 
(1,9)-(2,5)-(8,6) 0,0090 111 
(1,9)-(2,6)-(8,6) 0,0088 113 
(5,4)-(6,2)-(7,3)-(8,2) 0,0077 130 
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(a) (b) 

Figure 11. (a) Gantt chart of experiment 1 based on object1 (Makespan=131); (b) Gantt chart of experiment 1 based on object2 
(Makespan=148) 

Slika 11. (a) Gantov dijagram za eksperiment 1 na osnovu object1 (Makespan=131); (b)  Gantov dijagram za eksperiment 1 na 
osnovu object2 (Makespan=148)

 

     

     
(a) (b) (c) (d) (e) 

Figure 12. Parts of entire path and poses of the mobile robot. The path is given as the result of GA scheduling described in the 
text: (a) M3-M9; (b) M9-M3-M6; (c) M6-M5-M6-M5; (d) M5-M3; (e) M3-M8-M9-M6 

Slika 12.    Segmenti putanje i položaji mobilnog robota. Putanja predstavlja rezultate primjene GA opisane u tekstu: (a) M3-M9; 
(b) M9-M3-M6; (c) M6-M5-M6-M5; (d) M5-M3; (e) M3-M8-M9-M6 

 

6. Discussions  
 
On the whole, the experimental results indicate that the 
axiomatic design methodology can be used for 
conceptual design of intelligent material transport 
within IMS. This design methodology together with 
artificial intelligence techniques is an innovative 
concept in the domain of single robot scheduling in a 
job-shop environment. 
In literature [7, 12, 14, 16, 17] it is quite common to 
find only simulation results for optimal process plans 
and schedules in the form of the Grant chart. Besides 
simulation results (Table 5 and Figure 11), we propose 

an additional experimental verification, where the job 
shop sequences obtained by using integrated approach 
are tested in an experimental environment. Satisfactory 
results in the path-following are obtained while a single 
mobile robot performs transportation tasks, Figure 12.  
The NN model developed for learning optimized 
transport paths has proved to be effective in online 
prediction of material transport flows. One more 
advantage of this approach is that the NN is trained with 
the empirical time parameters of the real manufacturing 
process and stochastic nature of the process is modelled 
according to the uniform distribution. Time parameters 
(machining time and transportation time) obtained in 
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real-world environments can be used for making 
decisions in mobile robot material transport tasks. 
Minimal production time is used as criteria for process 
plans optimization. The adopted formulation given by 
equation (2) considers the machining and the 
transportation time. Transportation time between two 
machines depends on the distance between those two 
alternative machines for two successive operations. As a 
consequence of using this objective function, successive 
operations of a part (job) are assigned to the same 
machine tool, as long as it is an alternative machine for 
both operations. In this manner, the transportation time 
between these consecutive operations becomes zero and 
the completion time is further reduced. The potential 
quality problems due to re-fixing the part on different 
machine tools are reduced and total mobile robot 
transport paths are minimized. This approach has the 
following limitation: Process plans with the shortest 
processing times might cause bottlenecks, or similarly 
assigning the successive operations on one machine tool 
might cause a bottleneck machine. This problem can be 
solved by introducing a rescheduling stage in the 
scheduling module. 
In case of a mobile robot path following in real-world 
environments, a motion model based only on the 
odometric information from encoders would not be 
sufficient for robot localization. Considering real world 
constrains and problems (such as friction or part 
manipulation), future research is directed towards 
developing advanced localization and map-building 
algorithms. Furthermore, an additional module for part 
(job) handling tasks needs to be integrated in an 
intelligent manufacturing system. 

7. Conclusion 
 
This paper presented a method for conceptual design of 
mobile robot material transport in an intelligent 
manufacturing system. An intelligent mobile robot, with 
a priori known static obstacles in the environment, has 
the ability to generate an optimal motion path in 
accordance with the requirements of the manufacturing 
process and priority servicing of machine tools. Two 
approaches were presented for optimal transport paths 
generating.  
The first is based on optimization of process plans by 
using GA. Optimized process plans are then used as 
inputs in GA for scheduling. This algorithm generates a 
jobs-machine sequence in accordance with minimal 
makespan as criteria.  
In the second approach a mobile robot learns the 
optimal transport paths and the sequence of 
manipulations by using a neural network [45]. The 
neural network was developed to predict the parameters 
of a manufacturing process and to learn characteristic 
time parameters of the process. For the purposes of 
simulation, we used nominal time parameters (estimated 
by using empirical data) of the manufacturing process, 
and its stochastic nature is modeled according to the 

uniform distribution [45]. All algorithms and neural 
network models are developed in the Matlab 
environment and implemented on the Khepera II mobile 
robot. The achieved positioning error of mobile robot 
indicates that conceptual design approach based on 
axiomatic design theory, GAs for process planing and 
scheduling, and neural networks can be used for 
material transport and handling tasks in intelligent 
manufacturing systems. 
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