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ABSTRACT 
Process planning and scheduling are two of the most important manufacturing 
functions which are usually performed sequentially in traditional approaches. 
Considering the fact that these functions are usually complementary, it is necessary 
to integrate them so as to improve performance of a manufacturing system. This 
paper conceptualizes a multi-agent methodology by considering four intelligent 
agents (job, machine, tool, and optimization agent) and presents developed 
modified particle swarm optimization (mPSO) algorithm to solve this combinatorial 
optimization problem effectively. In order to improve the search efficiency and 
increase ability to find global optimum, proposed mPSO algorithm has been 
enhanced with new crossover and mutation operators. Experimental results show 
applicability of the proposed approach in solving integrated process planning and 
scheduling problem.  
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1.  INTRODUCTION 
 
Computer aided process planning (CAPP) was developed at the end of the 20th century with the 
purpose of integrating computer aided design (CAD) and computer aided manufacturing (CAM). 
The aim of CAPP is to determine detailed methods for manufacturing a part economically and 
concurrently starting from the initial phase (drawing of the finished part) up to the final phase 
(the desired shape of the finished part). On the other hand, scheduling problem is defined as 
allocation of operation on machines in time. Scheduling plans receive process plans and output 
a sequence of operations on machines while satisfying the precedence relations given in 
process plans. In traditional approaches, process planning and scheduling were carried out 
sequentially. Because of the fact that process planning and scheduling are complementary 
functions, many researchers proposed their integration to achieve global optimization of product 
development and manufacturing.  
 
Some of them applied artificial intelligence techniques for integration. Evolutionary algorithms, 
such as genetic algorithm (GA) and simulated annealing (SA), have recently been employed to 
generate optimal or nearly optimal plans satisfying the constraints and objectives of process 
planning and scheduling simultaneously. In /1/ GA based algorithm is developed to solve the 
integrated process planning and scheduling problem. The new symbiotic evolutionary algorithm, 
given in /2/, can simultaneously deal with the two problems of process planning and job shop 
scheduling. In /3/, a modified two-phase GA approach is used to optimize process planning and 
scheduling simultaneously. A unified representation model and a SA-based approach have 
been developed to facilitate the integration and optimization process /4/. 



 

An agent-based approach can also be applied for integrating process planning and scheduling. 
An agent-based approach presented in /5/ has been developed to facilitate the integration of 
these two functions. In this approach, the two functions are carried out simultaneously and an 
optimization agent based on an evolutionary algorithm is used to manage the interactions and 
communications between agents. The development of an agent-based negotiation protocol for 
negotiations between the part agents and the machine agents is presented in /6/, and online 
hybrid agent-based negotiation multi-agent system to integrate process planning with 
scheduling/rescheduling is given in /7/. Dynamic flexible job shop scheduling problem with 
alternative process plans essentially involves deciding the order or priority for the jobs waiting to 
be processed on each machine. The concept of multi-agent systems is also applied to integrate 
dynamic process planning and dynamic production scheduling /8/.  
 
In this paper, we focus on development and implementation of multi-agent system in order to 
obtain optimal process plans and optimal scheduling plans. The modified particle swarm 
optimization (mPSO) algorithm, introducing encoding/decoding method as well as crossover 
and mutation operators, is developed to solve this non-deterministic polynomial-time (NP-hard) 
combinatorial optimization problem. The network representation is adopted to describe various 
flexibilities including machine flexibility, tool flexibility, process flexibility, and sequence flexibility. 
The mathematical model for flexible process planning is described with the objective of 
minimizing the production time considering the alternative machine and alternative tool selection 
while objective for scheduling is minimization of the makespan. 
 
2.  MULTI-AGENT INTEGRATION METHODOLOGY 
 
The concept of agent comes from artificial intelligence /9/. In the manufacturing domain, it is 
possible to define an agent as an intelligent entity that may represent physical manufacturing 
entity (job, machine, tool, robot, AGV, cell, etc.) or computational entity (algorithm, soft-
computing technique, etc. that can be implemented in a manufacturing system such as learning 
agent, optimization agent, path planning agent).  
 
A multi-agent system (MAS) is an artificial intelligence system composed of a population of 
autonomous agents that are able to cooperate in order to reach an overall goal, while 
simultaneously pursuing individual objectives. In this research, we applied following four agents 
to make MAS and integrate manufacturing functions: job agent, machine agent, tool agent, and 
optimization agent. The job agent, machine agent and tool agent are used to represent jobs, 
machines and tools. The optimization agent is used to generate the alternative process plans 
and optimize scheduling plans.  
 
3.  BRIEF OVERVIEW OF PROPOSED AGENTS  
 
Job agent  
Job agents represent the jobs (parts) that are manufactured in the manufacturing system. Each 
job agent contains information of a particular job, which includes job ID, job name, job 
operations and information about alternative process plans. In order to adopt representation for 
alternative process plans, many types of flexibilities in process planning are considered: 
machine, tool, sequence and process flexibility. Petri-net, AND/OR graphs and networks are 
some of the numerous methods used to describe these types of flexibilities. In this paper, a 
representation of flexible process plans in the form of a network is adopted, see Figure 1. 
Generally, there are three node types in the network representation: the starting node, the 
intermediate node and the ending node. The starting and the ending node indicate the 
beginning and the end of the manufacturing process of a job and an intermediate node 
represents an operation. The intermediate node contains an operation number, a set of 
alternative machines and set of alternative tools that are used to perform the operation, and the 
processing time for the operation according to the selected machine and tool. All nodes are 
connected with arrows that represent the precedence relations between them.  
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Figure 1:  Alternative process plan network for four parts, nine machines and eight tools  



 

For each job, every alternative path in network starts with OR-connector and ends with join-
connector. OR-links are used to describe process flexibility and make decisions about 
alternative manufacturing process procedures to be selected. All links that are not connected by 
OR-connectors must be visited. Figure 1 visualizes an example of alternative process plan 
networks that models involved flexibilities and determines detailed representation of the 
machines and tools on which each operation of job 1, job 2, job 3 and job 4 are to be performed. 
 
In this research, the optimization objective of the flexible process planning problem is to 
minimize the production time which consists of processing time and transportation time. 
Because of the impact that alternative tools selection have on production time, besides impact 
of alternative machine selection, we additionally consider influence of alternative tools selection 
on production time. The notations used to explain mathematical model of operation sequencing 
problem is described as follows: 
 

n - the total number of jobs; 
g - the total number of generations (1, 2, 3, …, M); 
Gi - the total number of process plans of the i-th job; 
oijl - the j-th operation in the l-th process plan of the i-th job; 
Pil - the number of operations in the l-th process plan of the i-th job; 
k - the alternative machine corresponding to oijl; 
t - the alternative tool corresponding to oijl; 

TW(i,j,l,k,t) - the processing time of operation oijl on the k-th alternative machine 
and t-th alternative tool; 

TT(i,l,(j,k1),(j+1,k2)) - the transportation time between the k1-th and the k2-th alternative 
machine; 

TP(i,t) - the production time of i-th job in the g-th generation with consideration 
of alternative tools; 

 
The production time to be minimized is formulated here as shown in equation (1): 
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Two constraints of machine and different process for one job are also taken into account. The 
first constraint is that each machine can handle only one operation at the time and the second 
one is that the operations of one job cannot be processed simultaneously. The objective 
function that defines the alternative process plans with the minimum production time TP(i,g) is 
given in equation (2) as follows: 

1
objective :  maximize ( , ) .

( , )
f i g

TP i g


               

(2) 

Optimization objective of the scheduling problem is to minimize makespan, which is calculated 
as in equation (3):  

1 max( )( ( , )),ij ij d ij ijobject c c T s c 

               

(3) 

where cij is the earliest completion time of operation oij and sij is the earliest starting time of 
operation oij. 
 
Machine agent 
Each machine represented by machine agent contains the information about: machine ID, 
machine name, the processing times, and transportation times between machines. For each 
machine agent, status is available: “idle” or “in use for manufacturing operation”. Based on 
constraint that each machine can handle only one job at the time, each machine agent 
negotiates with job and optimization agents to get necessary information. 



 

Tool agent 
Tool agents represent the tools used to manufacture the parts. Each tool agent contains 
information of a particular tool, which includes tool ID, tool name, and tool operations. Based on 
constraint that each tool can handle only one job at the time, each tool agent negotiate with job 
and optimization agents to get necessary information. 
 
Optimization agent: Traditional PSO algorithm 
Traditional PSO algorithm is initialized with a population of randomly generated candidate 
solutions known as particles. Each particle flies through the multidimensional search space of 
the optimization problem with a specific velocity searching for the optimal solution; its position 
represents a potential solution of the problem and its velocity is dynamically adjusted according 
to its own flying experience and according to the neighbouring flying experience. Particle 
position and particle velocity are updated iteratively by using equation (4) and equation (5):   
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where t is the iteration number; t
idV  and 1t

idV 

 represent the velocities of the particle i in 

generations t and t+1; t
idX  and 1t

idX  represent the positions of the particle i in generations t and 

t+1; t
ldP  is the local best solution (“pbest”); t

gdP  is the global best solution (“gbest”); W is inertia 

weight, set as in equation (6); C1 and C2 are positive acceleration constants; rand() and Rand() 
are two random numbers in the range [0,1]. 
 
Optimization agent: Encoding and decoding of the particles for process planning 
One of the most important issues in applying PSO successfully is to develop particle 
encoding/decoding scheme in which process plan parameters are represented as a particle in 
search solution space. In this research, particles of modified PSO algorithm are seen as the 
chromosomes in the GA, where chromosome encoding and decoding is conducted as 
described in Figure 2. 

 
Figure 2:  Encoding scheme for flexible process planning 
 
Optimization agent: Initial population for process planning 
PSO algorithm starts with randomly generating an initial population of particles. After generating 
the individuals for an initial population, feasible operation sequence in a process plan is taken 
into account. Feasible operation-machine-tool sequence means that the order of elements in 
the encoding does not break constraints on precedence relations of operations, machines, and 
tools in network representation. 
 
Optimization agent: Selection for process planning 
After deciding on an encoding phase and generating an initial population, we need to make 
decision how to choose individuals in the population that will create offspring for the next 
generation. This phase is called selection and it is the process of selecting two parents from the 
population for crossover operation. We adopted fitness-proportional, roulette wheel selection, 
where the probability of selection is proportional to an individual’s fitness. 



 

Optimization agent: Crossover for process planning 
According to the defined crossover probability pc, some particles are picked out for crossover. 
For each pair of selected parent chromosomes, single crossover point is randomly generated 
and applied for the recombination of process planning individuals. Figure 3 shows how two 
offspring are produced from the parents’ pair in terms of the crossover operation. 

 

  

 

 
Figure 3:  Crossover for flexible process planning 
 
Optimization agent: Mutation for process planning 
After crossover operation, according to the defined mutation probability pm, some particles are 
randomly selected to be mutated. For each selected particle, a mutation point is randomly 
chosen, three mutation operators are applied, and, as a result of mutation, rearrangement of 
appropriate operation-machine-tool Gene is carried out. The examples of the three mutation 
operators for the particle are presented in Figure 4. 
 

  

 

  

 

  

 
 
Figure 4:  The first, the second and third mutation operation for process planning 
 
Optimization agent: Encoding and decoding of the particles for scheduling 
Each chromosome in for scheduling string consists of four parts: scheduling plan, process plan, 
machine string, and tool string. Particle encoding/decoding scheme for scheduling plan string is 
conducted as described in Figure 5. 
 
Optimization agent: Initial population for scheduling 
After selection of the alternative process plan generated in the process plans optimization phase 
and chromosome encoding/decoding phase, PSO algorithm for scheduling randomly generates 
an initial population of particles.  
 
Optimization agent: Selection for scheduling 
We adopted fitness-proportional, roulette wheel selection, where the probability of selection is 
proportional to an individual’s fitness.  



 

 
Figure 5:  Individual for scheduling 
 
Optimization agent: Crossover for scheduling 
According to the defined crossover probability pc, some particles are picked out for crossover. 
The crossover procedure for scheduling string is shown in Figure 6 and crossover procedure for 
machine string in Figure 7. The crossover for tool strings is performed analogously. 

 
Figure 6:  Crossover for scheduling plan 

 

  

 

 
Figure 7:  Crossover for machine string 
 
Optimization agent: Mutation for scheduling 
After crossover operation, according to the defined mutation probability pm, some particles are 
randomly selected to be mutated. Mutation operator is used for generating new offspring by 
changing one job's alternative process plan.  
 
Optimization agent: Modified PSO algorithm 
In order to apply modified PSO algorithm, it is necessary to map operation-machine-tool 
sequence into mPSO particle on the following way: all the numbers from the first positions in the 
Genes are set in the operation particle, numbers from the second position are set in the 
machine position particle, and numbers from the third position are set in the tool position 
particle. According to encoding/decoding procedure described in previous section and mapping 
of the particles, particle position and particle velocity are expressed by the following formulas: 
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where i is the iteration number; 
_

t
id mV  and 1

_
t

id mV  are the velocities for machine particle i in 

generations t and t+1; 
_

t
id tV  and 1

_
t

id tV  are the velocities for tool particle i in generations t and t+1; 

_
t
id mX and 1

_
t

id mX  represent the positions for machine particle i in generations t and t+1; 
_

t
id tX and 

1
_
t

id tX  represent the positions for tool particle i in generations t and t+1; 
_

t
ld mP  and 

_
t

gd mP  are the 

local best and global best positions for machine particle i in generation t; 
_

t
ld tP  and 

_
t

gd tP  are the 

local best and global best position for tool particle i in generation t; W, C1, C2, rand(), and Rand() 
are the same as explained earlier. 
 
Finally, the workflow of the proposed mPSO algorithm is shown in the Figure 8 as follows: 
 
Initialize swarm size, maximum number of generation, Wmax, Wmin, C1, and C2; 
Initialize a swarm of particles with random positions for machine and tool particles; 
Evaluate each particle’s fitness; 
Initialize the global and the local best position values for machines and tools;  
Repeat 

generation = generation + 1; 
generate next swarm by updating the velocities and positions of the particles; 
apply the crossover and the mutation operations; 
evaluate swarm; 
compute each particle’s fitness; 

 find new “gbest”/”pbest” and update “gbest” of the swarm and “pbest” of each particle; 
Until the maximum of generation is not met 

Figure 8:  The pseudocode of mPSO algorithm 
 
4.  EXPERIMENTAL RESULTS 
 
The first phase of experiment considers optimization of flexible process planning with machine 
flexibility, tool flexibility, process flexibility, and sequence flexibility (see jobs in Figure 1). The 
transportation time matrix (the time units of transportation time are the same as the units of 
processing time) between the machines is given in Table 1 and parameters for mPSO algorithm 
are given in Table 2. Algorithm is implemented in Matlab environment and executed on a 
personal computer with a 3.10 GHz processor (2GB RAM). The objective of process planning 
optimization is to find optimal flexible process plans with the maximum fitness function f(i,t), 
equation (2). As a result of optimization, three alternative process plans for all four jobs are 
generated. The three near optimal alternative process plans, their fitnesses and production 
times obtained by using mPSO algorithm are gathered in Table 3.  
 

Machine no. 1 2 3 4 5 6 7 8 9 

1 0 50 79 36 99 106 130 116 102 
2 50 0 31 16 51 56 78 67 54 
3 79 31 0 47 20 27 63 48 26 
4 36 16 47 0 67 70 90 84 70 
5 99 51 20 67 0 7 55 40 22 
6 106 56 27 70 7 0 62 47 29 
7 130 78 63 90 55 62 0 15 37 
8 116 67 48 84 40 47 15 0 22 
9 102 54 26 70 22 29 37 22 0 

Table 1: The transportation time between the machines for experiment 



 

Parameters Process planning Scheduling 

The size of the population, S 40 500 
Total number of generation, M 30 100 
The inertia weight W 1,2-4,0 1,2-4,0 
Acceleration constants C1 and C2 2,0 2,0 
Probability of crossover operation, pc 0,60 0,80 
Probability of mutation operation, pm 0,10 0,10 

Table 2: mPSO parameters for process planning and scheduling  
 

Job Alternative process plans Fitness Production time 

1 
(1,3,1)-(2,3,5)-(4,8,2)-(5,8,1)-(8,8,2) 0,0071 140 
(1,3,1)-(2,3,5)-(4,8,2)-(5,8,7)-(8,8,2) 0,0070 142 
(1,3,1)-(2,3,5)-(3,3,4)-(8,8,2) 0,0069 144 

2 
(1,5,1)-(2,5,3)-(3,6,5)-(4,8,4)-(8,8,5) 0,0069 145 
(1,5,1)-(2,5,3)-(3,6,5)-(4,8,4)-(8,8,8) 0,0068 147 
(1,5,2)-(2,5,3)-(3,6,5)-(4,8,4)-(8,8,5) 0,0067 149 

3 
(1,3,5)-(2,6,1)-(3,5,2)-(8,5,3) 0,0095 105 
(1,3,5)-(2,6,1)-(3,5,2)-(8,5,8) 0,0093 107 
(1,3,5)-(2,6,7)-(3,5,2)-(8,5,3) 0,0091 110 

4 
(1,9,4)-(2,5,7)-(8,6,2) 0,0101 99 
(1,9,4)-(2,5,7)-(8,6,5) 0,0099 101 
(5,4,7)-(6,2,5)-(7,3,8)-(8,6,2) 0,0078 128 

Table 3: Experimental results of process planning   

 
The second phase of experiment considers optimization of scheduling plans using parameters 
also given in Table 2. The optimization starts with randomly selecting one of the three 
alternative process plans for each job given in Table 3. Proposed mPSO algorithm for 
scheduling then generates optimal schedule plan i.e. job-machine sequence in accordance with 
objective function object1, equation (3). Figure 7 illustrates the convergence curve, which shows 
the search capability and evolution speed of mPSO algorithm. As it can be seen, the optimized 
schedule for a minimized makespan can be achieved after nearly 30 generations. Gantt chart 
for the optimal schedule solution is shown in Figure 10, where the maximum completion time of 
all the jobs in the schedule is 190.  
 

  
 

Figure 9:  Convergence curve (best 
and average fitness values in each 
generations) for scheduling 

Figure 10:  Gantt chart for experiment based on 
minimizing makespan values of the schedules 
(makespan = 190) 

 



 

5.  CONCLUSION 
 
In this paper it has been presented methodology for integration of process planning and 
scheduling problem. The proposed methodology is based on multi-agent concept and modified 
particle swarm optimization (mPSO) algorithm. Four intelligent agents such as job agent, 
machine agent, tool agent and optimization agent collaborate together in order to obtain optimal 
solution of proposed combinatorial problem. The network representation for jobs is adopted to 
describe machine flexibility, tool flexibility, process flexibility as well as sequence flexibility. 
Solutions of the integration problem are encoded into PSO particles to intelligently search for 
the optimal solution for process plans and schedules. To explore the search space and make 
more effective information exchange mechanism for particles, new crossover and mutation 
operators were proposed and incorporated in a modified PSO algorithm. Optimal operation 
sequence is found in accordance with minimal production time as criteria (contains processing 
time and transportation time, where processing time depends on alternative machine and 
alternative tool selection) and optimal schedule sequence is found in accordance with minimal 
makespan as criteria. The experimental results show that the proposed method is a promising in 
the research of integration of process planning and scheduling. 
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