16 research outputs found

    Machine Learning and Law

    Get PDF
    Part I of this Article explains the basic concepts underlying machine learning. Part II will convey a more general principle: non-intelligent computer algorithms can sometimes produce intelligent results in complex tasks through the use of suitable proxies detected in data. Part III will explore how certain legal tasks might be amenable to partial automation under this principle by employing machine learning techniques. This Part will also emphasize the significant limitations of these automated methods as compared to the capabilities of similarly situated attorneys

    Through the Lens of Core Competency: Survey on Evaluation of Large Language Models

    Full text link
    From pre-trained language model (PLM) to large language model (LLM), the field of natural language processing (NLP) has witnessed steep performance gains and wide practical uses. The evaluation of a research field guides its direction of improvement. However, LLMs are extremely hard to thoroughly evaluate for two reasons. First of all, traditional NLP tasks become inadequate due to the excellent performance of LLM. Secondly, existing evaluation tasks are difficult to keep up with the wide range of applications in real-world scenarios. To tackle these problems, existing works proposed various benchmarks to better evaluate LLMs. To clarify the numerous evaluation tasks in both academia and industry, we investigate multiple papers concerning LLM evaluations. We summarize 4 core competencies of LLM, including reasoning, knowledge, reliability, and safety. For every competency, we introduce its definition, corresponding benchmarks, and metrics. Under this competency architecture, similar tasks are combined to reflect corresponding ability, while new tasks can also be easily added into the system. Finally, we give our suggestions on the future direction of LLM's evaluation

    Knowledge engineering in the legal domain: The construction of a FunGramKB Satellite Ontolog y

    Full text link
    [ES] Una de las tareas más tediosas en la labor diaria de los profesionales del derecho es la búsqueda de información en el ámbito jurídico. Con el fin de implementar aplicaciones avanzadas del procesamiento del lenguaje natural en este dominio, hemos desarrollado un modelo de representación del conocimiento especializado orientado a la semántica profunda dentro del marco de FunGramKB, una base de conocimiento léxicoconceptual multilingüe de propósito general. Más concretamente, el resultado de esta investigación ha dado como fruto una ontología terminológica sobre derecho penal en el dominio del terrorismo y el crimen organizado transnacional para ser utilizada en sistemas inteligentes que permitan la comprensión automática del discurso legal. El objetivo de este artículo es la descripción de la metodología empleada en el desarrollo de dicha ontología, centrándonos en la descripción de la herramienta que asiste al lingüista en el proceso de adquisición y conceptualización de los términos.[EN] One of the most time-consuming tasks in the daily work of legal professions is the search for information in the field of law. To implement advanced computer-based applications of natural language processing in this regard, we have developed a model of specialized knowledge representation driven by the deep semantics of FunGramKB, a multilingual general-purpose lexico-conceptual knowledge base. In particular, our research results in a terminological ontology on criminal law in the domain of transnational terrorism and organized crime to be implemented in intelligent systems which aim to understand legal discourse automatically. The objective of this paper is to describe the methodology used in the development of that ontology, focusing on the computerised tool to assist linguists in the process of terminological acquisition and conceptualization.Este trabajo forma parte de diversos proyectos de investigación financiados por el Ministerio de Ciencia y Tecnología, códigos FFI2011-29798-C02-01, FFI2010-17610 y FFI2010-15983.Periñán Pascual, JC.; Arcas Túnez, F. (2014). La ingeniería del conocimiento en el dominio legal: La construcción de una Ontología Satélite en FunGramKB. Revista Signos. 47(84):113-139. https://doi.org/10.4067/S0718-09342014000100006S113139478

    Representação computacional das construções de sujeito-predicado do português do Brasil

    Get PDF
    Este trabalho apresenta uma proposta para representar computacionalmente construções do Português Brasileiro, no âmbito do Constructicon da FrameNet Brasil. Dessa forma, demonstra de que maneira as teorias irmãs da Semântica de Frames e da Gramática das Construções podem ser implementadas computacionalmente com vias a sustentar aplicações em Compreensão de Língua Natural. </p

    Μελέτη Θεμάτων Συστημάτων Συστάσεων και Επέκταση Συστήματος Συστάσεων Εστιατορίων

    Get PDF
    Στην εργασία αυτή μελετήθηκαν θέματα σχετικά με τα συστήματα συστάσεων και τις μεθόδους αξιολόγησής τους, τις αρχιτεκτονικές web εφαρμογών, τη μηχανική μετάφραση και την επεξεργασία φυσικής γλώσσας. Όλα τα παραπάνω έγιναν με αφορμή την επέκταση του συστήματος συστάσεων &quot;RestaurantFinder&quot;.In this work, we studied topics concerning recommendation systems and their evaluation methods, as well as architectures of web applications, machine translation and natural language processing. Μοtivation for all was the extension of &quot;RestaurantFinder&quot; recommender system that was the second part of this work

    Knowledge-Driven Implicit Information Extraction

    Get PDF
    Natural language is a powerful tool developed by humans over hundreds of thousands of years. The extensive usage, flexibility of the language, creativity of the human beings, and social, cultural, and economic changes that have taken place in daily life have added new constructs, styles, and features to the language. One such feature of the language is its ability to express ideas, opinions, and facts in an implicit manner. This is a feature that is used extensively in day to day communications in situations such as: 1) expressing sarcasm, 2) when trying to recall forgotten things, 3) when required to convey descriptive information, 4) when emphasizing the features of an entity, and 5) when communicating a common understanding. Consider the tweet New Sandra Bullock astronaut lost in space movie looks absolutely terrifying and the text snippet extracted from a clinical narrative He is suffering from nausea and severe headaches. Dolasteron was prescribed . The tweet has an implicit mention of the entity Gravity and the clinical text snippet has implicit mention of the relationship between medication Dolasteron and clinical condition nausea . Such implicit references of the entities and the relationships are common occurrences in daily communication and they add value to conversations. However, extracting implicit constructs has not received enough attention in the information extraction literature. This dissertation focuses on extracting implicit entities and relationships from clinical narratives and extracting implicit entities from Tweets. When people use implicit constructs in their daily communication, they assume the existence of a shared knowledge with the audience about the subject being discussed. This shared knowledge helps to decode implicitly conveyed information. For example, the above Twitter user assumed that his/her audience knows that the actress Sandra Bullock starred in the movie Gravity and it is a movie about space exploration. The clinical professional who wrote the clinical narrative above assumed that the reader knows that Dolasteron is an anti-nausea drug. The audience without such domain knowledge may not have correctly decoded the information conveyed in the above examples. This dissertation demonstrates manifestations of implicit constructs in text, studies their characteristics, and develops a software solution that is capable of extracting implicit information from text. The developed solution starts by acquiring relevant knowledge to solve the implicit information extraction problem. The relevant knowledge includes domain knowledge, contextual knowledge, and linguistic knowledge. The acquired knowledge can take different syntactic forms such as a text snippet, structured knowledge represented in standard knowledge representation languages such as the Resource Description Framework (RDF) or other custom formats. Hence, the acquired knowledge is pre-processed to create models that can be processed by machines. Such models provide the infrastructure to perform implicit information extraction. This dissertation focuses on three different use cases of implicit information and demonstrates the applicability of the developed solution in these use cases. They are: 1) implicit entity linking in clinical narratives, 2) implicit entity linking in Twitter, and 3) implicit relationship extraction from clinical narratives. The evaluations are conducted on relevant annotated datasets for implicit information and they demonstrate the effectiveness of the developed solution in extracting implicit information from text

    Enrichment of ontologies using machine learning and summarization

    Get PDF
    Biomedical ontologies are structured knowledge systems in biomedicine. They play a major role in enabling precise communications in support of healthcare applications, e.g., Electronic Healthcare Records (EHR) systems. Biomedical ontologies are used in many different contexts to facilitate information and knowledge management. The most widely used clinical ontology is the SNOMED CT. Placing a new concept into its proper position in an ontology is a fundamental task in its lifecycle of curation and enrichment. A large biomedical ontology, which typically consists of many tens of thousands of concepts and relationships, can be viewed as a complex network with concepts as nodes and relationships as links. This large-size node-link diagram can easily become overwhelming for humans to understand or work with. Adding concepts is a challenging and time-consuming task that requires domain knowledge and ontology skills. IS-A links (aka subclass links) are the most important relationships of an ontology, enabling the inheritance of other relationships. The position of a concept, represented by its IS-A links to other concepts, determines how accurately it is modeled. Therefore, considering as many parent candidate concepts as possible leads to better modeling of this concept. Traditionally, curators rely on classifiers to place concepts into ontologies. However, this assumes the accurate relationship modeling of the new concept as well as the existing concepts. Since many concepts in existing ontologies, are underspecified in terms of their relationships, the placement by classifiers may be wrong. In cases where the curator does not manually check the automatic placement by classifier programs, concepts may end up in wrong positions in the IS-A hierarchy. A user searching for a concept, without knowing its precise name, would not find it in its expected location. Automated or semi-automated techniques that can place a concept or narrow down the places where to insert it, are highly desirable. Hence, this dissertation is addressing the problem of concept placement by automatically identifying IS-A links and potential parent concepts correctly and effectively for new concepts, with the assistance of two powerful techniques, Machine Learning (ML) and Abstraction Networks (AbNs). Modern neural networks have revolutionized Machine Learning in vision and Natural Language Processing (NLP). They also show great promise for ontology-related tasks, including ontology enrichment, i.e., insertion of new concepts. This dissertation presents research using ML and AbNs to achieve knowledge enrichment of ontologies. Abstraction networks (AbNs), are compact summary networks that preserve a significant amount of the semantics and structure of the underlying ontologies. An Abstraction Network is automatically derived from the ontology itself. It consists of nodes, where each node represents a set of concepts that are similar in their structure and semantics. Various kinds of AbNs have been previously developed by the Structural Analysis of Biomedical Ontologies Center (SABOC) to support the summarization, visualization, and quality assurance (QA) of biomedical ontologies. Two basic kinds of AbNs are the Area Taxonomy and the Partial-area Taxonomy, which have been developed for various biomedical ontologies (e.g., SNOMED CT of SNOMED International and NCIt of the National Cancer Institute). This dissertation presents four enrichment studies of SNOMED CT, utilizing both ML and AbN-based techniques

    Designing novel abstraction networks for ontology summarization and quality assurance

    Get PDF
    Biomedical ontologies are complex knowledge representation systems. Biomedical ontologies support interdisciplinary research, interoperability of medical systems, and Electronic Healthcare Record (EHR) encoding. Ontologies represent knowledge using concepts (entities) linked by relationships. Ontologies may contain hundreds of thousands of concepts and millions of relationships. For users, the size and complexity of ontologies make it difficult to comprehend “the big picture” of an ontology\u27s content. For ontology editors, size and complexity make it difficult to uncover errors and inconsistencies. Errors in an ontology will ultimately affect applications that utilize the ontology. In prior studies abstraction networks (AbNs) were developed to provide a compact summary of an ontology\u27s content and structure. AbNs have been shown to successfully support ontology summarization and quality assurance (QA), e.g., for SNOMED CT and NCIt. Despite the success of these previous studies, several major, unaddressed issues affect the applicability and usability of AbNs. This thesis is broken into five major parts, each addressing one issue. The first part of this dissertation addresses the scalability of AbN-based QA techniques to large SNOMED CT hierarchies. Previous studies focused on relatively small hierarchies. The QA techniques developed for these small hierarchies do not scale to large hierarchies, e.g., Procedure and Clinical finding. A new type of AbN, called a subtaxonomy, is introduced to address this problem. Subtaxonomies summarize a subset of an ontology\u27s content. Several types of subtaxonomies and subtaxonomy-based QA studies are discussed. The second part of this dissertation addresses the need for summarization and QA methods for the twelve SNOMED CT hierarchies with no lateral relationships. Previously developed SNOMED CT AbN derivation methodologies, which require lateral relationships, cannot be applied to these hierarchies. The Tribal Abstraction Network (TAN) is a new type of AbN derived using only hierarchical relationships. A TAN-based QA methodology is introduced and the results of a QA review of the Observable entity hierarchy are reported. The third part focuses on the development of generic AbN derivation methods that are applicable to groups of structurally similar ontologies, e.g., those developed in the Web Ontology Language (OWL) format. Previously, AbN derivation techniques were applicable to only a single ontology at a time. AbNs that are applicable to many OWL ontologies are introduced, a preliminary study on OWL AbN granularity is reported on, and the results of several QA studies are presented. The fourth part describes Diff Abstraction Networks, which summarize and visualize the structural differences between two ontology releases. Diff Area Taxonomy and Diff Partial-area Taxonomy derivation methodologies are introduced and Diff Partial-area taxonomies are derived for three OWL ontologies. The Diff Abstraction Network approach is compared to the traditional ontology diff approach. Lastly, tools for deriving and visualizing AbNs are described. The Biomedical Layout Utility Framework is introduced to support the automatic creation, visualization, and exploration of abstraction networks for SNOMED CT and OWL ontologies

    User Interfaces to the Web of Data based on Natural Language Generation

    Get PDF
    We explore how Virtual Research Environments based on Semantic Web technologies support research interactions with RDF data in various stages of corpus-based analysis, analyze the Web of Data in terms of human readability, derive labels from variables in SPARQL queries, apply Natural Language Generation to improve user interfaces to the Web of Data by verbalizing SPARQL queries and RDF graphs, and present a method to automatically induce RDF graph verbalization templates via distant supervision
    corecore