15 research outputs found

    Detecting semantic groups in MIP models

    Get PDF

    sunny-as2: Enhancing SUNNY for Algorithm Selection

    Get PDF
    SUNNY is an Algorithm Selection (AS) technique originally tailored for Constraint Programming (CP). SUNNY enables to schedule, from a portfolio of solvers, a subset of solvers to be run on a given CP problem. This approach has proved to be effective for CP problems, and its parallel version won many gold medals in the Open category of the MiniZinc Challenge -- the yearly international competition for CP solvers. In 2015, the ASlib benchmarks were released for comparing AS systems coming from disparate fields (e.g., ASP, QBF, and SAT) and SUNNY was extended to deal with generic AS problems. This led to the development of sunny-as2, an algorithm selector based on SUNNY for ASlib scenarios. A preliminary version of sunny-as2 was submitted to the Open Algorithm Selection Challenge (OASC) in 2017, where it turned out to be the best approach for the runtime minimization of decision problems. In this work, we present the technical advancements of sunny-as2, including: (i) wrapper-based feature selection; (ii) a training approach combining feature selection and neighbourhood size configuration; (iii) the application of nested cross-validation. We show how sunny-as2 performance varies depending on the considered AS scenarios, and we discuss its strengths and weaknesses. Finally, we also show how sunny-as2 improves on its preliminary version submitted to OASC

    Recursive Online Enumeration of All Minimal Unsatisfiable Subsets

    Full text link
    In various areas of computer science, we deal with a set of constraints to be satisfied. If the constraints cannot be satisfied simultaneously, it is desirable to identify the core problems among them. Such cores are called minimal unsatisfiable subsets (MUSes). The more MUSes are identified, the more information about the conflicts among the constraints is obtained. However, a full enumeration of all MUSes is in general intractable due to the large number (even exponential) of possible conflicts. Moreover, to identify MUSes algorithms must test sets of constraints for their simultaneous satisfiabilty. The type of the test depends on the application domains. The complexity of tests can be extremely high especially for domains like temporal logics, model checking, or SMT. In this paper, we propose a recursive algorithm that identifies MUSes in an online manner (i.e., one by one) and can be terminated at any time. The key feature of our algorithm is that it minimizes the number of satisfiability tests and thus speeds up the computation. The algorithm is applicable to an arbitrary constraint domain and its effectiveness demonstrates itself especially in domains with expensive satisfiability checks. We benchmark our algorithm against state of the art algorithm on Boolean and SMT constraint domains and demonstrate that our algorithm really requires less satisfiability tests and consequently finds more MUSes in given time limits

    Branching via Cutting Plane Selection: Improving Hybrid Branching

    Full text link
    Cutting planes and branching are two of the most important algorithms for solving mixed-integer linear programs. For both algorithms, disjunctions play an important role, being used both as branching candidates and as the foundation for some cutting planes. We relate branching decisions and cutting planes to each other through the underlying disjunctions that they are based on, with a focus on Gomory mixed-integer cuts and their corresponding split disjunctions. We show that selecting branching decisions based on quality measures of Gomory mixed-integer cuts leads to relatively small branch-and-bound trees, and that the result improves when using cuts that more accurately represent the branching decisions. Finally, we show how the history of previously computed Gomory mixed-integer cuts can be used to improve the performance of the state-of-the-art hybrid branching rule of SCIP. Our results show a 4\% decrease in solve time, and an 8\% decrease in number of nodes over affected instances of MIPLIB 2017

    Dynamically weakened constraints in bounded search for constraint optimisation problems

    Get PDF
    Combinatorial optimisation problems, where the goal is to an optimal solution from the set of solutions of a problem involving resources, constraints on how these resources can be used, and a ranking of solutions are of both theoretical and practical interest. Many real world problems (such as routing vehicles or planning timetables) can be modelled as constraint optimisation problems, and solved via a variety of solver technologies which rely on differing algorithms for search and inference. The starting point for the work presented in this thesis is two existing approaches to solving constraint optimisation problems: constraint programming and decision diagram branch and bound search. Constraint programming models problems using variables which have domains of values and valid value assignments to variables are restricted by constraints. Constraint programming is a mature approach to solving optimisation problems, and typically relies on backtracking search algorithms combined with constraint propagators (which infer from incomplete solutions which values can be removed from the domains of variables which are yet to be assigned a value). Decision diagram branch and bound search is a less mature approach which solves problems modelled as dynamic programming models using width restricted decision diagrams to provide bounds during search. The main contribution of this thesis is adapting decision diagram branch and bound to be the search scheme in a general purpose constraint solver. To achieve this we propose a method in which we introduce a new algorithm for each constraint that we wish to include in our solver and these new algorithms weaken individual constraints, so that they respect the problem relaxations introduced while using decision diagram branch and bound as the search algorithm in our solver. Constraints are weakened during search based on the problem relaxations imposed by the search algorithm: before search begins there is no way of telling which relaxations will be introduced. We attempt to provide weakening algorithms which require little to no changes to existing propagation algorithms. We provide weakening algorithms for a number of built-in constraints in the Flatzinc specifi- cation, as well as for global constraints and symmetry reduction constraints. We implement a solver in Go and empirically verify the competitiveness of our approach. We show that our solver can be parallelised using Goroutines and channels and that our approach scales well. Finally, we also provide an implementation of our approach in a solver which is tailored towards solving extremal graph problems. We use the forbidden subgraph problem to show that our approach of using decision diagram branch and bound as a search scheme in a constraint solver can be paired with canonical search. Canonical search is a technique for graph search which ensures that no two isomorphic graphs are returned during search. We pair our solver with the Nauty graph isomorphism algorithm to achieve this, and explore the relationship between branch and bound and canonical search

    SAT-based approaches for constraint optimization

    Get PDF
    La optimització amb restriccions ha estat utilitzada amb èxit par a resoldre problemes en molts dominis reals (industrials). Aquesta tesi es centra en les aproximacions lògiques, concretament en Màxima Satisfactibilitat (MaxSAT) que és la versió d’optimització del problema de Satisfactibilitat booleana (SAT). A través de MaxSAT, s’han resolt molts problemes de forma eficient. Famílies d’instàncies de la majoria d’aquests problemes han estat sotmeses a la MaxSAT Evaluation (MSE), creant així una col•lecció pública i accessible d’instàncies de referència. En les edicions recents de la MSE, els algorismes SAT-based han estat les aproximacions que han tingut un millor comportament per a les instàncies industrials. Aquesta tesi està centrada en millorar els algorismes SAT-based . El nostre treball ha contribuït a tancar varies instàncies obertes i a reduir dramàticament el temps de resolució en moltes altres. A més, hem trobat sorprenentment que reformular y resoldre el problema MaxSAT a través de programació lineal sencera era especialment adequat per algunes famílies. Finalment, hem desenvolupat el primer portfoli altament eficient par a MaxSAT que ha dominat en totes las categories de la MSE des de 2013.La optimización con restricciones ha sido utilizada con éxito para resolver problemas en muchos dominios reales (industriales). Esta tesis se centra en las aproximaciones lógicas, concretamente en Máxima Satisfacibilidad (MaxSAT) que es la versión de optimización del problema de Satisfacibilidad booleana (SAT). A través de MaxSAT, se han resuelto muchos problemas de forma eficiente. Familias de instancias de la mayoría de ellos han sido sometidas a la MaxSAT Evaluation (MSE), creando así una colección pública y accesible de instancias de referencia. En las ediciones recientes de la MSE, los algoritmos SAT-based han sido las aproximaciones que han tenido un mejor comportamiento para las instancias industriales. Esta tesis está centrada en mejorar los algoritmos SAT-based. Nuestro trabajo ha contribuido a cerrar varias instancias abiertas y a reducir dramáticamente el tiempo de resolución en muchas otras. Además, hemos encontrado sorprendentemente que reformular y resolver el problema MaxSAT a través de programación lineal entera era especialmente adecuado para algunas familias. Finalmente, hemos desarrollado el primer portfolio altamente eficiente para MaxSAT que ha dominado en todas las categorías de la MSE desde 2013.Constraint optimization has been successfully used to solve problems in many real world (industrial) domains. This PhD thesis is focused on logic-based approaches, in particular, on Maximum Satisfiability (MaxSAT) which is the optimization version of Satisfiability (SAT). There have been many problems efficiency solved through MaxSAT. Instance families on the majority of them have been submitted to the international MaxSAT Evaluation (MSE), creating a collection of publicly available benchmark instances. At recent editions of MSE, SAT-based algorithms were the best performing single algorithm approaches for industrial problems. This PhD thesis is focused on the improvement of SAT-based algorithms. All this work has contributed to close up some open instances and to reduce dramatically the solving time in many others. In addition, we have surprisingly found that reformulating and solving the MaxSAT problem through Integer Linear Programming (ILP) was extremely well suited for some families. Finally, we have developed the first highly efficient MaxSAT portfolio that dominated all categories of MSE since 2013

    Proceedings of SAT Competition 2018 : Solver and Benchmark Descriptions

    Get PDF
    Non peer reviewe
    corecore