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PREFACE

The area of Boolean satisfiability (SAT) solving has seen tremendous progress over the last years.
Many problems (e.g., in hardware and software verification) that seemed to be completely out of
reach a decade ago can now be handled routinely. Besides new algorithms and better heuristics,
refined implementation techniques turned out to be vital for this success. To keep up the driving
force in improving SAT solvers, SAT solver competitions provide opportunities for solver developers
to present their work to a broader audience and to objectively compare the performance of their
own solvers with that of other state-of-the-art solvers.

SAT Competition 2018 (SC 2018; http://sat2018.forsyte.tuwien.ac.at), a competitive event
for SAT solvers, was organized as a satellite event of the 21st International Conference on Theory
and Applications of Satisfiability Testing (SAT 2018), Oxford, UK, as part of the Federated Logic
Conference (FLoC 2018). SC 2018 stands in the tradition of the previously organized main compet-
itive events for SAT solvers: the SAT Competitions held 2002-2005, biannually during 2007-2013,
and 2014, 2016-2017; the SAT-Races held in 2006, 2008, 2010, and 2015; and SAT Challenge 2012.

SC 2018 consisted of four tracks: In addition to the Main Track for sequential SAT solvers, a Random
SAT track (for solvers focusing on efficiently solving satisfiable randomly generated SAT instances),
Parallel track (for parallel SAT solvers designed for computers with multiple CPUs or CPU cores),
and a special No-Limits track where solver source code and solution certificates are not required
and portfolios of any nature are allowed) were organized. Additionally, “Glucose hacks”, i.e., solvers
based on small modifications to the Glucose 3.0 CDCL SAT solver, were encouraged to be submitted
to the main track with the intention of separately awarding the best Glucose hack.

There were two ways of contributing to SC 2018: by submitting one or more solvers for competing
in one or more of the competition tracks, and by submitting interesting benchmark instances on
which the submitted solvers could be evaluated on in the competition. Following the tradition put
forth by SAT Challenge 2012, the rules of SC 2018 invited all contributors to submit a short, 1-2
page long description as part of their contribution. This book contains these non-peer-reviewed
descriptions in a single volume, providing a way of consistently citing the individual descriptions.

Participants of the main track of the SAT Competitions are required to submit at least ten in-
teresting benchmarks since 2017. This policy resulted in a significant increase in the number of
submitted formulas. The organizers planned to modify all known benchmarks in the 2018 suite in
a satisfiability-preserving way to avoid overfitting. However, the number of submitted benchmarks
allowed selecting a benchmark suite of 400 formulas that consists only of unknown (submitted in
2018 or earlier, but never used) instances. The hardness of all submitted instances was determined
by average the solving time of a mix of SAT Competition 2017 solvers. The selected benchmark
suite is a balanced mixed between medium, hard, and challenging (too hard) instances as well as an
intended 50%-50% mix of SAT and UNSAT instances. The exact balance cannot be determined as
several formulas are too hard for existing solvers.

Successfully running SC 2018 would not have been possible without active support from the commu-
nity at large. We would like to thank the StarExec initiative (http://www.starexec.org) for the
computing resources needed to run the Main, No-Limits, and Random tracks. Many thanks go to
Aaron Stump and Patrick J. Hawks for their invaluable help in setting up StarExec to accommodate
for the competition’s needs. We also acknowledge the Texas Advanced Computing Center (TACC,
http://www.tacc.utexas.edu) at The University of Texas at Austin for providing grid resources
for running the Parallel Track. Finally, we would like to emphasize that a competition does not
exist without participants: we thank all those who contributed to SC 2018 by submitting either
solvers or benchmarks and the related description.

Marijn J. H. Heule, Matti Järvisalo, & Martin Suda
SAT Competition 2018 Organizers
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AbcdSAT and Glucose hack: Various Simplifications
and Optimizations for CDCL SAT solvers

Jingchao Chen
School of Informatics, Donghua University

2999 North Renmin Road, Songjiang District, Shanghai 201620, P. R. China
chen-jc@dhu.edu.cn

Abstract—This article focuses on the decision variable branch-
ing heuristic and learnt clause maintenance for CDCL (conflict-
driven clause-learning) SAT solvers. We improve the existing
variable branching heuristics and learnt clause reduction via
various simplification tricks. On the basis of that, we develop
multiple improved versions of abcdSAT and a hack version of
Glucose, which are submitted to main, no-limit, Glucose hack
and parallel track at the SAT Competition 2018.

I. I NTRODUCTION

In this article, we focus on how to simplify the existing
techniques such as variable branching heuristic and learnt
clause reduction etc. VSIDS (Variable State Independent De-
cay Sum) is a prevalent decision variable branching policy. The
learning rate based branching heuristic (LRB) [9] proposed
in the recent year can outperform in some cases. So we
decide to simplify the LRB heuristic. The existing three-tiered
learnt clause management scheme is sophisticated and difficult
to use. Here we simplify it into a one-tiered learnt clause
management scheme so that a general CDCL SAT solver
can use it also. In addition, we introduce a new re-learning
technique.

II. SIMPLIFYING LEARNING RATE BASED BRANCHING

HEURISTIC

The learning rate based branching heuristic (LRB) [9] is a
variant of the conflict history-based branching heuristic (CHB)
[8]. The scoreAv of each variablev is computed using the
following reinforcement learning formula.

Av = (1− α)A′
v + αrv

whereA′
v is the old score of variablev. The difference between

LRB and CHB is the computation ofrv. In CHB, rv is a
constant that is either 1 or 0.9. However, in LRB,rv is defined
as

rv =
Cv + Pv

T

whereCv andPv is the number of conflict clauses and reason
clausesv participated in sincev is assigned, andT is the
interval time that is defined asT = conflictCounter −
assigedT ime[v]. Our SAT solver modifiesrv as

rv =
C ′

v + Sv + P ′
v

T ′

whereC ′
v, Sv andP ′

v is the number of conflict clauses, seen
clauses and reason clausesv participated in sincev is picked,

T ′ = conflictCounter− pickedT ime[v]. Notice, the timev
is assigned is not necessarily equal to the time it is picked.
In general,Sv and C ′

v overlap and interweave. Computing
C ′

v +Sv +P ′
v is easier than computingCv +Pv. In analyzing

a conflict clause, we computeC ′
v. In collecting reason clauses,

we computeSv + P ′
v. In the detailed implementation, we use

one counter to store the value ofC ′
v + Sv + P ′

v.

III. S IMPLIFYING HYBRID BRANCHING HEURISTIC

Many CDCL SAT solvers use two branching heuristics LRB
and VSIDS (Variable State Independent Decay Sum) to pick
a branching variable. To maintain the priority of variables,
they construct two order heap data structures, which are called
order heap V SIDS and order heap LRB, respectively.
Our SAT solver uses also mixed heuristics LRB and VSIDS.
However, we merge two order heaps into one order heap called
order heap. VSIDS mode and LRB mode buildorder heap
via VSIDS scoring scheme and LRB scoring scheme, respec-
tively. such merging has no impact on the solving performance.

IV. SIMPLIFYING LBD BASED THREE-TIERED LEARNT

CLAUSE MANAGEMENT SCHEME

LBD (literal block distance) is defined as the number of
decision variables in a clause. According to LBD values, the
CoMiniSatPS [6] solver classifies learnt clauses into three
categorieslow-LBD, mid-LBD and high-LBD. The low-LBD
clause is also calledcore clause, whose LBD value is less
than 4. Thehigh-LBD clause is also calledlocal clause,
whose LBD value is greater than 6. CoMiniSatPS uses three
lists learnts core, learnts tier2 and learnts local to store
separately learnt clauses. Our SAT solver uses also the three-
tiered learnt clause management scheme [7]. However, we
merge three lists into one list calleslearnts, and set a mark
for each learnt clause to distinguish which category a learnt
clause belongs. In the other words, although we use the same
learnt clause management scheme as CoMiniSatPS, our data
structure is simpler than that of CoMiniSatPS. Except that
each clause has an additional mark, our data structure storing
learnt clauses is the same as that of Glucose.

CoMiniSatPS has two database maintenance subroutines.
One tries to halve the number oflocal-tier learnt clauses at
every 15,000 conflicts. The other checksmid-tier clauses for
reduction at every 10,000 conflicts. Themid-tier clauses not
used in the past 30,000 conflicts are moved tolocal -tier.

Proceedings of SAT Competition 2018: Solver and Benchmark Descriptions, volume B-2018-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2018.
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We merge such two subroutines into one. In details, at every
15,000 conflicts, we halve the number oflocal -tier learnt
clauses, and move simultaneouslymid-tier clauses not used in
the past 26,000 conflicts tolocal -tier.

V. RE-LEARNING

Our re-learning notion is similar to learnt clause mini-
mization (LCM) given in [10]. LetF be a current formula,
C = x1 ∨ x2 ∨ · · · ∨ xn be a learnt clause. The basic idea
of LCM is that if (F − C) ∪ {¬x1,¬x2, . . . ,¬xn} derives
an empty clause, we can obtain a new learnt clauseL by
analyzing this conflict. If the LBD value ofL is smaller than
that of C, we replaceC with L. In [10], this idea is applied
to only the learnt clauses with small LBD. In our re-learning
policy, we apply this idea to all the learnt clauses. The other
difference between LCM in [10] and our re-learning policy
is that we can remove some redundant learnt clauses by a
subsumption operation on-the-fly, while LCM in [10] cannot.
As a inprocessing, our re-learning policy cannot be applied to
the whole solving procedure. We apply the re-learning policy
only when the number of conflicts is less than5× 105.

VI. ABCDSAT r18

This is submitted to the main track. Compared to abcdSAT
r17 [5], it adds a simplified three-tiered learnt clause manage-
ment scheme, a hybrid branching heuristic and a re-learning
strategy given above. The solver runs in the Minisat-VSIDS
[3] scoring scheme for the first5× 104 conflicts. Afterwards
the scoring scheme is switched to the LRB scoring scheme.
When the number of conflicts reaches5 × 106 for a large
formula or1.5× 107 for a small formula, the scoring scheme
is switched to the Glucose-VSIDS [4] scoring scheme. Like
the r17 version, in the tree-based search, the solver produces
also DRAT proofs. However, its tree-based search branching
is different from that of ther17 version. This version uses
two scoring policies ACE (Approximation of the Combined
lookahead Evaluation) [2] and LRB. In details, it selects a
tree node variable using ACE scores when the average LBD
is greater than 11, and LRB scores otherwise. In general, the
solver does not adopt a bit-encoding phase selection strategy
[1] except that it runs in the Glucose-VSIDS scoring scheme.

VII. SMALLSAT

Smallsat is a simplified version of abcdSATr18. It is also
submitted to the main track. Compared to abcdSATr18, it
removes inprocessing techniques such as lifting, probing, dis-
tillation, elimination, complex hyper binary resolution, equiv-
alent literal search, unhiding redundancy etc. The variable
branching heuristic based on blocked clause decomposition
is given up also. This solver has no Glucose-VSIDS scoring
scheme. It runs in the Minisat-VSIDS scoring scheme when
the number of conflicts is less than5 × 104 or greater than
1.8 × 107, and in in the LRB scoring scheme otherwise. It
contains the tree-based search, but uses only the LRB scoring
policy, excluding the ACE scoring policy.

VIII. ABCDSAT n18

This is similar to abcdSATr18, but does not output a DRAT
proof. So this solver is submitted to the no-limit track. Except
for the symmetry breaking preprocessing and XOR Gaussian
elimination etc, the simplification technique used in this solver
is basically the same as one used in abcdSATr18. Like the
previous no-limit version [5], it divides the whole solving
process into three phases. In the first phase, it uses a Minisat-
VSIDS scoring scheme and a LRB scoring scheme to search a
solution. The second phase simplifies the formula generated in
the first phase, using various simplification technique including
XOR and cardinality constraint simplification. The second
phase uses a Glucose-VSIDS scoring scheme and a LRB
scoring scheme to solve the simplified problem. The tree-based
search is almost same as that in abcdSATr18.

IX. ABCDSAT p18

This is a parallel version of abcdSATn18. Compared with
the last year’s the parallel version, this year’s version does
not use the master-thread to solve the original problem. This
solver uses at most 25 threads. Let thei-th pivot bepi, and
input formulaF . 20 out of 25 threads solve the subproblem
F ∧ pi. The other 4 threads solve either the original problem
or the simplified problem. Once the thread of a subproblem
ended, we re-use it to solve the simplified problem with learnt
clauses generated so far. We use C++pthread cond timedwait
to detect which thread has terminated already. However, it
failed sometimes to detect. This may be a C++ bug. For this
reason, we use also the solving status of each thread to detect
whether a thread has ended already. Only one thread applies
bit-encoding phase selection strategies [1], The symmetry
breaking preprocessor is also applied to only another thread.
Except the two policies, abcdSATp18 uses almost the same
inprocessing techniques as versionp17 [5].

X. glu mix

glu mix is a hack version of Glucose. It made modifica-
tions on learnt clause management and branching heuristic.
glu mix uses a simplified three-tiered learnt clause manage-
ment scheme and a hybrid branching heuristic given above. It
uses a VSIDS scoring scheme when the number of conflicts is
less than2× 106 or greater than2× 107, and a LRB scoring
scheme otherwise. To be able to implement simultaneously
such two policies in edit distance 1000 benefits from our
simplification techniques here.
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CADICAL, LINGELING,
PLINGELING, TREENGELING and YALSAT

Entering the SAT Competition 2018
Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University Linz

Abstract—This note documents the versions of our SAT solvers
submitted to the SAT Competition 2018, which are CADICAL,
LINGELING, its two parallel variants TREENGELING and PLIN-
GELING, and our local search solver YALSAT.

LINGELING,PLINGELING, TREENGELING,YALSAT

Compared to the version of LINGELING submitted last
year [1] we added Satisfication Driven Clause Learning
(SDCL) [2], which however due to its experimental nature is
disabled (option “--prune=0”). We further disabled blocked
clause removal (option “--block=0”) [3], binary blocked
clause addition (option “--bca=0”) [4], as well as on-the-fly
subsumption (option “--otfs=0”) [5], since all of them can
not be combined with SDCL style pruning.

As in our new version of CADICAL we also experimented
with bumping reason side literals too, as suggested in [6]. See
below for the motivation to include this feature. There is also a
slight change in the order how literals are bumped: previously
they were bumped in trail order and are now bumped in
variable score order.

Since already last year’s version of LINGELING [1] was
almost identical to that from the SAT 2016 Competition [7], it
is fair to say that LINGELING and also its parallel extensions
PLINGELING and TREENGELING essentially did not change
since 2016. This applies even more to the submitted version
of YALSAT, which surprisingly won the random track in 2017,
even though it did not change since 2016.

CADICAL

As explained in our last year’s solver description [1] the goal
of developing CADICAL was to produce a radically simplified
CDCL solver, which is easy to understand and change. This
was only partially achieved, at least compared to LINGELING.
On the other hand the solver became competitive with other
state-of-the-art solvers, actually surpassing LINGELING in per-
formance in the last competition, while being more modular,
as well as easier to understand and change.

We also gained various important new insights starting to
develop a SAT solver (again) from scratch [1], particularly how
inprocessing attempts for variable elimination and subsump-
tion should be scheduled, and how subsumption algorithms
can be improved (see again [1] for more details).

Supported by FWF, NFN Grant S11408-N23 (RiSE).

On the feature side not much changed, since CADICAL still
does not have a complete incremental API (assumptions are
missing). However, the non-incremental version was used as
back-end of BOOLECTOR in the SMT 2017 Competition [8]
in the quantifier-free bit-vector track (QF BV), where it con-
tributed to the top performance of BOOLECTOR (particularly
compared to the version with LINGELING as back-end).

Our analysis of the SAT 2017 Competition [9] results
revealed that the technique of bumping reason side literals [6]
of MAPLESAT [6] and successors [10], [11] has an extremely
positive effect on the selected benchmarks. It consists of going
over the literals in learned (minimized 1st UIP) clauses and
“bumping” [12] all other literals in their reason clauses too.
Even though MapleSAT actually only uses this technique with
the new variable scoring scheme proposed in [6], it is already
effective in combination with the VMTF scheme [12] used
in CADICAL (and probably for VSIDS too).

Last year’s success of the MapleLCM solver [11], which is
an extension of MapleSAT by a different set of authors, also
showed that vivification [13] of learned clauses as described
by the authors of MapleLCM in their IJCAI paper [14] can be
quite useful. In last year’s version of CADICAL we already
had a fast implementation of vivification [1], but only applied
it to irredundant clauses. During inprocessing [15] our new
version of CADICAL has two vivification phases, the first
phase working on all including redundant clauses and the
second phase works as before only on irredundant clauses.

Furthermore, all the top performing configurations of
MapleSAT and MapleLCM made use of the observation of
Chanseok Oh [16], that a CDCL solver should alternate
between “quiet” no-restart phases and the usual fast restart
scheduling [17]. This also turns out to be quite beneficial
for last year’s selection of benchmarks and we added such
“stabilizing” phases scheduled in geometrically increasing
conflict intervals.

Then, we experimented with “rephasing”, which in arith-
metically increasing conflict intervals overwrites all saved
phases [18] and either (i) restores the initial phase (default true
in CADICAL), (ii) flips the current saved phase, (iii) switches
to the inverted initial phase (thus false), or (iv) picks a
completely random phase. This technique gives another (but
smaller) boost to the performance of CADICAL on last year’s
benchmarks compared to the other new techniques above.
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Finally, we observed, that for very long running instances
(taking much longer than the 5000 seconds time limit used
in the competition), the standard arithmetic increase [19] of
the limit on kept learned clauses increases memory usage
over time substantially and slows down propagation. Therefore
we flush all redundant clauses (including low glucose level
clauses) in geometrically increasing conflict intervals too.
This should happen less than a dozen of times during each
competition run though.

LICENSE

The default license of YALSAT, LINGELING, PLINGELING
and TREENGELING did not change in the last three years. It
allows the use of these solvers for research and evaluation
but not in a commercial setting nor as part of a competi-
tion submission without explicit permission by the copyright
holder. However, as part of our new open source release of
BOOLECTOR 3.0 [20] we also plan to release LINGELING
under an open source MIT style license, which for CADICAL
continues to be the case.

REFERENCES

[1] A. Biere, “Deep Bound Hardware Model Checking Instances, Quadratic
Propagation Benchmarks and Reencoded Factorization Problems Sub-
mitted to the SAT Competition 2017,” in Proc. of SAT Competition 2017
– Solver and Benchmark Descriptions, ser. Department of Computer
Science Series of Publications B, T. Balyo, M. Heule, and M. Järvisalo,
Eds., vol. B-2017-1. University of Helsinki, 2017, pp. 40–41.

[2] M. J. H. Heule, B. Kiesl, M. Seidl, and A. Biere, “Pruning through
satisfaction,” in Haifa Verification Conference, ser. Lecture Notes in
Computer Science, vol. 10629. Springer, 2017, pp. 179–194.

[3] M. Järvisalo, A. Biere, and M. Heule, “Blocked clause elimination,”
in Tools and Algorithms for the Construction and Analysis of Systems,
16th International Conference, TACAS 2010, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, ser. Lecture
Notes in Computer Science, J. Esparza and R. Majumdar, Eds., vol.
6015. Springer, 2010, pp. 129–144.

[4] M. Järvisalo, M. Heule, and A. Biere, “Inprocessing rules,” in Auto-
mated Reasoning - 6th International Joint Conference, IJCAR 2012,
Manchester, UK, June 26-29, 2012. Proceedings, ser. Lecture Notes in
Computer Science, B. Gramlich, D. Miller, and U. Sattler, Eds., vol.
7364. Springer, 2012, pp. 355–370.

[5] H. Han and F. Somenzi, “On-the-fly clause improvement,” in Theory
and Applications of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceed-
ings, ser. Lecture Notes in Computer Science, O. Kullmann, Ed., vol.
5584. Springer, 2009, pp. 209–222.

[6] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Learning rate
based branching heuristic for SAT solvers,” in Theory and Applications
of Satisfiability Testing - SAT 2016 - 19th International Conference,
Bordeaux, France, July 5-8, 2016, Proceedings, ser. Lecture Notes in
Computer Science, N. Creignou and D. L. Berre, Eds., vol. 9710.
Springer, 2016, pp. 123–140.

[7] A. Biere, “Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering
the SAT Competition 2016,” in Proc. of SAT Competition 2016 – Solver
and Benchmark Descriptions, ser. Department of Computer Science
Series of Publications B, T. Balyo, M. Heule, and M. Järvisalo, Eds.,
vol. B-2016-1. University of Helsinki, 2016, pp. 44–45.

[8] “Boolector at the SMT competition 2017,” FMV Reports Series, Insti-
tute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria, Tech. Rep., 2017.

[9] T. Balyo, M. Heule, and M. Järvisalo, Eds., Proc. of SAT Competition
2017 – Solver and Benchmark Descriptions, ser. Department of Com-
puter Science Series of Publications B, vol. B-2017-1. University of
Helsinki, 2017.

[10] J. H. Liang, C. Oh, V. Ganesh, K. Czarnecki, and P. Poupart, “Maple-
COMSPS LRB VSIDS and MapleCOMSPS CHB VSIDS,” in Proc. of
SAT Competition 2017 – Solver and Benchmark Descriptions, ser.
Department of Computer Science Series of Publications B, T. Balyo,
M. Heule, and M. Järvisalo, Eds., vol. B-2017-1. University of Helsinki,
2017, pp. 20–21.

[11] F. Xiao, M. Luo, C.-M. Li, F. Manyà, and Z. Lü, “MapleLRB LCM,
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Abstract—Candy is a branch of the Glucose 3 SAT solver and
started as a refactoring effort towards modern C++. We replaced
most of its custom lowest-level data structures and algorithms
by their C++ standard library equivalents and improved or
reimplemented several of its components. New functionality in
Candy is based on gate structure analysis and random simulation.

I. INTRODUCTION

The development of our open-source SAT solver Candy1

started as a branch of the well-known Glucose [1], [2] CDCL
SAT solver (version 3.0). With Candy, we aim to facilitate the
solver’s development by refactoring the Glucose source code
towards modern C++ and by reducing dependencies within
the source code. This involved replacing most custom lowest-
level data structures and algorithms by their C++ standard
library equivalents. The refactoring effort enabled high-level
optimizations of the solver such as inprocessing and cache-
efficient clause memory management. We also increased the
extensibility of Candy via static polymorphism, e.g. allowing
the solver’s decision heuristic to be customized without incur-
ring the overhead of dynamic polymorphism. This enabled
us to efficiently implement variants of the Candy solver.
Furthermore, we modularized the source code of Candy to
make its subsystems reusable. The quality of Candy is assured
by automated testing, with the functionality of Candy tested
on different compilers (Clang, GCC, Microsoft C/C++) and
operating systems (Linux, Apple macOS, Microsoft Windows)
using continuous integration systems.

II. CLAUSE MEMORY MANAGEMENT

Unlike Glucose, we use regular pointers to reference clauses
in Candy. To reduce the memory access overhead, we in-
troduced a dedicated cache-optimized clause storage system.
To this end, we reduced the memory footprint of clauses by
shrinking the clause header, in which only the clause’s size,
activity and LBD values as well as a minimal amount of flags
are stored. For clauses containing 500 literals or less, our
new clause allocator preallocates clauses in buckets of same-
sized clauses. Clauses larger than 500 literals are individually
allocated on the heap. Buckets containing small clauses are
regularly sorted by their activity in descending order to group
frequently-accessed clauses, thereby concentrating memory

1https://github.com/udopia/candy-kingdom

accesses to smaller memory regions. Moreover, the watchers
are regularly sorted by clause size and activity.

III. IMPROVED INCREMENTAL MODE

We enabled several clause simplifications in Candy’s incre-
mental mode that had been deactivated in Glucose’s incremen-
tal mode. Also, certificates for unsatisfiability can be generated
in incremental mode for sub-formulas not containing assump-
tion literals. This is achieved by suppressing the emission of
learnt clauses containing assumption literals as well as the
output of the empty clause until no assumptions are used in
the resolution steps by which unsatisfiability is deduced.

IV. INPROCESSING

We improved the architecture of clause simplification such
that Candy can now perform simplification based on clause
subsumption and self-subsuming resolution during search. The
original problem’s clauses are included as well as learnt
clauses that are persistent in the learnt clause database, i.e.
clauses of size 2 and clauses with an LBD value no larger
than 2.

V. IMPROVMENTS CANDY 2018

The approach to modularize the Glucose codebase was
further pursued and realized. We improved a lot in separation
of concerns and building of separate components for heuristics
and algorithmic methods.

Candy now initializes variable ordering based on problem
structure by default. This should make its default heuristic
configuration more stable against problem scrambling.
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Abstract—In this description, we provide a brief introduction
of our solvers: CBPeneLoPe2018 and CCSPeneLoPe2018, in
the SAT Competition 2018. CBPeneLoPe2018 and CCSPene-
LoPe2018 are based on the parallel SAT solver PeneLoPe. Both
solvers use SatELite [4] as a preprocessor.

I. CBPENELOPE2018
CBPeneLoPe2018 is a parallel portfolio SAT solver based

on PeneLoPe [2] and a new version of ones submitted in
the SAT Competition 2014, SAT Race 2015, SAT Compe-
tition 2016, and SAT Competition 2017. CBPeneLoPe2018
implements community branching [7], a diversification [5]
technique using community structure of SAT instances [1].
Community branching assigns a different set of variables
(community) to each worker and forces them to select these
variables as decision variables in early decision levels, aiming
to avoid overlaps of search spaces between the workers more
vigorously than the existing diversification methods.

In order to create communities, we construct a graph where
a vertex corresponds to a variable and an edge corresponds
to a relation between two variables in the same clause,
proposed as Variable Incidence Graph (VIG) in [1]. After that,
we apply Louvain method [3], one of the modularity-based
community detection algorithms, to identify communities of a
VIG. Variables in a community have strong relationships, and
a distributed search for different communities can benefit the
whole search.

In addition, CBPeneLoPe2018 uses community-based learnt
clause sharing (CLCS) for learnt clause sharing between
workers. CLCS restricts the sharing of each learnt clause
to workers that conducts the search for the variables related
with communities in the target learnt clause. By combining
community branching, CLCS distributes the target clauses to
the workers with related communities. For example, if a learnt
clause (a ∨ b ∨ c) is to be shared among the workers, and the
variable a and b belong to a community C1 and the variable
c belongs to a community C2, this clause is distributed only
to the workers that are assigned the community C1 or C2 by
community branching.

II. CCSPENELOPE2018
CCSPeneLoPe2018 is a parallel portfolio solver based on

PeneLoPe. The features of CCSPeneLoPe2018 are as follows.
• Conflict history-based branching heuristic (CHB) [6] for

some workers

• CLCS prioritizing high VSIDS or CHB scores
CHB is good at cryptographic instances in [6]. In CCSPene-

LoPe2018, some workers use this heuristic with different
sets of its parameters. For CLCS, each worker calculates an
average activity score (VSIDS or CHB) of variables for each
community and chooses the highest scored community as a
“desired community”. CLCS distributes the target clause to
the workers that desire to share that clause (i.e., including the
variables that belong to the desired community).
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The CryptoMiniSat 5.5 set of solvers at the SAT
Competition 2018

Mate Soos, National University of Singapore

I. Introduction

This paper presents the conflict-driven clause-learning
SAT solver CryptoMiniSat v5.5 (CMS ) as submitted to SAT
Competition 2018. CMS aims to be a modern, open-source
SAT solver that allows for multi-threaded in-processing
techniques while still retaining a strong CDCL component.
In general, CMS is a inprocessing SAT solver that uses op-
timised data structures and finely-tuned timeouts to have
good control over both memory and time usage of simplifi-
cation steps. Below are the changes to CMS compared to
the SAT Competition 2016 version.

II. Major Improvements

A. Careful code review

Over the years, much cruft has accumulated in Crypto-
MiniSat. This has left serious bugs in the implementation
in important parts of the solver such as clause cleaning
and restarting. This has lead to low performance. A code
review of the most important parts of the solver such as
bounded variable elimination, restarting, clause cleaning
and variable activities has been conducted.

B. Integration of ideas from Maple LCM Dist

Some of the ideas from Maple LCM Dist[2][4] have been
included into CMS. In particular, the clause cleaning sys-
tem, the radical in-process distillation and the Maple-based
variable activities are all used.

C. Cluster Tuning

The author has been generously given time on the
ASPIRE-1 cluster of the National Supercomputing Centre
Singapore[1]. This allowed experimentation and tuning
that would have been impossible otherwise. CMS has not
been tuned on a cluster for over 6 years and the difference
shows. A slightly interesting side-effect is that the param-
eters suggested by the cluster are non-intuitive, such as
not simplifying the CNF straight away, but rather CDCL-
solving it first. Another interesting effect is that intree
probing[3] seems to be very important.

D. Parallel Solving

As in previous competitions, CMS only shares unit and
binary clauses, and shares them very rarely. The different
threads, however, are run with very different, hoping to
be orthogonal, parameters varying everything from clause
cleaning strategies to default polarities.

E. Automatic Tuning

The ”autotune” version of the solver measures internal
solving parameters and re-configures itself after a preset

number of conflicts to a configuration that has been sug-
gested by the parameters and the machine learning algo-
rithm C4.5[5].

III. General Notes

A. On-the-fly Gaussian Elimination

On-the-fly Gaussian elimination is again part of Crypto-
MiniSat. This is explicitly disabled for the competition, but
the code is available and well-tested. This allows for special
uses of the solver that other solvers, without on-the-fly
Gaussian elimination, are not capable of.

B. Robustness

CMS aims to be usable in both industry and academia.
CMS has over 150 test cases and over 2000 lines of Python
just for fuzzing orchestration, and runs without fault under
both the ASAN and UBSAN sanitisers of clang. It also
compiles and runs under Windows, Linux and MacOS X.
This is in contrast many academic winning SAT solvers that
produce results that are non-reproducible, cannot be com-
piled on anything but a few select systems, and/or produce
segmentation faults if used as a library. CryptoMiniSat has
extensive fuzzing setup for library usage and is very robust
under strange/unexpected use cases.
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Abstract—COMiniSatPS is a patched MiniSat generated by
applying a series of small diff patches to the last available version
(2.2.0) of MiniSat that was released several years ago. The essence
of the patches is to include only minimal changes necessary to
make MiniSat sufficiently competitive with modern SAT solvers.
One important goal of COMiniSatPS is to provide these changes
in a highly accessible and digestible form so that the necessary
changes can be understood easily to benefit wide audiences,
particularly starters and non-experts in practical SAT. As such,
the changes are provided as a series of incrementally applicable
diff patches, each of which implements one feature at a time.
COMiniSatPS has many variations. The variations are official
successors to an early prototype code-named SWDiA5BY that
saw great successes in the past SAT-related competitive events.

I. INTRODUCTION

It has been shown in many of the past SAT-related com-
petitive events that very simple solvers with tiny but criti-
cal changes (e.g, MiniSat [1] hack solvers) can be impres-
sively competitive or even outperform complex state-of-the-
art solvers [2]. However, the original MiniSat itself is vastly
inferior to modern SAT solvers in terms of actual performance.
This is no wonder, as it has been many years since the
last 2.2.0 release of MiniSat. To match the performance of
modern solvers, MiniSat needs to be modified to add some of
highly effective techniques of recent days. Fortunately, small
modifications are enough to bring up the performance of any
simple solver to the performance level of modern solvers. CO-
MiniSatPS [3]. adopts only simple but truly effective ideas that
can make MiniSat sufficiently competitive with recent state-
of-the-art solvers. In the same minimalistic spirit of MiniSat,
COMiniSatPS prefers simplicity over complexity to reach out
to wide audiences. As such, the solver is provided as a series
of incremental patches to the original MiniSat. Each small
patch adds or enhances one feature at a time and produces
a fully functional solver. Each patch often changes solver
characteristics fundamentally. This form of source distribution
by patches would benefit a wide range of communities, as
it is easy to isolate, study, implement, and adopt the ideas
behind each incremental change. The goal of COMiniSatPS
is to lower the entering bar so that anyone interested can
implement and test their new ideas easily on a simple solver
guaranteed with exceptional performance.

The patches first transform MiniSat into Glucose [4] and
then into SWDiA5BY. Subsequently, the patches implement
new techniques described in [5], [2], and [6] to generate the
current form of COMiniSatPS.

COMiniSatPS is a base solver of the MapleCOMSPS solver
series [7], [8], [9] that participated in SAT Competition 2016,
2017, and 2018.

II. COMINISATPS PULSAR

This year’s solver is basically identical to the last year’s
solver, fixing only two minor bugs:

• Correctly reports UNSAT when a problem is determined
to be UNSAT during CNF parsing if Gaussian elimination
is enabled. (The Gaussian elimination is enabled when
not generating UNSAT proof.)

• Correctly generates UNSAT proof when a problem is
solved by pre-processing alone.

III. GHACKCOMSPS

This year’s solver is identical to the last year’s solver [10]
(which is in turn identical to the 2016 version). GHackCOM-
SPS qualifies as a Glucose hack.

IV. AVAILABILITY AND LICENSE

Source is available for download for all the versions de-
scribed in this paper. Note that the license of the M4RI library
(used to implement the Gaussian elimination) is GPLv2+.
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Abstract—This document describes the dimetheus SAT
solver as submitted to the random SAT track of the SAT
Competition 2018.

I. INTRODUCTION

Please note that this article must be understood as a rather
brief overview of the dimetheus SAT solver. Additional
information regarding its functioning, a comprehensive quick-
start guide, as well as the source-code of the latest version of
the solver can be found on the authors website.1 Additionally,
the author elaborates on the theoretical background of the
solver in his Ph.D. thesis [1] which can be found online.2 A
preliminary overview of the applied techniques can be found
in [2], [3].

This article will first cover the main techniques that the
solver applies in Section II. Afterwards, a brief overview of the
parameter settings are discussed in Section III. This is followed
by a brief explanation of the programming language and
the compiler relevant parameters in Section IV. Additionally,
several SAT Competition relevant details are discussed in
Section V. The article is concluded by a few remarks on the
availability and the license of the solver in Section VI.

II. MAIN TECHNIQUES

The dimetheus solver runs in various phases as depicted
in Figure 1.

Fig. 1. A flow chart that visualizes the execution of dimetheus.

1https://www.gableske.net/dimetheus
2https://www.gableske.net/diss

In each phase, the solver must fulfill a pre-defined task. The
first four of theses phases (reset, params, guidance, startup) are
not discussed here in detail. At the end of the startup phase
the solver has loaded the formula and is able to work with it.

The solver will then execute the classification phase in
order to determine determine what type of CNF formula was
provided. Since the solver is submitted to the random SAT
track of the SAT Competition it will determine what type of
random formula it has to solve (e.g., it will determine the
size of the formula, the clause lengths, the clauses-to-variables
ratio). The result of the classification phase is then forwarded
to the adaptation phase. In this phase, the solver adapts a wide
variety of internal parameters in order to initialize its internal
heuristics and search algorithm.

Afterwards, preprocessing is performed. The preprocessing
is kept simple and includes pure literal elimination and the
removal of duplicate clauses.

Preprocessing is then followed by the search phase in
which the solver tries to find a satisfying assignment for the
formula (inprocessing is turned off when the solver solves
random formulas). The approach that the solver applies is best
understood as bias-based decimation followed by stochastic
local search. The bias-based decimation applies a Message
Passing algorithm to calculate biases for individual variables.
These biases indicate how likely it is to observe a variable
assigned to one or zero when taking into account the models
of the formula. For more information see [1]. Afterwards, a
fraction of the variables with the largest bias are assigned
and unit propagation (UP) is performed which then leads to a
simplified remaining formula. The bias calculation and the UP-
based assignment of variables with the largest bias is repeated
until one of two cases occurs. First, a model is found. In
this case the solver merely outputs the model and terminates.
Second, UP runs into a conflict. In this case the solver will
undo all assignments and initializes an SLS solver. The starting
assignment for the SLS is comprised of all the assignments
made until the confilct arose as well as random assignments
to the remaining variables. From this point onwards the SLS
takes place until either a time-out is hit or a model is found.
The dimetheus solver, as it runs in the SAT Competition
2018, is therefore an incomplete solver that cannot detect
unsatisfiability.

III. MAIN PARAMETERS

The solver is started with the two following parameters.
-formula STRING: The STRING points to the file
that contains the formula in DIMACS CNF input
format.
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-classifyInputDomain 10: This tells the classifier that
it can assume the formula to be a random formula
when determining what specific type of formula it
is.

As mentioned in the previous section, the solver will use the
information that was gathered in the classification phase in
order to enforce an optimal parameter setting to a variety of
internal parameters [1]. Unfortunately, it is not possible to
correctly explain the abundance of parameters here which is
why the reader is referred to the given reference for details.

IV. IMPLEMENTATION DETAILS

The dimetheus solver is implemented in C. The Message
Passing algorithm that is applied to calculate the biases is an
interpolation of Belief Propagation and Survey Propagation
[1], [4]. The SLS serach follows the probSAT approach [5].

V. SAT COMPETITION 2018 SPECIFICS

The dimetheus solver was submitted to the
random SAT track. It was compiled on the StarExec
Cluster using gcc with the compile flags -std=c99
-O3 -static -fexpensive-optimizations
-flto -fwhole-program -march=native -Wall
-pedantic. The result is a 64-bit binary.

VI. AVAILABILITY AND LICENSE INFORMATION

The dimetheus solver is publicly available and can
be downloaded from https://www.gableske.net/dimetheus. The
solver is provided under the Creative-Commons Non-
Commercial Share-Alike license version 3.0 (CCBYNCSA3).
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Abstract—expSAT is a novel CDCL SAT solving method, which
performs random-walk based explorations of the search space
w.r.t the current search state to guide the search. It uses a
new branching heuristics, called expVSIDS, which combines the
standard variable selection heuristic VSIDS, which is based on
search performance so far, with heuristic scores derived from
random samples of possible future search states. This document
describes the expSAT approach and four CDCL SAT solvers
based on this approach, which we have submitted for the SAT
competition-2018.

I. THE expSAT APPROACH

This section presents the expSAT approach, part of which
is to appear in [1].

A. expSAT algorithm

Given a CNF SAT formula F , let vars(F), uV ars(F)
and assign(F) denote the set of variables in F , the set of
currently unassigned variables in F and the current partial
assignment, respectively. In addition to F , expSAT also accepts
five exploration parameters nW, lW, θstop, pexp and ω, where
1 ≤ nW, lW ≤ uV ars(F), 0 < θstop, pexp, ω ≤ 1. These
parameters control the exploration aspects of expSAT . The
details of these parameters are given below.

Given a CDCL SAT solver, expSAT modifies it as fol-
lows: (I) Before each branching decision, if the search-height,
|assign(F)|
|vars(F)| ≤ θstop, with probability pexp, expSAT performs

an exploration episode, consisting of a fixed number nW of
random walks. Each walk consists of a limited number of
random steps. Each such step consists of (a) the uniform
random selection of a currently unassigned step variable and
assigning a boolean value to it using a standard CDCL polarity
heuristic, and (b) a followed by Unit Propagation (UP). A walk
terminates either when a conflict occurs during UP, or after a
fixed number lW of random steps have been taken. Figure
1 illustrates an exploration episode. (II) In an exploration
episode of nW walks of maximum length lW , the exploration
score expScore of a decision variable v is the average of the
walk scores ws(v) of all those random walks within the same
episode in which v was one of the randomly chosen decision
variables. ws(v) is computed as follows: (a) ws(v) = 0 if the
walk ended without a conflict. (b) Otherwise, ws(v) = ωd

lbd(c) ,
with decay factor 0 < ω ≤ 1, lbd(c) the LBD score of the
clause c learned for the current conflict, and d ≥ 0 the decision
distance between variable v and the conflict which ended the

current walk: If v was assigned at some step j during the
current walk, and the conflict occurred after step j′ ≥ j,
then d = j′ − j. We assign credit to all the step variables
in a walk that ends with a conflict and give higher credit
to variables closer to the conflict. (III) The novel branching
heuristic expVSIDS adds VSIDS score and expScore of the
unassigned variables. At the current state of the search, the
variable bumping factor of VSIDS is gz , where g > 1 and
z ≥ 1 is the count of conflicts in the search so far. To achieve a
comparable scale for expScore and VSIDS score, we scale up
the expScore by gz before adding these scores. A variable v∗

with maximum combined score is selected for branching. (IV)
All other components remain the same as in the underlying
CDCL SAT solver.

Fig. 1: An exploration episode with nW = 3 walks and
a maximum of lW = 3 random steps per walk. (v, i, j)
represents that the variable v is randomly decided at the jth

step of ith walk.

B. Exploration Parameter Adaptation

In expSAT , (nW, lW, θstop, pexp, ω), the set of exploration
parameters, governs the exploration. The first two parameters
dictate how much exploration to perform per episode, the third
and fourth parameter dictate when to trigger an exploration
episode. ω controls how exploration scores are computed.

How to adapt these parameters during the SAT search is
an interesting question, which is not addressed in [1]. The
expSAT based solvers submitted for this competition uses a
simple local search algorithm to adapt the first four explo-
ration parameters P = (nW, lW, θstop, pexp) to dynamically
control when to trigger exploration episodes and how much
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exploration to perform in an exploration episode. This local
search algorithm executes in parallel to the SAT search in
expSAT .

a) The Adaptation Algorithm: The idea of this al-
gorithm is to start with an initial value val(P, 1) =
(nW 1, lW 1, θ1stop, p

1
exp) of the exploration parameters and

iteratively update the values between two consecutive restarts,
based on the performance of exploration in the previous
restarts.

Assume expSAT has just performed the jth (j ≥ 2) restart.
Let σj the performance of exploration between (j − 1)th and
jth restarts. We define σj as follows:

σj = w1 ∗
cj

rStepsj
+ w2 ∗

gcj

rStepsj
+ w3 ∗

1

rsLBDj

Here, rStepsj is the number of random steps taken dur-
ing the exploration episodes, which has occurred between
(j−1)th and jth restarts, cj , gcj , rsLBDj are the number of
conflicts, number of glue-clauses and the mean LBD value
of the (learned) clauses identified in these rStepsj steps,
respectively. w1, w2 and w3 are three fixed weights.

After restart j, just before starting SAT search, the algorithm
updates the exploration parameter values by comparing σj and
σj−1. Let val(P, j) = (nW j , lW j , θjstop, p

j
exp) is the updated

value of exploration parameters before the search begins, just
after the (j − 1)th restart.
• If σj < σj−1, then the performance of exploration

deteriorates after the (j − 1)th restart. In this case, we
perform two operations on the exploration parameters
after jth restart:

– Decrement: Let dp ∈ P the parameter whose value
was increased from x to x′ after the (j−1)th restart.
We attribute this deterioration of performance to this
update. We revert the value of dp back to x from x′.

– Increment: Randomly select a parameter rp ∈ P
and increase its value to y′ from y, where rp 6= dp.

• If σj − σj+1 = 0, then we only perform the Increment
operation, as we do not know whom to blame for the
stall.
The updated value of these parameters remain effective
until the (j + 1)th restart.

• If σj > σj−1, then the performance of exploration is
increasing after the (j − 1)th restart and we do not
change any parameter value as the current value of the
exploration parameters leads to better performance.

For changing the value of a parameter x ∈ P , we associate
a step size sx with x. Also, in order to prevent the unbounded
growth/shrink of the parameters we associate a lower and
upper bound with each of the parameters. That is, for x ∈ P ,
we have a [lx, ux]. Whenever the value of x exceeds ux OR
the value of x is less than lx, then the value of x is reset to
its initial value x1.

II. expSAT SOLVERS

We have submitted four CDCL SAT solvers based on the
expSAT approach, which are implemented on top of Glucose,

MapleCOMPSPS LRB and MapleCOMPSPS. In the follow-
ing, we describe our solvers:

a) expGlucose: expGlucose is an extension of Glucose,
where we replace VSIDS by expVSIDS and and have kept
everything else the same as in Glucose.

b) expMC LRB VSIDS Switch: The corresponding
baseline system MapleCOMPSPS LRB switches between
branching heuristics LRB and VSIDS in between restarts.
In expMC LRB VSIDS Switch, we replace VSIDS with
expVSIDS and have kept everything else the same as in
MapleCOMPSPS LRB.

c) expMC LRB VSIDS Switch 2500: The correspond-
ing baseline system MapleCOMPSPS has three switches be-
tween VSIDS and LRB (i) VSIDS for initialization (first
50,000 conflicts), (ii) then run LRB for 2,500 seconds, and
(iii) then switches to VSIDS for rest of the execution of
the solver. In expMC LRB VSIDS Switch 2500, we replace
VSIDS with expVSIDS for (iii) and have kept everything else
the same as in MapleCOMPSPS.

d) expMC VSIDS LRB Switch 2500: This system is
a variant of expMC LRB VSIDS Switch 2500. It uses ex-
pVSIDS for the first 2,500 seconds and then switches to LRB
for the rest of its execution.
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Abstract—Glucose is a CDCL solver developped on top of
Minisat nine years ago, with a special focus on removing useless
clauses as soon as possible, and an original restart scheme based
on the quality of recent learnt clauses. Syrup is the parallel
version of Glucose, with an original lazy clauses exchanges policy,
thanks to a one-watched scheme. We describe in this short solver
description the small novelties introduced this year for the SAT
2018 competition.

I. INTRODUCTION

Glucose is a CDCL (Conflict Driven Clause Learning)
solver introduced in 2009 that tries to center all the components
of the SAT solver around a measure of learnt clause quality,
called LBD, for Literal Block Distance. This measure allows
to delete a lot of learnt clauses from the beginning of the
computation. From a practical point of view, it seems that this
feature allows Glucose to produce more shorter proofs, which
probably explains why Glucose and Syrup won a number
of competitions in the last 9 years. A recent survey paper
summarizes most of the improvements we added to the original
Glucose [1]. Of course, the current short description does not
mean to be exhaustive and the interested reader should refer
to the previous paper.

In a few words, however, Glucose enters SAT competi-
tions/races [2], [3] every years since its creation. Glucose is
based on the internal architecture of minisat [4] (especially
for the VSIDS implementation, the 2-Watched scheme and the
memory management of clauses (garbage collection, ...)). It is
based on the notion of Literal Block Distance, as aforemen-
tioned, a measure that is able to estimate the quality of learnt
clauses [5]. This measure simply counts the number of distinct
decision levels of literals occurring in learnt clauses, at the time
of their creation. Thanks to that, new strategies for deleting
clauses were proposed. Moreover, the solver constantly watch
the quality of the last learnt clauses and triggers a restart when
the quality is worst than the average. Recent developments
includes a way of postponing restarts when the number of
assigned literals suddenly increases without conflicts (a SAT
solution may be then expected). In the last version of Glucose,
a special strategy allowed the solver to decide which strategy
to use with respect to a set of identified extreme case [6].

Indeed, learnt clauses removal, restarts, small modifications
of the VSIDS heuristic are based on the concept of LBD. The
core engine of Glucose (and Syrup) is 8 years old. Syrup is a
major improvement of Glucose on which we focused most of
our efforts in the last years.

II. NEW COMPONENTS

The 2018 version of Glucose and Syrup are very similar
to the 2016 ones, with two improvements. The main modifica-
tions are based on the extension of the recent LCM strategies
proposed last year [7] (which ”revived” the vivification tech-
nique [8]). We observed that the LCM strategy was not always
performed on clauses of small LBD only, because LCM was
not triggered right after clause database reduction, and thus
the order of clauses traversed by the LCM was not based on a
sorted order of learnt clauses. However, we observed that LCM
was more efficient when not always run on good clauses only
(LCM can replace clauses, and thus may delete a good clause).
We observed that LCM was more efficient when active clauses
were kept, in addition to clauses of small LBD. Glucose is
now keeping 10% of the most active clauses in addition to
the usual LBD based ranking. In addition, we integrated the
LCM technique into Syrup (good clauses found during the
LCM reduction were not shared initially). The integration into
Syrup was not obvious because LCM seemed to be much
more efficient on sequential solvers only. LCM was thus not
activated on all the cores in the parallel version.

III. PARALLEL VERSION OF GLUCOSE

We used a version with 24 and 48 cores this year for the
parallel versions of Glucose (called Glucose-Syrup).

IV. ALGORITHM AND IMPLEMENTATION DETAILS

Glucose uses a special data structure for binary clauses, and
a very limited self-subsumption reduction with binary clauses,
when the learnt clause is of interesting LBD. The parallel
version uses a special data structure for sharing clauses that
may prevent some clause to be shared when it is full.
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Abstract—GluHack is a SAT solver submitted to the Glucose
Hack Track of the SAT Competition 2018. It updates Glucose
3.0 in the following aspects: searching watch list, conflict learning
and learnt clause database reduction.

I. INTRODUCTION

Glucose [1] is an open-source CDCL-based SAT solver [2]
that has achieved numerous excellent performance in past SAT
Competition. In Unit Propagation (UP), the head of trail queue
of assigned literal will be specified as a watched literal for
searching its corresponding watch list, which is in order to
propagate the next unit unassigned literal in a clause. This
procedure will not stop until all variables are assigned, unless
a conflict occurs. Let’s consider the situation which is to decide
literal a is assigned to true in UP. Then by searching watch
list we know that all literals in clause C1 have been assigned
to false including literal ¬a. Obviously, a conflict occurs.
Glucose stops searching watch list, returns the reason of this
conflict, the clause C1, and goes to the learning phase. Under
current assignment gluHack keeps searching watch list until
all conflicts are detected, then stores all corresponding reasons
C1, C2, . . . , Cn into a vector of clauses and returns it.

II. IMPLEMENTATION

GluHack stops unit propagating (assigning), but keeps
searching watch list when first conflict occurs. All detected
conflicts are stored into a vector of clauses.

Modification 1 CRef Solver::propagate()
Initialize: bool firstConflOccur ← true;

vec 〈CRef〉 conflCRefList;
1: · · ·
2: // Did not find watch – clause is unit under assignment:
3: *j++ ← w;
4: if value(first) = l False then
5: if firstConflOccur = true then
6: firstConflOccur ← false;
7: confl ← cr;
8: end if
9: conflCRefList.push(cr);

10: qhead ← trail.size();
11: else if firstConflOccur = true then
12: uncheckedEnqueue(first, cr);
13: end if
14: NextClause:;
15: · · ·
16: return confl;

The analyze() function will generate corresponding learnt
clauses for each conflict in this vector. Finally, we evaluate and
filter some effective learnt clauses, whose the number of literal
contained ≤ 2, and add them into the learnt clause database.

Modification 2 lbool Solver::search(int)
Initialize: vec 〈Lit〉* learnt clauseList ←

new vec 〈Lit〉[conflCRefList.size()];
1: · · ·
2: for i = 1 to conflCRefList.size() do
3: analyze(conflCRefList[i], learnt clause, selectors,

backtrack level, nblevels, szWoutSelectors); · · ·
4: for j = 0 to learnt clause.size() do
5: learnt clauseList[i].push(learnt clause[j]);
6: end for
7: end for
8: analyze(confl, learnt clause, selectors, backtrack level,

nblevels, szWoutSelectors);
9: · · ·

10: if learnt clause.size() = 1 then
11: uncheckedEnqueue(learnt clause[0]); nbUn++;
12: else
13: for i = 1 to conflCRefList.size() do
14: if learnt clauseList[i].size() ≤ 2 then
15: CRef cr = ca.alloc(learnt clauseList[i], true); · · ·
16: end if
17: end for
18: CRef cr = ca.alloc(learnt clause, true); · · ·
19: end if
20: · · ·

In order to keep high quality of learnt clauses, we change
the rate of learnt clause database reduction from 50% to 70%.

Modification 3 void Solver::reduceDB()
1: · · ·
2: int limit = learnts.size()/10 ∗ 7; · · ·

The different between this hack version and original sources
of Glucose 3.0 is total 779 non-space characters.
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Abstract—ManyGlucose 4.1-2 is a deterministic parallel SAT
solver based on Glucose syrup 4.1 with an efficient clause
exchange mechanism that is a refinement of ManySAT algorithm.

I. INTRODUCTION

ManyGlucose 4.1-2 is a deterministic parallel SAT solver.
Given an instance, a deterministic solver has reproducible
results in terms of solution (satisfying assignment or proof of
unsatisfiability) and running time. ManyGlucose supports such
reproducible behavior. ManySAT 2.0 [2] is a representative
deterministic parallel solver which is built on MiniSat 2.2 [3]
with a deterministic clause exchange algorithm [1]. ManyGlu-
cose 4.1-2 has a refined algorithm for clause exchange and is
built on Glucose syrup 4.1 [4].

II. MAIN TECHNIQUES

ManySAT 2.0 has reproducible behavior by synchronizing
among threads and exchanging learning clauses among them
after synchronization. Each thread synchronizes every execu-
tion interval called period, which is defined as the number of
conflicts. Since the generation speed of conflicts depends on
the search space of each thread, the execution time of a period
is different in each thread. Thus, each thread often has an idle
time for synchronization.

In order to reduce the idle time, we introduce two improve-
ments to ManySAT algorithm.

1) Refinement of period: a period is defined as the number
of scanned literals in unit propagations instead of the
number of conflicts.

2) Lazy clause exchange: each thread receives learned
clauses obtained in m periods ago of the other threads.
This eliminates the need to wait if the gap of the period
of each thread is less than or equal to m.

III. MAIN PARAMETERS

We define a period as 2 million scanned literals and use
20 as the margin for lazy clause exchange. Each thread
uses different random seeds to hold the diversity of solvers.
We submit ManyGlucose 4.1-2 with 24 threads and with 48
threads to Parallel track.
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Abstract—Maple_LCM_M1 is a patched Maple_LCM solver 

by slightly modifying the conflict analyzing function. 

Maple_LCM+BCrestart adds a new restarting strategy to the 

Maple_LCM solver. Maple_LCM+BCrestart_M1 combines both 

patches in one solver. 

I. INTRODUCTION 

The Maple_LCM solver submitted to the SAT Competition 
2017, developed by Chu-Min Li's team, won the first prize of 
the 2017 competition. Our team is trying to improve its 
performance by applying small patches to the original solver. 
In Maple_LCM_M1, one of the new versions, we adjusted the 
coefficients of activity bumping process for each variable 
involved in conflicts. The farther the clause containing the 
variable from the conflict clause, the less activity it will gain. 
In Maple_LCM_BCrestart, we present a new restarting 
strategy that the solver will restart once the average conflicts 
per decision level reach threshold. The third new solver 
Maple_LCM+BCrestart_M1 combines the modifications in the 
two new solvers. 

II. MAPLE_LCM_M1 

When a conflict is reached, the original behavior of 
Maple_LCM is to bump the activity of all variables involved in 
the conflict 0.5 times var_inc. In the Maple_LCM_M1 version, 
the multiplier 0.5 varies from clause to clause. The initial value 
of the multiplier is 0.5 when processing variables of the initial 
conflict clause. It will be assigned to 0.9 times itself at each 
round of iteration during the learnt clause generation process. 

We think the modification makes sense, as the farther an 
assignment of a variable in the conflict, the less impact it has to 
contribute the conflict. And, the multiplier decaying rate might 
be adjusted for a better performance.  

 

III. MAPLE_LCM+BCRESTART 

Maple_LCM+BCrestart is also based on Maple_LCM. It 
calculates the total conflicts reached after the last restart and 
checks the average conflicts per decision level. If the average 
conflicts reaches some threshold, we will run a restart. 
Maple_LCM+BCrestart divide the search into three phases. 
The first phase let the search to learn from the conflicts, then in 
the second phase, Maple_LCM+BCrestart will restart when the 
average of conflicts per decision level reaches a suit threshold. 
At last, when the search comes to the leaves of search tree, 
reduce the restarts. The value of average conflicts illustrates the 
impact of a decision variable on constructing new conflicts. 
The search tree is better when it is shorter and more balanced. 
Given the limit amount of learnt information, this number can 
be used to determine whether the current search space is worth 
for keeping the current searching process. 

 

IV. MAPLE_LCM+BCRESTART_M1 

This solver just combines the modifications in 
Maple_LCM_M1 and Maple_LCM+BCrestart.  
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Vadim Ryvchin and Alexander Nadel
Intel Corporation, P.O. Box 1659, Haifa 31015 Israel
Email: {vadim.ryvchin,alexander.nadel}@intel.com

Abstract—This is the system description of the solver
Maple_LCM_Dist_ChronoBT, submitted to the SAT Competi-
tion 2018. We have integrated chronological backtracking [3] into
the SAT Competition 2017 [1] winner, Maple_LCM_Dist [2].

I. DESCRIPTION

The goal of our submission is to test the
performance of Chronological Backtracking (CB) [3]
in the settings of the latest SAT competition. In our
solver–Maple_LCM_Dist_ChronoBT, we updated
Maple_LCM_Dist [2] with CB (configuration
{T = 100,C = 4000}) based on the results in [3].
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Abstract— This document describes Maple_LCM_Scavel SAT 
solver. 

I. INTRODUCTION 

Maple_LCM_Scavel is an improved SAT solver based on 
Maple_LCM_Dist. The improvements are made mainly from 
the following two aspects. First, we changed the evaluation 
method of VSIDS, so that the better branch decision variable 
can be selected. The second is that we improved the evaluation 
method of learning clauses so that better clauses can be 
preserved. 

II. TWO IMPROVEMENT 

A. Dynamic comprehensive variable activity evaluation 

LIANG et al. [1] analyzed the role of the number of 
conflicts in the global conflict, where the variable was used in 
the latest conflict analysis, and proposed the Conflict History-
based Branching strategy (CHB). The increment of variable 
activity is calculated based on the formula (1). 

 ' (1 )s s r        (1) 

Where   is the interval of increment whose initial value is 
0.4 and the attenuation rate is 10-6 after each conflict, r  is the 
reward value. The variable is used for conflict analysis and 
derivation of learning clauses, which should be endowed 
dynamic activity. Therefore, we put forward a heuristic branch 
decision algorithm that provides a comprehensive evaluation of 
the decision level of the effective decision variable and its role 
in the conflict, called as Dynamic Activity algorithm (DA)[2]. 
Its framework is similar to that of EVSIDS, and is expressed as 
follows. 

DA set an activity counter ‘s’ for every variable, the 
increment of ‘s’ can be calculated as (3). 

 ' ( )   (0 1)s s W v f f       (2) 

Where f  is the increment factor , W  is a function of 
decision level and conflict level, and is defined as (4). 

( ) (1 )    (0 1)
vLevel vConflict

W v
nLevels nConflicts

           (3) 

Where vLevel  is the latest decision level when the 
variable is treated as decision variable. nLevels  is the current 
decision level. vConflict  is the total number of conflicts when 

taking this decision variable. nConflicts  is the global number 
of conflicts.   is the regulation factor, and normally takes the 
value of 0.7. The vLevel of a variable is set to 0 when its 
value is unassigned. If a variable is in the learn clauses or is 
used in the conflict analysis, its activity will be updated 
automatically. 

B. Improved learning clause management strategy 

Both the activity evaluation and LBD evaluation adopted a 
more aggressive deletion strategy. According to the 
experiments, LBD[3] or Activity[4] based solvers continually 
produce a large number of learning clauses, at the same time 
delete clauses in frequently. The clauses which have high 
priority to be deleted have less opportunity to be used in 
conflict analysis. In other words, the probability of the good 
clauses to be preserved will usually become low. It can be 
inferred that the probability of a clause being deleted is closely 
related to the number of times it is used. 

Maple_LCM_Scavel sets a threshold for the number of the 
learning clauses being used in conflict analysis, NBused, named 
“NB_threshold_value”. The initial value of NBused of each 
learned clauses is 0. If the learned clause is used in conflict 
analysis, increase the value of NBused by 1. In the compression 
procedure (in “reducedDB” method), when the clause’s 
NBused value reachs the specified threshold 
NB_threshold_value, it will be deleted. The experimental 
results show that, the threshold value being 150 or 200 will get 
best results. 
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Abstract—This document describes the SAT solvers Maple-
COMSPS LRB VSIDS and MapleCOMSPS CHB VSIDS that
implement our machine learning branching heuristics called the
learning rate branching heuristic (LRB) and the conflict history-
based branching heuristic (CHB).

I. INTRODUCTION

A good branching heuristic is vital to the performance
of a SAT solver. Glancing at the results of the previous
competitions, it is clear that the VSIDS branching heuristic
is the de facto branching heuristic among the top performing
solvers. We are submitting two unique solvers with a new
branching heuristic called the learning rate branching heuris-
tic (LRB) [1] and another solver with the conflict history-based
branching heuristic (CHB) [2].

Our intuition is that SAT solvers need to prune the search
space as quickly as possible, or more specifically, learn a high
quantity of high quality learnt clauses. In this perspective,
branching heuristics can be viewed as a bi-objective problem
to select the branching variables that will simultaneously
maximize both the quantity and quality of the learnt clauses
generated. To simplify the optimization, we assumed that the
first-UIP clause learning scheme will generate good quality
learnt clauses. Thus we reduced the two objectives down to
just one, that is, we attempt to maximize the quantity of learnt
clauses.

II. LEARNING RATE BRANCHING

We define a concept called learning rate to measure the
quantity of learnt clauses generated by each variable. The
learning rate is defined as the following conditional proba-
bility, see our SAT 2016 paper for a detailed description [1].

learningRate(x) = P(Participates(x) |
Assigned(x) ∧ SolverInConflict)

If the learning rate of every variable was known, then
the branching heuristic should branch on the variable with
the highest learning rate. The learning rate is too difficult
and too expensive to compute at each branching, so we
cheaply estimate the learning rate using multi-armed bandits, a
special class of reinforcement learning. Essentially, we observe

the number of learnt clauses each variable participates in
generating, under the condition that the variable is assigned
and the solver is in conflict. These observations are averaged
using an exponential moving average to estimate the current
learning rate of each variable. This is implemented using the
well-known exponential recency weighted average algorithm
for multi-armed bandits [3] with learning rate as the reward.

Lastly, we extended the algorithm with two new ideas. The
first extension is to encourage branching on variables that
occur frequently on the reason side of the conflict analysis
and adjacent to the learnt clause during conflict analysis. The
second extension is to encourage locality of the branching
heuristic [4] by decaying unplayed arms, similar to the decay
reinforcement model [5], [6]. We call the final branching
heuristic with these two extensions the learning rate branching
heuristic.

III. CONFLICT HISTORY-BASED BRANCHING

The conflict history-based branching heuristic (CHB) pre-
cedes our LRB work. CHB also applies the exponential
recency weighted average algorithm where the reward is
the reciprocal of the number of conflicts since the assigned
variable last participated in generating a learnt clause. See our
paper for more details [2].

IV. SOLVERS

All the solvers are modifications of COMiniSatPS [7]. We
used the same COMiniSatPS version that also participates in
the competition [8]. This year’s solvers are basically identical
to the last year’s solvers, fixing only a few minor bugs:

• Fixed the bug in the last year’s MapleCOM-
SPS LRB VSIDS [9] that crippled the on-the-fly
probing techniques.

• Fixes two minor bugs in the base solver COMin-
iSatPS [8].

V. AVAILABILITY AND LICENSE

Source is available for download for all the versions de-
scribed in this paper. All the solvers use the same license
as COMiniSatPS. Note that the license of the M4RI library
(which COMiniSatPS uses to implement Gaussian elimina-
tion) is GPLv2+.
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†Sorbonne Université, LIP6, CNRS, UMR 7606, Paris, France
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Abstract—This paper describes the solvers
painless-mcomsps, and painless-mcomsps-sym
submitted to the parallel track of the SAT Competition
in 2018. They are parallel solvers instantiated with PArallel
INstantiabLE Sat Solver (PaInleSS) framework and using
MapleCOMSPS as core sequential solver.

I. INTRODUCTION

painless-mcomsps and painless-mcomsps-sym
are parallel SAT solvers built by instantiating components
of the PaInleSS parallel framework [1]. They are Port-
folio based solvers implementing a diversification strat-
egy, fine control of learnt clause exchanges, and using
MapleCOMSPS [2] as a core sequential solver. More-
over, painless-mcomsps-sym included dynamic symme-
try breaking [3] by using the Cosy library.

Section II gives an overview on PaInleSS
framework. Section III details the implementation
of painless-mcomsps using PaInleSS and
MapleCOMSPS. Section IV explains how dynamic symmetry
breaking has been incorporated in painless-mcomsps to
give the solver painless-mcomsps-sym.

II. DESCRIPTION OF PAINLESS

PaInleSS is a framework that aims at simplifying the im-
plementation and evaluation of parallel SAT solvers for many-
core environments. Thanks to its genericity and modularity, the
components of PaInleSS can be instantiated independently
to produce new complete solvers.

The main idea of the framework is to separate the technical
components (e.g., those dedicated to the management of
concurrent programming aspects) from those implementing
heuristics and optimizations embedded in a parallel SAT
solver. Hence, the developer of a (new) parallel solver concen-
trates his efforts on the functional aspects, namely paralleliza-
tion and sharing strategies, thus delegating implementation
issues (e.g., data concurrent access protection mechanisms)
to the framework.

Three main components arise when treating parallel SAT
solvers: sequential engines, parallelization, and sharing. These
form the global architecture of PaInleSS.

A. Sequential Engines
The core element that we consider in our framework is a

sequential SAT solver. This can be any CDCL state-of-the
art solver. Technically, these engines are operated through a
generic interface providing basics of sequential solvers: solve,
interrupt, add clauses, etc.

Thus, to instantiate PaInleSS with a particular solver, one
needs to implement the interface according this engine.

B. Parallelization
To built a parallel solver using the aforementioned engines,

one needs to define and implement a parallelization strategy.
Portfolio and Divide-and-Conquer are the basic known ones.
Also, they can be arbitrary composed to form new strategies.

In PaInleSS, a strategy is represented by a tree-structure
of arbitrary depth. The internal nodes of the tree rep-
resent parallelization strategies, and leaves are core en-
gines. Technically, the internal nodes are implemented using
WorkingStrategy component and the leaves are instances
of SequentialWorker component.

Hence, to develop its own parallelization strategy, the user
should create one or more strategies, and build the required
tree-structure.

C. Sharing
In parallel SAT solving, the exchange of learnt clauses

warrants a particular focus. Indeed, beside the theoretical
aspects, a bad implementation of a good sharing strategy may
dramatically impact the solver’s efficiency.

In PaInleSS, solvers can export (import) clauses to (from)
the others during the resolution process. Technically, this is
done by using lockfree queues [4]. The sharing of these
learnt clauses is dedicated to particular components called
Sharers. Each Sharer in charge of sets of producers and
consumers and its behaviour reduces to a loop of sleeping and
exchange phases.

Hence, the only part requiring a particular implementation
is the exchange phase, that is user defined.

III. PAINLESS-MCOMSPS

This section describes the overall behaviour of our compet-
ing instantiation named painless-mcomsps. Its architec-
ture is highlighted in Fig. 1.
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Fig. 1. Architecture of painless-mcomsps.

A. Sequential Engines: MapleCOMSPS

MapleCOMSPS is a sequential solver that finished second
of the main track of the SAT Competition 2017. It is based
on MiniSat [5], and uses as decision heuristics the classical
Variable State Independent Decaying Sum (VSIDS) [6], and
newly defined Learning Rate Branching (LRB) [7]. These
heuristics are used in one-shot phases: first LRB, then VSIDS.
Moreover, it uses Gaussian Elimination (GE) at preprocessing
time.

We adapt this solver for the parallel context as follows: (1)
we parametrized the solver to select either LRB, or VSIDS
for all solving process (noted respectively, L and V); (2) we
added callbacks to export and import clauses; (3) we added
an option to use or not the GE preprocessing.

B. Parallelization: Portfolio and Diversification

painless-mcomsps is a solver implementing a basic
Portfolio strategy (PF), where the underlying core engines are
either L or V instances.

For each type of instances, we apply a sparse random
diversification similar to the one introduced in [8]. That is
for each group of k solvers, the initial phase of a solver is
randomly set according the following settings: every variable
gets a probability 1/2k to be set to false, 1/2k to true, and
1− 1/k not to be set.

Moreover, only one of the solvers performs the GE prepro-
cessing.

C. Sharing: Controlling the Flow of Shared Clauses

In painless-mcomsps, the sharing strategy
ControlFlow is inspired from the one used by [8].
We instantiate a Sharer per solver (the producer). It gets
clauses from this producer and exports some of them to all
others (the consumers).

The exchange strategy is defined as follows: each solver
exports clauses having a LBD value under a given threshold (2
at the beginning). Every 0.5 seconds, 1500 literals (the sum of
the size of the shared clauses) are selected by the Sharer and
dispatched to consumers. The LBD threshold of the concerned
solver is increased if an insufficient number of literals (less
than 1200) are dispatched.

IV. PAINLESS-MCOMSPS-SYM

This section describes the overall behaviour of our com-
peting instantiation named painless-mcomsps-sym. Its
architecture is highlighted in Fig. 1.

A. Dynamic Symmetry Breaking

The idea we bring is to break symmetries on the fly: when
the current partial assignment can not be a prefix of a lex-
leader (of an orbit), a constraint called esbp is generated.
This constraint prunes this forbidden assignment and all its
extensions.

B. Integration to painless-mcomsps

Cosy, a C++ library, provides dynamic symmetry breaking
primitives. We integrated the library into MapleCOMSPS, and
we added a parameter to activate or not dynamic symmetry
breaking mode.

In painless-mcomsps-sym, there is only one solver
that used dynamic symmetry breaking, we call it S in the
Fig. 1. This solver uses the VSIDS heuristics.

The solver S, receives clauses from all the others, but it
does not export clauses.
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Abstract—We describe some details about the SLS solver
probSAT, a simple and elegant SLS solver based on probabil-
ity distributions, a heuristic first presented in the SLS solver
Sparrow [3].

I. INTRODUCTION

The probSAT solver is an efficient implementation of the
probSAT algorithm presented in [2] with slightly different
parameterization and implementations.

II. MAIN TECHNIQUES

The probSAT solver is a pure stochastic local search solver
based on the following algorithm:

Algorithm 1: ProbSAT
Input : Formula F , maxTries, maxFlips
Output: satisfying assignment a or UNKNOWN

1 for i = 1 to maxTries do
2 a← randomly generated assignment
3 for j = 1 to maxFlips do
4 if (a is model for F ) then
5 return a
6 Cu ← randomly selected unsat clause
7 for x in Cu do
8 compute f(x, a)
9 var ← random variable x according to

probability f(x,a)∑
z∈Cu

f(z,a)

10 flip(var)

11 return UNKNOWN;

ProbSAT uses only the break values of a variable in the
probability functions f(x, a), which can have an exponential
or a polynomial shape as listed below.

f(x,a) = (cb)
−break(x,a)

f(x,a) = (ε+ break(x,a))−cb

III. PARAMETER SETTINGS

ProbSAT has four important parameters: (1) fct ∈ {0, 1}
shape of the function, (2) cb ∈ R, (3) epsilon ∈ R, which are
set according to the next table:

k fct cb ε
3 0 2.06 0.9
4 1 3 -
5 1 3.88 -
6 1 4.6 -
≥ 7 1 4.6 -

where k is the size of the longest clause found in the
problem during parsing. The parameters of probSAT have
been found using automated tuning procedures included in the
EDACC framework [1].

IV. FURTHER DETAILS

ProbSAT is implemented in C and uses a new XOR imple-
mentation scheme for the flip procedure described in detail in
[4].
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Abstract—The sequential SAT solver RISS combines a heavily
modified Minisat-style solving engine of GLUCOSE 2.2 with
a state-of-the-art preprocessor COPROCESSOR and adds many
modifications to the search process. RISS allows to use inpro-
cessing based on COPROCESSOR. Based on this RISS, we create
a parallel portfolio solver PRISS, which allows clause sharing
among the incarnations, as well as sharing information about
equivalent literals.

I. INTRODUCTION

The CDCL solver RISS is a highly configurable SAT
solver based on MINISAT [1] and GLUCOSE 2.2 [2], [3],
implemented in C++. Many search algorithm extensions have
been added, and RISS is equipped with the preprocessor
COPROCESSOR [4]. Furthermore, RISS supports automated
configuration selection based on CNF formulas features, emit-
ting DRAT proofs for many techniques and comments why
proof extensions are made, and incremental solving. The
solver is continuously tested for being able to build, correctly
solve CNFs with several configurations, and compile against
the IPASIR interface. For automated configuration, RISS is
also able to emit its parameter specification on a detail level
specified by the user. The repository of the solver provides a
basic tutorial on how it can be used, and the solver provides
parameters that allow to emit detailed information about the
executed algorithm in case it is compiled in debug mode (look
for “debug in the help output). While RISS also implements
model enumeration, parallel solving, and parallel model enu-
meration, this document focusses only on the differences to
RISS 7, which has been submitted to SAT Competition 2017.

II. SAT COMPETITION SPECIFICS

While last years submissions did not make full use of the
implemented formula simplification techniques, the configura-
tion submitted to the NoLimit track of the competition now
uses XOR reasoning [5] and cardinality reasoning [6] again.
These techniques have been disabled last year, as they can not
print DRAT proofs efficiently.

III. MODIFICATIONS OF THE SEARCH - LCM

Last years winning solver family was the “Maple LCM”
solvers, which are based on learned clause minimization
(LCM) [7]. The implementation of LCM in RISS has a few
modifications to those in the original publication, namely:

1) apply LCM after every second reduction
2) when simplifying a clause, try to simplify it in reverse

order as well

3) when a clause could be reduced, use a resolution based
simplification to reduce the size further

The first modification helps to reduce the overhead LCM might
introduce on clauses that would be removed in the next clause
removal phase. The second modifications uses a Bloom filter
like effect following the assumption: if a clause can be reduced
by performing vivification in one particular order, then using
the reverse order might allow to drop even more literals. On the
other hand, for clauses that cannot be reduced, no additional
cost is introduced. Hence, the second modification focusses
on clauses that can be reduced. Finally, the last modification
makes the reduction more effective: while vivification stops
when a conflict is found and proceeds with the current set
of literals, applying conflict analysis with resolution allows
to remove further redundant literals. Cycles for reduction are
only spend on clauses that could be reduced in the first place.

IV. MODIFICATIONS OF THE SIMPLIFIER

To be able to emit DRAT proofs for the main track,
many simplification techniques of Coprocessor had to be
disabled, among them reasoning with XORs and cardinality
constraints [6]. In the NoLimit track, these techniques are
enabled again.

V. AVAILABILITY

The source of the solver is publicly available under the
LGPL v2 license at https://github.com/conp-solutions/riss. The
version with the git tag “v7.1.0” is used for the submission.
The submitted starexec package can be reproduced by running
“./scripts/make-starexec.sh” on this commit.
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Abstract—SPARROWTORISS is a combination of the solver
SPARROW and RISS. SPARROWTORISS is first trying to solve
the problem with SPARROW, limiting its execution to 5 ·108 flips
and then passes the assignment found to the CDCL solver RISS,
which uses this information for initialization and then tries to
solve the problem.

The SLS solver SPARROW is the same version as used in 2014.
The solver RISS is used in version 7.1, which is also submitted
to this competition.

I. INTRODUCTION

While in 2014, where this solver combination was submitted
for the first time, the benchmark was split in industrial and
combinatorial families, recent competitions did not insist on
this split any more. As we do not know the origin of submitted
and used benchmarks for this years competition, and did not
see solver from previous competitions that performed well
on crafted formulas, we submit SPARROWTORISS again, to
validate whether the combination of a SLS and a CDCL solver
is still a reasonable solving approach. The submission is fur-
thermore supported be the results found in [1], where formula
simplification is used to boost the efficiency of SLS solvers
on crafted families. The best found technique together with
SPARROW represents the basis of our solver SPARROW+CP3.
As SLS solvers cannot show unsatisfiability, we run a CDCL
solver after a fixed amount of 5 · 108 flips, so that the overall
solver behavior stays deterministic.

II. MAIN TECHNIQUES

SPARROW is a clause weighting SLS solvers that uses
promising variables and probability distribution based selec-
tion heuristics. It is described in detail in [2]. Compared to the
original version, the one submitted here is updating weights of
unsatisfied clauses in every step where no promising variable
can be found.

The built-in preprocessor CP3 is an extension of CO-
PROCESSOR 2 [20], and received updates. Compared to the
submitted version of RISS to the SAT competition 2017, no
new techniques have been added.

The CDCL solver RISS uses the MINISAT search en-
gine [17], more specifically the extensions added in GLU-
COSE 2.2 [18], [19]. Furthermore, RISS is equipped with the
preprocessor COPROCESSOR.

The combination of the SPARROW and RISS, called SPAR-
ROWTORISS, does not simply execute the two solvers after
each other, but also forwards information from the SLS solver
to the CDCL solver: when SPARROW terminates, it outputs
its last full assignment in chronological order (i.e. the oldest

variable first), which is used to initialize the phase saving
of RISS, such that the first decisions of RISS follow this
assignment. In a brief empirical evaluation this communication
turned out to be useful. The solvers are also able to forward
the information about the age of the variables in the SLS
search. This data could be used to initialize the activities of
the variables inside RISS. However, this feature is not enabled
in the used configuration.

III. MAIN PARAMETERS

SPARROW is using the same parameters as SPARROW 2011.
The configuration of CP3 has been tuned for SPARROW

in [1] on the SAT Challenge 2012 satisfiable hard combinato-
rial benchmarks. The configuration used in 2018 is the same
configuration used in the version of 2014.

The main parameters of RISS control how the formula
simplification of CP3 is executed. A major modification of
RISS is the addition learned clause minimization [?], which
has been slightly modified. The configuration of CP3 has been
tuned for GLUCOSE 2.2 in [1] on the SAT Challenge 2012
application benchmark. The final setup of the preprocessor
inside RISS uses the following techniques: UP, SUB+STR
(producing all resolvents for ternary clauses), Unhide without
hidden literal elimination [10] and 5 iterations, BVE without
on the fly BCE. Furthermore, if no proof should be emitted,
Gaussian Elimination and Cardinality Constraint [21] reason-
ing is applied, as well as Covered Literal Elimination [22].

For SPARROWTORISS it can be chosen whether to forward
the last assignment, or the activity information.

IV. IMPLEMENTATION DETAILS

SPARROW is implemented in C. The solver RISS is build on
top of MINISAT 2.2 and GLUCOSE 2.2, and is implemented
in C++.

V. AVAILABILITY

The source code of RISS (including CP3) is available
at https://github.com/conp-solutions/riss under LGPL v2.1.
SPARROW is available at https://github.com/adrianopolus/
Sparrow.
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Abstract—BreakIDGlucose and BreakIDGlucoseSEL combine
the Glucose SAT solver with the symmetry detection tool
BreakID. The former breaks symmetry statically by employing
classic symmetry breaking formulas, while the latter handles it
dynamically by employing symmetric explanation learning.

I. INTRODUCTION

Many real-world problems exhibit symmetry, but the SAT
competition and SAT race seldomly feature solvers who
are able to exploit symmetry properties. Similarly to 2013
and 2016, we submit a static symmetry breaking approach
BreakIDGlucose. This year, we also submit the dynamic
symmetry handling approach BreakIDGlucoseSEL.

II. MAIN TECHNIQUES

As symmetry breaking preprocessor we use BreakID 2.3 [1].
Compared to BreakID 2.2 used in 2016, version 2.3 fixes a
small bug in the automorphism graph construction routine.
As SAT-solver we employ Glucose 4.0 [2] which is modified
to support symmetric explanation learning (SEL) [3]. 1 The
difference between the approaches is that BreakIDGlucose
employs BreakID’s symmetry breaking formulas and disables
SEL, while BreakIDGlucoseSEL has SEL activated and for-
goes BreakID’s symmetry breaking formulas.

The reason we use the modified version of Glucose as
backend for BreakIDGlucose is that we want to compare both
static and dynamic versions of symmetry handling as equally
as possible, which requires exactly the same backend solver.

III. MAIN PARAMETERS

The main user-provided parameters control:
• How much time is allocated to symmetry detection. The

builtin graph automorphism tool Saucy [4] gets 100
seconds to detect symmetry generators.

• How large the symmetry breaking formulas are allowed
to grow, measured in the number of auxiliary variables
introduced by a symmetry breaking formula. We limit
this to 50 auxiliary variables.

• How many generators BreakIDGlucoseSEL uses to han-
dle row interchangeability symmetry groups. We employ
a quadratic number of row-swaps (e.g., swapping every
two pigeons of a pigeonhole problem). The alternative
would have been a linear amount of swaps (e.g., swapping
every two consecutive pigeons of a pigeonhole problem).

1We also implemented a small Glucose hack called inIDGlucose, which is
presented in a corresponding system description.

IV. SPECIAL ALGORITHMS, DATA STRUCTURES, AND
OTHER FEATURES

BreakIDGlucoseSEL employs a second symmetrical clause
store for clauses symmetrical to the ones that are asserting in
the current search state. These symmetrical clauses σ(c) are
added to the main learned clause store only when they become
unit or conflicting, and otherwise are quickly forgotten after
a backjump causes the original clause c to revert to non-unit
status. As usual, a two-watched literal scheme keeps track of
the truth value of any clause in the symmetrical clause store.

V. SAT COMPETITION 2018 SPECIFICS

BreakIDGlucose and BreakIDGlucoseSEL participate in the
No-Limit track since BreakIDGlucoseSEL constructs proofs
using a symmetry rule not present in the DRAT format.

VI. AVAILABILITY

Source code and documentation for BreakID is available
under a non-commercial license [5]. Source code and doc-
umentation for the extension of Glucose with symmetric
explanation learning is freely available [6].
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Abstract—inIDGlucose (pronounced “init-glucose”) is a sub-
mission to the Glucose Hack Track that initializes variable
activity and phase based on a weighted literal occurrence count
on the original CNF.

I. MAIN TECHNIQUE

The activity of a variable is the priority given to the variable
when the solver selects a variable to decide. The phase of a
variable is the value assigned to it when the solver decides the
variable.

MiniSat-based solvers have an initial phase of false and an
initial activity of 0 for all variables. As this does not take any
information from the instance at hand into account, we hope to
improve upon this by counting the occurrences of each literal
in a clause the CNF, taking into account clause length as well.

The general idea behind our activity initialization is that
variables whose literals occur both positively and negatively
in short clauses are probably hard to decide a good value
for, and might be part of a lot of failing search branches.
As activity tracks the amount of conflicts a variable is part of,
such variables seem good candidates to start out with a high
activity.

The general idea behind our phase initialization is that
we want to maximize the number of satisfied clauses by
assigning true or false to a variable, since this might speed up
the derivation of satisfying assignments. Variables that occur
mostly positively (resp. negatively) then should be assigned
true (resp. false). Generally speaking, long clauses are easier
to satisfy than short ones, so again the occurrence count of
literals in short clauses should be more important than in long
clauses.

II. SPECIAL ALGORITHMS, DATA STRUCTURES, AND
OTHER FEATURES

We weigh the occurrence of a literal l by the inverse square
of the length of the clause c, as this strongly reduces the
importance of occurrences in long clauses. The total weighted
occurrence (two) for a literal then is:

two(l) =
∑

c s.t. l∈c

1

length(c)2

The initial activity for a variable v simply is the product

two(v) ∗ two(v̄)

which is a measure for both the total weighted occurrence
of a variable as well as the difference between the positive
and negative occurrences of the variable. E.g., a variable v

occurring as a pure literal will have an initial activity of 0, as
either two(v) or two(v̄) will be 0.

The initial phase for a variable v is the truth value of

two(v) > two(v̄)

which measures whether the variable occurs mostly pos-
itively or mostly negatively. Note that in case of a tie, the
inital phase is negative.

Note that the activity and phase are only initialized with
the above values. During search, Glucose runs its customary
phase caching and activity updating schemes.
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Abstract—We provide in this paper a short description of
our solvers SCALOPE , PENELOPE MDLC and GLUCOSE-
3.0 PADC submitted to the SC18. The first solver SCALOPE
is a simplified implementation of the one we submitted to the
SC17 [1]. The second solver PENELOPE MDLC is a new one
also based on PENELOPE 2014 [2] which aims to minimize clause
duplication by using two learned clause databases: one for the
clauses derived from conflicts analysis and the other for the
imported clauses. This latter is subject to a special cleaning
strategy since it can contains duplicate or already subsumed
clauses. The third solver GLUCOSE-3.0 PADC is a GLUCOSE3.0
hack with periodical steps of deep database cleaning.

I. INTRODUCTION

SAT solvers have become very efficient today. This effi-
ciency is the result of a subtle combination of several feature
such as unit propagation through watched literals, restarts
strategies, dynamic branching and polarity heuristics, conflict
clause analysis and clause learning. This latter is one of the
most important feature of modern SAT solvers. In fact after
each found conflict, a procedure is invoked to analyze it in
order to produce an asserting clause. This asserting clause
is then added to a learned clause database (i.e. this clause
is learned) and is used to redirect the back-jumping level as
well as to prevent the same conflict in the future as long as
this clause is kept in the learned clause database. However
during the search there can be a huge amount of learned and
keeping all these clauses will have a negative impact on the
performances of the solver by slowing down unit propagations.
In parallel solvers, this issue is even more important since
beside learned clause there are also imported clauses coming
from other threads of the portfolio that are also added to the
learned clause database. To cope with this issue, modern SAT
solvers use learned clause database cleaning strategies where
the common clause quality measures are the size or the LBD
of the clause. Our solvers SCALOPE , PENELOPE MDLC
and GLUCOSE-3.0 PADC presented in this paper mainly
use several forms of learned clause database management to
achieve different objectives. These Solvers are described in
details in the subsequent sections.

II. SCALOPE

The solver SCALOPE [1] that we submitted to SC17 was
designed to improve the scalability of the portfolio by organiz-
ing threads in teams. It allowed an intensive communication
between threads of the same team and limited communication

between threads of different teams. This version used an
explicit division of thread in team by providing to each team
a different cooperation object. Hence there were in each
team a particular thread that was in charge of exporting and
importing information from and to other teams. Once the
information were imported by this thread, the others could
simply retrieve them via classical communications within the
team. This year, we changed this implementation. Instead, we
use one Cooperation object and dedicated channels between
each pair of threads in order to share learned clauses as in
PENELOPE. However the amount of clauses shared via a
channel depends on the proximity of the threads i.e. whether
they are in the same team or not. This simplification really
reduce the complexity of the code. Furthermore inter-team
communication is no longer restricted to unit clauses sharing
as it was in the previous version. We now use the LBD [3]
as a discriminant when sharing clauses. Hence only clauses
that have good LBD scores are exported outside the team. In
the current version, every learned clause with the LBD score
lower than or equal to 2 is exported outside the teams.

III. PENELOPE MDLC

PENELOPE MDLC is a built on top of PENELOPE [2].
Unlike classical SAT solvers, PENELOPE MDLC manages
two separate learned clause databases per thread: one for the
clauses that are derived from conflicts by the thread itself
and the other for the clauses that were imported from other
threads. PENELOPE MDLC allows the move of a clause from
the imported clause database to the learned clause database
where the lifetime is greater for good quality clauses. Let
∆ be the learned clause database and Γ the imported clause
database. A clause c is moved from Γ to ∆ whenever it
propagates or is conflicting while none clause in F ∪ ∆
could do so. Hence no clause in F ∪ ∆ will be duplicated
nor subsumed by another one. We could then apply different
cleaning strategy on ∆ and Γ. As such, it might be possible
to have a more aggressive strategy in Γ since it can possibly
contains duplicated or subsumed clauses. In the current version
of PENELOPE MDLC , Γ is implemented as a Queue which
means that the FIFO strategy is used to manage the imported
clause database. At each clause database cleaning step, a
fraction (which we called reduceFactor and which is such
that 0 ≤ reduceFactor ≤ 1) of the total number of clauses to
delete is removed from ∆ on the less useful clauses and the
rest is removed from Γ on the oldest clauses. The rationale is
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that if a clause has not propagated any literal since its entrance
in the queue, there can be more chances that the literals it could
propagate are already propagated by other clauses present in
F ∪∆. This can be the case when the clause is duplicated or is
subsumed by another one. An Exception is however made on
clauses with LBD ≤ 2. These latter are given a longer lifetime
in Γ. Concretely, just before insertion in Γ during imports, each
clause with LBD ≤ 2 is given a maximum number of deletion
attempts — which we call its lifetime — before definitely
delete it. After each unsuccessful deletion attempt the clause
is reinserted in the queue while decreasing its lifetime. This
procedure is sketched in algorithm 1. Algorithm 2 as far as it
is concerned, describes the propagation phase of each solver in
PENELOPE MDLC . PENELOPE MDLC also includes some
optimization techniques such as learned clause minimization
with binary clause resolution. It also uses a special data
structure to handle binary clauses — as in GLUCOSE — in
order to check them first during unit propagations.

Algorithm 1: Reduce DB
Input: The Learned clause database ∆ and the imported

clause database Γ
begin1

totalClauseToDelete := (|∆|+ |Γ|)/2;2

nLt := totalClauseToDelete ∗ reduceFactor;3

nImp := totalClauseToDelete− nLt;4

if |Γ| < nImp then5

nImp := |Γ|;6

nLt := totalClauseToDelete− nImp;7

for (i := 0 ; i < nImp ; i++) do8

c := Γ.pop();9

if lbd(c) > 2 or c.lifetime ≤ 0 then10

delete(c);11

else12

Γ.insert(c);13

c.lifetime - -;14

sort ∆ according to clauses’ LBD;15

remove from ∆ the nLt clauses with bad LBD;16

end17

IV. GLUCOSE-3.0 PADC

GLUCOSE-3.0 PADC is a GLUCOSE3.0 hack. It simply
allow the solver to periodically run a deep cleaning of the
learned clause database. Concretely after each K execution of
the cleaning procedure, it deletes all the clauses in the database
except those which are of very high quality — such as clauses
with LBD ≤ 2 — and those that actually participate to the
construction of the implication graph.

V. SAT COMPETITION 2018 SPECIFICS

We submitted two versions of GLUCOSE-3.0 PADC :
GLUCOSE-3.0 PADC 3 and GLUCOSE-3.0 PADC 10 with
respectively the parameter K = 3 and K = 10. SCA-
LOPE was tuned to use 24 core and PSM [4]. As far as

Algorithm 2: Propagation phase
Input: A formula F , a learned clause database ∆ and

the imported clause database Γ
begin1

repeat2

while ∃ a unit or a falsified clause c in F ∪∆ do3

if c is unit then4

add the unassigned literal of c to the5

current interpretation;
else6

return c;7

if ∃ a unit or conflicting clause c ∈ Γ then8

move c to ∆;9

until no new clause has been moved to ∆ ;10

return noConflictClauseFound;11

end12

PENELOPE MDLC is concerned, we tune it to use the
reduceFactor of 0.6 and each imported clause with LBD ≤
2 was given a lifetime of 1.
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1. Introduction

The CDCL SAT solver Maple LCM won the gold medal
of the main track of the SAT Competition 2017. It was
implemented on top of the solver MapleCOMSPS DRUP
[1], [2] by integrating the effective learnt clause minimiza-
tion approach described in [3]. In the current competition,
we propose Maple CM, which is a new solver on top of
Maple LCM that extends clause minimization to original
clauses. Moreover, we propose three variants of Maple CM:
Maple CM Dist: is Maple CM but uses a special branch-
ing heuristic called Distance for the first 50,000 conflicts;
Maple CM ordUIP: is Maple CM but reorders the first
UIPs implying some conflicts selected under specific condi-
tions; and Maple CM ordUIP+: is Maple CM ordUIP but
selects the conflicts to re-order the first UIPs conflict in
function of the branching heuristics VSIDS and LRB. All
these solvers are described in the remaining sections.

2. Clause Minimization in Maple CM

Clause minimization based on unit propagation (UP) can
be described as follows: Given a clause C = l1∨l2∨· · ·∨lk,
if UP(F ∪ {¬l1,¬l2, . . . ,¬li}) (i ≤ r) derives an empty
clause and {¬l′1,¬l′2, . . . ,¬l′i′} is the subset of literals in
{¬l1,¬l2, . . . ,¬li} that are responsible of the conflict, we
replace C by {l′1 ∨ l′2 ∨ . . . ∨ l′i′}. This clause minimization
is not applied to every clause at every restart because it is
costly. It works as follows in Maple CM:

• During preprocessing, each original clause is min-
imized. The minimization process stops when the
total number of unit propagations is greater than 108.

• During the search, Maple CM organizes the learnt
clauses in three sets as MapleCOMSPS DRUP:
CORE, TIER2 and LOCAL. The sets CORE
and TIER2 roughly store the learnt clauses with
LBD≤6, where LBD refers to the number of de-
cision levels in a clause [4]. It also identifies a
subset of original clauses called useful clauses that
are used to derive at least one learnt clause of

LBD≤20 since the last clause minimization. Then,
before a restart, Maple CM minimizes each clauses
C such that function liveClause(C) returns true,
provided that the number of clauses learnt since the
last clause minimization is greater than or equal to
α + 2 × β × σ, where α = β = 1000 and σ is the
number of minimizations executed so far. Algorithm
1 defines liveClause(C).

Algorithm 1: liveClause(C)
Input: A clause C
Output: true or false
begin1

if C is a learnt clause then2
if C is in CORE or TIER2 then3

if C was never minimized, or the LBD of4
C is decreased 2 times since its last
minimization, or the LBD of C is
decreased to 1 since its last minimization
then

Return true;5

Return false;6

else7
if C was used to derive at least one learnt8
clause of LBD≤20 since the last clause
minimization then

if C was never minimized during search,9
or the LBD of C is decreased 3 times
since its last minimization, or the LBD of
C is decreased to 1 since its last
minimization then

Return true;10

Return false;11

end12

The condition to select a restart for triggering a clause
minimization process in Maple CM is the same as in
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Maple LCM. However, Maple CM selects the clauses
to be minimized differently from Maple LCM. First,
Maple LCM only minimizes the learnt clauses in CORE
and TIER2, whereas Maple CM also minimizes the useful
original clauses, because original clauses can also contain
redundant literals. Second, a learnt clause is minimized at
most once in Maple LCM, whereas a clause, either learnt
or original, can be minimized more than once in Maple CM
under some conditions specified in terms of the decrease of
its LBD.

The rationale behind the re-minimization of a clause is
that further redundant literals can be detected, using unit
propagation, after adding additional learnt clauses since its
last minimization. Maple CM re-minimizes a learnt (orig-
inal) clause if its LBD was decreased two (three) times
since its last minimization, because UP probably becomes
more powerful in this case. The condition to re-minimize
an original clause is stronger because an original clause
presumably contains fewer redundant literals.

A particular case is a clause with LBD 1. This clause
is probably very powerful in unit propagation and the LBD
value cannot be decreased anymore. So, a clause will be re-
minimized if its LBD becomes 1 since its last minimization,
no matter how many times the LBD value was decreased.

3. Distance: A New Branching Heuristic Based
on Implication Graphs in Maple CM Dist

Standard branching heuristics in CDCL solvers, such
as VSIDS [5] and LRB [1], select a variable based on
the behaviour of this variable in the past. However, at the
beginning of search, very few things have happened. So,
Maple CM Dist uses a new heuristic, different from VSIDS
and LRB, at the beginning of the search.

Maple CM Dist constructs a complete implication
graph for each conflict of the first 50,000 conflicts detected
during the search. Each vertex in the implication graph
corresponds to a variable and also to a clause. For each
variable in the graph, we can collect the set D of clauses in
all paths from the variable to the conflict. We then say that
the variable depends on the clauses in D to contribute to the
conflict. A variable depending on fewer clauses to contribute
to a conflict is probably more powerful to contribute to a
future conflict. Thus, the cardinality |D| can be viewed as
a measure of the strength with which a variable contributes
to a conflict. Unfortunately, we are not aware of any linear-
time algorithm that computes |D| for all the variables.

Therefore, Maple CM Dist constructs the complete im-
plication graph and computes the number of vertices in the
longest path, denoted by longDist[x], from each variable
x to the conflict, based on the observation that a vari-
able depending on many clauses probably needs a longer
path to reach the conflict. Then, it computes the Distance
score for each variable x, denoted by distAct[x] and ini-
tialized to 0, as follows: When x contributes to a conflict,
Maple CM Dist calls Algorithm 2 to increment distAct(x)
by inc ∗ 1/longDist[x], where inc is a global variable

initialized to 1, and dist Decay is intended to give more
importance to recent conflicts, similarly to the var decay
parameter in VSIDS. The default value of dist Decay is
0.95 as the default value of var decay in MiniSAT.

Algorithm 2: updateDistanceScore(C)
Input: C, a clause in which all literals are falsified

by the current partial assignment
begin1

Construct the complete implication graph G that2
falsifies C and compute longDist[x] for each
variable x occurring in G;
for each variable x occurring in G do3

distAct[x]←4
distAct[x] + inc ∗ 1/longDist[x];

inc← inc/dist Decay;5
end6

Maple CM Dist computes distAct[x] and branches on
the variable x with maximum distAct[x] only for the
first 50,000 conflicts. We limit this heuristic to the first
50,000 conflicts because constructing the complete implica-
tion graph is time-consuming, and VSIDS and LRB perform
well after 50,000 conflicts. Maple CM Dist behaves like
Maple CM after the first 50,000 conflicts.

4. Blocking Restarts and Re-ordering UIPs in
Maple CM ordUIP

The block-restart mechanism was introduced in Glu-
cose 2.1 [6] for postponing a restart, when the solver is esti-
mated to be approaching a global solution using a heuristic,
in order to find quickly the global solution.

In Maple CM ordUIP, we push further the block-restart
mechanism of Glucose. When the solver derives a conflict
but is estimated to be approaching a global solution, it is
forbidden to restart the search at least for the next 50 con-
flicts. In addition, it constructs a complete implication graph
of the conflict to collect the first UIP (Unique Implication
Point [7]) of every decision level involved in the conflict, in
order to re-order these first UIPs and re-produce the conflict
as described below.

Recall that a UIP in a decision level is a literal l such
that every path from the decision literal of the level to the
conflict goes through l. The first UIP (denoted by 1UIP) in
the level is the closest UIP to the conflict in the level. Literal
l1 is said to imply literal l2 if l2 occurs in a path from l1 to
the conflict. When the solver identifies the 1UIP in a level,
it estimates also the total number of vertices it implies.

Then, the solver backtracks so that all decisions in the
complete implication graph are canceled, and continues the
search from there by picking the decision literals from the
collected 1UIPs in decreasing order of the total number of
literals they imply, breaking ties in favor of the 1UIP with
the smallest decision level in the implication graph.

Concretely, each time Maple CM ordUIP derives a con-
flict after the first 105 conflicts, it calls Algorithm 3 before
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analyzing the conflict. In the algorithm, nbC For restart
and nbC For reOrder are two global variables that are
incremented by 1 upon each conflict. Restart is possible
only if nbC For Restart is greater than 50. In other words,
when the 1UIPs are re-ordered, the next restart or the
next 1UIP re-ordering is possible only after the next 50
conflicts. If unit propagation derives an empty clause C ′,
function unitPropagate(l) returns C ′; otherwise, it returns
“no conflict”.

Algorithm 3: reOrderUIPs(C)
Input: C, a clause in which all literals are falsified

by the current partial assignment
Output: C ′, a clause in which all literals are falsified

by the current partial assignment or the
value “no conflict”

begin1
if nbC For ReOrder> 50 and the number of2
assigned variables is two times greater than the
average number of assigned variables in the
previous 5000 conflicts then

nbC For Restart ← 0;3
nbC For ReOrder ← 0;4
Empty the vector UIPs;5
Construct the complete implication graph G6
from C and push the 1UIP of each decision
level of G into vertor UIPs;
Sort vector UIPs in decreasing order of the7
number of literals the 1UIPs imply, breaking
ties in favor of the 1UIP with the smallest
decision level;
Backtrack to cancel all decisions in G;8
for i← 0 to UIPs.size() do9

if UIPs[i] is free then10
C ′ ← unitPropagate(UIPs[i]);11
if C ′ is a falsified clause then12

Return C ′;13

Return “no conflict”;14

end15

If Algorithm 3 returns a falsified clause C ′,
Maple CM ordUIP analyzes C ′ instead of C. The
conflict analysis stops at the last picked 1UIP, which
implies fewer literals among the picked literals and may
result in a shorter learnt clause. Otherwise, it continues
the search by picking the decision literals among the free
literals as Maple CM.

The intuition behind re-ordering the 1UIPs can be de-
scribed as follows: When a solver is approaching a global
solution but derives a conflict, the conflict may simply be
due to the ordering of the 1UIPs in the complete implication
graph. In fact, the 1UIPs constitute the direct reason of the
conflict. The 1UIP implying the greatest number of literals
is probably the most constrained and should be satisfied first,
leading more easily to the global solution.

5. Blocking Restarts and Re-ordering UIPs in
Maple CM ordUIP+

Maple CM, like MapleCOMSPS DRUP and
Maple LCM, first uses the LRB heuristic for 2500
seconds and switches to the VSIDS heuristic for the
remaining run time. It appears that the LRB heuristic is
more powerful to solve satisfiable instances, whereas the
VSIDS heuristic is more powerful to solve unsatisfiable
instances. So, we implement Maple CM ordUIP+, that is
Maple CM ordUIP but selects the conflict to re-order the
1UIPs differently in function of the branching heuristic
used to derive the conflict.

• In a restart using VSIDS, Maple CM ordUIP+ re-
orders the 1UIPs implying the first conflict as in
Algorithm 3.

• In a restart using LRB, Maple CM ordUIP+ be-
haves as Maple CM ordUIP.

Intuitively, the first conflict is the most important in a
restart, because it determines the search direction in the
restart. Maple CM ordUIP+ aims at reinforcing the capa-
bility of the VSIDS heuristic to find a global solution of
the instance, by branching first on the 1UIPs implying the
greatest number of literals in a restart.
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Abstract—This document describes the parallel SAT solver
TOPOSAT2 and the Glucose Hack which we submit to the SAT
Competition 2018.

I. INTRODUCTION

This short paper describes the GLUCOSE hack and the
version of our parallel solver TOPOSAT2 submitted to the
SAT Competition 2018.

II. GLUCOSE HACK

Our Glucose Hack is considered with the preprocessor,
which mainly is code from MINISAT [1] and SATElite [2].
This code still contains old comments like

// FIX: this is too inefficient but would be nice
to have (properly implemented)
// if (!find(subsumption queue, &c))

We suggest to improve the preprocessor code at three places.
1) We add a boolean flag to the clause header which pre-

vents clauses from being put on the subsumption queue
several times. Though not a big issue on many formulas,
this actually is a big problem on some formulas which
may cause the preprocessor to be stuck for hours.

2) The subsumption check for clauses a, b has a worst-case
running time of |a|·|b|. Using a simple lookup-array, this
can be reduced to |a|+ |b|.

3) The same applies for the merge-procedure which com-
putes the resolvent of two clauses.

We think that this is particularly interesting as many current
solvers are built on top of MINISAT and GLUCOSE. The
required changes are rather small (the edit distance is 892),
and can easily be applied to every solver which is built upon
MINISAT and GLUCOSE.

III. TOPOSAT2

TOPOSAT2 was mainly designed to run in a massively-
parallel environment (> 1000 solver threads). Thus, we are
curious to see how it performs on a shared-memory system.
It is built on top of Glucose 3.0, but uses a bug-fixed version
of the lockless clause sharing mechanism from ManySAT [3]
for communication on one compute node rather than the lock-
based implementation from Glucose Syrup. The communica-
tion between nodes uses MPI, but this is not used for the
competition.

It comes with two features which we hope will be especially
useful in the competition.

A. Diversification

The first portfolio solvers used different sequential solvers,
or different settings of one sequential solver. We somewhat go
back to the roots and diversify the search of the solver threads
by the following parameters.

• Branching: Some solver threads use VSIDS, whereas
other use LRB [4], as this branching heuristic was quite
successful in the past SAT competitions. As VSIDS still
works better on a significant amount of benchmarks, we
use both.

• Restarts: We use the inner/outer restart scheme [5], Luby
restarts, and the adaptive restart strategy from GLU-
COSE [6].

• Learnt Clause DB management: Some solver threads use
a scheme similar to the one suggested in [7]: Clauses with
very low LBD (≤ 3) are stored permanently. Clauses of
intermediate LBD are stored at least for some time, and
there is a small activity-based clause storage. The LBD of
clauses imported from other solver threads are initialised
with the size of the clause. Thus, the clause must be used
in order to update its LBD, and allowing it to be stored for
a longer time. Some other solver threads use the default
clause management strategy from GLUCOSE [8].

B. Lifting exported clauses

Wieringa et. al suggested to use some threads of a parallel
SAT solver to strengthen learnt clauses [9]. Similarly, in [10]
some of the learnt clauses are strengthened during search.
We use this technique when exporting clauses. Whenever one
solver threads learns a clause of sufficiently low LBD, it is
stored in an extra buffer. After the next restart, the clauses
from this buffer are strengthened, and the results are exported
to the other solver threads.

C. Submitted versions

We submit one version of TOPOSAT2 to the SAT Competi-
tion. However, we submit two different scripts to start it with
different parameters. These parameters are concerned with the
way in which clauses are import by the solver. The first version
uses a variation of the clause import strategy of MANYSAT.
During search, the trail size is monitored. Clauses are imported
when some time has passed and the solver is somewhat close
to the root of the search tree. In this way, we try to prevent
the solver from backtracking too often when imported clauses
are unit under the current assignment.
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The second version imports more often. However, clauses
which are unit under the current assignment and would thus
require a backtrack are imported as one-watched clauses as in
Glucose Syrup [11].
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8-12, 2012. Proceedings, ser. Lecture Notes in Computer Science,
M. Milano, Ed., vol. 7514. Springer, 2012, pp. 118–126.

[7] C. Oh, “Between SAT and UNSAT: the fundamental difference in CDCL
SAT,” in Theory and Applications of Satisfiability Testing - SAT 2015
- 18th International Conference, Austin, TX, USA, September 24-27,
2015, Proceedings, ser. Lecture Notes in Computer Science, M. Heule
and S. Weaver, Eds., vol. 9340. Springer, 2015, pp. 307–323.

[8] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July
11-17, 2009, C. Boutilier, Ed., 2009, pp. 399–404.

[9] S. Wieringa and K. Heljanko, “Concurrent clause strengthening,” in
Theory and Applications of Satisfiability Testing - SAT 2013 - 16th In-
ternational Conference, Helsinki, Finland, July 8-12, 2013. Proceedings,
ser. Lecture Notes in Computer Science, M. Järvisalo and A. V. Gelder,
Eds., vol. 7962. Springer, 2013, pp. 116–132.

[10] M. Luo, C. Li, F. Xiao, F. Manyà, and Z. Lü, “An effective
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Abstract—Varisat is a CDCL-based SAT solver written from
scratch in the programming language Rust. It is still in an early
stage of development, offering little beyond the essentials. Never-
theless, it hopefully shows that Rust is a suitable programming
language for implementing a SAT solver.

I. INTRODUCTION

Most state-of-the-art SAT solvers are implemented in C or
C++. This is not surprising, as optimizing data layout, memory
access patterns and other low-level optimizations are important
for the performance of SAT solvers.

Recently the programming language Rust [1] has seen
increased use in areas where before mostly C and C++ were
popular. Rust is a systems programming language with a focus
on memory safety and performance, which is sponsored by
Mozilla Research.

Varisat is my attempt to implement a SAT solver in Rust,
which I began on one hand to become familiar with the details
of implementing a modern SAT solver and on the other hand
to show that Rust is a suitable language for implementing a
SAT solver.

II. IMPLEMENTED TECHNIQUES

Varisat is a CDCL-based SAT solver [2] written from
scratch. It it is still in an early stage of development and
implements only basic techniques. Among the already im-
plemented techniques are: VSIDS branching heuristic, Luby
series restarts, minimization of learned clauses [3], LBDs [4]
and a 3-Tiered learned clause database [5].

No pre- or inprocessing techniques are implemented yet.
Also Varisat has seen very little benchmarking and thus very
little parameter tuning.

III. SOURCE CODE

The source code is licensed under the MIT license and avail-
able at https://jix.one/sc18/varisat. It uses some Rust features
that are not yet part of the stable release. The submitted version
was developed using the nightly release 2018-02-08.
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satUZK-ddc at SAT Competition 2018
Alexander van der Grinten

University of Cologne

Abstract—We describe the current version of our distributed
satUZK-ddc solver. Since SAT Competition 2017, we have aug-
mented the solver with a parallel preprocessing technique that we
call parallel distillation. This algorithm performs the same CNF
simplifications as the conventional CNF distillation algorithm,
namely removing or shortening clauses of the input formula
according to certain redundancy properties. While sequential
CNF distillation is known to be expensive, due to parallelism,
it becomes feasible to preprocess even large real-world CNF
formulas with our algorithm.

I. OVERVIEW

We submitted two solver configuration to the SAT Com-
petition 2018. Both configurations are based on the satUZK-
ddc engine that was also submitted to last year’s SAT Com-
petition [1]. The first configuration is the current default
configuration of satUZK-ddc. This configuration corresponds
to the satUZK-ddc configuration from last year, with minor
adjustments and bug fixes. The second configuration (satUZK-
ddc --ddist) is augmented with our parallel distillation
preprocessing technique. In contrast to last year, we did not
submit a sequential version as our sequential algorithm is
mostly unchanged from the SAT Competition 2017 version.

II. DDC ALGORITHM

The distributed divide and conquer (DDC) algorithm was
shortly described in [1] and is described in more detail in [2].
We summarize the main ideas of the algorithm here.

The DDC algorithm uses a parallel lookahead technique
to partition the search space until there are at least as many
subproblems as processors. Those subproblems are solved
by CDCL. In contract to Cube and Conquer [3], the DDC
algorithm does not rely on work stealing for load balancing;
instead, the algorithm maintains a distributed divide and con-
quer tree and routes individual processors through this tree.
As the routing procedure uses only local information and does
not require extensive synchronization, this approach is able to
fully utilize all processors at every step of the algorithm.

The basic algorithm is extended with preprocessing, inpro-
cessing, an LBD [4] score that takes the incremental nature of
the algorithm into account, clause sharing and diversification.
Again, for details on those extensions, we refer to [2]. satUZK-
ddc is an MPI-based implementation of the DDC algorithm
that builds on our earlier CDCL implementation in satUZK.

III. PARALLEL DISTILLATION

Our most significant contribution to the SAT Competition
2018 is the parallel distillation algorithm described below.

CNF distillation: In the following, we shortly review
the traditional distillation [5] procedure1 and state it in the
language of [7], [8]. Let φ be the input formula (in CNF)
and let C ∈ φ be a clause. If C ′ ( C is a subset of C and
unit propagation on φ \ {C} ∪ {{¯̀} : ` ∈ C ′} assigns all
literals of C to false, then C can be shortened to C ′ while
preserving equivalence. This technique is called asymmetric
literal elimination (ALE). Note that C ′ is not necessarily
unique for each C ∈ φ (not even if we require C ′ to be
minimal). Thus, implementations of ALE usually pick an
arbitrary suitable C ′.

On the other hand, if unit propagation on φ\{C}∪{{¯̀} : ` ∈
C} leads to a conflict, then C can be removed from φ while
preserving equivalence. This process is called asymmetric
tautology elimination (ATE).

Distillation is a systematic procedure to perform ALE and
ATE. To accomplish this, unit propagation is used to detect
opportunities for ALE and ATE. In particular, unit propagation
is applied at least once for each clause in φ. In the sequential
case, this is the main bottleneck of the algorithm; therefore,
our parallel version tries to parallelize the detection of ALE
and ATE opportunities.

Commutation properties: In order to parallelize the dis-
tillation algorithm, we observe the following commutation
properties (see [2] for details):

ALE vs. ALE If ALE transforms φ ∪ {C1} to φ ∪ {C ′
2}

and also φ∪{C2} to φ∪{C ′
2} (i.e. ALE shortens the clauses

C1 to C ′
1 and C2 to C ′

2, respectively), then the two formulas
φ ∪ {C1, C2} and φ ∪ {C ′

1, C
′
2} are equivalent2.

ALE vs. ATE If ALE transforms φ∪{C} to φ∪{C ′} and
ATE transforms φ∪{D} to φ (i.e. ATE removes the clause D),
then the two formulas φ∪{C,D} and φ∪{C ′} are equivalent.
Specifically, ALE can only expand the set of literals that are
fixed by unit propagation on φ ∪ {{¯̀} : ` ∈ D}.

ATE vs. ATE On the other hand, if ATE transforms φ ∪
{D1} to φ and also φ ∪ {D2} to φ, the two formulas φ ∪
{D1, D2} and φ are not necessarily equivalent. However, they
are not equivalent only if D1 participates in the conflict3 which
is derived by applying unit propagation to φ ∪ {{¯̀} : ` ∈
D2}, or vice versa. Thus, this situation must be detected to
determine if replacing φ ∪ {D1, D2} by φ is sound.

Parallel algorithm: Let p denote the number of proces-
sors that are available to the solver. Initially, each processor has
its own copy of the input formula φ. The parallel distillation
algorithm now works as follows: The set of clauses of φ is

1We use the term distillation synonymously with vivification [6].
2This is not particularly surprising: In fact, this property holds true for every

equivalence-preserving simplification technique that only shortens clauses.
3We say that a clause participates in a conflict if it is part of the conflict

graph [9].

Proceedings of SAT Competition 2018: Solver and Benchmark Descriptions, volume B-2018-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2018.

50



2

partitioned into p subsets φ1, . . . , φp. φi will be the set of
clauses that are processed by processor i. For each clause
C ∈ φi, processor i tries to shorten C to a subset S(C) ( C
by applying ALE to φ. If C cannot be shortened by ALE,
we set S(C) = C. Furthermore, processor i determines a flag
r(C) that is true if and only if C can be removed from φ
using ATE. If that is the case, a set D(C) is determined. D(C)
consists of exactly those clauses that participate in the conflict
which is derived by unit propagation on φ ∪ {{¯̀} : ` ∈ C}.
We call D(C) the set of dependencies of C. Indeed, because
of the last commutation property, the removal of C depends
on the clauses from D(C) in the following sense: C can be
safely removed from φ if all clauses from D(C) are retained
in φ. We remark that our algorithm parallelizes at the clause
level; like in the case of traditional distillation, ALE and ATE
checks are performed by standard unit propagation.

After the computation is finished on all processors, the infor-
mation S(C), r(C) and D(C) are gathered on all processors,
for every clause C ∈ φ. The processors agree on an order of
those clauses and all processors inspect the clauses in the same
order. Now, for each clause C ∈ φ, the flag r(C) is checked
to determine if C is a candidate for removal. If r(C) is true,
all processors remove C if and only if (i) no dependency
in D(C) has already been removed and (ii) C was not a
dependency of any clause that has already been removed. If
C is not removed, we replace C by S(C). The commutation
properties discussed above ensure that this algorithm results
in a formula that is equivalent to the input formula φ. As
all processors apply modifications in the same order, the
resulting formulas are identical. Note that the effectiveness
of the algorithm potentially depends on the order in which
clauses are inspected; however, optimizing this order did not
turn out to be necessary in practice.

Optimizations: We discuss some modifications of the
parallel distillation algorithm that aim to improve its empirical
performance. First, we modify the algorithm to not remove
binary clauses using ATE. This allows us to omit binary
clauses from the D(C) sets. In the case of real-world CNF
instances, this often yields a significant size reduction, as
more than half of the clauses are binary in many of those
instances. We note that this optimization only marginally
decreases the strength of distillation when it is combined with
the (considerably faster) unhiding [10] algorithm: In fact, we
can expect that many binary clauses that are removed by
ATE can also be removed by the weaker hidden tautology
elimination (HTE) technique. The established failed literal
elimination (FLE) and hyper-binary-resolution (HBR) [11]
techniques allow to turn additional ATEs into HTEs.

Secondly, we want to avoid removing useful clauses using
ATE. For example, note that ATE would be strong enough
to remove all learned clauses from a formula. Certainly, re-
moving all learned clauses impairs the performance of CDCL
solvers. Thus, instead of removing clauses after ATE, we
only mark them as non-redundant and depend on the usual
clause database reduction heuristics to remove those clauses
eventually.

Furthermore, to increase the opportunities for ALE and
ATE, we apply a parallel FLE algorithm before running

parallel distillation. This FLE algorithm is a probing-based
algorithm that relies on the tree-based lookahead approach [11]
to check, for each literal `, if ` is a failed literal. If that is
indeed the case, the clause {`} is added to the input formula
φ. As adding the clauses to φ can only enlarge the set of failed
literals, it is possible to traverse multiple lookahead trees in
parallel while preserving correctness.

Finally, instead of partitioning φ into p fixed subsets, we
employ a work-stealing load balancer to assign clauses to
processors. As we expect the running time of unit propagations
to differ substantially depending on affected variables and
clauses, this improves processor utilization compared to static
partitioning.
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Abstract—This note describes the SAT solver “ReasonLS”,
which is a hybrid solver that combines a semi-exact CDCL based
solver and a local search solver.

I. INTRODUCTION

An interesting direction for solving SAT is to combine the
CDCL method and the local search method, as these two
methods have different advantages. Previous works in this
direction usually use a CDCL solver as a black box. On the
other hand, our recent works show that initial assignments
generated by unit propagation based procedures can signif-
icantly improve the performance of local search on solving
industrial MaxSAT instances, even leading the algorithm to
find the optimal solution [1].

ReasonLS is a hybrid solver that combines a CDCL based
semi-exact solver and a local search solver. We develops a
backtracking procedure by modifying a CDCL solver to find
a complete assignment with high consistency, which is then
handed to a local search solver trying to find a solution.
ReasonLS works by interleaving between theses two solvers.
In each round (except for the first one), some restarting
strategies are used to restart the backtracking procedure.
ReasonLS uses a parameter (a real number from 0 to 1)
to control to what level of consistency that we require the
backtracking style procedure to find, and once the procedure
finds such a complete assignment, it returns the assignment.
Then ReasonLS calls a local search to find a solution, using
the assignment found by the backtracking procedure.

ReasonLS can also be seen as a generalization of both
CDCL solvers and local search solvers. When the parameter
is set to 0, ReasonLS becomes a local search solver; when the
parameter is set to 1, it becomes a CDCL solver.

II. A SEMI-EXACT PROCEDURE

We modify a CDCL solver to make it allow conflicts in
some cases. We use a parameter p (a real number from 0 to
1), and if the solver finds a path that assigns at least a portion
p of the variables without generating a conflict, then it will
finish the path by assigning the remaining variables, even if it
may lead to conflicts.

In ReasonLS, we develop our semi-exact solver by modi-
fying the CDCL solver named Maple LCM Dist [2], which
is a state of the art CDCL solver and won the main track of
SAT Competition 2017.

III. THE LOCAL SEARCH ALGORITHM

As for the local search solver used in ReasonLS, we
develop a variant of CCAnr [3] by forbidding the aspiration
mechanism. The algorithm is describes as follows.

Starting from an initial assignment, the algorithm flips a
variable in each step. Firstly, if there are configuration changed
variables, it picks a configuration changed variable with the
greatest score, breaking ties by favoring the oldest variable.
Otherwise, the clause weights are updated according to a
Threshold-based Smoothed Weighting (TSW) scheme; then,
it picks a random unsatisfied clause and selects a variable in
the clause with the greatest score, breaking ties by favoring
the oldest variable.

IV. MAIN PARAMETERS

There is one parameter p for controlling the cooperation of
the backtracking style procedure and the local search solver.
There are three parameters in the local search solver : the
average weight threshold parameter γ, and the two factor
parameters ρ and q. All of the three parameters are for the
TSW weighting scheme. The parameters are set as follows:
γ = 50; ρ = 0.3; q = 0.7. Meanwhile, there are a button
ASP to control whether turn on or turn off the process of
aspiration of local search, and a parameter V SIDS to decide
when change search strategy of CDCL to VSIDS.

In our solver, we call the ReasonLS solver to solve an
instance with different parameter settings as follow. Each
thread runs the solver with one setting.

1) p = 1; V SIDS = 2500s (ReasonLS becomes the
CDCL solver named Maple LCM Dist, thus no need
to set the parameters for local search.)

2) p = 1; V SIDS = 0s.
3) p = 0; γ = 50; V SIDS = 2500s; ASP = on; ρ = 0.3;

q = 0.7.
4) p = 0; γ = 50; V SIDS = 2500s; ASP = on; ρ = 0.3;

q = 0.
5) p = 0; γ = 50; V SIDS = 2500s; ASP = off ; ρ =

0.3; q = 0.7.
6) p = 0; γ = 50; V SIDS = 2500s; ASP = off ; ρ =

0.3; q = 0.
7) p = 0; γ = 300; V SIDS = 2500s; ASP = on; ρ =

0.3; q = 0.7.
8) p = 0; γ = 300; V SIDS = 2500s; ASP = on; ρ =

0.3; q = 0.
9) p = 0; γ = 300; V SIDS = 2500s; ASP = off ;

ρ = 0.3; q = 0.7.
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10) p = 0; γ = 300; V SIDS = 2500s; ASP = off ;
ρ = 0.3; q = 0.

11) p = 0.9; γ = 50; V SIDS = 2500s; ASP = on;
ρ = 0.3; q = 0.7.

12) p = 0.9; γ = 50; V SIDS = 2500s; ASP = on;
ρ = 0.3; q = 0.

13) p = 0.9; γ = 50; V SIDS = 2500s; ASP = off ;
ρ = 0.3; q = 0.7.

14) p = 0.9; γ = 50; V SIDS = 2500s; ASP = off ;
ρ = 0.3; q = 0.

15) p = 0.9; γ = 300; V SIDS = 2500s; ASP = on;
ρ = 0.3; q = 0.7.

16) p = 0.9; γ = 300; V SIDS = 2500s; ASP = on;
ρ = 0.3; q = 0.

17) p = 0.9; γ = 300; V SIDS = 2500s; ASP = off ;
ρ = 0.3; q = 0.7.

18) p = 0.9; γ = 300; V SIDS = 2500s; ASP = off ;
ρ = 0.3; q = 0.

19) p = 0.9; γ = 50; V SIDS = 2500s; ASP = on;
ρ = 0.3; q = 0.7. (increase the number of flips of local
search, and so dose the 20th.)

20) p = 0.9; γ = 50; V SIDS = 2500s; ASP = on;
ρ = 0.3; q = 0.7. (set more strict limit on the time of
local search.)

21) p = 0.7; γ = 50; V SIDS = 2500s; ASP = on;
ρ = 0.3; q = 0.7.

22) p = 0.7; γ = 50; V SIDS = 0s; ASP = on; ρ = 0.3;
q = 0.7.

23) p = 0.5; γ = 50; V SIDS = 2500s; ASP = on;
ρ = 0.3; q = 0.7.

24) p = 0.5; γ = 50; V SIDS = 0s; ASP = on; ρ = 0.3;
q = 0.7.

V. IMPLEMENTATION DETAILS

ReasonLS is implemented in C++. It is developed based on
the codes of Maple LCM Dist [2] and CCAnr solver [3].

VI. SAT COMPETITION 2018 SPECIFIES

ReasonLS is submitted to “Parallel Track”. It is compiled
by g++ with the ’O3’ optimization option.

Its running command is: ”./ReasonLS-run.sh $1”. $1 is the
absolute path of input file. For a given input file ”∼/sc/a.cnf”,
the call command is ”./ReasonLS-run.sh ∼/sc/a.cnf ”.
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Abstract—The benchmark suite of the Random Track of SAT
Competition 2018 can be partitioned into three parts. The first
part consists of uniform random k-SAT instances described
below. The second part consists of benchmarks generated by
a tool by Tomáš Balyo [1]. These benchmarks are similar as the
ones used in the 2016 SAT Competition. The third part consists
of random benchmarks contributed by Adrian Balint described
on page 61 of these proceedings.

INTRO

This description explains how the benchmarks were created
of the uniform random categories of the SAT Competition
2018. These categories consists of uniform random k-SAT
instances with k ∈ 3, 5, 7 – Boolean formulas for which
all clauses have length k. For each k the same number of
benchmarks have been generated.

GENERATING THE SATISFIABLE BENCHMARKS

The satisfiable uniform random k-SAT benchmarks are gen-
erated for two different sizes: medium and huge. The medium-
sized benchmarks have a clause-to-variable ratio equal to the
phase-transition ratio1. The number of variables differs for all
the benchmarks. The huge random benchmarks have a few
million clauses and are therefore as large as some of the
application benchmarks. For the huge benchmarks, the ratio
ranges from far from the phase-transition ratio to relatively
close, while for each k the number of variables is the same.
Table I shows the details.

No filtering was applied to construct the competition suite.
As a consequence, a significant fraction (about 50%) of the
medium-sized generated benchmarks is unsatisfiable.

TABLE I
PARAMETERS OF GENERATING THE SATISFIABLE BENCHMARKS

k medium (40) huge (20)

3
r = 4.267
n ∈ {5000, 5200, . . . , 12800}

r ∈ {3.86, 3.88, . . . , 4.24}
n = 1, 000, 000

5
r = 21.117
n ∈ {200, 210, . . . , 590}

r ∈ {16, 16.2, . . . , 19.8}
n = 250, 000

7
r = 87.79
n ∈ {90, 92, . . . , 168}

r ∈ {55, 56, . . . , 74}
n = 50, 000

1The observed clause-to-variable ratio for which 50% of the uniform
random formulas are satisfiable. For most algorithms, formula generated closer
to the phase-transition ratio are harder to solve.
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Divider and Unique Inverse Benchmarks
Submitted to the SAT Competition 2018

Armin Biere
Institute for Formal Models and Verification

Johannes Kepler University Linz

Our benchmark submission for the SAT 2018 Competition
consist of two sets of word-level properties originally formu-
lated as SMT problems in the quantifier-free theory of bit-
vectors in BTOR [1] or SMTLIB [2] format. We then use our
SMT solver Boolector [3] to synthesize AIGs [4], which in
turn were translated to DIMACS format.

DIVISION

The first set specifies word-level (modulo 2n) division using
multiplication for various bit-widths n in BTOR format [1].

We consider both unsigned and signed dividers. For un-
signed division we check validity over unsigned n-bit bit-
vectors (“ /u ” denotes unsigned division):

y 6= 0 ⇒ (x − (x /u y) · y) <u y

As common in bit-vector logics arithmetic operators take two
n-bit bit-vectors as input and produce one n-bit bit-vector as
output, with the effect, that there is no difference between
signed and unsigned versions of multiplication nor subtraction.

For signed division it is more complicated and we have to
take signs into account (now “ /s ” denotes signed division):

y 6= 0 ⇒ |x − (x /s y) · y| <u |y|
where “| |” is actually implemented with an if-then-else oper-
ator testing the argument to be smaller than zero (using signed
“<s” comparison) and if so negating it (two-complement).
These signed benchmarks are as a consequence much harder.

Supported by FWF, NFN Grant S11408-N23 (RiSE).

INVERSION

The second set of benchmarks checks that bit-vector mul-
tiplication modulo 2n has unique inverses for odd numbers,
which translates to the following SMT benchmark for n = 32
in SMTLIB format [2]:

(set-logic QF_BV)
(declare-fun x () (_ BitVec 32))
(declare-fun y () (_ BitVec 32))
(declare-fun z () (_ BitVec 32))
(assert (= (bvmul x y) (bvmul x z)))
(assert ((_ extract 0 0) x))
(assert (distinct y z))
(check-sat)
(exit)
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I. INTRODUCTION

Elementary (i.e. one-dimensional two-state) cellular au-
tomata are systems with simple rules that can nevertheless
show complex behavior. These benchmarks encode the prob-
lem of finding a sequence of predecessor states for a given
target state and elementary automaton rule R. To allow for a
finite encoding of states, we assume that all states, target and
predecessors, have a fixed period n.

We first generate a pseudo-random state X from a seed s.
Starting from X and advancing it f times, we generate a target
state Y . We then ask whether there is an initial state I , that
evolves to Y in exactly r steps. The sequence of states from
I to Y does not have to contain the state X , but when r ≤ f
such a sequence does exist.

The generated instance for the parameters (R,n, f, r, s) is
named ecarev-R-n-f-r-s.cnf.

II. SAT-ENCODING

We need to consider the sequence of states S1, . . . , Sr,
where S1 = I and Sr = Y . Each state Si is represented by the
cell values for n consecutive cells Si,1, . . . , Si,n. These cell
values correspond to variables in the SAT-encoding. Since the
states are periodic, Si,j = Si,j+n holds and we will use both
to represent the same variable in the encoding.

To encode the constraint that the states follow the automata
rule, we need to encode the state transition Si+1 = TR(Si).
This relation can be decomposed into

∧

1≤j≤n

Si+1,j = tR(Si,j−1, Si,j , Si,j+1)

where tR is specified by the automaton’s rule table. It is
encoded as a conjunction of all implied minimal clauses.

We then constrain the states to follow the automata’s evo-
lution by ∧

1≤i<r

Si,j = Si,j+n.

Finally we add unit clauses to constrain Sr = Y .
The implementation of this encoding is written in Python 3

and available at https://jix.one/sc18/ecarev.py.

III. SELECTED BENCHMARKS

The submitted benchmarks are for the rule-110 automaton,
which is capable of universal computation. The state period
n was chosen large enough to make an exhaustive search
infeasible. Apart from that the parameters were manually
chosen to make the instances not too easy or too hard and
to make it difficult to guess the outcome from the parameters
alone.
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Verifying Simple Floating-Point Programs
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Abstract—A brief description of the instances we submitted to
the SAT Competition 2018 encoding bounded model checking of
floating-point C programs.

I. BACKGROUND

Floating point data types use a finite number of bits to
represent the set of real numbers within a fixed interval.
Unlike its integer counterpart, not every real number within
the interval has an exact representation in its floating point
type. For example, the real number 0.1 does not have an exact
representation in common binary floating point types.

Computer programs with floating point arithmetic fre-
quently suffer from a (quiet) inexact exception where the
floating point operation results in a real value that does not
have an exact representation in its floating point type. A
rounding decision must be made to set the result of the
operation to a representable floating point value.

Floating-point operations and rounding behavior are dictated
by the IEEE 754 standard and behave unintuitively under
certain circumstances. Programmers who treat floating-point
numbers as real numbers are surprised to learn that basic prop-
erties of real numbers such as associativity and distributivity
are not respected in the floating-point space due to the required
rounding. This often leads to hard-to-debug errors that expose
themselves in floating-point programs under rare conditions.
Additionally, floating-point adds special representations like
not-a-number (NaN), positive and negative zero, and positive
and negative infinity, which can cause several subtle errors
when assuming similar behavior to familiar integer data types.

In program verification over integer data types, SMT
solvers with rich theories can be used to guide a SAT solver.
Due to the unintuitive nature of floating point and lack
of established properties, solvers must use a more direct
translation to SAT which makes the solvability of floating
point instances desirable.

II. BENCHMARKS

We use CBMC (C Bounded Model Checker) by Kroening
and Tautschnig [1] to translate 46 simple C-programs written
by us involving floating-points into to SAT. These programs
test for:

• Floating-point associative property
– Exact associativity of + and ×.

– Associativity of + and × with various acceptable
relative error bounds.

• Floating-point commutative property
• Floating-point distributive property

– Exact distributivity.
– Distributivity with various acceptable relative error

bounds.
• Finding floating-point roots of a quadratic polynomial

– Testing that the roots are exact.
– Testing that the roots when evaluated are within a

threshold from zero.
• Inexactness of the square-root of floating-point numbers
• Triangle Inequality

1) Exact triangle inequality.
2) Triangle inequality with various added fixed con-

stants for acceptable error.
• Perceptron classification with floating-points over a fixed

data set.
The original C-programs are available here:

https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/
floatingpointsource.zip?attredirects=0&d=1. We used the
command cbmc source.c --dimacs to generate the
CNF files. The floating-point operations in the C programs
are essentially bit-blasted down to propositional logic by
CBMC. If the CNF is satisfiable, then the assertion in the C
code is satisfiable at the point of execution. Otherwise the
CNF is unsatisfiable.
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Abstract—GrandTour1 is a puzzle game, which is usually
played in a rectangular grid of points, where a player is posed
with the challenge to find a closed loop that goes through each
point exactly once. In GrandTour, the player is allowed to
connect any pair of points to solve the game. We consider
a slight variation of the GrandTour puzzle game, where a
player is allowed to connect a restricted subset of pairs of
points, as there are obstacles between some of the points. We
call this puzzle GrandTour with obstacles or GrandTourobs.
For SAT competition-2018, we provide 20 SAT instances of the
GrandTourobs puzzle.

I. ENCODING AND INSTANCE GENERATION

a) GrandTourobs as Hamiltonian Cycle Problem: The
problem of determining whether a Hamiltonian cycle exists in
a given graph is a well-known NP-complete problem. This
problem deals with the following question: is there a cycle in
a given graph, in which each vertex is visited exactly once?
While solving a GrandTour puzzle is equivalent to finding
a Hamiltonian cycle in a complete graph2 induced from its
completely connected puzzle grid, solving GrandTourobs

problem is equivalent to finding a Hamiltonian cycle in an
incomplete graph, which is induced from its incompletely
connected puzzle grid. If a Hamiltonian cycle exists in the
graph induced from the puzzle grid of a GrandTourobs

puzzle, then the puzzle is solvable, otherwise it is not.
b) Problem Encoding: A ground normal logic program

P can be converted into a SAT formula S, from the Clark’s
completion C of P . For example, the Clark’s completion of
P = {a ← b., a ← c.} is C = {a ← b ∨ c.} and C can be
expressed into the SAT formula S in CNF form as: (¬b∧¬c)∨
a ≡ (¬b∨ a)∧ (¬c∨ a). This technique is utilized in ASSAT
[1], a solver for answer set programs using a SAT solver as
the underlying inference engine. Given a ground normal logic
program P , ASSAT computes its stable models by using a
SAT solver. As part of its solving process, ASSAT produces a
SAT formula S from P . We exploit this feature of ASSAT to
generate SAT instances of the GrandTourobs problem from
the normal logic program encoding of Hamiltonian cycle as
proposed in [2].

c) Instance Generation: For the GrandTourobs, a puz-
zle grid of size x × y can be induced from a graph with n
nodes, where n is an even number and n = x∗y. The website

1http://curiouscheetah.com/Museum/Puzzle/Grandtour
2In a complete graph, each pair of vertexes are connected by an edge.

for ASSAT3 contains 32 normal logic program instances for
the Hamiltonian cycle problem from two graphs with 60
and 50 vertexes, respectively. We treat these instances as the
GrandTourobs instances of grid size 10 × 6 and 10 × 5,
respectively.

TABLE I: Details of the 20 SAT instances for the
GrandTourobs benchmark; An instance gto pxcy is based
on a grid which has x points and y pairs of points are
connected.

Problem/Grid Size Variables/Clauses MiniSAT cpuTime (s) MiniSAT Results
gto p60c229 / 10× 6 1011/3473 101.95 UNSAT
gto p60c231 / 10× 6 1015/3493 351.36 UNSAT
gto p60c241 / 10× 6 1046/3673 481.81 UNSAT
gto p60c239 / 10× 6 1038/3627 717.90 UNSAT
gto p60c231 1 / 10× 6 1019/3517 833.89 UNSAT
gto p60c243 / 10× 6 1054/3721 881.04 UNSAT
gto p60c233 / 10× 6 1023/3533 1177.71 UNSAT
gto p60c234 / 10× 6 1027/3577 1897.77 UNSAT
gto p60c235 / 10× 6 1031/3583 3360.01 UNSAT
gto p60c238 / 10× 6 1043/3649 4232.67 UNSAT
gto p60c295 / 10× 6 635/3330 5000 UNKNOWN
gto p60c343 / 10× 6 729/4563 5000 UNKNOWN
gto p50c291 / 10× 5 607/3813 5000 UNKNOWN
gto p50c345 / 10× 5 703/5413 5000 UNKNOWN
gto p50c311 / 10× 5 623/4137 5000 UNKNOWN
gto p50c312 / 10× 5 643/4325 5000 UNKNOWN
gto p50c314 / 10× 5 635/4319 5000 UNKNOWN
gto p50c314 1 / 10× 5 639/4339 5000 UNKNOWN
gto p50c345 / 10× 5 605/3664 5000 UNKNOWN
gto p50c307 / 10× 5 613/4036 5000 UNKNOWN

These 32 instances are known to be hard for SAT solvers.
In our experiment, MiniSat could not solve any of those
within 5000 seconds. So, these instances are not interesting
for the SAT competition-2018. As per the requirement of
the benchmark submission, to generate 10 interesting SAT
instances, we took a graph G, namely hard.1.graph in the
ASSAT website, and repeated the following steps until we get
10 interesting instances: (i) randomly remove a few arcs to
produce a new graph G′, (ii) generate the SAT instance S
from the normal logic program encoding of the Hamiltonian
cycle program along with G′ by using ASSAT, and (iii) test
S with MiniSat to see if it is interesting. The first 10 rows
in Table 1 show these interesting instances. The next 10 rows
give the details of the 10 hard instances taken from the ASSAT
website.

3http://assat.cs.ust.hk/hardsat.html
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Abstract—Multiplying two polynomials of degree n − 1 can
need n2 coefficient products, because each polynomial of degree
n − 1 has n coefficients. If the coefficients are real numbers,
the Fourier transformation allows to reduce the number of
necessary coefficient products to O(n∗ log(n)). However, when
the coefficients are not real numbers (e.g., the coefficients can
be a matrix), the Fourier transformation cannot be used. In this
case, reducing the number of necessary coefficient products can
significantly speed up the multiplication of two polynomials.
In this short paper, we reduce the problem of multiplying two
polynomials of degree n−1 with t (t ≤ n2) coefficient products
to SAT and provide 20 new crafted SAT instances.

1. Introduction

A simple example of polynomial multiplication can be
expressed using Equation 1:

(ax+ b)(cx+ d) = acx2 + (ad+ bc)x+ bd (1)

The trivial multiplication of the two polynomials of
degree 1 needs 4 coefficient products: {ac, ad, bc, bd}. A
smart multiplication of the two polynomials needs only 3
coefficient products {ac, (a+ b)(c+d), bd}, as expressed in
Equation 2:

(ax+ b)(cx+d) = acx2+
(
(a+ b)(c+d)−ac− bd

)
x+ bd

(2)
In Equation 2, we need more addition and subtraction

operations than in Equation 1. However, multiplication is
much more costly than addition and subtraction. So, we can
multiply two polynomials of degree 1 more quickly using
Equation 2 than using Equation 1.

In the general case, we want to multiply two polynomials
of degree n− 1 using fewer than n2 coefficient products. If
the coefficients are real numbers, the Fourier transformation
allows to reduce the number of necessary coefficient prod-
ucts to O(n ∗ log(n)). However, when the coefficients are
not real numbers (e.g., the coefficients can be a matrix), the
Fourier transformation cannot be used.

In the sequel, we describe how to reduce the problem
of multiplying two polynomials of degree n − 1 using t
(t ≤ n2) coefficient products to SAT. When the obtained
SAT instance is satisfiable, the SAT solution gives a way to
multiply two polynomials of degree n−1 using t coefficient
products. When the obtained SAT instance is unsatisfiable,
we know that more than t coefficient products are needed.
We refer to [1], [2] for other efficient algorithms for poly-
nomials.

2. SAT Encoding of polynomial Multiplication
Using t Products

Consider two polynomials of degree n− 1:

A(x) = an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0

B(x) = bn−1x
n−1 + bn−2x

n−2 + · · ·+ b1x+ b0

Their product is

A(x)×B(x) = c2n−2x
2n−2+ c2n−3x

2n−3+ · · ·+ c1x+ c0

We want to compute A(x) × B(x) using t (t ≤ n2)
coefficient products: P1, P2, . . . , Pt, where each Pl (1 ≤
l ≤ t) is of the form (a′1 + a′2 + · · ·)(b′1 + b′2 + · · ·)
with a′1, a

′
2, . . . ∈ {an−1, an−2, . . . , a0} and b′1, b

′
2, . . . ∈

{bn−1, bn−2, . . . , b0}. Addition and subtraction of these
products give the coefficients ck (0 ≤ k ≤ 2n − 2) of
A(x)×B(x). The problem becomes to determinate a′i and
b′j for each product. In order to solve the problem, we first
define the following Boolean variables.

• ail = 1 iff ai is involved in product Pl;
• bjl = 1 iff bj is involved in product Pl;
• ckl = 1 iff product Pl is used to compute ck;
• xijkl = 1 iff ai and bj are involved in product Pl,

and product Pl is used to compute ck;

We then define the clauses of the CNF, which encode
the following properties:

• xijkl ≡ ail ∧ bjl ∧ ckl
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• For each i and j (0 ≤ i, j ≤ n− 1) and for each k
(0 ≤ k ≤ 2n− 2) such that i+ j 6= k, if ai and bj
are involved in product Pl (i.e., ail ∧ bjl is implied)
and Pl is used to produce ck, then the product of
ai and bj should be eliminated by subtraction using
another product Pl′ involving ai and bj . If i+j = k,
one product of ai and bj should remain in ck. So,

t∑

l=1

xijkl mod 2 =

{
0 if i+ j = k
1 otherwise

3. Set of Submitted Instances

We generated 20 SAT instances, using the encoding of
the previous section, by varying n and t as follows:

• n = 8, t ∈ {60, 61, 62, 63}
• n = 11, t ∈ {118}
• n = 13, t ∈ {165, 166}
• n = 14, t ∈ {194}
• n ∈ {23, 27, 29, 37, 39, 42, 44, 45, 49, 51, 52, 54},

t = 6

Each combination of n and t gives an instance poln-t.
Table 1 shows, for each one of the 20 generated in-

stances, its number of variables and clauses, the status of the
formula (satisfiable, unsatisfiable or unknown), and the time
needed by MiniSat [3] to solve the instance on a computer
with Intel Westmere Xeon E5-2680 of 2.40GHz and 20GB
of memory under Linux. The cutoff time is 3600 seconds.

TABLE 1. INFORMATION ABOUT THE GENERATED INSTANCES.

Instance #Variables #Clauses Satisfiability Time
Nb8T60 114180 453120 unkown timeout
Nb8T61 116131 460800 unkown timeout
Nb8T62 118082 468480 SAT 2737
Nb8T63 120033 476160 unkown timeout
Nb11T118 597127 2378376 unkown timeout
Nb13T165 1389990 5543200 unkown timeout
Nb13T166 1398491 5577000 unkown timeout
Nb14T194 2048090 8170848 unkown timeout
Nb23T6 214791 952200 UNSAT 243.4
Nb27T6 348375 1545480 UNSAT 467.6
Nb29T6 432123 1917480 UNSAT 694.1
Nb37T6 900315 3997480 UNSAT 1441
Nb39T6 1054983 4684680 UNSAT 1343
Nb42T6 1318710 5856480 UNSAT 2354
Nb44T6 1516938 6737280 UNSAT 2295
Nb45T6 1623099 1623099 UNSAT 2184
Nb49T6 2097243 9315880 UNSAT 4301
Nb51T6 2365527 10508040 UNSAT 3185
Nb52T6 2507850 11140480 UNSAT 3310
Nb54T6 2809398 12480480 UNSAT 3249
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Abstract—Although a relativized pigeonhole principle (RPHP)
formula has been proven to require resolution proofs of size
roughly nk, if using its symmetry, a CDCL SAT solver solve
easily it. To destroy its symmetry, here we add extra constraints
so that the formula generated is a non-symmetry CNF.

I. I NTRODUCTION

The SAT-encoding of relativized pigeonhole principle
(RPHP) formulas yields a symmetry CNF [1]. In theory, such
a CNF requires resolution proofs of size roughlynk [2].
However, if using a preprocessor such as BreakID [3] to detect
symmetry and construct symmetry breaking formulas, it has
polynomial-size bounded-depth proofs, and is solved easily by
a general CDCL SAT solver [4]. In this documentation, we
encode RPHP with additional constraints. The resulting CNF
is non-symmetry.

II. SAT ENCODING OFRPHPWITH EXTRA CONSTRAINTS

A relativized pigeonhole principle (RPHP) formula is de-
fined as whetherk pigeons can fly intok − 1 holes vian
“resting places”. We denote such a claim byRPHP k,n

k−1. Let
[n] = {1, 2, . . . , n}. Let p and q be functions:[k] → [n] and
[n]→ [k], respectively. Furthermore, assume thatp is one-to-
one and defined on[k], and q is one-to-one and defined on
the range ofp. We encodep , q and a superset of the range
of p by Boolean variablespu,v, qv,w and rv. RPHP k,n

k−1 is
encoded as follows.

pu,1 ∨ pu,1 ∨ · · · ∨ pu,n 1 ≤ u ≤ k
pu,v ∨ pu′,v for all u 6= u′, v
pu,v ∨ rv for all u, v
rv ∨ qv,1 ∨ qv,1 ∨ · · · ∨ qv,k−1 1 ≤ v ≤ n
rv ∨ rv′ ∨ qv,w ∨ qv′,w for all v 6= v′, w

Let m = n/2. We add the following constraint clauses to
RPHP k,n

k−1.

pu,v ∨ xv 1 ≤ u ≤ k, 1 ≤ v ≤ m
xv ∨ rv′ ∨ qv,w ∨ qv′,w 1 ≤ v ≤ m < v′ ≤ n, 1 ≤ w < k
xv ∨ rv′ ∨ pv,w ∨ pv′,w 1 ≤ v ≤ m < v′ ≤ n, 1 ≤ w < k

wherexv is a additional variable different frompu,v, qv,w and
rv. Clearly, RPHP k,n

k−1 with the above constraint clauses is
not symmetry.

RPHP k,n
k−1 can be transformed into a 3-CNF by using

extension variables to break up the long clauses. Clause
pu,1 ∨ pu,1 ∨ · · · ∨ pu,n may be transformed into

pu,1 ∨ pu,1 ∨ yu,2
yu,v ∨ pu,v+1 ∨ yu,v+1 2 ≤ v ≤ n− 3
yu,n−2 ∨ pu,n−1 ∨ yu,n

Similarly, we can transformrv ∨ qv,1 ∨ qv,1 ∨ · · · ∨ qv,k−1 and
rv ∨ rv′ ∨ qv,w ∨ qv′,w into a 3-CNF.

Although the 3-CNF version ofRPHP is also symmetry,
not all symmetry relations were detected by BreakID [3]. So
we submit also the 3-CNF version ofRPHP to the SAT
competition 2018.
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Hiding solutions in a randomly generated formula can be
accomplished in different ways. An overview of the different
possibilities is given in [1] Section 2.2.3.

One of the most promising approaches is the one proposed
in [4]. The authors define a single parameter q. A randomly
generated clause that has t satisfied literals in the planted
solution is accepted with a probability proportional to qt.
The authors call this model the q-hidden model. To generate
balanced instances (positive and negative literal probability
should be the same) the authors show that q should be set to
q = (

√
5− 1)/2 = 0.618, which is the golden ratio. To derive

this value we need some equations. In case of 3-SAT we have
seven possible clauses that have one, two or three satisfied
literals in the planted solution. For each type of clause we
assign the probabilities p1 for 1-satisfied and accordingly p2
and p3. Due to probability normalization we have the equation:

3p1 + 3p2 + p3 = 1 (1)

For an arbitrary position in the clause we have to balance the
probabilities of negative and positive occurrence of a variable.
Setting the sum of these probabilities to be equal, we can add
the additional equation:

p1 + 2p2 + p3 = 2p1 + p2 (2)

Adding to the Equations 1, 2 the additional equations:

p2/p1 = p3/p2 = q (3)

and then solving this equation system, we will get the same
value for q as mentioned above.

The value of q, which depends on k, can be computed as
the positive root of the equation:

(1− q)(1 + q)k−1 − 1 = 0 (4)

To compute the values of pt we can use the general form of
the normalization Equation 1, which then results in:

pt =
qt

(1 + q)k − 1
(5)

k-SAT 3 4 5 6 7
q 0.6180 0.8392 0.9275 0.9659 0.9835

TABLE I
THE POSITIVE ROOTS OF EQUATION 5 FOR DIFFERENT VALUES OF k.

Table I shows the values of q for typical k-SAT. Smaller
values for q will result in problems where local search
algorithms are more likely to move away from the hidden
solution then being attracted by it. This type of problems is
also called deceptive formulas. A systematic construction of
deceptive formulas that were shown to be very hard for local
search solvers are also presented in [3].

A simple uniform k-SAT generator can be altered to gen-
erate planted solution instances according to the q-hidden
model by adding an additional condition that checks if the
clause is to be accepted or should be dropped depending
on the planting model. After computing the number of true
literals in the clause, the clause will be accepted according
to an acceptance probability, which can be computed from
the probability distribution (p1, . . . , pk) by normalizing the p-
values with respect to p1. This will result in an acceptance
probability distribution of (1, q, q2, . . . , qk−1) where the value
of q can be found in Table I.

For the SAT Competition 2018 we submit ten 3-SAT
instances (r=4.267, n= 7000), ten 5-SAT instances (r=21.117,
n=250) and ten 7-SAT instances (r=87.79, n=120) generated
according to the q-hidden model.
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Abstract—Deciding the k-colorability of a graph is a well-
known NP-complete problem with symmetry properties.

I. DESCRIPTION

The k-colorability problem consists of deciding whether
there exists an assignment (a coloring) of a set of k colors
to a graph’s nodes, such that a different color is assigned to
two neighboring nodes.

An instance of this problem is encoded to a CNF-formula
by introducing Boolean variables xij that denote whether node
i is assigned color j, by constructing for each node a clause
that requires at least one color to be assigned to the node,
and by introducing for each edge in the graph a binary clause
excluding that its incident nodes are assigned the same color
(for each color).

The k-colorability problem exhibits strong symmetry prop-
erties, as permuting the colors in a coloring has no influence
on whether neighboring nodes are colored differently. In other
words, the colors are interchangeable, and the larger the set
of colors (the higher k), the more this symmetry property will
hinder search.

Aside from symmetry induced by color interchangeability,
certain node permutations might also induce symmetry, de-
pending on the structure of the graph at hand.

To generate 20 k-coloring encodings, we took graphs from
Michael Trick’s Operations Research Page 1. For each graph,
we chose k such that the instance became unsatisfiable: too
few colors are available for a valid coloring. In Table I, the
specific k-values for each instance are presented.

Finally, we composed an instance set where Glucose 4.0 was
able to solve 9 instances on an Intel(R) Xeon(R) E3-1225 cpu
using 16 GB of memory and a timeout of 5000 seconds.

1mat.gsia.cmu.edu/COLOR/instances.html

instance name k-value Glucose 4.0 solve time (s)
anna.col.11.cnf 10 101
david.col.11.cnf 10 103
huck.col.11.cnf 10 145
jean.col.10.cnf 9 8
le450 15a.col.15.cnf 14 5000+
le450 15b.col.15.cnf 14 5000+
le450 15c.col.15.cnf 14 5000+
le450 25a.col.25.cnf 24 5000+
le450 25b.col.25.cnf 24 5000+
le450 25d.col.25.cnf 24 5000+
myciel5.col.6.cnf 5 17
queen10 10.col.10.cnf 9 8
queen11 11.col.11.cnf 10 116
queen12 12.col.12.cnf 11 2429
queen13 13.col.13.cnf 12 5000+
queen14 14.col.14.cnf 13 5000+
queen15 15.col.15.cnf 14 5000+
queen8 12.col.12.cnf 11 2081
school1 nsh.col.14.cnf 13 5000+
school1.col.14.cnf 13 5000+
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Searching for a Unit-Distance Graph with
Chromatic Number 6
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Abstract—This benchmark suite consists of determining
whether some unit-distance graphs can be colored with 5 colors.
Starting with a hard to color unit-distance graph, smaller graphs
are produced by removing dozens of vertices at a time. All
instances are satisfiable.

INTRO

The chromatic number of the plane (CNP), a problem first
proposed by Edward Nelson in 1950 [1], asks how many colors
are needed to color all points of the plane such that no two
points at distance 1 from each other have the same color.
Early results showed that at least four and at most seven colors
are required. By the de Bruijn–Erdős theorem, the chromatic
number of the plane is the largest possible chromatic number
of a finite unit-distance graph [2]. The Moser Spindle, a unit-
distance graph with 7 vertices and 11 edges, shows the lower
bound [3], while the upper bound is due to a 7-coloring of the
entire plane by John Isbell [1].

In a recent breakthrough for this problem, Aubrey de Grey
improved the lower bound by providing a unit-distance graph
with 1581 vertices with chromatic number 5 [4]. This graph
was obtained by shrinking the initial graph with chromatic
number 5 consisting of 20 425 vertices. The 1581-vertex graph
is almost minimal: at most 4 vertices can be removed without
introducing a 4-coloring of the remaining graph. The discovery
by de Grey started a Polymath project to find smaller unit-
distance graphs with chromatic number 5 and a graph with
chromatic number 6 or 7.

PRELIMINARIES

A graph for which all edges have the same length is called
a unit-distance graph. A lower bound for CNP of k colors
can be obtained by showing that a unit-distance graph has
chromatic number k.

Given two sets of points A and B, the Minkowski
sum of A and B, denoted by A ⊕ B, equals
{a+ b | a ∈ A, b ∈ B}. Consider the sets of points
A = {(0, 0), (1, 0)} and B = {(0, 0), (1/2,

√
3/2)}, then

A⊕B = {(0, 0), (1, 0), (1/2,
√
3/2), (3/2,

√
3/2)}.

Given a positive integer i, we denote by θi the rotation
around point (0, 0) with angle arccos( 2i−1

2i ) and by θki the
application of θi k times. Let p be a point with distance

√
i

from (0, 0), then the points p and θi(p) are exactly distance
1 (unit distance) apart and thus would be connected with an
edge in a unit-distance graph.

Fig. 1. A 4-coloring of the graph S199.

CHROMATIC NUMBER 6?

A recent article [5] produced an interesting symmetric
graph, known as S199. This graph is shown in Figure1. Finding
a 5-coloring of graph S199⊕θ4(S199) is hard. The benchmark
suite contains 20 satisfiable formulas that encode whether
subgraphs of this graph have a 5-coloring. Advances in solving
these benchmarks may help finding a unit-distance graph with
chromatic number 6.
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Abstract—The main security properties of Bitcoin, censorship
resistance and an immutable historical ledger of transactions
is enforced by its mining algorithm. By design this ”proof of
work” requires a large amount of computational power to verify
transactions. While current mining algorithms are based on brute
force, this document briefly describes how the same problem
can be solved via SAT. Most details of this document are taken
from [1].

I. BITCOIN MINING

A Bitcoin mining program essentially performs the follow-
ing (in pseudo-code):

nonce = MIN
while(nonce < MAX):
if sha(sha(block+nonce)) < target:

return nonce
nonce += 1

The task is to find a nonce which, as part of the bitcoin
block header, hashes below a certain value.

This is a brute force approach to something like a preimage
attack on SHA-256. The process of mining consists of finding
an input to a cryptographic hash function which hashes below
or equal to a fixed target value. At every iteration the content
to be hashed is slightly changed to find a valid hash; there’s no
smart choice in the nonce. The choice is essentially random
as this is the best one can do on such hash functions.

In [1], Heusser proposed an alternative mining algorithm
which does not perform a brute force search. Instead, we
utilize tools from the program verification domain to find
bugs or prove properties of programs, see as example [2].
To find the correct nonce or prove the absence of a valid
nonce, a model checker backed by a SAT solver is used
on a C implementation of the hashing. In contrast to brute
force, which actually executes and computes many hashes,
the new approach is symbolically executing the hash function
with added constraints that are inherent in the bitcoin mining
process. The submitted benchmark is based on CNFs created
by CBMC.

II. BITCOIN MINING USING SAT SOLVING AND MODEL
CHECKING

We take an existing C implementation of SHA-256 from a
mining program and strip away everything but the actual hash
function and the basic mining procedure of sha(sha(block)).
This C file is the input to CBMC [3].

By adding the right assumptions and assertions to the
implementation, i.e. MIN and MAX in the pseudo code above,
we direct the SAT solver to find a nonce. Instead of a loop
which executes the hash many times and a procedure which
checks if we computed a correct hash, we add constraints that
when satisfied implicitly have the correct nonce in its solution.

The assumptions and assertions can be broken down to the
following ideas:

• The nonce is modelled as a non-deterministic value
• The known structure of a valid hash, i.e. leading zeros,

is encoded as assumptions in the model checker
• An assertion is added stating that a valid nonce does not

exist
More details about the translation, and a basic solver prefor-
mance comparison can be found in the full article [1].

III. SAT COMPETITION SPECIFICS

The used input file for CBMC implements the described
analysis, and uses the so called genesis block of the bitcoin
blockchain, the very first block of the chain. We provide
a script that allows to produce a CNF based on the fact
whether the formula should be satisfiable, or unsatisfiable.
The formula is satisfiable, if the valid nonce is part of the
given range. Hence, the range is constructed such that the
valid nonce is right in the middle of the range to be analyzed.
For unsatisfiable formulas, the range starts right after the valid
nonce.

The code, as well as all scripts to create a benchmark are
available at https://github.com/jheusser/satcoin.
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Logical Cryptanalysis Benchmarks for
Classical and Modern Hash Functions
Alexander Scheel, Iowa State University, alexander.m.scheel@gmail.com

I. Introduction

This collection of benchmarks focuses on new techniques
in logical cryptanalysis for analyzing the structure of various
hash functions. We offer as a benchmark a new technique
analyzing the security of a hash function of the Merkle-
D̊amgard construction which are broadly applicable to
all such constructions and several benchmarks analyzing
the various security properties of the Keccak hash func-
tion. While the latter techniques have not yeilded useful
cryptanalysis results, they pose as a source of variable scal-
able benchmarks due to several choices of parameters (the
bitwidth, w and the number of rounds).

II. Classical Hash Functions

The MD4 hash function is composed of 48 iterated rounds,
each updating one of four 32-bit state variables [4]. While
authors such as I. Mironov have applied SAT solvers to
finding collisions given an existing differential path [3] and
D. Jovanović has applied applied SAT solvers to brute force
finding collisions and preimages in hash functions [2], these
techniques either require pre-existing collisions or are too
hard for SAT solvers on a large number of rounds.

One technique that is efficient for even a modest number
of rounds (≤ 28) is the notion of a differential family search.
In most cases, the differential path between two blocks b1
and b2 is the simple XOR difference between the intermedi-
ate rounds. For a given path p, there are often many such
blocks which create a collision; I. Mironov showed that SAT
solvers can find such blocks in MD4 and MD5 [3] relatively
quickly. We can extend this concept to differential paths
as well: given a differential path p, its family is the ordered
tuple of indices of the rounds with a non-zero difference.
For example, the family of the differential path introduced
by M. Schlaffer (in [6]) is:

(1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 35, 36)

Thus for a given family, f , there are multiple possible
differential paths which have a structure described by f .

By using this concept of a differential family, we can
divide the search space into multiple different SAT problems:
for a given number of rounds, r, there are 2r−4 possible
differential families (versus 232w−32 possible differential
paths). For r ≤ 28 it is possible to exhaustively search
large portions of the family space; for 32 ≤ r ≤ 36 it
becomes possible to find in select cases, and for r > 36, it
remains impossible in nearly all cases (due to the large time
limit). Our benchmarks are a sample of possible differential
families for r = 24, mixing both SAT and UNSAT results.
These benchmarks can be found in the families folder [5].

III. Modern Hash Functions

The notion of a differential family is not as useful for
Keccak due to the interaction between the sponge function
and the internal permutation functions causing the collision
space of families to be entirely different between successive
rounds. From an algebraic perspective, and to study the
security margin of the XOF consruct [1], it is important
to show that the Keccak round functions are bijective and
have high permutation order. Two of our benchmarks
(bijection and orders) model these problems in SAT. In
general, these instances are easy, but with a few notable
outliers: for w ≥ 4, proving the order of θ is 3w is difficult.
Note that this should simplify to showing that ∀x, x 6= x
is UNSAT, and thus should be relatively trivial; however
w = 4 produces runtimes in excess of one hour. Further,
anything later involving θ (such as ρ ◦ θ, etc.) also becomes
difficult for w ≥ 4.

In differences, we study the differential properties of
the permutation functions: for a given parameters x, y ≤
25w and round function f , we seek to find witnesses a and
b such that:

#(1, a⊕ b) = x

#(1, f(a)⊕ f(b)) = y

That is, find an input with difference x which produces
an output with difference y. There are a few interesting
outliers in this model: for w ≥ 4, most round functions
cannot be individually analyzed this way. Further, while π
is a permutation of the order of the bits (and thus does not
change the values of any bits), certain instances in w = 2
where x 6= y produce runtimes in excess of an hour. This
is surprising as the model is trivially SAT if and only if
x == y (and the model merely involves changing the orders
of variables).

The benchmarks in output-margins consider the effects
of the sponge function. Since all of the round functions are
bijective, if two inputs differ, the interal state of Keccak
must also differ. However, to produce a collision, only the
first y bits of the output must be the same. Thus we can
create a model for a given number of differences x, z ≤ 25w,
security margin y ≤ 25w, and round functions f :

#(1, axorb) = x

#(1, (f(a)xorf(b))[0 : y]) = z

If such a witness a and b exist for z = 0, then the input
difference x is possible of producing collisions at a security
margin m. Our provided benchmarks sample the space
for small values of w and relatively few round functions;
for w ≥ 16 and for any set of functions including θ, the
runtimes become exceedingly long.
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The benchmarks in xof-state attempt to recreate the
internal state of Keccak given a series of outputs from the
XOF (extensible output function at a given margin). In
general, this is possible for either small values of w or small
numbers of rounds (for larger values of w). However, care
must be selected in choosing the base seed, otherwise, there
can possibly be multiple satisfying seeds. However, for a
set of inputs with unique solution, these benchmarks can
be extended to contain the output from several rounds of
Keccak. After a threshhold dependent on the margin, these
are redundant information and thus test the SAT solvers
to work with larger models which overfit to the solution.

IV. Thanks

A special thanks to Mate Soos and his CryptoMiniSat
solver [7] for suggesting these problems be submitted as
benchmarks to the conference.

This work was completed as part of an Undergraduate
Honors Research project at Iowa State University under
the guidance of Eric W. Davis and as part of MATH 490:
Independent Study of SHA-3 under the guidance of Clifford
Bergman.
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Abstract—This family contains benchmarks from a tool that
assigns time-slots to students by given individual preferences
with local and global cost reduction. The problem is solved by
encoding a sequence of SAT problems with decreasing local and
global bounds.

I. INTRODUCTION

During each semester of our lecture, a number m of
tutors S = {s0, . . . , sm} is helping their fellow students
to comprehend the subject matter through lessons in small
tutorial groups. The trainer allocates n free time-slots T =
{t0, . . . , tn} (n ≥ m) in seminar rooms, in order to assign
exactly one time-slot to each tutor. Before an assignment
z : S → T can be determined, each tutor may order the avail-
able time-slots by their preference, such that prefered time-slot
come first in their list. A cost function c : S × T → N can be
deduced such that the cost of the assignment corresponds to
its postion in the ordered list.

The goal is to find an assignment z of time-slots to tutors,
such that their preferences are met as good as possible. In
order to achieve this, we use two subsequent optimization
rounds: one local and one global optimization round. In the
local optimization round, we search the smallest k1 and an
assignment z that satisfies max

s∈S
c(s, z(s)) ≤ k1. When the

optimal k1 is found, a second optimzation round begins. In
the global optimization round we search for the smallest k2
and an assignment z that satisfies

∑
s∈S

c(s, z(s)) ≤ k2, and that

still satisfies the local bound constraint with the previously
determined k1.

We use a tool [1] that generates a sequence of SAT problems
to find an optimal solution for this problem. It follows a quick
overview on the encoding.

II. ENCODING

So the input of our tool is a set of dates T = {t0, . . . , tn},
a set of students S = {s0, . . . , sm} and the set of preferences
c : S × T → N.

The goal in the local optimization round is to find an
assignment z : S → T and the minimal local bound k1 such
that max

s∈S
c(s, z(s)) ≤ k1 holds.

The goal in the subsequent global optimization round is to
find an assignment z : S → T and the minimal global bound

k2 such that
∑
s∈S

c(s, z(s)) ≤ k2 holds and the optimal local

bound k1 is still satisfied.

A. Boolean atoms

In our encoding we use n ×m Boolean atoms zst for the
assignment which shall be true iff date t gets assigned to
student s. For the costs we generate n × n × m Boolean
atoms csti such that for each student s and date t we have
n cost atoms that form a unary representation of the cost of
the assignment.

B. Constraints

Two basic contraints ensure that (A) z assigns there is
exactly one date to each student and (B) each assignment
produces the costs given by the preferences c.

(A) ∀s ∈ S,
∑
t∈T

zst = 1.

(B) ∀s ∈ S,∀t ∈ T, zst =⇒ ∧
i≤c(s,t)

csti.

C. Minimization

For optimization we use a cardinality encoding based on
parallel counters [2] on the bound variables. Optimization
is then realized incrementally calling a SAT solver with
decreasing bounds.

For the local optimization round we encode m cardinality
constraints, one for each individual students cost.
∀s ∈ S,

∑
t,i

csti ≤ k1, find smallest k1 ∈ [1, n]

In the global optimization round we use 1 cardinality
constraint over the sum of all costs.∑

s,t,i csti ≤ k2, find smallest k2 ∈ [m,n ∗m]

III. BENCHMARKS

We submitted a set of problems generated from real data
with 34 students with individual preferences on 35 available
dates. We sampled a sequence of 10 problems from the first
optimization round with different local bounds and a sequence
of 10 problems from the second optimization round with fixed
local bound and different global bounds.
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Abstract—We suggest some benchmarks based on a proposi-
tional encoding of tree decompositions of graphs.

I. INTRODUCTION

The treewidth of a graph is a fundamental property, often
used e.g. in the field of fixed-parameter tractability (FPT).
Intuitively speaking, it describes how tree-like a graph is.
Many NP-hard problems on graphs can be solved efficiently
if the input instance has bounded treewidth.

Recently, there have been two competitions seeking for
efficient methods for computing the tree decomposition of
graphs [1], seeking for both exact and heuristic algorithms.

Although the most successful exact approaches were based
on a combination of dynamic programming and decomposi-
tion, we submit some SAT encodings of tree decompositions.
Each of these formulas encodes the existence of a tree de-
composition of a certain width. They were generated using
Jdrasil [2]. The encoding basically describes an elimination or-
dering on a preprocessed version of the graph [3], from which
a tree decomposition can be derived efficiently. This encoding
is combined with some symmetry breaking constraints [2].

II. GRAPH SELECTION

For the generation of these formulas, we used
graph instances which are publicly available
at https://people.mmci.uni-saarland.de/∼hdell/pace17/
ex-instances-PACE2017-public-2016-12-02.tar.bz2. Out
of these graphs, we selected those for which Jdrasil can
compute an optimum tree decomposition within 1800 seconds.
As the size of the SAT encoding is cubic with respect to
the number of vertices, we only selected graphs with at
most 200 nodes (after preprocessing). For each of them, we
then created formulas which describe the existence of a tree
decomposition of width opt ± 3, where opt is the treewidth
of the respective graph.

III. BENCHMARK SELECTION

We generated 448 SAT formulas from 64 graphs (192
unsatisfiable, 256 satisfiable). For each of these formulas, we
ran Glucose 3.0 for 5 hours, and partitioned the formulas into
three categories:

• Easy: Solvable within 20 minutes.
• Medium: Solvable with 60 minutes.
• Hard: Solvable within 300 minutes.
• Very Hard: Not solved within 5 hours.

In order to provide formulas of different hardness, we then
chose 5 satisfiable and unsatisfiable formulas from each of
the first 3 categories. Furthermore, we chose the 5 smallest
and largest formulas from the last category, as those might be
especially interesting for the parallel track. This yields overall
40 formulas.

These formulas are available at http://www.informatik.
uni-kiel.de/∼the/sat benchmarks 2018 ehlers nowotka.tar.gz.

We are curious to see the difference of solver strengths on
this kind of formulas.
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Abstract—SAT-based bounded model checking translates
reachability questions over input programs into propositional
satisfiability. This submission of benchmarks presents formulae
generated by the C Bounded Model Checker (CBMC) on input
programs from the TACAS Software Verification Competition
(SV-COMP). CBMC uses MINISAT 2.2 as its default back-end,
and can optionally print the problems in DIMACS format.
Profiling on SV-COMP benchmarks reports that from 10 to
more than 50% of CBMC’s CPU time is spent in the SAT
solver. Improvements in SAT solvers directly translate to reduced
program analysis time.

I. THE CBMC TOOL

CBMC [1] is a bounded model checker for C, C++, and
Java programs. It supports C89, C99, most of C11 and most
compiler extensions provided by GCC and Visual Studio. It
also supports SystemC using Scoot. More recently, support for
Java bytecode has been added.

CBMC verifies array bounds (buffer overflows), pointer
safety, arithmetic exceptions and user-specified assertions.
Furthermore, it can check C and C++ for consistency with
other languages, such as Verilog. The verification is performed
by unwinding loops in the program and passing the resulting
equation to a decision procedure.

CBMC has built-in support to translate bit-vector equation
systems to gate level, and by default links in MINISAT 2.2 [2]
as a decision procedure. Interfaces to other SAT solvers
are implemented as well, as is an IPASIR interface. As an
alternative, CBMC supports external SMT solvers. Finally,
CBMC can also dump the formula in DIMACS format instead
of running a solver. This feature has been used to generate the
benchmark set.

II. SAT COMPETITION BENCHMARK

The collection of formulae in this benchmark submission
were generated from input problems of the TACAS Software
Verification Competition (SV-COMP) [3]. Each problem is the
output of CBMC for a given software benchmark, a bit-width
(32 or 64 bits), and a loop unwinding bound. To determine

these configuration parameters for the purpose of generating
SAT benchmarks, we provide a script run.sh that first
downloads the SV-COMP logs, extracts unwind values and
bit width for CBMC, and finally runs CBMC and gzips the
CNF. The script that is used to assemble the benchmark is
maintained at
https://github.com/tautschnig/sv-comp-sat.

To make the benchmarks more challenging, the unwind
bound has been increased by 2. The generation time for
CBMC has been limited to 30 seconds. Furthermore, any
generated CNF formula is dropped as soon as MINISAT 2.2
can solve it within 10 seconds.

III. AVAILABILITY

The source of CBMC can be found at https://github.com/
diffblue/cbmc. For more details, please have a look at http:
//www.cprover.org/cbmc/.
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