275 research outputs found

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Sensor-Based Legged Robot Homing Using Range-Only Target Localization

    Get PDF
    This paper demonstrates a fully sensor-based reactive homing behavior on a physical quadrupedal robot, using onboard sensors, in simple (convex obstacle-cluttered) unknown, GPS-denied environments. Its implementation is enabled by our empirical success in controlling the legged machine to approximate the (abstract) unicycle mechanics assumed by the navigation algorithm, and our proposed method of range-only target localization using particle filters. For more information: Kod*la

    Exact Robot Navigation Using Power Diagrams

    Get PDF
    We reconsider the problem of reactive navigation in sphere worlds, i.e., the construction of a vector field over a compact, convex Euclidean subset punctured by Euclidean disks, whose flow brings a Euclidean disk robot from all but a zero measure set of initial conditions to a designated point destination, with the guarantee of no collisions along the way. We use power diagrams, generalized Voronoi diagrams with additive weights, to identify the robot’s collision free convex neighborhood, and to generate the value of our proposed candidate solution vector field at any free configuration via evaluation of an associated convex optimization problem. We prove that this scheme generates a continuous flow with the specified properties. We also propose its practical extension to the nonholonomically constrained kinematics of the standard differential drive vehicle.For more information: Kod*la

    Advances in Robot Navigation

    Get PDF
    Robot navigation includes different interrelated activities such as perception - obtaining and interpreting sensory information; exploration - the strategy that guides the robot to select the next direction to go; mapping - the construction of a spatial representation by using the sensory information perceived; localization - the strategy to estimate the robot position within the spatial map; path planning - the strategy to find a path towards a goal location being optimal or not; and path execution, where motor actions are determined and adapted to environmental changes. This book integrates results from the research work of authors all over the world, addressing the abovementioned activities and analyzing the critical implications of dealing with dynamic environments. Different solutions providing adaptive navigation are taken from nature inspiration, and diverse applications are described in the context of an important field of study: social robotics

    Intelligent Escape of Robotic Systems: A Survey of Methodologies, Applications, and Challenges

    Full text link
    Intelligent escape is an interdisciplinary field that employs artificial intelligence (AI) techniques to enable robots with the capacity to intelligently react to potential dangers in dynamic, intricate, and unpredictable scenarios. As the emphasis on safety becomes increasingly paramount and advancements in robotic technologies continue to advance, a wide range of intelligent escape methodologies has been developed in recent years. This paper presents a comprehensive survey of state-of-the-art research work on intelligent escape of robotic systems. Four main methods of intelligent escape are reviewed, including planning-based methodologies, partitioning-based methodologies, learning-based methodologies, and bio-inspired methodologies. The strengths and limitations of existing methods are summarized. In addition, potential applications of intelligent escape are discussed in various domains, such as search and rescue, evacuation, military security, and healthcare. In an effort to develop new approaches to intelligent escape, this survey identifies current research challenges and provides insights into future research trends in intelligent escape.Comment: This paper is accepted by Journal of Intelligent and Robotic System

    Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions

    Get PDF
    Welcome to ROBOTICA 2009. This is the 9th edition of the conference on Autonomous Robot Systems and Competitions, the third time with IEEE‐Robotics and Automation Society Technical Co‐Sponsorship. Previous editions were held since 2001 in Guimarães, Aveiro, Porto, Lisboa, Coimbra and Algarve. ROBOTICA 2009 is held on the 7th May, 2009, in Castelo Branco , Portugal. ROBOTICA has received 32 paper submissions, from 10 countries, in South America, Asia and Europe. To evaluate each submission, three reviews by paper were performed by the international program committee. 23 papers were published in the proceedings and presented at the conference. Of these, 14 papers were selected for oral presentation and 9 papers were selected for poster presentation. The global acceptance ratio was 72%. After the conference, eighth papers will be published in the Portuguese journal Robótica, and the best student paper will be published in IEEE Multidisciplinary Engineering Education Magazine. Three prizes will be awarded in the conference for: the best conference paper, the best student paper and the best presentation. The last two, sponsored by the IEEE Education Society ‐ Student Activities Committee. We would like to express our thanks to all participants. First of all to the authors, whose quality work is the essence of this conference. Next, to all the members of the international program committee and reviewers, who helped us with their expertise and valuable time. We would also like to deeply thank the invited speaker, Jean Paul Laumond, LAAS‐CNRS France, for their excellent contribution in the field of humanoid robots. Finally, a word of appreciation for the hard work of the secretariat and volunteers. Our deep gratitude goes to the Scientific Organisations that kindly agreed to sponsor the Conference, and made it come true. We look forward to seeing more results of R&D work on Robotics at ROBOTICA 2010, somewhere in Portugal

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    A Scalable Safety Critical Control Framework for Nonlinear Systems

    Get PDF
    There are two main approaches to safety-critical control. The first one relies on computation of control invariant sets and is presented in the first part of this work. The second approach draws from the topic of optimal control and relies on the ability to realize Model-Predictive-Controllers online to guarantee the safety of a system. In the second approach, safety is ensured at a planning stage by solving the control problem subject for some explicitly defined constraints on the state and control input. Both approaches have distinct advantages but also major drawbacks that hinder their practical effectiveness, namely scalability for the first one and computational complexity for the second. We therefore present an approach that draws from the advantages of both approaches to deliver efficient and scalable methods of ensuring safety for nonlinear dynamical systems. In particular, we show that identifying a backup control law that stabilizes the system is in fact sufficient to exploit some of the set-invariance conditions presented in the first part of this work. Indeed, one only needs to be able to numerically integrate the closed-loop dynamics of the system over a finite horizon under this backup law to compute all the information necessary for evaluating the regulation map and enforcing safety. The effect of relaxing the stabilization requirements of the backup law is also studied, and weaker but more practical safety guarantees are brought forward. We then explore the relationship between the optimality of the backup law and how conservative the resulting safety filter is. Finally, methods of selecting a safe input with varying levels of trade-off between conservatism and computational complexity are proposed and illustrated on multiple robotic systems, namely: a two-wheeled inverted pendulum (Segway), an industrial manipulator, a quadrotor, and a lower body exoskeleton

    Integration of Action and Language Knowledge: A Roadmap for Developmental Robotics

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”This position paper proposes that the study of embodied cognitive agents, such as humanoid robots, can advance our understanding of the cognitive development of complex sensorimotor, linguistic, and social learning skills. This in turn will benefit the design of cognitive robots capable of learning to handle and manipulate objects and tools autonomously, to cooperate and communicate with other robots and humans, and to adapt their abilities to changing internal, environmental, and social conditions. Four key areas of research challenges are discussed, specifically for the issues related to the understanding of: 1) how agents learn and represent compositional actions; 2) how agents learn and represent compositional lexica; 3) the dynamics of social interaction and learning; and 4) how compositional action and language representations are integrated to bootstrap the cognitive system. The review of specific issues and progress in these areas is then translated into a practical roadmap based on a series of milestones. These milestones provide a possible set of cognitive robotics goals and test scenarios, thus acting as a research roadmap for future work on cognitive developmental robotics.Peer reviewe
    • 

    corecore