3,594 research outputs found

    Integrating statistical machine learning in a semantic sensor web for proactive monitoring and control

    Get PDF
    Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM2.5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM2.5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web

    A semantic sensor web framework for proactive environmental monitoring and control.

    Get PDF
    Doctor of Philosophy in Computer Science, University of KwaZulu-Natal, Westville, 2017.Observing and monitoring of the natural and built environments is crucial for main- taining and preserving human life. Environmental monitoring applications typically incorporate some sensor technology to continually observe specific features of inter- est in the physical environment and transmitting data emanating from these sensors to a computing system for analysis. Semantic Sensor Web technology supports se- mantic enrichment of sensor data and provides expressive analytic techniques for data fusion, situation detection and situation analysis. Despite the promising successes of the Semantic Sensor Web technology, current Semantic Sensor Web frameworks are typically focused at developing applications for detecting and reacting to situations detected from current or past observations. While these reactive applications provide a quick response to detected situations to minimize adverse effects, they are limited when it comes to anticipating future adverse situations and determining proactive control actions to prevent or mitigate these situations. Most current Semantic Sensor Web frameworks lack two essential mechanisms required to achieve proactive control, namely, mechanisms for antici- pating the future and coherent mechanisms for consistent decision processing and planning. Designing and developing proactive monitoring and control Semantic Sensor Web applications is challenging. It requires incorporating and integrating different tech- niques for supporting situation detection, situation prediction, decision making and planning in a coherent framework. This research proposes a coherent Semantic Sen- sor Web framework for proactive monitoring and control. It incorporates ontology to facilitate situation detection from streaming sensor observations, statistical ma- chine learning for situation prediction and Markov Decision Processes for decision making and planning. The efficacy and use of the framework is evaluated through the development of two different prototype applications. The first application is for proactive monitoring and control of indoor air quality to avoid poor air quality situations. The second is for proactive monitoring and control of electricity usage in blocks of residential houses to prevent strain on the national grid. These appli- cations show the effectiveness of the proposed framework for developing Semantic Sensor Web applications that proactively avert unwanted environmental situations before they occur

    Maintenance Knowledge Management with Fusion of CMMS and CM

    Get PDF
    Abstract- Maintenance can be considered as an information, knowledge processing and management system. The management of knowledge resources in maintenance is a relatively new issue compared to Computerized Maintenance Management Systems (CMMS) and Condition Monitoring (CM) approaches and systems. Information Communication technologies (ICT) systems including CMMS, CM and enterprise administrative systems amongst others are effective in supplying data and in some cases information. In order to be effective the availability of high-quality knowledge, skills and expertise are needed for effective analysis and decision-making based on the supplied information and data. Information and data are not by themselves enough, knowledge, experience and skills are the key factors when maximizing the usability of the collected data and information. Thus, effective knowledge management (KM) is growing in importance, especially in advanced processes and management of advanced and expensive assets. Therefore efforts to successfully integrate maintenance knowledge management processes with accurate information from CMMSs and CM systems will be vital due to the increasing complexities of the overall systems. Low maintenance effectiveness costs money and resources since normal and stable production cannot be upheld and maintained over time, lowered maintenance effectiveness can have a substantial impact on the organizations ability to obtain stable flows of income and control costs in the overall process. Ineffective maintenance is often dependent on faulty decisions, mistakes due to lack of experience and lack of functional systems for effective information exchange [10]. Thus, access to knowledge, experience and skills resources in combination with functional collaboration structures can be regarded as vital components for a high maintenance effectiveness solution. Maintenance effectiveness depends in part on the quality, timeliness, accuracy and completeness of information related to machine degradation state, based on which decisions are made. Maintenance effectiveness, to a large extent, also depends on the quality of the knowledge of the managers and maintenance operators and the effectiveness of the internal & external collaborative environments. With emergence of intelligent sensors to measure and monitor the health state of the component and gradual implementation of ICT) in organizations, the conceptualization and implementation of E-Maintenance is turning into a reality. Unfortunately, even though knowledge management aspects are important in maintenance, the integration of KM aspects has still to find its place in E-Maintenance and in the overall information flows of larger-scale maintenance solutions. Nowadays, two main systems are implemented in most maintenance departments: Firstly, Computer Maintenance Management Systems (CMMS), the core of traditional maintenance record-keeping practices that often facilitate the usage of textual descriptions of faults and actions performed on an asset. Secondly, condition monitoring systems (CMS). Recently developed (CMS) are capable of directly monitoring asset components parameters; however, attempts to link observed CMMS events to CM sensor measurements have been limited in their approach and scalability. In this article we present one approach for addressing this challenge. We argue that understanding the requirements and constraints in conjunction - from maintenance, knowledge management and ICT perspectives - is necessary. We identify the issues that need be addressed for achieving successful integration of such disparate data types and processes (also integrating knowledge management into the “data types” and processes)

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea

    Semantics-Empowered Big Data Processing with Applications

    Get PDF
    We discuss the nature of Big Data and address the role of semantics in analyzing and processing Big Data that arises in the context of Physical-Cyber-Social Systems. We organize our research around the Five Vs of Big Data, where four of the Vs are harnessed to produce the fifth V - value. To handle the challenge of Volume, we advocate semantic perception that can convert low-level observational data to higher-level abstractions more suitable for decision-making. To handle the challenge of Variety, we resort to the use of semantic models and annotations of data so that much of the intelligent processing can be done at a level independent of heterogeneity of data formats and media. To handle the challenge of Velocity, we seek to use continuous semantics capability to dynamically create event or situation specific models and recognize relevant new concepts, entities and facts. To handle Veracity, we explore the formalization of trust models and approaches to glean trustworthiness. The above four Vs of Big Data are harnessed by the semantics-empowered analytics to derive value for supporting practical applications transcending physical-cyber-social continuum
    corecore