948 research outputs found

    Modeling Clinicians’ Cognitive and Collaborative Work in Post-Operative Hospital Care

    Get PDF
    abstract: Clinicians confront formidable challenges with information management and coordination activities. When not properly integrated into clinical workflow, technologies can further burden clinicians’ cognitive resources, which is associated with medical errors and risks to patient safety. An understanding of workflow is necessary to redesign information technologies (IT) that better support clinical processes. This is particularly important in surgical care, which is among the most clinical and resource intensive settings in healthcare, and is associated with a high rate of adverse events. There are a growing number of tools to study workflow; however, few produce the kinds of in-depth analyses needed to understand health IT-mediated workflow. The goals of this research are to: (1) investigate and model workflow and communication processes across technologies and care team members in post-operative hospital care; (2) introduce a mixed-method framework, and (3) demonstrate the framework by examining two health IT-mediated tasks. This research draws on distributed cognition and cognitive engineering theories to develop a micro-analytic strategy in which workflow is broken down into constituent people, artifacts, information, and the interactions between them. It models the interactions that enable information flow across people and artifacts, and identifies dependencies between them. This research found that clinicians manage information in particular ways to facilitate planned and emergent decision-making and coordination processes. Barriers to information flow include frequent information transfers, clinical reasoning absent in documents, conflicting and redundant data across documents and applications, and that clinicians are burdened as information managers. This research also shows there is enormous variation in how clinicians interact with electronic health records (EHRs) to complete routine tasks. Variation is best evidenced by patterns that occur for only one patient case and patterns that contain repeated events. Variation is associated with the users’ experience (EHR and clinical), patient case complexity, and a lack of cognitive support provided by the system to help the user find and synthesize information. The methodology is used to assess how health IT can be improved to better support clinicians’ information management and coordination processes (e.g., context-sensitive design), and to inform how resources can best be allocated for clinician observation and training.Dissertation/ThesisDoctoral Dissertation Biomedical Informatics 201

    NEOREG : design and implementation of an online neonatal registration system to access, follow and analyse data of newborns with congenital cytomegalovirus infection

    Get PDF
    Today's registration of newborns with congenital cytomegalovirus (cCMV) infection is still performed on paper-based forms in Flanders, Belgium. This process has a large administrative impact. It is imortant that all screening tests are registered to have a complete idea of the impact of cCMV. Although these registrations are usable in computerised data analysis, these data are not available in a format to perform electronic processing. An online Neonatal Registry (NEOREG) System was designed and developed to access, follow and analyse the data of newborns remotely. It allows patients' diagnostic registration and treatment follow-up through a web interface and uses document forms in Portable Document Format (PDF), which incorporate all the elements from the existing forms. Forms are automatically processed to structured EHRs. Modules are included to perform statistical analysis. The design was driven by extendibility, security and usability requirements. The website load time, throughput and execution time of data analysis were evaluated in detail. The NEOREG system is able to replace the existing paper-based CMV records

    Utilization of automated location tracking for clinical workflow analytics and visualization

    Get PDF
    abstract: The analysis of clinical workflow offers many challenges to clinical stakeholders and researchers, especially in environments characterized by dynamic and concurrent processes. Workflow analysis in such environments is essential for monitoring performance and finding bottlenecks and sources of error. Clinical workflow analysis has been enhanced with the inclusion of modern technologies. One such intervention is automated location tracking which is a system that detects the movement of clinicians and equipment. Utilizing the data produced from automated location tracking technologies can lead to the development of novel workflow analytics that can be used to complement more traditional approaches such as ethnography and grounded-theory based qualitative methods. The goals of this research are to: (i) develop a series of analytic techniques to derive deeper workflow-related insight in an emergency department setting, (ii) overlay data from disparate sources (quantitative and qualitative) to develop strategies that facilitate workflow redesign, and (iii) incorporate visual analytics methods to improve the targeted visual feedback received by providers based on the findings. The overarching purpose is to create a framework to demonstrate the utility of automated location tracking data used in conjunction with clinical data like EHR logs and its vital role in the future of clinical workflow analysis/analytics. This document is categorized based on two primary aims of the research. The first aim deals with the use of automated location tracking data to develop a novel methodological/exploratory framework for clinical workflow. The second aim is to overlay the quantitative data generated from the previous aim on data from qualitative observation and shadowing studies (mixed methods) to develop a deeper view of clinical workflow that can be used to facilitate workflow redesign. The final sections of the document speculate on the direction of this work where the potential of this research in the creation of fully integrated clinical environments i.e. environments with state-of-the-art location tracking and other data collection mechanisms, is discussed. The main purpose of this research is to demonstrate ways by which clinical processes can be continuously monitored allowing for proactive adaptations in the face of technological and process changes to minimize any negative impact on the quality of patient care and provider satisfaction.Dissertation/ThesisDoctoral Dissertation Biomedical Informatics 201

    Methods to Facilitate the Capture, Use, and Reuse of Structured and Unstructured Clinical Data.

    Full text link
    Electronic health records (EHRs) have great potential to improve quality of care and to support clinical and translational research. While EHRs are being increasingly implemented in U.S. hospitals and clinics, their anticipated benefits have been largely unachieved or underachieved. Among many factors, tedious documentation requirements and the lack of effective information retrieval tools to access and reuse data are two key reasons accounting for this deficiency. In this dissertation, I describe my research on developing novel methods to facilitate the capture, use, and reuse of both structured and unstructured clinical data. Specifically, I develop a framework to investigate potential issues in this research topic, with a focus on three significant challenges. The first challenge is structured data entry (SDE), which can be facilitated by four effective strategies based on my systematic review. I further propose a multi-strategy model to guide the development of future SDE applications. In the follow-up study, I focus on workflow integration and evaluate the feasibility of using EHR audit trail logs for clinical workflow analysis. The second challenge is the use of clinical narratives, which can be supported by my innovative information retrieval (IR) technique called “semantically-based query recommendation (SBQR)”. My user experiment shows that SBQR can help improve the perceived performance of a medical IR system, and may work better on search tasks with average difficulty. The third challenge involves reusing EHR data as a reference standard to benchmark the quality of other health-related information. My study assesses the readability of trial descriptions on ClinicalTrials.gov and found that trial descriptions are very hard to read, even harder than clinical notes. My dissertation has several contributions. First, it conducts pioneer studies with innovative methods to improve the capture, use, and reuse of clinical data. Second, my dissertation provides successful examples for investigators who would like to conduct interdisciplinary research in the field of health informatics. Third, the framework of my research can be a great tool to generate future research agenda in clinical documentation and EHRs. I will continue exploring innovative and effective methods to maximize the value of EHRs.PHDInformationUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135845/1/tzuyu_1.pd

    The Effect of Unmet Expectations of Information Quality on Post-Acceptance Workarounds among Healthcare Providers

    Get PDF
    Electronic health record (EHR) systems have the capacity to aid clinical decision making by providing timely and relevant information about patients. However, providers’ lack of access to complete and up-to-date information in the required format hinders their ability to make timely decisions and often leads to misdiagnosis or redundant, duplicate tests. This research evaluates the extent to which pre-adoption information quality expectations are met and their effect on post-adoption satisfaction with an EHR system in terms of information quality and the workarounds that they may generate. The hypotheses were empirically tested through analysis of the responses of 64 healthcare stakeholders. The results indicate that lower information quality was perceived post-adoption than was expected at pre-adoption of the EHR system. Ultimately, workarounds were found largely to be a direct result of dissatisfaction with the EHR system. The results have implications for remedies to workarounds in terms of policy, training, and EHR system features modifications
    • 

    corecore