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Abstract

The ever-increasing amount of biomedical data is enabling new large-scale stud-

ies, even though ad hoc computational solutions are required. The most recent

Machine Learning (ML) and Artificial Intelligence (AI) techniques have been

achieving outstanding performance and an important impact in clinical research,

aiming at precision medicine as well as improving healthcare workflows. How-

ever, the inherent heterogeneity and uncertainty in the healthcare information

sources pose new compelling challenges for clinicians in their decision-making

tasks. Only the proper combination of AI and human intelligence capabili-

ties, by explicitly taking into account e↵ective and safe interaction paradigms,

can permit the delivery of care that outperforms what either can do sepa-

rately. Therefore, Human-Computer Interaction (HCI) plays a crucial role in

the design of software oriented to decision-making in medicine. In this work,

we systematically review and discuss several research fields strictly linked to

HCI and clinical decision-making, by subdividing the articles into six themes,

namely: Interfaces, Visualization, Electronic Health Records, Devices, Usability,

and Clinical Decision Support Systems. However, these articles typically present

overlaps among the themes, revealing that HCI inter-connects multiple topics.
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With the goal of focusing on HCI and design aspects, the articles under con-

sideration were grouped into four clusters. The advances in AI can e↵ectively

support the physicians’ cognitive processes, which certainly play a central role

in decision-making tasks because the human mental behavior cannot be com-

pletely emulated and captured; the human mind might solve a complex problem

even without a statistically significant amount of data by relying upon domain

knowledge. For this reason, technology must focus on interactive solutions for

supporting the physicians e↵ectively in their daily activities, by exploiting their

unique knowledge and evidence-based reasoning, as well as improving the vari-

ous aspects highlighted in this review.

Keywords: Human-Computer Interaction, Decision-making tasks, Clinical

workflows, Precision medicine, Physician-centered design

1. Introduction

Currently, the dramatic increase in the amount of heterogeneous biomedical

data is enabling novel large-scale studies, requiring specific and tailored compu-

tational solutions. Recently, the latest Machine Learning (ML) techniques have

been achieving outstanding performance and an important impact in clinical5

research [1], ultimately aiming at precision medicine [2] as well as improving

healthcare workflows [3].

However, these valuable benefits, ranging from diagnosis to therapy, are ac-

companied by new compelling challenges. As a matter of fact, this information

abundance could overwhelm the analytic capabilities needed by clinicians during10

their daily decision-making tasks [4]. Indeed, decision-making by healthcare pro-

fessionals is often complicated by the need to accurately integrate poorly struc-

tured, uncertain, and potentially conflicting information from various sources

[5]. Healthcare is a critical field involving high risk and time-constrained tasks,

characterized by unique peculiarities such as intrinsic intra-/inter-subject vari-15

ability, harmonization among multiple institutions and legal issues [6]. In these

highly specialized and dynamic working environments, the belief that experts
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cannot fail is another critical point [7], particularly in the clinical practice where

professionals with di↵erent backgrounds and levels of experience cooperate to-

gether [8, 9]. For instance, critical and emergency care requires a well-structured20

collaboration scheme to deliver safe, timely and e↵ective treatments [10, 11].

In practical scenarios, the ultimate goal is bridging the gap between advanced

Artificial Intelligence (AI) methods and healthcare information workflows, also

by means of user-centered Clinical Decision Support Systems (CDSSs) [12].

Therefore, the proper combination of AI software and human intelligence ca-25

pabilities [13], by explicitly taking into account e↵ective and safe interaction

paradigms, will permit the delivery of care that outperforms what these two

“intelligence types” can do separately [3]. The complexity and lack of usability

of sophisticated computational tools might compromise the translation into the

clinical environments [14]. Furthermore, the interpretability and explainability30

issues of the modern AI-based tools [15, 16] must be also considered, since they

might further hamper the deployment in the clinical practice [17].

In this context, Human-Computer Interaction (HCI) plays a crucial role in

the design of software oriented to decision-making in medicine. CDSSs, Elec-

tronic Health Records (EHRs), medical imaging systems, and other comput-35

erized tools for collaborative work—such as applications in telemedicine and

homecare—are daily exploited by the physicians; indeed, the integration and

analysis of data retrieved from EHRs or acquired by wearable devices, remote

monitoring, and digital consultations, can deal with the sparse/intermittent

data collection and interpretation occurring only during the visits in the clinic40

[18]. Furthermore, the patient can be directly engaged in the clinical decisions

via shared decision-making schemes thus allowing for patient-centered health-

care [19].

The inadequate design of Graphical User Interfaces (GUIs) in such systems

could generate frustration in the physicians who experience di�culties in the45

use of computerized technologies. For this reason, the interface design should be

inspired by a “physician-centered” approach and then verified by usability test-

ing. CDSSs are often seamlessly integrated with data management and content
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presentation leveraging AI and Cognitive Informatics (CI) [20]. Interestingly, CI

is related to many kinds of applications, in particular the communication pat-50

terns in telemedicine, where several clinical teams are involved in data analysis

and decision-making tasks.

In this review, we present an overview of many research fields that are strictly

linked to both HCI and clinical decision-making: reasoning strategies, Text Min-

ing (TM) and automatic extraction of concepts, AI-enabled devices, collabora-55

tive working, patient monitoring, and telemedicine.

Methodology used in the research. The articles included in this review were

selected by using the search engines of the main publishers in the scientific

literature: Elsevier, Springer, Institute of Electrical and Electronics Engineers

(IEEE) Xplore, and Association for Computing Machinery (ACM) Digital Li-60

braries. We further extended the search by exploiting the main public search

engines, namely PubMed and Google Scholar; only peer-reviewed articles were

taken into consideration. We removed duplicate items and selected the remain-

ing articles in two phases. First, we screened title, keywords and abstract of

each article to remove non-pertinent items. Then, we accurately inspected the65

main content of these articles. Journal articles were considered in the research,

whereas some highly relevant proceedings were included during the search re-

finement. The main search query was “decision-making”, further refined with

“clinical decision support system” and “interface” to obtain the articles’ collec-

tion used in this review. The resulting publications were subdivided into six70

themes, namely: Interfaces, Visualization, EHRs, Devices, Usability, and CDSSs.

Consequently, all the arguments are strictly connected to each other and it is

possible to comment and discuss the interfaces in decision-making from di↵er-

ent points of view. Recent research articles were prioritized, even though the

most relevant publications were not excluded in the present review. As a mat-75

ter of fact, these previous works are often preparatory for fully explaining the

rationale underlying the most recent research.

Fig. 1 shows the graph obtained according to the sub-division of the articles
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Figure 1: Graph structure representing the analyzed literature articles.

into the six themes with partial overlaps. The nodes represent the main themes

(i.e., concepts) identified in our state-of-the-art analysis, showing also the corre-80

sponding number of items. The edges denote intersection relationships between

the nodes representing the concepts. In particular, the cardinality of the rela-

tionships indicates the number of articles belonging to a concept that introduce

topics also from another one. For instance, the node pair hInterfaces,Devicesi

contains 36, and 12 items respectively, while 3 articles regarding Interfaces belong85

to the concept Devices and 6 regarding Devices belong to the concept Interfaces.

This first classification covered a too broad scope to allow for a unifying

concept rather than fragmented topics. Therefore, a careful screening was fur-

ther performed to tightly focus our study on theories and frameworks for HCI in

clinical decision-making, with the goal of drawing conclusions from the achieved90

empirical findings or usability results. Among the exclusion criteria, we removed

those articles that:

• did not deal with human healthcare (e.g., laboratory applications and
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Figure 2: Classification scheme of the recent HCI advances in clinical decision-making tasks.

The branches correspond to four clusters of publications, arising from skimming and grouping

the six themes in Fig. 1, to direct the focus of this review on HCI and design aspects. Each

cluster is described in a di↵erent section of this manuscript, while the sub-sections are listed

as bullet points.

pre-clinical research);

• were substantially more oriented to technology than design aspects;95

• treated predominantly computational methods based on ML or Data Min-

ing to automate clinical decision-making with limited attention to user

interaction.

Indeed, wearable and AI-enabled medical devices, even though used in ubiqui-

tous healthcare and continuous patient monitoring [21, 22], o↵er marginal HCI100

contributions to decision-making tasks. After these thorough refinement steps,

the articles’ collection was re-organized by grouping the articles under consid-

eration into four clusters to harmonize the overall description throughout the

manuscript.
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Considering the results of this detailed analysis, the following four sections105

of the manuscript reflect the di↵erent branches depicted in Fig. 2:

• Section 2 introduces the most important aspects regarding medical GUIs

identified during the analysis of the collected papers, with particular fo-

cus on the design principles, some relevant applications, and interactive

visualization strategies;110

• Section 3 describes EHRs as a patient information source that can be

processed by cutting-edge information technology, as well as by advanced

data analytics and integration techniques;

• Section 4 treats the usability techniques devised for evaluating HCI-based

systems from the point of view of user-centered design, together with the115

corresponding performance evaluation, and their relationship with CDSSs

and EHRs;

• Section 5 concludes the literature review, by connecting all the compo-

nents towards CDSSs for optimizing decision-making tasks by taking into

consideration TM techniques, shared decision-making, pathology-specific120

approaches, and user acceptance issues.

Finally, concluding remarks and considerations are provided in Section 6.

2. Graphical User Interfaces

This section introduces the latest trends in medical GUIs, along with interac-

tive visualization strategies in clinical research and practice. As a matter of fact,125

GUIs are increasingly playing a fundamental role in the clinical practice, since

they represent the actual means of interaction between healthcare stakeholders

and the modern computerized solutions. As a matter of fact, mobile computing

platforms allow the patient to be involved in a bidirectional interaction along

with the physicians [22]. Therefore, new interaction paradigms are required to130

keep the pace of the cutting-edge technologies in healthcare, and they have to
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be tailored for the di↵erent clinical contexts. In this regard, the authoritative

work in [20] points out the fundamental role of CI in developing theories, models

and frameworks for HCI in medicine. Both design and applications of medical

GUIs are presented.135

2.1. Medical GUI design

Cognitive aspects must be explicitly taken into account for an e↵ective GUI

design. The work in [23] established that a multimodal interface was able to

reveal the human cognition state during ML-based data analytics-driven deci-

sion. Human cognition could help to understand how the user accepts the new140

technologies and, on the other side, the ML models can be modified by taking

into account such considerations. Savoy et al. [24] analyzed the Primary Care

Providers (PCPs) experience with health information technology for the referral

process. A PCP has to deal with chats, EHRs, and other information sources.

The study concluded that the current GUIs are not adequate to support the145

information exchange, communication or care coordination for this task. As a

consequence, a Cognitive System Engineering (CSE) design was devised in [25],

allowing the GUI to support the physician in referral communications. A usabil-

ity test was performed on two GUIs to compare them by recruiting 30 physicians

for the evaluation. Along with CI techniques, the design of computer-based doc-150

umentation tools should be based on the healthcare providers’ perceptions of

clinical documentation methods. In [26], the cognitive factors underlying such

perceptions were identified by performing a qualitative analysis by means of

interviews involving a sample of healthcare providers who used a variety of

documentation methods. Five factors influencing satisfaction with clinical doc-155

umentation tools were identified: document system time e�ciency, availability,

expressivity, structure, and quality.

In highly dynamic and time-constrained circumstances, appropriate Knowl-

edge Management techniques are valuable. The authors of [27] considered the

Asian Productivity Organization (APO) model. Among the 26 Knowledge Man-160

agement tools, 12 were found suitable for hospital settings. The authors of [28]
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faced a situation in which the information is uncertain or inconsistent and might

be located in a distributed environment, hindering the fusion into a unique

knowledge base. A multi-agent framework was devised to solve this problem

in dementia diagnosis. As a further step, Knowledge Representation models,165

based on ontologies or automated reasoning engines, can be e↵ectively exploited

to solve complex tasks involved in clinical decision-making. The work in [29]

addressed the problem of updating medical classification schemes and ontologies

(ICD-9-CM, MeSH, NCIt, and SNOMED CT) with a two-phase approach: (i)

identification of concepts that need a revision by using an ML approach, and170

(ii) proposal of the type of revision. In particular, for the second phase, the

system determines when it is necessary to add or remove concepts or modify the

item description. The work in [30] dealt with the imaging biomarkers, which

refer to radiological measurements evaluating the therapeutic responses and the

early diagnosis of pathologies. Indeed, in the clinical practice features, such as175

tumor volume and lesions’ number, are very important. As a consequence, a

particular biomedical ontology was developed, called Imaging Biomarker Ontol-

ogy (IBO), and exploited existing biomedical ontologies. The work in [31] faced

the problem of information movement between health system providers. Indeed,

there are neither methods of information interchange nor inventories of system-180

level electronic health information flows. An ontological model—based on the

language Protégé 4—taking into account concepts like diversity, volume, stan-

dardization, and connectivity was developed. In such massively distributed and

cloud computing environments, the frameworks for scalable distributed comput-

ing Hadoop and MapReduce were used in [32] to accomplish Ontology Quality185

Assurance (OQA). More specifically, the implemented OQA was applied to the

SNOMED CT collection. The authors of [33] developed a CDSS for Intensive

Care Units (ICUs), called icuARM, which was based on Association Rule Min-

ing (ARM). The CDSS icuARM was built with multiple association rules and

an easy-to-use GUI for care providers to perform real-time analyses in the ICU190

setting.
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2.2. Applications of medical GUIs

GUIs are pervasive and guide the interaction between physicians and patients

from the diagnosis to therapy in all clinical scenarios. With regard to cardiol-

ogy, several interesting applications exist. Heart auscultation is the first step195

for the assessment of a cardiovascular disease. In [34], the phonogram (i.e., a

curve representing the heart sound) was considered, by proposing an interactive

ML framework for the classification of heart sounds. Furthermore, computer-

ized 12-lead Electrocardiogram (ECG) devices provide an automatic diagnosis,

but a wrong one could negatively influence the decision-making process. In200

[35], a study assessed the diagnostic accuracy in presence of correct/incorrect

diagnosis proposal. The analysis concluded that automatic diagnostic propos-

als a↵ect the accuracy of ECG interpretations. As a matter of fact, 12-lead

ECGs might be often incorrectly interpreted: physicians provide their diagno-

sis considering their first impression. On the other hand, all the ECG devices205

automatically print out a diagnosis without any interaction with the physician

that might lead to a correct interpretation. To this purpose, in [36], the ECG is

segmented into its peculiar parts that are displayed on multiple separate GUIs

so that the physician is supported during the decision-making task. Exploiting

the increasing computational resources, simulators can be useful in clinic. The210

authors of [37] developed a cardiovascular simulator, which is a computer appli-

cation reproducing the patient condition, where a physician can test a therapy.

Moreover, it could be useful to train specialists in dealing with various diseases.

As regards cardiological applications, a digitally simulated patient (i.e., avatar)

was used in [38] to verify the ability of the primary care physicians to recognize215

depressive disorders by means of a conversational task. Kahol et al. [39] added

a layer of cognitive exercises into simulators for laparoscopic surgery, which are

usually exploited for refining surgeons’ psychomotor abilities. This methodology

was evaluated by two pilot studies.

The growing di↵usion of mobile platforms can be exploited for patient em-220

powerment and monitoring. In [40], the authors discovered novel design princi-

ples for health Behavioral Change Support Systems (BCSSs), which are mobile
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apps aimed to change the lifestyle of chronic patients. The study was based

on the analysis of the online diabetes patient reviews regarding mobile applica-

tions about this disease. Regarding diagnostic applications, the authors of [41]225

experimentally assessed cases of hematuria by means of photos via the instant

messaging service WhatsApp Messenger (WhatsApp Inc., Mountain View, CA,

USA). The study concluded that the hematuria evaluation with this method is

possible and reduces costs of medical service and it can be used in rural and

deprived areas. In [42], a new ML method was presented for the diagnosis of230

depression. It integrates data from smartphone and wearable devices, like the

Fitbit wristband (Fitbit Inc., San Francisco, CA, USA) to monitor the heart

rate and self reports. The Just-in-Time Adaptive Interventions (JITAIs) in mo-

bile health is increasing interest in the scientific community. Usually, they are

reminders and notifications allowing the user to make healthy decisions. The235

authors of [43] conducted an empirical study to evaluate the interaction be-

tween patients a↵ected by hypertension and a mobile healthcare system called

iHearth, which is aimed at monitoring this category of chronic patients. In these

scenario, the best way to deliver the notifications is during time risk, but there

is a constraint to limit these messages because the user could be overburdened.240

In [44] an algorithm, called Sequential Risk Sampling (SeqRTS), was developed

to distribute notifications in a uniform way across all risk times. With reference

to homecare, the work in [45] addressed the Personal Health Information Man-

agement (PHIM) practices, by sharing the information with the medical sta↵,

in informal care-giving for patients with/without dementia.245

Considering the huge amount of patient data, convenient and context-aware

presentation of the EHR contents is essential. A “smart forms” system was de-

veloped in [46] to improve the information contained in patient EHR. The form

resulted to be complete from the medical point of view, even though the usabil-

ity study revealed that the first version of the GUI was exhibiting several issues250

(e.g., too detailed lists of symptoms, di�culties in recognizing navigation links,

disturbing background/foreground color contrast), which were then fixed in the

final version of the GUI. The integration with other forms of data is certainly
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valuable, such as in the case of clinical applications including patient’s genetic

profile for a personalized therapy as it is reported in [47]. The authors of [48]255

performed the integration of a mobile application into a standard EHR for data

reading/writing. A small usability study on a patient decision support was also

reported regarding the Prostate Specific Antigen (PSA) testing for prostate can-

cer screening. The principal hurdles encountered in the integration concerned

the proprietary EHR vendor Application Programming Interfaces (APIs). The260

latest Natural Language Processing (NLP) techniques can infer the semantics

from text and showed potential in improving the GUIs [49]. In [50], an NLP

system was devised by a Recurrent Neural Network (RNN) that was trained to

extract events from cardiology medical reports written in Italian. A text corpus

of 75 reports was annotated and 4365 relevant events and their attributes were265

recognized. The paper also provided the annotation guideline. The trained RNN

was integrated into an NLP pipeline making use of a dictionary lookup approach

to identify important concepts found in the text. In [51], an EHR interface was

powered by NLP techniques, exploiting MetaMap, as a decision-making sup-

port for stroke patients candidate to Intravenous Thrombolytic Therapy (IVT).270

The authors of [52] presented a process to create highly structured and realistic

synthetic patient data and the evaluation of three prototypes was also shown to

demonstrate the e↵ectiveness of such a procedure.

In the clinical routine, diagnostic decisions strongly rely upon medical imag-

ing systems, which provide relevant insights into each clinical scenario. However,275

medical imaging software GUIs typically display a variety of advanced analysis

tools, giving rise to a ‘tool clutter’ situation. Jorritsma et al. in [53] aimed at

evaluating the usefulness of adaptive customization support in a natural work

environment, with particular interest to Picture Archiving and Communication

System (PACS) platforms in Radiology [54]. This adaptive customization sup-280

port would be a useful extension to the standard adaptable PACS interface,

since this feature allows radiologists to e↵ectively customize their interface. In

[55], the authors proposed a technique that makes use of the Digital Imaging and

COmmunications in Medicine standard (DICOM) for data-driven GUI genera-
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tion, referring to the examined body part, and imaging modality as well as to the285

medical image analysis task to be performed. In this way, the self-configuring

GUI is generated on-the-fly, so that just specific functionalities are displayed

according to the current clinical scenario. The feasibility and the e↵ectiveness

of the proposed approach was shown via a plug-in for the OsiriX DICOM viewer

(Pixmeo SARL, Bernex, Geneva, Switzerland). Regarding burned-in protected290

health information in DICOM files, automatic detection and classification of the

text content in the pixel data, aiming at anonymizing the patient information,

was performed in [56]. In this way, the patient information must be obtained

only from EHRs also in the case of cloud-based medical image sharing for col-

laborative diagnosis and consultation [57]. Aselmaa et al. in [58] incorporated295

sense-making support within the design of health information systems, by con-

sidering the tumor contouring clinical task for radiotherapy planning as a case

study. The proposed approach was beneficial for gaining an in-depth under-

standing of the sense-making process during this critical task, as well as for

identifying design requirements for better sense-making support. In [59], Deep300

Learning (DL) techniques were exploited to generate a diagnosis as textual

representation from a frontal X-Ray image. Moreover, realistic X-Ray images

related to the nearest alternative diagnosis were generated.

2.3. Interactive visualization

The enormous amount of data in scientific research, particularly in life sci-305

ences, is an ideal benchmark for the recent developments in ML and AI tech-

niques. However, new challenges arise from these scenarios, such as model

interpretability and explainability [60]. The design of interactive solutions for

clinical data interpretation requires the e↵ective integration of medical expertise

and data/model visualization strategies [17, 61].310

An interactive dashboard for Emergency Departments (EDs) to manage each

single patient as well as the entire department workflow was proposed in [62]. In-

deed, in emergency care, the clinicians must make just-in-time decisions rather

than planning therapy. Recently, in [63], a clinician dashboard to facilitate
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shared decision-making between patients and physicians was presented. The315

dashboard provided an easy and intuitive GUI that focuses the patient and

the clinician on the patient health problems to allow for a mutual discussion.

The GUI showed the patient progress on di↵erent aspects of his/her condition

(e.g., sleep, pain level). Detailed information can be obtained by clicking on the

screen for each aspect of the patient’s condition. In [64], an interactive visual-320

ization method consisting of two steps was presented. The former consisted in a

current regression model by using the R statistical environment to assess impor-

tant factors of therapy and prescription patterns. In the latter, an interactive

dashboard was used with di↵erent visualization modalities, and the results of

the first step were displayed by means of the Tableau software. Chronic disease325

patients can have a better comprehension of their illness by means of clinical

data augmented with contextual ones but the current applications do not allow

the interpretation of multiple data streams.

3. Electronic Health Records

An EHR can be defined as an organized collection of electronic health infor-330

mation regarding a single patient or a large group of individuals. It is a digital

data structure that can be updated and shared among network-connected in-

formation systems. These records can contain several data formats, such as

structured/unstructured text (e.g., personal statistics, medical history, test re-

sults) and pictorial data regarding medical imaging scans [65]. Although in the335

literature the term Electronic Medical Record (EMR) is used interchangeably

with EHR, they refer to di↵erent information models. More specifically, EMR

is a record created in the hospital information system or ambulatory environ-

ment, which can be included into the EHR [66, 67]. For the sake of clarity, also

Personal Health Record (PHR) has to be mentioned, which is an electronic ap-340

plication for the patient aimed at managing personal medical data that can be

made available to health providers [68]. The systems mentioned above could ef-

fectively mediate the communication between the physician and the patient, and
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the proper design of the computer tools can allow for patient’s comprehension

of medical problems [69].345

3.1. EHRs and information technology

EHRs represent a valuable source of patient information and clinical in-

formation collected during the healthcare events, via Biomedical Informatics.

Along with traditional epidemiologic investigations, the functionalities of EHRs

allow for population health research by exploiting large-scale and generalizable350

medical data sets [70]. Towards continuous care, the integration of EHRs with

the emerging technologies—allowing for social/behavior measurements—might

improve the delivery of healthcare services. However, specific computational

solutions must be devised to perform patient data analytics and Information

Retrieval, while carefully considering data sharing and privacy [71]. In [72],355

the authors presented a study on the evaluation of a system to create hospi-

tal progress notes using voice and EHR integration to determine whether note

timeliness, quality, and physician satisfaction were improved. A randomized

controlled trial was conducted to measure the e↵ects of this new method of

writing inpatient progress notes, which evolved over time. Intervention and360

control subjects created 1852 notes, with no significant di↵erence in physician

satisfaction or note quality between intervention and control. Even though

the authors did not claim the superiority of Voice-Generated Enhanced Elec-

tronic Note System (VGEENS) for their primary outcomes, they observed that

notes created using voice during or soon after rounds were available within 10365

minutes. Importantly, there is also a critical need to validate and translate pre-

diction models that support clinical decision-making in hospitals. The purpose

of the work in [73] was to explore a combined data-driven and practice-based

approach to identify risk factors associated with hospital-acquired falls. The

authors conducted an observational case-control study of EHR data from 14370

medical-surgical units of a tertiary referral teaching hospital. The results con-

firmed the significance of a set of valid fall risk factors and identified a set of

new risk factors.
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The rapid growth and acceptance of EHRs, and their related standards to

exchange information, are improving various aspects of both health practices375

and patient care. In [74], the authors explored and critically analyzed Health

Level 7 (HL7) Fast Health Interoperability Resources (FHIRs) to design and

prototype an interoperable mobile PHR that conforms to the HL7 PHR Func-

tional Model and allows for bi-directional communication with OpenEMR, i.e.,

an open-source EHR compatible with FHIR. The authors prototyped a mobile380

PHR to demonstrate the capability of HL7 FHIR and its features (i.e., profile,

extensions, and capability standard) to design and implement an interoperable

PHR. In the study presented in [75], several open-source EMR software pack-

ages based on multi-criteria decision-making were evaluated. A hands-on study

was performed and a set of open-source EMR software packages were exam-385

ined. The authors used several evaluation measures while the systems were

selected according to a set of metric outcomes by integrating the Analytic Hier-

archy Process (AHP) and Technique for Order Preference by Similarity of Ideal

Solution (TOPSIS) models. The GNUmed and OpenEMR software packages

outperformed the other open-source packages in terms of ranking score records.390

However, the study revealed the lack of several features, most notably security,

interoperability, and support from developers.

EHRs revolutionized how care providers interact with patient health infor-

mation, even though the EHR role in collection and retrieval of psychosocial

information is not fully well-established. In [76], the authors designed a quali-395

tative study using semi-structured interviews with 17 physicians to investigate

their perspectives on the impact of EHR for collecting psycho-social informa-

tion in the context of care decisions for Type II diabetes outpatients. The au-

thors stated that psycho-social information is perceived as dissimilar from other

clinical information, such as glycated hemoglobin (i.e., HbA1c) and prescribed400

medications. Furthermore, EHRs could impair the collection of psycho-social

information because the design of EHR tools makes it di�cult to document,

search for, and retrieve it. On this line, the study proposed in [77] resulted

in identifying seven types of Patient-related Information Problems (PIPs) that
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patient-care teams encounter during morning rounds. Since PIPs exist in EHR405

systems, paper documents, and verbal conversations, the study identifies a set of

PIPs and how they were being detected and e↵ectively managed. The goal of the

study in [78] was to define practice-based clinical pathways for Chronic Kidney

Disease (CKD), which is a progressive illness leading to the End-Stage Renal

Disease (ESRD). In order to achieve this goal, the system integrated healthcare410

and domain knowledge, including representation of multidimensional and longi-

tudinal EHR data, identification of distinct patient sub-groups, and extraction

of common treatment patterns as candidate clinical pathways. Medical experts

can interact with the system by making modifications and redesign while com-

pleting the process. Lastly, a visualization layer displays the pathways either415

for practice review or to engage patients in shared decision-making.

User-centered design can be also valuable in EHR-based computerized ap-

plications. In [79], the project Health Design was presented, which employs a

user-centered design approach to develop designs and prototypes of computer

applications based on PHRs for patients with a wide range of ages. Accordingly,420

clinicians might create their own tool to mitigate the inadequacy of health in-

formation technology. In [80], the design process of an information tool for care

coordination was guided by the end-users (i.e., nurse coordinators).

3.2. EHR-based data analytics and integration

Considerable e↵ort has been devoted to e↵ective techniques that analyze425

and integrate the data extracted from EHRs. In particular, EHR-powered solu-

tions, with characteristics and functionalities adapted for managing particular

diseases, are often integrated with CDSSs. Horta et al. in [81] presented a CDSS

for the co-management of surgical patients in the post-operative ward setting.

The data source was a collection of EHRs of patients where the diseases were430

classified with ICD-9 codes. The study in [82] investigated the most common

challenges of HCI while using EHRs, with particular interest on cardiovascular

diseases. Inadequate interaction may dramatically impact the quality of data

stored in EHRs. Considering medical research centers, the authors identified
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the most common classes of mistakes mainly attributable to poor HCI design in435

EHRs: the integration of specialized CDSSs was considered as a possible solu-

tion to increase both HCI and EHR quality. In [83], an NLP-powered pipeline

for the analysis of German narrative clinical notes on colorectal cancer was de-

veloped to retrieve specific guideline-based patient information and annotate it

using terms of the Unified Medical Language System (UMLS) for further eval-440

uation by the physician. In order to prepare a high-value research data set, the

authors of [84] developed a scalable EHR processing pipeline for managing and

editing EHR data from adult ICUs. EHRs are also crucial in shared decision-

making, as it is reported in the work of Wang et al. in [85] (better described in

Section 5).445

EDs are certainly among the most critical divisions in healthcare organiza-

tions. For this reason, EHRs play a fundamental role for clinical decision-making

in such a context by supporting fast and accurate diagnosis, as well as avoiding

overcrowding in the hospital ward. Furthermore, a proper data collection of clin-

ical scenarios may enable the development of predictive models and algorithms.450

In [86], the authors evaluated the usability of software prototypes developed for

tablet PCs in an ED. The goal was to keep patient EHRs errorless and accessi-

ble via mobile technologies. Two alternative prototypes were developed: Mobile

Emergency Department Software (MEDS) and Mobile Emergency Department

Software Iconic (MEDSI). A case study of 32 potential users of the proposed455

prototypes at the ED of Kadikoy-AHG, Istanbul, Turkey, was also presented.

Usability results confirm that the solution with iconic GUIs (i.e., MEDSI) re-

ceived better feedback than non-iconic GUIs in terms of Nielsen’s heuristic eval-

uation, e↵ectiveness, and user satisfaction. In [87], a simulated ED environment

was developed at the Israel Center for Medical Simulation. Four di↵erent actors460

were trained to simulate four specific complaints and behaviors. The perfor-

mance of 26 volunteer ED physicians were observed. The study confirmed that

EHR access and use in the ED a↵ect the process of medical decision-making by

enabling more accurate diagnoses improving patient care and enabling savings

in time and money. The study proposed in [88] assessed the performance of dif-465
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ferent classes of information individually, as well as in combination, in predicting

ED revisits. As an increasing number of public data sources exist to describe

social determinant of health factors, the authors compared the performance of

Two-Class Boosted Decision Trees ML algorithm using 5 classes of informa-

tion, namely: 1) social determinants of health measures only, 2) current visit470

EHR information only, 3) current and historical EHR information, 4) Health

Information Exchange (HIE) information only, and 5) all available information

combined. The results showed that combining all information classes outper-

formed the models considering separately the information classes in terms of

Area Uunder the Curve (AUC). Finally, a di↵erent, yet important, aspect of an475

ED was analyzed in [89]. Since ED overcrowding is a serious issue for hospitals,

the authors used TM methods to process data from early ED patient records

using the Subjective, Objective, Assessment, and Plan (SOAP) framework, as

well as predict future hospitalizations and discharges. Unigrams, bigrams and

trigrams were tested for feature formation. In the prediction module, eight TM480

methods were tested, and a nu-SVM was the best performer.

4. Usability in clinical decision-making

Usability is essential to allow the users to carry out their own decision-

making tasks safely, e↵ectively, e�ciently, and enjoyably. As a matter of fact,

methodological approaches for usability engineering and cognitive task analysis485

have to be considered in health information systems [90], such as EHRs and

CDSSs.

4.1. User-centered design

An accurate analysis of the medical decision-making processes is needed dur-

ing the design cycle of medical systems. In [91], a cognitive design methodology490

was presented in the case of di↵erent end-users who were instructed with basic

knowledge of the healthcare processes. Successively, they had to analyze several

scenarios characterized by a medical error event involving healthcare profession-

als and medical devices. Finally, via the think-aloud technique, the users were
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asked to reflect on the error presence to elicit guidelines useful for the design of495

safe devices by identifying the modifiable entities to improve each workflow. The

work in [92] presented a novel usability procedure for assessing medical devices

in terms of patient safety. Heuristic evaluation—a usability inspection method

commonly used for software usability evaluation—was modified and extended

for medical devices and in particular the infusion pumps. During a heuristic500

evaluation, experts underwent a walk-through evaluation of the interface, by

identifying the elements that violate usability heuristics. The key idea of the

work was that it is possible to obtain a good assessment of the intrinsic safety

of a medical device by analyzing the issues related to the “interaction” with the

device itself.505

With the goal of achieving safe HCI, ad hoc communication strategies may

be fundamental. In [93], a user-centered design approach was used to create a

guide for designers and developers of electronic communicable disease reporting

systems. Such a goal was achieved by an ethnographic study based on semi-

structured interviews and a focus group. The study reported in [94] pertained510

to practices and preferences for accessing health information by both medical

sta↵ and patients. The authors concluded that the Internet is the preferred

channel to access the information, by also assessing its quality. However, mis-

communication is critical. The work in [95] addressed the misinformation about

unverified “cures” of cancer that can be found in tweets on the Twitter social515

network (Twitter Inc., San Francisco, CA, USA). Interestingly, the study sug-

gested that users propagating the fake cures used a sophisticated language: they

have knowledge about the medical domain but are not patients a↵ected by this

illness. Generally, user-centered design might be highly beneficial in di↵erent

scenarios. Johnson et al. in [96] presented an extensive study on the formula-520

tion of a framework for guiding the redesign process for those systems which

have been abandoned due to the lack of user-centered design. Accordingly, in

[80], the end-users created their own tool to compensate for the inadequacy of

health information technology. More specifically, the methodology design of a

computer-based tool oriented to the information transfer and care coordination525
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was described. In particular, the paper focused on a tool called “the clipboard”,

which is directly designed by nurse coordinators. The authors of [97] presented

an electronic questionnaire for patients a↵ected by skin cancer. The patient

had to fill out it on a tablet and it was then integrated into his/her EHR to

be discussed with the physician. Afterwards, the patient and the physician can530

make corrections and also add further information to enhance the data quality.

The study in [98] considered a homecare setting, by focusing on motion pattern

monitoring for elderly adults with memory disorders. Involving nurses in the

design of the technology and providing opportunities to trial the system in real

practice appeared beneficial for facilitating the system adoption. The study535

relied upon a qualitative approach conducted in a homecare unit serving older

adults living in independent residences. Multiple data were collected, includ-

ing individual and group interviews, a questionnaire with open-ended questions,

evaluation probes, and system log data. The collected qualitative material was

analyzed by a stepwise-deductive inductive approach. Indeed, computer-based540

healthcare systems can be designed for patients and installed in their homes.

4.2. Usability and performance evaluation

Several usability evaluation techniques are available and can be exploited

and adapted to medical decision-making. The authors of [99] described a very

interesting usability study on a mobile health app, called WiseApp, tailored to545

support persons living with Human Immunodeficiency Virus (HIV) in maintain-

ing strict adherence to their anti-retroviral therapy. Three usability evaluations

were conducted: think-aloud with end-users, usability evaluation with experts,

and cognitive walk-through again with the end-users. The results of the study

was that usability analysis involving end-users triggered iterative updates in the550

design of the app. For an in-depth GUI evaluation, the influence of emotions

must be also considered. The authors of [100] considered the communication

during tele-mental health psychotherapy sessions between a physician and a pa-

tient. In particular, this study showed that the emotions are involved in the

decisional process, even when the physician-patient relationship is mediated via555
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a computer, suggesting that emotional awareness is a key cognitive factor in

remote diagnosis and therapy.

Regarding performance evaluation, Brown et al. in [101] presented the GUI

design of an electronic audit and feedback system. These systems measure

health professionals’ performance and, in particular, the Performance Improve-560

ment plaN GeneratoR (PINGR) system was developed. It was composed of

four modules: (i) clinical performance summaries, (ii) patient lists, (iii) de-

tailed patient-level information, and (iv) suggested actions. The usability of

this system was evaluated by eye-tracking, on-screen behavior, and question-

naires administrated to seven primary care physician recruited for the exper-565

imentation. Interestingly, the use of an eye-tracker device can estimate the

uncertainty in decision-making during visual inspection of an image by analysis

of oculomotor measurements (e.g., eye blinks and pupil diameter) [102]. More

specifically, a group of 40 pathologists were examined with this technique while

they were analyzing histological images of breast cancer [103]. The goal of the570

study was to evaluate the influence of pathologists’ diagnosis by fixed case-level

factors, their prior clinical experience, and their patterns of visual inspection.

The study made use of 24 whole slide images related to four di↵erent types

of cancer lesions, including benign ones. Both the pathologist’s eye movement

and the viewer tool behavior in terms of zooming and panning were analyzed.575

The results demonstrated the existence of complex interactions between the

pathologist and the hypotheses that guide diagnostic decision-making.

Finally, computational methods and models can be defined for formal us-

ability evaluation. In [104], a cascaded query model was proposed to resolve

internal time-event dependencies in the queries that can have up to five levels of580

criteria; the procedure starts with a query for defining subjects to be recruited

for a study, followed by a query to define the time span of the experiment, and

then control group, control variables, and output variables. The model was im-

plemented as an extension of the Clinical Data Analytics Language (CliniDAL)

that is a restricted natural language previously proposed by the authors [105]585

as a query language for medical information systems. Usability evaluation of
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the overall framework was reported for three di↵erent scenarios. Florence et

al. in [106] proposed a Patient-Oriented Prescription Programming Language

(POP-PL). More specifically, the authors implemented a prototype of the lan-

guage and evaluated its design by writing prescriptions in the new language,590

as well as administering a usability survey to medical professionals. Results

of the usability study suggested that medical professionals can understand and

correctly modify programs in POP-PL, and also provide insights for refining the

language itself.

4.3. Usability in EHRs and CDSSs595

EHRs and CDSSs must match specific usability criteria. The Task, User,

Representation, and Function (TURF) framework for EHR usability was pre-

sented in [107]. Basically, these four components can determine the usability

of an EHR system; all the components were described theoretically, and many

examples of actual usability metrics in several case studies were provided. The600

authors stressed the idea that usability of EHR systems can be defined scientif-

ically, as well as measured objectively and systematically. Rose et al. in [108]

performed two separate usability studies, aiming at identifying the user work-

flows via a Web-based EHR. Unfortunately, issues regarding information visual-

ization on the GUI, availability of visual cues and feedback emerged from these605

studies, a↵ecting the primary care physicians’ workflow. Regarding the EHRs

in di↵erent countries, in [109], the authors proposed a study to investigate the

usability level of Chinese hospital EHRs by assessing the completion times of

EHRs for seven “Meaningful Use” (MU) relevant tasks conducted at two Chinese

tertiary hospitals. A final comparison with relevant research studies conducted610

in United States EHRs was also presented. The total EHR task completion

time for the investigated MU relevant test tasks showed no significant di↵erence

between the two Chinese EHRs and their American counterparts. Regarding

EHR-powered applications in EDs, tools with iconic GUIs significantly outper-

formed (using Student’s t-tests) the non-iconic version considering the Nielsen’s615

heuristic evaluation, e↵ectiveness, and user satisfaction [86]. A very interest-
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ing usability study was conducted by the authors of [110] where the clinicians

interaction with electronic whiteboards were analysed using a “naturalistic” ap-

proach. Live videos of the users while interacting with electronic whiteboards

were collected, along with screen captures of the whiteboards themselves, to620

record actual system interaction. All the materials were analyzed for usabil-

ity purposes, and the results exhibited both immutable (that is system-related)

and mutable (that is user-related) usability issues, which change as long as clin-

icians gain more experience in the use of the whiteboards. Whereas the focus

is on the methodology, the paper provided several insights into the design of625

these medical devices. Along with diagnostic tasks, there are medical devices

pertaining to the therapy side. For instance, infusion pumps are present in the

hospital wards and are often used by nurses, especially in the ICUs, and several

problems have been investigated in the literature. In [111], the Distributed Cog-

nition for Teamwork (DiCoT) methodology was applied to evaluate how nurses630

use infusion pumps in an ICU. More recently, a heuristic usability study among

four di↵erent infusion pumps was performed in [112]. Such a study still reveals

issues in system status visibility, information access, and error prevention.

Aiming at overcoming the barriers for realizing the potential of CDSS adop-

tion, usability testing, such as the think-aloud and near-live techniques, can be635

useful. In [113], a qualitative observational study was conducted on 12 primary

care providers, by evaluating two CDSSs to estimate the risk of either pharyn-

gitis or pneumonia among the patients. Both techniques revealed to be useful

and complementary: the feedback during Think-aloud testing primarily helped

to improve the tools’ ease of use, while the additional feedback from near-live640

testing was helpful for eliciting key barriers and facilitators to improve the cur-

rent workflow. In [114], four user-centered design practices for the CDSS design

were evaluated: pilot testing, provider satisfaction assessment, formal usability

assessment, and analysis of the impact on performance improvement. The data

were collected from 170 Veterans A↵air primary care clinics; the practice of645

analyzing the impact of CDSSs on performance metrics seems to be the most

e↵ective. In this regard, the authors of [115] reviewed reports regarding EHRs
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and CDSSs and they deduced a list of good practises to design this kind of

systems.

5. Clinical Decision Support Systems650

Owing to the ever-increasing amount of biomedical data, which may lead

to cognitive overload for physicians [61], CDSSs play a vital role to extract

relevant knowledge about patient’s health and well-being [61, 116]. Various

aspects concerning the applications and the adoption CDSSs are described in

the following sections.655

5.1. Text Mining for optimized decision-making

Supporting health-related decisions and actions with pertinent and systemat-

ically organized clinical knowledge can improve healthcare service delivery [117].

The authors of [118] presented a CDSS, called ALgorithms for the MANagement

of Acute CHildhood illnesses (ALMANACH), which informs the physician when660

a rapid diagnostic test to a child is required. In addition, ALMANACH advices

about the treatment dosage and synchronizes the real-time data with a Health

Management Information System for epidemiological assessment and decision-

making. A classic prescription CDSS, named SafeRx R�, reduced prescription

errors even though its actual performance is decreased by high alert rates. The665

objective of the study conducted in [119] was to compare acceptance rates of

alerts generated by SafeRx R� and discover which factors allow for the alert ac-

ceptance and overriding. The authors of [120] developed a CDSS to avoid over-

ordering of pre-operative investigations. The goal of such a system consisted

also in reducing practice variance and improve adherence to well-established670

institutional pre-operative investigation guidelines. This CDSS can assist the

physicians in decision-making, by integrating clinical protocols and information

regarding a specific patient. In [121], a semi-supervised NLP methodology was

adopted to analyze the free-text narratives in the report with the aim of iden-

tifying patients with urgent radiological findings that require a rapid commu-675

nication to their referring physicians. Similarly, Becker et al. in [83] exploited

25



an NLP analysis for patient-specific guidelines. In [89], a TM approach was

proposed to predict hospital admissions using early medical records from the

ED. This method could be used to manage daily routines in EDs, such as ca-

pacity planning and resource allocation. The icuARM CDSS proposed in [33]680

was an e↵ective solution for supporting ICU care providers according to real-

time data. To summarize, these systems can selectively and properly present

the information to the clinicians, allowing for context-aware case-based reason-

ing. Regarding e↵ective visualization techniques, Mane et al. in [122] proposed

VisualDecisionLinc, a prototype leveraging visual analytics to provide aggre-685

gate data views for supporting the evaluation of e↵ectiveness and risk regarding

several therapeutic options for di↵erent sub-populations of patients, ultimately

aiming at personalized care.

5.2. Internet-based and shared decision-making

Physicians regularly rely upon Internet search engines for Good Clinical690

Practice (GCP) guidelines, as well as novel research protocols. Changes in the

clinical practice are obtained also relying upon “high impact” clinical stud-

ies that can be retrieved from the PubMed repository. In [123], an ML ap-

proach to identify high impact clinical studies in PubMed was presented. Aim-

ing at classifying recently published articles, only static features, mainly in-695

dependent on the time course, were considered (e.g., journal impact factor,

authors’ number, study sample size). Considering the wide distribution of pa-

tient’s Internet health information-seeking, the patient-physician relationship

is highly influenced [124]. Indeed, these systems engage the patient in the di-

agnostic and therapeutic decision-making processes: this patient-care centered700

approach might realize a shared decision-making approach, along with informed

consent. Personalized and up-to-date patient information management is valu-

able. PHRs might be a key element in this process. The HealthDesign project

was a multi-year, multi-site initiative to e↵ectively improve the design of PHRs

by means of a user-centered approach, even though privacy issues must be al-705

ways considered [79]. Including patients’ preferences in a CDSS to accomplish
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a patient-care centered approach is fundamental to e↵ectively realize shared

decision-making. In [125, 126] the MobiGuide architecture—aimed to establish

a ubiquitous, user-friendly, patient-centered mobile CDSS for patients and for

their care providers—was described. Patients resulted empowered by the system710

because their health status was continuously monitored via mobile sensors and

self-reporting of symptoms. When health conditions required clinical attention,

medical team components were informed appropriately, while patients were noti-

fied in parallel. The evaluation had demonstrated system capability for support-

ing distributed decision-making during its use by patients and clinicians with715

some important monitoring targets: blood glucose levels, ketonuria, and blood

pressure. In [127], another CDSS oriented to shared decision-making was pro-

posed: PANDEX; it consisted in a distributed application assisting patients and

care providers to reach an optimal decision by using decision-analytic methods.

The PANDEX prototype focused on genetic pre-natal consultation by taking720

into account patient clinical data and preferences. Wang et al. in [85] addressed

shared decision-making processes in anti-hyperglycemic medication strategy de-

cisions for patients with type-2 diabetes mellitus. Along with guidelines-based

knowledge, a multilabel classification model—using class-imbalanced EHR data

and providing a recommended list of available anti-hyperglycemic medications—725

aimed at supporting shared decision-making conversations between physicians

and patients. In [128], the Shared Care Platform (SCP) was developed to

support the continuity of care for multimorbidity patients, involving several

physicians with di↵erent specialties. Aiming at improving communication and

coordination among health professionals towards a clinical consensus, the SCP730

combined the Clinical Wall, a social network component allowing the di↵erent

health professionals to discuss and define shared decisions, and a CDSS. Consid-

ering predictive models for reliable performance in multi-institutional scenarios,

the authors of [129] developed a Web service for individual prognosis predic-

tion based on multi-center clinical data collaboration without patient-level data735

sharing (POPCORN). POPCORN, by dealing with patient privacy and gen-

eralizable performance, exploited a multivariate meta-analysis and a Bayesian
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framework to provide a CDSS adaptable to highly variable application envi-

ronments. The model was validated using a joint, multi-center collaborative

research network between China and the United States recruiting patients di-740

agnosed with colorectal cancer.

5.3. Pathology-oriented CDSSs

As expected, no general purpose CDSS exists, since they are often tailored

to specific pathologies or clinical scenarios. For instance, the cardiovascular sim-

ulator in [37], reproducing the patient’s condition for therapy testing, served a745

CDSS for specialist training. The work in [130] focused on liver fibrosis diagno-

sis. Even though the Fuzzy Analytical Hierarchy Process (FAHP) and Adaptive

Neuro-Fuzzy Inference System (ANFIS) methods showed to be e↵ective in di-

agnosis formulation of mortal diseases, they are generally not used in CDSSs.

Therefore, the authors developed a CDSS based on the comparison of these750

two techniques; the experiments conducted in this work drew the conclusion

that both of them can be used to implement a CDSS. Leveraging advanced

technologies, telemedicine may provide support to diagnosis and monitoring, by

also proposing therapeutical options and variations. Therefore, a CDSS can be

integrated into a continuous care delivery framework for homecare. In [131], a755

telehealth system was presented, aiming at providing health services to patient

at home. Such a system performs the integration of extracted clinical measure-

ment parameters with a CDSS. The acquired telehealth data were analyzed by

a rule-based engine and statistical methods to identify anomalies. Chronic ob-

structive pulmonary disease and chronic heart failure were considered as case760

studies to illustrate the potential benefits of this integrative approach for the

management of both acute and chronic diseases. Glycaemia data were automat-

ically acquired by the glucose meter and the diet was changed according to the

current metabolic conditions; besides, the variation in insulin administration

was notified also to physicians. Such a CDSS strongly reduces the face-to-face765

visits, since the patient can be daily monitored by physicians. Horta et al.

[81] developed a CDSS based on a predictive model for the co-management of
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surgical patients in the post-operative ward setting.

5.4. User acceptance of CDSSs

The adoption of CDSSs might be strongly limited by user acceptance. Thus,770

e↵ective design and evaluation models must be defined [132], by focusing on

user-centered design approaches to identify target user needs [115]. Guidelines

to design GUIs for health service planning for osteoarthritis care can be found

in [133]. As a matter of fact, guidelines for CDSS design are valuable, such

as the PICARD clinical guideline-based support architecture proposed in [134].775

The usability of an EHR is expressed by the quality of the data contained in it.

This concept was highlighted in [82], previously described in Section 3, where

the authors classified the mistakes due to scarse HCI design. Richardson et al.

[113] conducted think-aloud and near-live usability testing on two clinical deci-

sion support tools. In [114], four user-centered design practices for the CDSS780

design were evaluated: pilot testing, provider satisfaction assessment, formal

usability assessment, and analysis of impact on performance improvement. In

[135], semantic analysis was used to identify the reasoning and decision processes

used by physicians in clinical tasks through an approach based on propositional

analysis. The authors of [136] addressed the issues related to the standard pro-785

cedures for multiple sclerosis evaluation. Indeed, the Expanded Disability Sta-

tus Scale (EDSS), which is commonly used disability measure, was a↵ected by

inter-rater variability. The developed CDSS, called Automatic EDSS (AEDSS),

aimed at increasing the EDSS reliability by forcing the neurologist to follow

precise reasoning steps. A validation experiment involving four Italian insti-790

tutions showed that AEDSS reduces inter-rater variability, and in many cases,

can correct neurologist errors. In [47], an application to support physicians in

managing patient’s genetic profiles was subjected to usability test with positive

results, as mentioned before.
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6. Conclusions795

Computerized systems that e↵ectively support decision-making tasks are

crucial in critical real-world applications. With reference to the clinical domain,

in the latest years physicians have to manage and combine a huge amount of

high-quality data mostly collected from EHRs, laboratory tests, imaging, and

medical devices [3, 12]. Thus, decision-making in precision medicine involves800

several members of the healthcare sta↵, including paramedical and medical per-

sonnel, because expertise from di↵erent disciplines is needed to determine a

diagnosis and perform a therapy in Multi-Disciplinary Teams (MDTs) [137].

Technological innovation is certainly important, but the human aspect is even

more valuable: with the shared decision-making, the patient is proactively in-805

volved in the decision-making process while technology has to present safely the

relevant information to the stakeholders.

In this work, an overview of the current applications and trends of HCI in

clinical decision-making tasks was presented. Relying upon a systematic litera-

ture review, we pointed out the main topics involved in this fundamental aspect810

of digital healthcare. In particular, the analyzed literature articles (from the

principal publishers in the scientific literature) were subdivided into six themes,

namely: Interfaces, Visualization, EHRs, Devices, Usability, and CDSSs. Inter-

estingly, these items typically presented overlaps among the themes, revealing

that HCI inter-connects multiple topics (as shown in the graph-based taxonomy815

scheme in Fig. 1). With the goal of focusing on HCI and its design aspects, the

selection of the articles under consideration was further refined, thus resulting

in four clusters that are depicted in Fig. 2.

To summarize, safe interaction is fundamental in clinical decision-making

and must be e↵ectively supported by GUIs allowing for task-specific and person-820

alized functionalities (see Section 2). As observed in Section 3, EHRs can pro-

vide an organized and up-to-date information collection for precision medicine.

EHR-based data analytics and integration pose new challenges for data visual-

ization, such as interactive dashboards to facilitate critical and time-constrained
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decisions in highly dynamic clinical environments (e.g., EDs, ICUs). Indeed, the825

latest ML and AI techniques (including TM, NLP, and Computer Vision) can

dramatically improve the clinical workflows, especially with regard to the anal-

ysis of overwhelming amounts of data and repetitive manual tasks. With regard

to overall usability results, formal usability evaluation may complement heuris-

tic evaluation and cognitive task analysis during the iterative user-centered de-830

sign process (see Section 4). These studies could also be endorsed by recording

tools—such as keystroke and mouse click/movement logging or eye-tracking—in

clinical decision-making tasks. Relying upon systematized datasets from EHRs

and real-time monitoring, CDSSs can incorporate advanced AI tools to opti-

mize clinical decision-making and workflows (as explained in Section 5), by835

augmenting explainable models with symbolic methods and reasoning engines.

These AI-enabled computational platforms and infrastructures, which also take

into account Cognitive Informatics principles, can adequately support shared

decision-making and patient empowerment. Ultimately, user-acceptance must

be carefully investigated since new CDSSs imply changes in the daily clinical840

routine. Therefore, the end-users have to feel confident and comfortable while

utilizing the newly introduced computerized systems.

This study shows that adequate support to physicians in decision-making

to formulate a diagnosis or to assign a therapy should not consist in a fully

automatic system that yields a response by replacing the physician’s work, just845

like a “crystal sphere”; indeed, in some cases, this automated response might

be wrong and could irredeemably a↵ect the physician’s decision [5, 7]. On

the contrary, the actual support to the physician might provide useful tools to

interactively support his/her work with the goal of e↵ectively facilitating the

reasoning and making all the data available in a well-organized manner [14, 16].850

Real-time remote data streaming is another opportunity to follow health events

about the patient with continuously up-to-date data [22]. Novel techniques

for the cooperative work with intelligent visualization [17, 61, 138] represent a

suitable means to put in communication doctors with di↵erent specializations

facilitating the second opinion process.855
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In conclusion, our review shows that advances in AI can e↵ectively sup-

port the physicians’ cognitive processes, which certainly play a central role in

decision-making tasks. Indeed, AI tools cannot completely emulate and cap-

ture the human mental behavior: with respect to advanced ML techniques, the

human mind might solve a complex problem even without a statistically sig-860

nificant amount of data by relying upon domain knowledge. Our study shows

that the synergy between AI and HCI is fundamental for accurate and safe

decision-making. With the goal of optimizing clinical workflows, CDSSs focus

on interactive solutions for e↵ectively supporting the physicians in their daily

activities, by leveraging their unique knowledge and evidence-based reasoning,865

as well as improving the various aspects highlighted in this work.
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