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ABSTRACT  

   

The analysis of clinical workflow offers many challenges to clinical stakeholders 

and researchers, especially in environments characterized by dynamic and concurrent 

processes. Workflow analysis in such environments is essential for monitoring 

performance and finding bottlenecks and sources of error. Clinical workflow analysis has 

been enhanced with the inclusion of modern technologies. One such intervention is 

automated location tracking which is a system that detects the movement of clinicians 

and equipment. Utilizing the data produced from automated location tracking 

technologies can lead to the development of novel workflow analytics that can be used to 

complement more traditional approaches such as ethnography and grounded-theory based 

qualitative methods. The goals of this research are to: (i) develop a series of analytic 

techniques to derive deeper workflow-related insight in an emergency department setting, 

(ii) overlay data from disparate sources (quantitative and qualitative) to develop strategies 

that facilitate workflow redesign, and (iii) incorporate visual analytics methods to 

improve the targeted visual feedback received by providers based on the findings. The 

overarching purpose is to create a framework to demonstrate the utility of automated 

location tracking data used in conjunction with clinical data like EHR logs and its vital 

role in the future of clinical workflow analysis/analytics. This document is categorized 

based on two primary aims of the research. The first aim deals with the use of automated 

location tracking data to develop a novel methodological/exploratory framework for 

clinical workflow. The second aim is to overlay the quantitative data generated from the 

previous aim on data from qualitative observation and shadowing studies (mixed 

methods) to develop a deeper view of clinical workflow that can be used to facilitate 
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workflow redesign. The final sections of the document speculate on the direction of this 

work where the potential of this research in the creation of fully integrated clinical 

environments i.e. environments with state-of-the-art location tracking and other data 

collection mechanisms, is discussed. The main purpose of this research is to demonstrate 

ways by which clinical processes can be continuously monitored allowing for proactive 

adaptations in the face of technological and process changes to minimize any negative 

impact on the quality of patient care and provider satisfaction.  
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CHAPTER 1 

INTRODUCTION 

The pursuit of quality and improved patient safety through the refinement of 

clinical practice has been one of the primary goals of medicine throughout modern 

history. In the 19th century, Dr. Ignaz Semmelweis discovered that incidence of puerperal 

fever (“childbed fever”) could be reduced significantly by the introduction of hand 

disinfection in obstetrical clinics (Best & Neuhauser, 2004).  In the 20th century, the use 

of mathematical and statistical models created from data collected in clinical 

environments increasingly gained acceptance contributing to the creation of the field of 

Biomedical Informatics. While early works in the field (Ledley & Lusted, 1959; Warner 

& Cox, 1964) dealt primarily with the diagnostic aspect of practice, the fundamental 

feature of these methods, and one of the lasting impacts of these seminal works, was that 

data generated in medical practice could be used to refine and improve quality of patient 

care. 

Subsequently, the introduction of technology into clinical environments further 

solidified the need to research the impact of these technologies on patient care and 

clinical practice. In the year 2000, the Institute of Medicine (IOM) released the report 

“To Err is Human” (Institute of medicine & Committe on Quality of Health Care in 

America, 2000) which estimated that between 44,000 and 98,000 lives were lost annually 

in the United States from preventable medical errors. These startling findings shed further 

light on the need for healthcare to consistently analyze and refine their processes to 

reduce preventable errors. In a subsequent report (Institute of Medicine & Committee on 

Quality of Healthcare in America, 2001), IOM provided broad recommendations for the 
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future of the healthcare stating the need for systems to “safe, effective, patient-centered, 

timely, efficient, and equitable”. 

The reports led to a variety of interventions being introduced into medical practice 

throughout the country, but an important lesson learnt was the need to treat the medical 

environment as a system that combines human factors (social, organizational) with 

technology and other processes. While it may be convenient to blame human error on 

those findings, it is not a view shared by the majority of patient safety researchers 

(Henriksen, Dayton, Keyes, & Carayon, 2008). A more accepted view is to consider a 

medical environment to be a complex system and errors are typically caused by one or 

more aspects of the system failing leading to a sequence of failures which ultimately 

impact patient safety. Errors occur more due to our lack of understanding of the 

environment and its bottlenecks rather than any specific individual in the environment. 

To that end, it become clear that the analysis of clinical environments relies heavily on 

the tracking and assessment of clinical workflow. 

Workflow in complex clinical environments 

Workflow is the description of a sequence of activities performed independently 

or collaboratively by the various agents/entities in the system (M. Vankipuram, Kahol, 

Cohen, & Patel, 2011). The agents in a clinical system include, but are not limited to, 

clinicians, technologies, and care delivery processes. Analysis of the causes of clinical 

error that compromises safety, has always been a complex proposition.  Since healthcare 

is a complex and collaborative system, the study of clinical activities and interactions 
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with healthcare professionals and support systems, can help us better understand the care 

delivery process and consequently, the workflow.  

However, a meaningful analysis of workflow is a time and task intensive process, 

the complexity of which scales in relation to the complexity inherent to the observed 

environment (M. Vankipuram et al., 2011). Traditionally, workflow analysis involved the 

use of one or multiple methods by means of a human observer to capture various streams 

of data in the environment of interest. The most widely used method has been 

ethnography (Laxmisan et al., 2007; Malhotra, Jordan, Shortliffe, & Patel, 2007; V. L. 

Patel, Zhang, Yoskowitz, Green, & Sayan, 2008). Ethnography in clinical environments 

is the study of individuals in the setting and how their interactions, including their biases, 

impact clinician performance and patient care outcomes. Ethnographic studies most often 

focus on aspects of clinical workflow and related behaviors rather than attempt to model 

a global state. These aspects can range from the actual tasks being performed within the 

environment to the mental perceptions, models of the providers and associated clinical 

staff or some combination of both.  Mental models are an abstraction of the thought 

process of individuals performing tasks being tracked. An analysis of those tasks relies 

strongly on their conceptualizations of the task (Norman, 1983), and are therefore vital in 

workflow analysis.  

Jiang et al. (2017) examined the impact of an electronic handoff tool on the 

shared mental models within patient care teams. The goal of this study was to assess 

discrepancies in the mental models of the team members pre and post implementation of 

the electronic handoff system. They found that the electronic handoff did not have the 
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desired impact of reducing discrepancies and was at times associated with an increase in 

discrepancies specifically in relation to dosages and patient symptoms. Mamykina et al. 

(2017) studied the purpose of interruptions within a PICU and the opportunities to reduce 

them. They found that physicians were interrupted 11.9 times per hour and others 8.8 

times an hour. The most common reason for interruptions was determined to be 

information seeking or sharing (46.3% of the time). They also determined that 29.5% of 

the interruptions could be resolved using information displays or computer-mediated 

communication. Malhotra et al. (2007) conducted a study leveraging ethnographic 

techniques to model clinical workflow in an intensive care unit, using both observed 

activities and an inferred understanding of the underlying cognitive processes of clinical 

personnel. The goal of their work was to create models of ICU workflow that could be 

used in the identification and classification of medical errors. Similarly, Laxmisan and 

colleagues (2007) conducted ethnographic observations in the ED to study cognitive 

burdens imposed on clinicians in the work environment. They found that multi-tasking, 

interruptions, and gaps in information were potentially causing heavy cognitive load. In 

another context, Gralla and colleagues (2005) studied the impact of a 16-MDCT scanner 

on workflow in the emergency department. They recorded the time intervals of various 

tasks during examinations and found that the use of the scanner resulted in shorter 

examinations times even in the case of multiple body region exams. One of the 

advantages of incremental studies on aspects of clinical workflow, as described here, is 

that a survey of literature can give us a much better view of the state-of-the-art. The goal 

of any single researcher is rarely to find a global truth of workflow. As an example, 

Niazkhani & Pirnejad (2009) surveyed literature to find the impact of CPOEs on clinical 
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workflow based on a conceptual framework and found that CPOE has a positive impact 

on legibility of orders, remote accessibility, and order turnaround times but suffered from 

concerns about usability, enforcement of predefined relationships between clinical tasks 

and providers. An alternative advantage of workflow analysis is the ability to generate 

best practices and guidelines that can seamlessly integrate into workflow to enhance 

efficiency and quality. Tu and colleagues (2004) developed a method to integrate 

decision support systems into clinical workflow based on a deployment-driven 

methodology of identifying usage scenarios, disambiguation of relevant knowledge, 

formalization of data elements and vocabulary, and encoding the usage scenarios into the 

guideline. They evaluated their methodology by simulating the deployment of an 

immunization guideline in a clinical information system. Their results suggested the 

potential for sharable executable guidelines that allow seamless workflow integration. 

The studies described thus far have mostly dealt with clinical workflow analysis 

from a cognitive or behavioral perspective. An alternative or supplemental approach 

involves capturing the tasks or activities within the environment as a function of time. 

These methods help create a dynamic view of the clinical workflow. Time-motion studies 

are commonly used to map processes as well as associated tasks and their temporal 

relationships in complex environments.  Such studies are considered a gold-standard for 

clinical workflow analysis. These studies most often involve use of qualitative 

observations (Sinsky et al., 2016a; Westbrook, Li, Georgiou, Paoloni, & Cullen, 2013), 

recording  tasks in the environment, along with recordings of sequence and duration, 

using time stamps. While time-motion studies are an invaluable part of workflow 

analysis, Zheng et al. (2010) found that such work has consistently found the impact of 
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health IT implementations on workflow to be negligible, where other qualitative methods 

have suggested negative end-user perceptions, as is the case for EHRs discussed earlier. 

They speculate that a reason for the discrepancy may be due to the nature of the time-

motion study design being used and the reported outcome measures. In their paper, they 

propose a new set of analytical methods and visualizations derived from time-motion 

studies that they suggest could enrich future workflow analysis efforts.  

Ethnographic techniques share some common propensity for erroneous 

observation or inference or are logistically problematic. Furthermore, the inferences made 

from the data can be difficult to generalize. An example of this is that human observers 

need to capture a significant amount of information within the complex environment. 

This can be cognitively taxing to the point of information loss or erroneous capture. 

Additionally, to maximize coverage of a clinical environment, several human observers 

may be required adding to the cost involved. To that end, several kinds of automated 

techniques have been developed to refine data collection in clinical environments. These 

techniques help either to provide human observers a streamlined mechanism of data 

capture or as a standalone method of supplementing information captures within the 

environment. The first of these techniques is the use of workflow simulations. Wang 

(2009) implemented an agent-based simulation to better identify bottlenecks in the ED 

workflow. His system was used to identify and subsequently modify parameters 

associated with triage and radiology processes that could achieve an improvement in 

mean patient wait times, thus reducing their length of stay. Wang et al. (2013) used a 

conceptual model of the ED to simulate the impact of modifying physician behavior on 

several performance metrics including the number of new patients seen per hour, and the 
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length of stay.  Such techniques are a good way to simulate complex environments where 

the data collected may not always be consistent. However, the simulation models are 

typically created through expert opinion, which while valuable, are at times insufficient. 

Incorporating real world data into the creation of these models would go a long way 

towards developing consistent quantitative metrics. 

There are certain other limitations to ethnographic methods as well. Specifically, 

they rely heavily on single or multiple human observers processing multiple, at times 

concurrent, streams of information (M. Vankipuram, Kahol, Cohen, & Patel, 2009). 

Increasing the number of observers can help in such situations, but it can become 

disruptive to the clinical environment.  Additionally, logistical issues, such as the need to 

train the observers to collect consistent data with high reliability, may be a cost-intensive. 

These issues are exacerbated in the emergency department (ED) (Brailsford, Lattimer, 

Tarnaras, & Turnbull, 2004), and it consequently poses a significant challenge for 

researchers. The tasks performed in the ED are typically, complex, distributed, and non-

linear (Kannampallil et al., 2011). Therefore, to supplement ethnographically derived 

metrics, healthcare organizations have turned to automated data collection techniques, 

freeing the researchers to devote more time to data analysis and interpretation in context.  

Impact of EHRs on clinical workflow 

The Health Information Technology for Economic and Clinical Health (HITECH) 

Act, passed as part of the American Recovery and Reinvestment Act (ARRA) of 2009, 

introduced incentives for healthcare organizations to adopt and use EHRs (Blumenthal & 

Tavenner, 2010). This has led to a significant increase in EHR adoption and as of 2015, 
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96% of US non-federal acute care hospitals reportedly possessed certified EHR 

technology and 84% had adopted a basic EHR which was up from 9.4% in 2008 (Henry, 

Pylypchuk, Searcy, & Patel, 2016). The EHR systems have introduced a new dimension 

to clinical workflow. This, combined with the quality reporting requirements under 

“meaningful use” (Centers for Medicare & Medicaid Services (CMS), 2010) have seen 

organizations adopt a variety of protocols and techniques to collect and quantify clinical 

workflow to aid in reporting of measures. However, recent research has shown that the 

impact of EHRs into clinical workflow has not been without some significant drawbacks 

ranging from a lack of patient engagement to a negative impact on physician productivity 

(Furukawa et al., 2014; Mennemeyer, Menachemi, Rahurkar, & Ford, 2016; Middleton et 

al., 2013) suggesting the need for a thorough exploration of EHRs impact on workflow. 

Problems with EHR integration have also shown to negatively impact workflow (Ash, 

Berg, & Coiera, 2004; Koppel et al., 2005).  

Noblin et al. (2013) studied clinician perspectives regarding a newly introduced 

EHR system in an ED and found that the users were, as a group, divided on its overall 

impact on patient flow and clinician satisfaction. Makam and colleagues (2013) 

conducted a survey of primary-care providers in 11 internal medicine practices, asking 

about their use of the EHR on typical tasks such as documentation, ordering, problem 

lists, etc.  They found that the decision-support features such as reminders were a source 

of frustration due to the usability concerns. Additionally, over half of those surveyed felt 

that the problem lists, while important, were unreliable and potentially inaccurate. They 

also found that the clinician subjects were spending at least an extra hour beyond normal 

work hours on the EHRs, contributing to burnout. In a comprehensive study of 223 
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providers in one academic healthcare system during adoption of a commercial EHR, 

Krousel-Wood and colleagues (2018) found a significant decrease in the overall 

satisfaction and perceived productivity of providers. A significant decrease in perceived 

time spent with patients or coordinating patient care was also reported. In summary, the 

introduction of an EHR alters workflow in that it introduces cognitive load, increases 

physician time at the workstation, (Arndt et al., 2017; Sinsky et al., 2016b) and thus 

reduces time spent a more direct patient care.  

Automated Data Collection in Clinical Environments 

As previously mentioned, to supplement traditional approaches to clinical 

workflow analyses, organizations have begun to rely on data from a variety of automated 

sources. Automated sources refer to mechanisms in a clinical environment that track 

activities, events, movement, etc. of clinically relevant entities within the environment by 

way of sensors or other logging mechanisms built directly into medical systems. The goal 

of these systems is to provide a computational approach to the tracking of human 

activities and behaviors while accounting for the inherent complexity therein. Zheng and 

colleagues (Kai Zheng, Hanauer, Weibel, & Agha, 2015) define the concept of 

computational ethnography as “a family of computational methods that leverages 

computer or sensor-based technologies to unobtrusively or nearly unobtrusively record 

end users’ routine, in situ activities in health or healthcare related domains for studies of 

interest to human–computer interaction.”. The goal of computational methods used in 

ethnography or social sciences at large is to add a measure of objectivity to the more 

traditional approaches while also refining the otherwise burdensome process of data 

collection as described previously. The authors define the various data sources form the 
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backbone of computational ethnography. These include: computer logs (activity, event 

logs), screen activities, eye tracking, motion capture, real-time location sensing (RTLS) 

etc. Each type of data source requires a separate set of technological, logistical, and 

ethical considerations. However, a clinical system fully capable of automated analysis of 

the workflow and process within will likely have some combination of the above 

methods and technologies implemented within the environment. Our goal as researchers 

is to demonstrate value for each of the methods and as a combination whenever possible 

to give medical organizations an empirical basis for increasing adoption of these 

technologies. In this research the focus (through the two aims) will be on two of the 

computational ethnographic methods: automated location tracking and EHR logs. 

The first of these is RTLS. There are a variety of RTLS technological solutions 

available, the most common among them is Radio-Frequency Identification (RFID) 

which is also the tool used in this research. The value of automated environmental 

capture techniques in healthcare is described by Vankipuram and colleagues (M. 

Vankipuram et al., 2011), as being analogous to a black-box in aviation. The black-box 

continually captures internal performance and environmental data of the air-craft. This 

data can then be used in performance assessments and reliability checks as well as error 

analysis in the case of failures. Such technologies are best utilized in a similar manner 

and when combined with tried and tested qualitative measures, they can be used to 

capture workflow with greater fidelity. While, automated data collection techniques 

cannot independently provide the descriptive depth achievable using qualitative 

techniques, they are able to complement human observation or provide a means to find 
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potential areas of concern that can be subsequently studied thoroughly through a 

combination of traditional and modern techniques.  

 

Figure 1: RTLS Tags. top-left: ZigBee (Wikipedia.org); top-right: Bluetooth (Estimote.com); 

bottom-left: RFID (Midmark.com); NFC (Wikimedia.org) 

Several technologies exist for the purpose of location tracking including, but not 

limited to, Wi-Fi (Youn et al., 2007), Radio Frequency Identification (RFID), Bluetooth 

(Han, Klinker, Ostler, & Schneider, 2015), ZigBee (Tung et al., 2014). Sensor-based 

technologies are based on a transmitter-receiver model where a transmitting tag is placed 

on the entities being tracked and a receiver collects the information when the tag is within 

a required range. The receivers can range from proprietary stations created for the 
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technology to any desktop or mobile device capable of receiving the transmitted signal 

either natively or using an external USB receiver or other attachments. 

In the context of clinical quality or performance analysis, ALT can help 

streamline the process. As an example, positional tracking can be used to derive 

additional metrics that may function to benchmark emergency room performance. The 

Center for Medicaid and Medicare Services (CMS) enacted several performance 

measures that needed to be enacted beginning in 2012 (Blumenthal & Tavenner, 2010).  

The measures that can be analyzed using location tracking data include: 

• Door to Diagnostic Evaluation by a Qualified Medical Professional 

• Median Time from ED Arrival to ED Departure for Discharged ED Patients 

• Median Time from ED Arrival to ED Departure for Admitted ED Patients 

• Admit Decision Time to ED Departure Time for Admitted Patients 

Welch and colleagues (2011)  elucidated, in detail, the performance measures for 

emergency rooms and the salient timestamp or time-interval measures were as follows: 

• Treatment space time: Time taken to acquire a bed or room 

• Provider contact time 

• Arrival to provider time (door-to-doc) 

• Arrival to treatment space time 

• Length of stay: Arrival to departure 

Continuous tracking of these attributes can provide emergency rooms with the 

ability to continuously monitor and improve their processes. 

Radio-Frequency Identification (RFID) 
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Figure 2: RFID system architecture (Versus Technology) 

RFID is amongst the most popular technologies utilized for continuous location 

tracking in environments. RFID systems have been used in medical environments in a 

variety of ways. There are two main categories of RFID technology: active and passive. 

Active RFID tags have an internal power source and are continuously transmitting a 

signal. This increases their range of detection over the passive systems. An active RFID 

tag can be detected at distances of over 100m. However, the batteries need to be replaced 

at regular intervals. Passive RFID tags have no internal power source and therefore have 

a much longer single usage life that active systems. They derive their power from the 

receivers themselves. Their detection range is typically small (approx. 10m). Passive tags 

only activate when they are within the range of the receiver. 

RFID can be potentially leveraged to track entities within the environment to 

study the workflow of its users. These tracking methods have been implemented in a 

variety of domains for the purposes of operations/workflow analysis. Fry and Lenert 

(2005) implemented a system called MASCAL that used RFID technology to track 

personnel, patients, and equipment in mass casualty events such as natural disasters and 

other catastrophes. MASCAL involved the use of 802.11g RFID tags in combination with 
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receivers set around the hospital to track the various resources in real-time at times of 

emergency. Ajami and Rajabzadeh (2013), in their review of RFID and its impact on 

patient safety found that the use of RFID-based analysis integrated into workflow 

reduced “medical, medication, and diagnosis errors”.  In the context of the ED, 

Kannampallil et al. (2011) presented a set of methods to formalize the investigation of 

clinical activities using RFID tags. They propose the use of entropy or the “degree of 

randomness” as a quantifiable metric that can be computed from tag-based data. The 

purpose of this techniques was to create a quantifiable mathematical abstraction of the 

nature of clinical workflow. An alternate technique was proposed by Vankipuram et al. 

(2009). Their activity tracking relied on the use of Hidden Markov Models (HMM) to 

probabilistically derive the underlying hidden activities that could be associated with a set 

of observations from the RFID tags. HMMs are primarily used for predictive modeling. 

In an ideal case, we may be able to predict the succeeding actions or tasks performed by 

the clinician based on the created model. This could potentially yield ways to simulate 

the clinical environment or for real-time error detection. 

One of the primary limitations of RFID is its potential for interference. The 

interference of wireless RFID signals can be divided into two classes: interference that 

prevents correct data from being transmitter or received by the RFID system and the risk 

of incorrect interpretation of signals from other systems as being valid for the current 

system (“RFID and Interference - The Risks of Interference,” 2015). RFID systems can 

be affected by the medium through which the signals must pass i.e. when tags are 

mounted on metals and liquid. Due to this, interference may happen when signals pass 

through the human body. However, recent developments in tag and antenna design have 
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helped mitigate this issue. The second type of interference occurs with Wi-Fi and 

Bluetooth networks. However, this is considered to be a fairly rare occurrence (“RFID 

and Interference - The Risks of Interference,” 2015). Another issue with RFID 

technologies is that the cost of proprietary systems can be high. 

Bluetooth 

 

Figure 3: Bluetooth Beacons (Estimote) 

Bluetooth is a wireless standard for communication over short distances. Most 

desktop and mobile devices are natively capable of reading Bluetooth and therefore it is 

more easily integrated into an existing technological ecosystem. Traditionally power 

required to transmit Bluetooth was prohibitively high and therefore was not used in 

continuous tracking solutions. However, Bluetooth has gained popularity as an RTLS 

technology due to release of the low energy Bluetooth standard (BLE) introduced as part 

of Bluetooth 4.0. BLE devices, have a lower mean power consumption than similar low 

energy technologies such as, ZigBee (Dementyev, Hodges, Taylor, & Smith, n.d.) leading 

to an improved lifetimes of Bluetooth slave devices i.e. tags (Gomez, Oller, & Paradells, 

2012). Andersson (2014) demonstrated the use of a Bluetooth low energy beacon in the 

implementation of proximity-based door locks. Frisby, Smith and colleagues (2017), 

capitalizing on this technology, implemented a Bluetooth RTLS solution in a ED. 
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One of the key limitations of Bluetooth, like RFID technologies, is the potential 

for interference. Bluetooth performance has been shown to degrade in the presence of 

Wi-Fi (Punnoose, Tseng, & Stancil, 2001). However, recent advancements and properly 

configuring the Wi-Fi network has been shown to mitigate the issue (Frisby et al., 2017).  

Automated location tracking data 

The data collected from any tracking technology has two distinct features which 

are important when considering the implementation of such a system within a clinical 

environment. These are:  

1. High density: data is collected continuously and is logged at frequencies as high as 

several times a second. The logging infrastructure i.e. servers, databases etc. must be 

able to deal with high volume of data being added from concurrent sources 

continually. Most mainstream databases should be able to accommodate this type of 

data without concern. 

2. Simplicity: The most effective utilization of tracking data can be achieved by logging 

the following attributes: Location of receiver, Tag identification number, Timestamp. 

These three unique identifiers are enough for effective utilization.  

However, when Bluetooth tracking technologies are implemented in an ad-hoc 

manner, it becomes necessary to deal with data as a signal i.e. a sequence of bits 

representing the strength of the signal and tag information. The distance of the tag 

(location) to the receiver can be then computed. An additional stage is the reduction of 

noise in the signal and there are several techniques to achieve this, one involving Kalman 

filtering is discussed in work by Frisby et al (2017).  Proprietary Bluetooth systems often 
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perform the noise reduction and location computation tasks behind the scenes and 

provide the data structured as described. 

This research deals with data collection from ALT which is structured in the way 

described above.  The conversion of signal to location and distance or noise reductions 

techniques are not discussed in this document as they are beyond the scope of this 

research. Most medical organizations are more likely to have proprietary installations and 

therefore the concern of this research to demonstrate utilization of data and not of system 

development.  

These technologies can be used in the continuous mining and mapping of clinical 

processes (Pasupathy & Clark, 2014). Given the inherent complexity of clinical 

environments, an essential part of analyzing workflow is to study processes and activities 

from multiple perspectives and dimensions. By leveraging and mapping quantitative 

tracking data with qualitative ethnographic data, we can better understand the impact of 

EHRs on clinical behavior of clinicians and the clinical activities of interest.  

However, one of the key limitations of tracking systems in general is the need to 

compensate for the loss of contextual information. In an ideal state, a tracking system is 

best implemented in such a way as to maximize coverage. Coverage is the area of the 

environment that is “seen” by the system of receivers where the presence of a tag can be 

detected. While there are computational techniques to maximize the range of detection, 

often the most efficient case is to ensure the presence of a receiver at each location of 

interest. In large environments, this can be an expensive and complicated task. 

Additionally, in medical environments sources of interference discussed previously, are 

more likely owing to a variety of equipment emitting wireless signals. The second 



  18 

limitation of tracking systems is that certain types of contextual information cannot be 

collected at all. An example of this is interactions between tracked entities. Tracking 

systems can at most yield information about co-located entities, but we cannot use the 

data alone to ascertain if the event constituted an interaction or the type and form of the 

interaction.  

For these reasons, this research is primarily aimed at complementing existing 

workflow analytics techniques, both quantitative and qualitative. The developed methods 

are aimed at supplementing findings or in an exploratory capacity to find areas of concern 

or bottlenecks that can be studied in more detail using a combination of methods. 

Electronic Health Record Data 

A second important form of automated data collection in the in clinical 

environments is from EHRs. We have already discussed the broad-ranging impact of 

EHRs on clinical workflows. In modern EHRs data is collected in a variety of formats 

and stored either locally or on the cloud. Many medical organizations actively create data 

warehouses from clinical data. EHR data consist of several types of data: image, textual, 

numerical, event, video etc., the processing of each requiring a varied set of 

considerations.  

One important type form of EHR data is usage (trace) logs which are a log of 

events (actions) performed in the system. Trace logs can be used to mine relevant 

processes. Kannampallil et al. (Kannampallil, Denton, Shapiro, & Patel, 2018) studied 

the use of EHR trace logs in the automated creation of “meaningful use” performance 

measures for the ED, namely: door-to-doc, door-to-disposition, admit-decision etc. These 

measures were then correlated with the use of EHR modules categorized by their general 
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purpose (Documentation, ordering, notes, review etc.). They found that patient chart 

review was positively associated with door-to-disposition time. The goal of their study 

was to show the value of EHR activity logs even as a standalone data source in 

performance analysis within a clinical environment. Hribar et al. (2018) conducted a 

study to validate the use of EHR timestamp data in the prediction of clinical workflow 

related timings in four outpatient ophthalmology clinics. They found that the EHR 

timestamps were within 3 minutes of observed times for >80% of appointments. They 

were able to conclude the EHR timestamp data provides a reasonable approximation of 

clinical activity/workflow. To understand the potential of secondary EHR data in 

assessing elements of clinical workflow, Goldstein et al. (Goldstein, Hribar, Sarah, & 

Chiang, 2017) conducted a study to assess the impact of trainees on workflow in an 

academic outpatient clinic. They found that secondary EHR data could be used to 

comment on trainee behavior and specifically that presence of trainees was associated 

with an increase in session length. Wu et al. (2017) similarly compared known workflow 

changes from their previous study using EHR audit logs and were able to quantitatively 

demonstrate those changes suggesting that the logs could be as valid source for workflow 

analysis when used as an objective measure. 

Process mining is a family of automated techniques that utilize trace logs to yield 

additional insight into the underlying process of a sequence of activities. Grando and 

colleagues (2017) utilized EHR trace logs to study provider and patient-based workflows 

in pre-operative setting. They were able study workflows associated with handoffs, time 

spent using reviewing information, and time spent documenting using trace log mining. 

Process mining using EHR trace logs has also been used in conjunction with cognitive 
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analysis to study workflow (Furniss, Burton, Grando, Larson, & Kaufman, 2016; Kai 

Zheng et al., 2015). 

The other form of EHR data is in the form of aggregate or summary information 

usually categorized based on time, location, personnel etc. This form of data is utilized in 

the EHRs vendors own analytics platforms. The data available is not in the form of raw 

event data but has been aggregated into meaningful types based on specific EHR modules 

(notes, documentation, orders) or types of activities performed (clicks, tab hops). This 

form of data is easy to visualize or present in other ways to target users. One of the goals 

of this research is to utilize this form of EHR data in conjunction with automated location 

tracking data to analyze workflow using a different perspective to yield new insight. 

Visual and Temporal Analytics 

Utility of analytic techniques are the greatest when derived information can be 

presented to target users in meaningful ways. In the medical domain, users may include 

clinicians, administrators, or clinical researchers. The theoretical foundations for this 

space are provided by the science of visual analytics. Visual analytics is the “science of 

analytical reasoning facilitated by interactive visual interfaces” (Thomas & Cook, 2006). 

Visual analytics can aid in the deeper exploration and insights derived from data and the 

presentation of this information to specific types of end-users. 

It is essential for any data collection that tracks entities to preserve the temporal 

relationship between observed activities. Consequently, the value of temporal 

information extraction is the ability to then infer higher-level concepts. Aigner and 

colleagues (Aigner, Miksch, Müller, Schumann, & Tominski, 2007) provide a 

generalizable framework for the visualization of temporal data. They categorize visual 
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methods into three high level categories: time, data, and representation. Each are sub-

categorized based on the structure of data (number of variables, frame of reference), 

structure of time (linear, branching, cyclic), and time-dependent and dimensionality of 

representation. They also define the types of interactions that should be expected from 

any temporal visualization i.e. the ability to change time intervals or the ability to further 

explore any one data variable. Their work provides a foundational view of visualizations 

in ED like environments. Loorak et al. (Loorak, Perin, Kamal, Hill, & Carpendale, 2016) 

developed a system called TimeSpan demonstrating the visualization of temporal patient 

data with multiple dimensions. 

Visualizations can also be used to develop modeling paradigms that can be used to 

creating and representing the structural specifications of systems to standardize varied 

representations and for shared development. A popular example of this is UML (Unified 

Modeling Language) (Group, 2010) which is used in extensively in software system 

architecting and development. An advantage of these type of modeling languages is the 

ability to execute or simulate the model as a state machine to test the performance, utility, 

logic flow of the system against specific inputs. In the clinical domain, GLIF (Guidelines 

Interchange Format) (Boxwala et al., 2004) was developed to model clinical guidelines. 

The goal of this work was to allow clinical guidelines to be represented, shared, and 

executed using conceptual flowcharts and computable specifications. Encoded GLIF 

models were tested with actual patient data. 

Deeper insight from data can also be achieved using knowledge mining and 

representation. Yuval Shahar (1997) presented a domain-independent framework for 

knowledge-based inference using a temporal abstraction framework. The crux of this 
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work was the formalization of the Knowledge-based temporal abstraction (KBTA) 

method. The KBTA method decomposes to five independent temporal abstraction 

mechanisms. The model itself could be utilized within a variety of contexts within the 

clinical domain by acquiring the knowledge through domain experts or automated 

techniques. More recently, the KBTA model was utilized in the development of a system 

(VISITOR) for patient records that allowed users to intelligently retrieve, visualize, 

explore raw time-series data from  electronic patient records (Klimov, Shahar, & Taieb-

Maimon, 2010). The system additionally allowed for the retrieval of abstracted concepts 

(temporal abstractions) from the records data. Their research serves as a guide for the 

process of converting knowledge representation modules to actionable systems for 

providers and patients. It also demonstrates the utility of visual analytics in converting 

abstractions to meaningful insight. 

Adlassnig, Combi, Das, Keravnou, & Pozzi (2006) discuss the areas of research that 

are potentially valuable in the development of meaningful temporal reasoning techniques 

in medicine. The first set of methods presented was in the space of fuzzy logic and 

medicine with respect to time. They claim that the ability to deal with potentially 

ambiguous terms and events (“in the last few days”, “increased glucose level”) is a vital 

step towards richer temporal analytics. The next relevant concept is the use of 

probabilities to model temporal events owing to the inherent uncertainty of medicine and 

related events and reasoning. Finally, they tout the use of specialized databases that 

support rapid querying and retrieval of temporal data unlike standard relational databases. 

Visual data exploration can generally be thought of as a hypothesis-generation 

process. The three key features of a useful visual exploration tool per Keim (2001) are: 
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ability to deal with noisy data, intuitiveness,  and requires no understanding of complex 

mathematics. He further categorized data visualization based on the data type being 

visualized: 1-dimensional, 2-dimensional, multi-dimensional, textual, and hierarchical. 

One of the primary considerations of visualizations are that there is no universal 

technique for evaluating visualizations (Keim, 2001). It is often the case that each 

visualization can be evaluated only with respect to the task at hand. This adds a level of 

complexity to research in this space, and to implementations of visual exploration tools. 

The second consideration is that a visualization interface is that with an increase in 

complexity the level of understanding and intuitiveness is likely to reduce for the average 

user. Often relying on fundamental plots may be required over a more complex 

alternative. This scenario also needs to be evaluated on a per case/task basis. 

Hypothesis and Objectives 

As mentioned earlier, medical organizations have increasingly begun to collect a 

variety of automated information but there is no coherent framework in place to translate 

ALT data to actionable insight or to be able to explore data to generate new hypotheses. 

In this case, we define actionable insights as: 

1. Creation of quantitative quality measures, and  

2. Redesigning/Refactoring workflow by merging ALT and other data sources 

Furthermore, clinicians often don’t see any immediate benefits from the data 

collected in the environment. While some measures are collected for the purposes of 

reporting (ex. formerly meaningful use), they yield no information that could facilitate 

self-guided behavior change. Often these measures tend to be high-level summaries that 

don’t allow for the analysis of the different pieces that constitute the overall workflow. 
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The target users of the workflow analysis are typically: medical providers, staff, 

administrators, and researchers. Each of these types of users have a set of disparate 

perspectives. To that end, any data analytics effort must be able to present its results in a 

manner that is relevant to each user i.e. the visualization or presentation of this data must 

adapt to the type of the target user. There are only a few studies that deal with this aspect. 

Based on the discussion above, the major hypothesis for this research is as follow: 

Automated Location Tracking data can be, independently or in conjunction with 

alternative qualitative and quantitative data sources, used for deeper analysis of clinical 

workflow, new hypotheses generation, and to present relevant findings by way of 

visualizations. 

The testing of this hypothesis was achieved through two primary aims/objectives with 

the sub-objectives listed below: 

1. Use ALT data to develop a novel methodological/exploratory framework for clinical 

workflow analysis that can aid in the tracking of efficiency and quality measures and 

in the generation of new hypotheses. 

a. Develop quantitative metrics to facilitate in workflow analysis 

b. Develop visualizations to present metrics to target users. 

2. Overlay ALT data on EHR aggregate/summary usage data and data from qualitative 

observation and shadowing studies (mixed methods) to facilitate workflow 

refactoring/redesign to improve efficiency. 

a. Develop measures from ALT data that can be overlaid on EHR usage data. 

b. Develop a mixed-method approach to workflow analysis. 

c. Discover inefficiencies and barriers from the findings and suggest ways to 
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refine/improve workflow. 

Scientific and Practical Contributions 

The primary contributions of this research are to develop methodologies 

associated with workflow modeling and analysis with the use of naturalistic data 

collected from the clinical environment.. Additionally, we aim to introduce novel data 

modeling methods that can be used with tracking data to create meaningful performance 

and error analytics. This research can also be used to complement existing qualitative 

methodologies to create mixed-method studies that can provider broader insight into 

clinical processes, and this is generalizable.  Finally, visual analytics can have a great 

impact on the feedback provided to clinicians and researchers and facilitate a continuous 

monitoring of care quality. In the future, the creation of visualization dashboards can help 

organizations institute a platform of quality management and self-driven behavior change 

related to clinical workflow. 

Structure of the document 

The manuscript is structured as follows: Chapters 2 and 3 deal with the two 

primary aims. Chapter 4 presents a series of case-studies of utilization of tracking and 

EHR data in the creation of workflow-related visualizations using. The goal of this 

chapter is to present on-going and future work in this domain. Chapter 5 place these 

studies associated with the aims of this research into the broader context of clinical 

workflow analyses and discuss its future goals and direction. 
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CHAPTER 2 

AIM 1: DEVELOPMENT OF METHODOLOGICAL/EXPLORATORY 

FRAMEWORK FOR CLINICAL WORKFLOW ANALYTICS 

The analysis of clinical workflow offers many challenges, especially in settings 

characterized by rapid dynamic change. Typically, some combination of approaches 

drawn from ethnography and grounded theory-based qualitative methods are used to 

develop quantitative metrics. Medical institutions have recently attempted to introduce 

technological interventions to develop quantifiable quality metrics to supplement existing 

purely qualitative analyses. These interventions range from automated location tracking 

to repositories of clinical data (e.g., electronics health record (EHR) data, medical 

equipment logs). The goal of this study is to present a cohesive framework that combines 

a set of analytic techniques that can potentially complement traditional human 

observations to derive a deeper understanding of clinical workflow and thereby to 

potentially enhance the quality, safety, and efficiency of care offered in that environment. 

We present a series of theoretically-guided techniques to perform analysis and 

visualization of data developed using location tracking, with illustrations using the 

Emergency Department (ED) as an example. Our framework is divided into three 

modules: (i) transformation, (ii) analysis, and (iii) visualization. We describe the methods 

used in each of these modules and provide a series of visualizations developed using 

location-tracking data collected at the Mayo Clinic ED (Phoenix, AZ). Our analytics go 

beyond qualitative study and includes user data collected from a relatively modern but 

increasingly ubiquitous technique of location tracking, with the goal of creating 

quantitative workflow metrics. Although we believe that the methods we have developed 



  27 

will generalize well to other settings, additional work will be required to demonstrate 

their broad utility beyond our single study environment. 

This study was published in the Journal of Biomedical Informatics in 2018 

(Akshay Vankipuram, Traub, & Patel, 2018a). The sections associated with this aim 

below are adapted from the paper in question to better preserve the structure of the peer-

reviewed work.  

Study Setting 

The study to test our concept and methods, was conducted at the Mayo Clinic 

emergency department in Phoenix, Arizona. The ED serves an average of 26,000 

patients, with an admission rate of approximately 30% (Traub et al., 2016). The layout 

consists of 24 patient rooms with an additional 9 hallway beds to board extra patients. 

There are also additional medication rooms (2), and cleaning utility rooms (2), and the 

triage area. The ED is staffed 24hrs/day with board-certified physicians.  Assignment of 

patients to match with the physicians, is algorithmically determined using a ‘rotational 

patient assignment’ process, whereby patients are automatically assigned to the incoming 

physicians, who are all attending staff  with a few or non- resident staff (Traub et al., 

2016). 

Real-time location sensing (RTLS) setup 

For the purposes of this study, we leveraged the data collected by a proprietary 

RFID system installed at the Mayo clinic. The RFID system was installed as part of 

large-scale quality initiative at the Mayo clinic and was vetted by the relevant 

stakeholders prior to deployment. The system consists of ceiling-mounted receivers and 

an RFID tags carried by tracked clinician. Figure 4 gives a schematic map of the ED, 
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along with areas of interest (highlighted areas in Figure 4), tracked by the system. There 

are 59 unique tracked locations including each patient room, hallway bed, workstation 

areas, nurse stations, medical supply rooms etc. We inspected a few of the recorded 

samples of the RFID data with mapped these against the observation timestamps based 

on the notes from shadowing the clinicians. Please note that the terms used in the legend 

in figure 4 do not correspond exactly with those in the data, since there are used for 

simplicity. Furthermore, the terms EHR Workspace, Workspace, and Physician 

Workspace are all used interchangeably.   

 

Figure 4: RFID tracked location in the ED 
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Figure 5 illustrates the setup. The receivers are mounted in each location of 

interest. The transmitter (tag or badge) continually transmits information in the form of 

RF waves. It typically transmits information used by the receiver to identify each unique 

tag. This is explained further in the data collection section below. 

 

Figure 4: Illustration of RFID transmitter (badge) and receiver setup in the ED 

Participants 

Eighteen physicians were consented as volunteers to take part in this study, as a 

part of a broader research on workflow including RTLS, observation/shadowing, and 

interviews. Five physicians were shadowed and interviewed. We decided, therefore, to 

use the RTLS data for these five physicians collected over a longer period of seven 

months (August 2016 to January 2017) to ensure that we had shadowing and interview 

notes on the tracked clinicians for comparisons and to address any discrepancies in the 
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data for subsequent analyses. Each clinician was given a unique RFID tag, which was 

fastened to their badge. Nurses were not tracked by the RFID system and thus they were 

not included in this study. This was entirely due to the logistical issues associated with 

the introduction of a new intervention into the ED environment. We believe that the nurse 

tracking data are important to supplement physician data, and we hope to extend this 

study in the future to create deeper analytics for clinical workflow.  

Data Collection 

Table 1: Structure of RTLS data collection snippet from the ED 

Location Start End Duration 

Office 11/20/2016 12:04:09AM 11/20/2016 12:06:44AM 0:02:35 

Physician 

Workspace 

11/20/2016 12:06:47AM 11/20/2016 12:12:11AM 0:05:24 

Table 1 shows two instances (rows) of the RFID data collection for a single clinician. 

We extracted 7 months of data for 5 clinicians. Each row is recorded when a RFID tag on 

a clinician is within range of any ceiling mounted receiver. The attributes of the recorded 

data are: 

• Location: The location of the ceiling mounted receiver.  

• Start: First instant of time when the tag is within range of the receiver 

• End: Instant of time when the tag moves outside the range of the receiver 

• Duration: time spent within range of the receiver 
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Additionally, each RFID tag was associated with a unique ID which was stored by the 

receiver, once per row (Table 1).  The ID could be, therefore, used to identify each 

tracked clinician. 

Data preprocessing 

The location names were shortened for simplicity e.g. “ED Physician Workspace” 

was modified to “EHR workspace” since in the Mayo ED the EHR systems were placed 

in the general workspace area show in Figure 1. We also removed the “ED” prefix from 

all locations, since all locations are within the ED. We combined the data for the five 

clinicians and added the unique tag ID for each of them under a new attribute Name. So, 

our final collated dataset contained 64226 rows with 5 attributes: Name, Location, Start, 

End, Duration. 

Data Analysis 

Analytic Framework 

In this section, we describe the analytics framework we’ve developed using the 

data. The framework (figure 6) was developed to generalize the processes associated with 

data manipulation (transformation), analysis, and plotting (visualization), as it pertains to 

exploratory analysis of workflow in the ED. 
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Figure 5: Analysis framework divided into three modules:(i) Transformation, (ii) Analysis, and 

(iii) Visualization 

The conceptual foundations for this framework were inspired by multiple sources.  

The framework developed by Aigner and colleagues (Aigner et al., 2007) served as a 

basis for developing time based exploration of clinical activities and movement. 

Additionally, Kannampallil et al. (Kannampallil et al., 2011) introduced the idea of 

computing entropy (degree of randomness of movement) as a way of studying complex 
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clinical environments. Their methodology served as an introduction into probabilistic 

modelling using RFID data. Finally, the visualizations were inspired by other research in 

process management and clinical workflow explained in the background section. The 

three phases of the framework are:  

1. Transformation: Computational techniques that convert tracking data 

structured as described in chapter 2 to alternate representations and structures 

that facilitate the analysis phase.  

a. Modified Lempel-Ziv converts the data into sequences (location1 -> 

location2 -> location3 -> … locationN) of movements per tracked 

entity and then extracts repeated sub-sequences within the broader 

sequence. 

b. Temporal sequence extraction converts sequence of movements and 

timestamps to intervallic data i.e. (location1, start1, end1) -> 

(location2, start2, end2) -> … -> (locationN, startN, endN); where 

startX, endX represent the start and end times at a locationX and start2 

≥ start1. 

c. Longest-common-subsequence is a computational technique that 

compares two sequences by comparing the longest progression of non-

contiguous elements that are common. In this case, locations that are 

common between the movement sequences of two physicians. This 

requires a specific type of transformation and utilizes a computing 

concept called dynamic programming (Paterson & Dančík, 1994). 

2. Analysis: The utilization of the transformed data in the transformation phase 
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to generate quantifiable measures of workflow used in an assessment or 

exploratory capacity. Each of the methods in this phase are described in detail 

in the succeeding sections. 

3. Visualization: Deals with the presentation of results of the analysis phase. 

Once again these can be used for reporting or to explore elements of 

workflow. 

Entropy or “Degree of Randomness” 

The first step toward meaningful analysis of data in a complex environment 

requires the establishment of inherent predictability i.e. the tasks tracked have some 

repeating pattern. In a truly random environment, analysis of underlying patterns is 

obviously not achievable. We use entropy as a measure to quantify the inherent 

randomness of the clinical environment. Zhang et al, 2010 (Zhang, Li, Kong, Zhang, & 

Patel, 2010) demonstrated the use of entropy as a measure of randomness in clinical 

environments and their work elucidates the methodology. This was later used to quantify 

randomness in the ED by Kannampallil and his colleagues (Kannampallil et al., 2011).  

The crux of the concept lies in the use of a modified version of the Lempel-Ziv (Ziv & 

Lempel, 1977) data compression algorithm. The Lempel-Ziv encoding algorithm is used 

to reduce the size of input data by replacing repeated sub-sequences in a stream of data 

with the same output code. The algorithm keeps track of each sub-sequence encountered 

and the more times a sub-sequence is repeated the smaller the output will be. In the case 

of entropy determination, a higher number of repeated sub-sequences suggests a greater 

amount of predictability. Formalizing this concept, we compute Sestimate, the entropy for a 

fixed-length time series (N), as: 
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𝑆𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =  
𝑙𝑛 𝑁

1
𝑁 ∑ 𝛬𝑖𝑖

 

Where, Λi is the length of the shortest substring starting at position i such that the 

substring does not previously appear in positions i to i-1. The baseline entropy, which is 

defined as the entropy of the system if all observations are uniformly random, is defined 

as (for N distinct behaviors):  

𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑙𝑜𝑔2 𝑁  

The difference between the estimated and baseline entropies is used to assess the 

randomness of the system. A larger difference (i.e. greater baseline) implies greater 

predictability. The closer the estimated measurement is to the baseline the more random 

the system is likely to be. Besides analyzing the nature of the system, an additional use of 

estimated entropy is to assess differences in the randomness of the behavior of clinical 

personnel or their behavior during various times in a shift or across several shifts, since 

we can compute entropy for a sequence of actions for any given time-period. 

Temporal Sequence Extraction 

Temporal sequence extraction is the ability to extract relevant pieces of 

information (directly in data or computed) for any arbitrary time-period within the time 

range of the dataset. For e.g. the ability to compute entropy for different lengths of time 

(which would also yield differing lengths of sequence). The conceptual aspect of 

temporal manipulation is discussed in Aigner et al. (Aigner et al., 2007) and offers a set 

of basic operations that must be performable on time instances and intervals. To do this, 

the software used in processing of data must have a datetime type that allows for basic 

operations on date and time formatted data (such as the ones described in (Aigner et al., 
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2007)). Most modern programming languages that are typically used for data processing 

and analysis have either inherent functionality or external packages that support the 

datetime format (we have used R and Python with the Pandas package). 

Probabilistic Modeling 

Uncertainty is inherent to medical environments and processes, and this is as true 

today as it has ever been (Hunter, 2016; Logan & Scott, 1996). Modeling probabilities 

therefore remains a vital part of workflow analysis. We separate the probabilistic 

modeling into two methods:(i) next-location probabilities and (ii) longest-common 

subsequences. The methods are elucidated below. It is important to note that for each of 

these methods, as described above for entropy computation, we can perform summary 

analysis over a pre-defined period or represent the variation of the outcomes in a real-

time framework. 

Next-location probabilities 

Assessing the impact of the introduction of a technology or process on the 

probability of movement involves assessing sequences of clinician movement of some 

pre-determined length. This is usually computationally inefficient, and without a clearly 

defined threshold for length of sequence, may not yield meaningful statistics. One 

method for sequence analysis is using the longest common subsequence algorithm, which 

we describe in the next section.  The other is to consider clinical movement to be a 

discrete Markov process. Clinical activity has been represented and modeled as Markov 

chains in the past (Bouarfa & Dankelman, 2012; M. Vankipuram et al., 2011). In our 
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work, we compute probabilities of the next location of movement from each of the 

clinical locations in the ED.  

Longest common subsequence (LCS) 

The LCS problem involves finding the maximum length of subsequence shared 

between two sequences. For any two sequences X and Y, LCS of prefixes Xi and Yi is 

given as follows: 

𝐿𝐶𝑆(𝑋𝑖, 𝑌𝑖) =  {

∅ if i = 0 or j = 0

𝐿𝐶𝑆(𝑋𝑖−1, 𝑌𝑗−1) 𝑖𝑓 𝑥𝑖 = 𝑦𝑖

𝑙𝑜𝑛𝑔𝑒𝑠𝑡 (𝐿𝐶𝑆(𝑋𝑖, 𝑌𝑗−1), 𝐿𝐶𝑆(𝑋𝑖−1, 𝑌𝑗)) 𝑖𝑓 𝑥𝑖 ≠ 𝑦𝑖

 

A matrix of values created with each element of the sequence (of movements) 

forming the rows and columns. When the two sequences are traversed, we then backtrack 

to find the actual longest sequence.  In our case, we first encode the locations tracked 

(assign each unique location a number between 0 and N; where N is the number of 

unique locations tracked). Then we can compute the LCS for each clinician across all 

their shifts or across multiple clinicians. LCS may be used in clinical workflow 

assessment as way to contrast behavior, for e.g. based on expertise or to analyze the most 

likely sequences of movement per clinician. Like the calculation of entropy, here too we 

can restrict the computation to any length of time.  

Interactions 

Lack of ‘interprofessional’ communication can be responsible for an increase in 

errors committed, increasing the hospital costs (Zwarenstein, Rice, Gotlib-Conn, 

Kenaszchuk, & Reeves, 2013). Therefore, it is meaningful to track interactions more 

precisely from the tracking data. We define an interaction as a period where the receiver 
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at each location recorded multiple tags. Kannampallil et al, 2011 (Kannampallil et al., 

2011) define clinical interactions from RFID data using three attributes: location, 

duration of interaction, and size of team. Our data does not contain tag-tag pings, and so 

our ability to track interactions is limited to instances of interaction potential i.e. 

moments where clinicians share a space for a period.  Dean and his colleagues in 2016 

(Dean, Gill, & Barbour, 2016)  suggest that instances of professional or casual 

conversation can be identified by tracking the shared spaces where the communication or 

interactions occurs. We, therefore, focus on identifying instances of time spent by 

clinicians in shared locations. In the future, this data could be used to identify the types of 

conversations expected to occur based on information procured through more traditional 

qualitative techniques.  

The general procedure to find interactions used is as follows: 

For each location l 

Create a list L of ((clinician, start-time, end-time)); for 

all clinicians at l 

Order L by increasing start-time 

Iterate over L 

Interaction If (L[next][start-time] <= L[current][end-time] 

or  L[current][start-time] <= L[next][end-time]) and  

L[current][end-time] – L[next][start-time] >= 15sec and 

L[next][clinician] ≠ L[current][clinician] 

 

Note that we use a 15sec threshold as the minimum time overlap required to consider the 

instance an interaction. This was selected to avoid instances of physicians passing each 

other being recorded as an interaction. 

Results 

Estimated Entropy 
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Figure 7: Average entropy computed(i) (Upper left) for varying sequence durations, (ii) (Upper 

right) for each tracked clinician, and (iii) (Bottom) for each hour of a shift 

Figure 7 shows the average estimated entropies (Sestimate) computed for a set of 

relevant groupings. Sbaseline was computed to be 5.88. Figure 7i) shows the average 

estimated entropy computed for a set of sequence lengths. ‘9H’ represents the length of a 

shift at the Mayo clinic. The purpose of using this measure is to find a length of sequence 

where the greatest predictability of movement exists. It is clear from Figure 7i) that while 

the entropy is higher when larger periods of time are considered but they are still well 

below the Sbaseline. In Figure 7ii) the variance between clinicians is 0.002 suggesting a 

similar level of predictability in movement. This is in keeping with the notion that the 

differences between individual clinicians is lower than between all clinicians across 
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processes or systems. This suggest a further need to explore cross-site data using similar 

measures. Figure 7iii) shows the average entropy per hour of a shift for all clinicians. The 

variation across all hours in a shift are minimal as well.  

Assessing the clinical relevance of the finding above, we can see a couple of 

trends that can be explored further. A few hours during the shift show more randomness 

(i.e. estimated entropy closer to the baseline) than others. Notably, hours 2, 7, and 9 are 

higher than the other hours. Hour 9 represents the end of a shift and may be associated 

with cognitive fatigue leading to less structured activities. Hour 7 is more difficult to 

explain but it may correspond to the busiest time in the ED. If this is the case, then the 

support (by way of resources) given to physicians could be reviewed and improved. 

Additionally, if a new process was put in place to target these kinds of inefficiencies then 

this data could reflect the results (positive or negative) of that change. 

Next Location Probabilities 

We chart the probability of immediate movement i.e. without a duration 

threshold, which is given in Figure 8. The ‘Workspace’ and ‘Nurse station’ notations 

were chosen to demonstrate the charting of next location probabilities since they are the 

two locations where the most amount of time is spent. Several of the ancillary locations 

were combined into a single location ‘Other’ for simplicity of plotting. Also combined 

were the exam rooms (25) into one location ‘Exam’ and the two ‘Nurse stations’. One of 

the key findings given in Figure 8 is the similarity of movement among the clinicians.  
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Figure 8: (Top) Probability of physician movement from workspace to locations in the ED (this 

includes movement within the location which is only true for the Workspace since it is the only 

location with two receivers); (Bottom) Probability of physician movement from Nurse station to 

other locations in the ED. 
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As in the case of entropy computation, the variation in movement between 

clinicians is limited. Another takeaway from the data is that the workstation area and 

nurse stations form a tight coupling, i.e. most likely movement for clinicians seems to be 

back and forth between these two locations. Depending on the relative positions of these 

locations, this may or may not be an efficient use of time. It would be worth identifying 

the types of information needs for the clinician that are not satisfied by EHR based 

communication requiring that coupling to exist.   

Longest Common Subsequences 

We computed the LCS for each tracked clinician and visualized one clinician’s 

data as an illustrated example in Figure 9. It is also possible to use the chart in Figure 9 to 

view arbitrary length sequences for any clinician, but in this case, we use it to view the 

LCS of movement across 1 full shift of a single clinician. This visualization was 

developed using d3.js (Bostock, Ogievetsky, & Heer, 2011) and is called a sequence 

diagram. The X axis of the diagram represents a single instance of physician movement 

i.e. arrows and the Y axis (top to bottom) represents the sequence. The blocks on each 

axis represent a move within the location i.e. for e.g. ‘Workspace’ to ‘Workspace’. The 

sequence diagram does not represent the absolute or relative duration of the movements, 

only the sequence. As an example of the type of analysis that can be conducted here, 

looking at the highlighted section of Figure 9, the clinician moves from the workstations 

to the nurse station east and then return and moves to the nurse station west. In this case, 

it might have been that the clinician was looking for information that was not to be found 

at 
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Figure 9: (Above) Sequence diagram showing the longest common subsequence of movement of 

two clinicians; (Below) Zoomed in section highlighting a specific sequence of movements 



  44 

the first nurse station and had to check the other. Typically, a clinician would combine a 

patient exam with visiting the nurse station and would rarely visit two nurse stations in 

succession. Since this chart was created using the most common sequences, this pattern is 

relatively common for this clinician and therefore could be explored further. 

The sequence diagram can be used to plot and analyze any length of sequence but 

when trying to identify patterns of behavior it is more useful to consider common 

sequences. The data shown here was created from a full shift’s worth of sequences i.e. 9-

hour long sequences of movement. If paired with other analytics for example, the entropy 

calculation, we can create this plot for a single hour of interest (interest as described in 

the entropy calculation section).  

Interactions 

The first method developed to find interactions involves the use of Gantt chart. 

Gantt chart have long been a popular type of chart used in scheduling and process 

management. Figure 10 shows a sample Gantt chart created to represent clinical activities 

using d3.js. The different colors correspond to the various locations. Gantt charts allow 

for a quick assessment of interaction trends. In Figure 10, Clinicians 3 and 4 were co-

located in the workspace multiple times during the shift. The chart could also, be used to 

vary the time intervals being assessed. The default shown here is a shift length of 9 hours. 

The zoomed section is used here for clarity and shows three instances where the 

physicians were co-located for a duration greater than 15sec in the workspace. 

We also created a list of potential interactions using the procedure described 

earlier. Our aim was to extract information about the three attributes: location, duration of  
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Figure 10: Gantt chart showing activity of three clinicians with interactions with a zoomed 

section showing three instances of potential interactions in the workspace 
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interaction, and size of team. As expected, most of the interactions occurred in the 

clinical workspace area. Figure 11 shows the median and maximum duration of 

interactions per hour of the shift. Specifically, every provider interaction was computed 

by the methods described previously and were grouped by hour of the shift. The shift 

times were all relative to the start of the shift to account for varying shifts. Then the 

median and maximum per hour of the shift was considered. The goal of this was to assess 

interaction behavior over the hours of the shift and compare them to patient load in the 

future. The median interaction duration of seems to be higher during the initial hours of 

the shift with a noticeable dip at hour four.  

 

 

Figure 11: Per hour of shift statistics for duration of interactions for ED clinicians at Mayo Clinic 

ED 
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Figure 12: Duration of interactions by team size  

 

Figure 12 shows the size of the team (i.e. number of clinicians’ interactions) by 

median duration. When computing the interactions between providers, the number of 

providers in an interacting group was extracted and the median time of interaction given 

the group size was calculated. No interacting group larger than 4 was found. Figure 12 

shows that groups of size 3 were spent the longest amount of time interacting i.e. when 

three providers were collocated they spent the most time together (potentially 

collaborating). While it is difficult to arrive at any conclusions based on this data alone, 

it’s worth exploring further how the team size may impact collaboration. From the 

perspective of the hospital, this type of analysis may help scheduling shifts in such a way 

as to maximize potential collaboration. 

Discussion 

In this study, we show the development of analytics using RFID data in an 

Emergency Department setting. We also present a generalizable and extendible 

framework underlying our methodology.   While traditional qualitative techniques are 
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required to capture the nuances of a complex environment such as  the ED, the analytics 

methods we present, serve to complement these techniques, the benefits of which as an 

exploratory tool and as a technique to supplement human observation are given below: 

1. Monitoring activities in the ED in real time 

The Gantt chart is a convenient way to monitor clinical activities in real-time. We only 

report physicians tracking activities, but tracking additional personnel is a relatively 

straightforward process. The sequence diagram can be used to view a subset of the 

physician’s movement patterns over a period of interest, for example, at a shift change or 

at patient arrival.  Administrates could use this information to deploy additional resources 

(personnel and equipment) as needed.  

2. Assessing impact of interventions and process changes 

An example of an intervention that has had a significant impact on clinical workflow is 

the introduction of the EHR, as mentioned earlier. Additionally, there are often changes 

in the medical and clinical processes, either caused by changes in regulations or quality 

initiatives or simply business processes. An example of the latter is the transitioning 

between various EHR systems, which can disrupt workflow. For administrators, being 

able to view the impact of process changes or interventions over a period is vital to 

remaining proactive towards inefficiencies and barriers to clinical performance. 

Probabilistic models viewed continuously over a period beginning at the introduction of a 

process change or interventions will reflect changes in behavior. Sequence diagrams can 

also be used to track behavior trends around periods of interest. An example of this might 

be, when a change in the hand-off process would reflect a change in behavior around shift 

changes. 
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i. Error analyses 

The ability to study the origin and propagation of errors can lead to a reduction in similar 

errors in the future and enhance patient safety. Kannampallil and colleagues 

(Kannampallil et al., 2011), demonstrate a scenario where clinical data combined with 

sensor data were used for the analysis  of error propagation. While more research is 

required to create a framework specifically for error analyses, our analytics can serve to 

provide a deeper perspective on the events leading up to or surrounding an error. 

One of the challenges associated with the process described here was the lack of access to 

raw RFID data. This meant that we had to rely on the algorithms used in the proprietary 

software for noise reduction and localization. This was not a concern at the Mayo Clinic 

owing to extensive validation undergone by the RTLS system. However, the same may 

not be true in a smaller organization. In a fully generalizable framework, we would have 

a pre-processing stage that includes noise reduction and localization algorithms. Such a 

framework would produce consistent results in the case of a less efficacious RTLS 

system. Another limitation was the lack of availability of tracking data for other roles 

(nurses, technicians etc.). In the future, we hope to collect RFID data for all roles, such 

that our analytics can capture the diversity of an ED care team.  

Limitations 

Generalizability 

One of the major challenges with analytic frameworks such as the one described here, 

is their use in other organizations. We have already mentioned how the inability to collect 

raw data impacts our generalizability. However, there are a few considerations that were 
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made during the development of the methods discussed that may help us to speculate on 

the generalizability of the methods presented. These are as follows: 

• There were four data attributes considered for all the analyses: Physician ID, Location 

ID, Start Time at Location, and End Time at location. This was, in our opinion, a 

good simple yet generalized structure for location tracking data. Real-Time Location 

Sensing (RTLS) solutions in other medical environments may not store data precisely 

in this format. However, transforming the data to a format usable by these methods 

should be achievable without much difficulty. Languages like Python have built-in 

libraries that can convert most relational database schemas to textual representations 

like CSV and JSON (called serialization). We can add a data conversion layer to the 

transformation phase in the case of proprietary data formats. 

• Each technique in the data analysis phase can also be structured as a method in a 

Representational state transfer (REST) service. REST services treat data transfer 

stateless operations i.e. each send or receive operation is treated in isolation with no 

“memory” of previous operations. This allows us to have a simplified yet extendible 

interface. The advantage of this is that we can dissociate the presentation i.e. 

visualization stage from the transformation/analysis stages. This abstraction can allow 

the presenting of information to be unique to the needs of the environment or the 

target clinical users (administrators, physicians, nurses etc.).  We illustrate this with 

an example: 

o URL: <some_server>/get_probabilities/?from=01-2016&to=05-

2016&name=Physician1 

o The above URL could return the transition probabilities computed for 
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physician 1 from RTLS data over a 5-month period. Any frontend (i.e. visual 

user interface) can request data using this exact URL or by modifying any of 

the parameters (from, to, and name) and present them in a variety of ways 

depending on the target audience (plots or text). However, the technique used 

to generate probabilities does not change between requesting frontends.  

o Given a set of URL endpoints like the one above, frontends can request data 

from a subset of URL or all of them. This decouples the presentation from the 

analysis algorithms improving generalizability. 

o Another advantage of REST service is that the underlying algorithms in the 

methods themselves may be updated without affecting the presentation of 

information if the data is returned in the same specified format. 

• In the context of interoperability, modern EHR vendors have begun to introduce 

plugin capabilities to their systems that allow custom web applications to be created 

and deployed based on the needs of the site, and the methods presented in this 

manuscript can be used for just such a purpose. Plugin technology is relatively new, 

and this idea needs to be explored further. In the future one could envisage leveraging 

a paradigm like SMART on FHIR. 

• Finally, privacy concerns are a potential barrier to adoption of these types of tracking 

technologies and the analytics that leverage them. We had initially encountered some 

questions about clinicians being tracked in their downtime, as we did in our earlier 

such studies in Banner Health System in Phoenix in 2010. However, we were able to 

show the benefits of such technologies and were careful to monitor privacy and 

security issues. More recently, acceptance of these technologies has risen based on 



  52 

several scientific publications showing how these technologies can be used to our 

benefit, when carefully monitored. We have not felt much pushback from the 

clinicians who have been well informed about its use during the time of requesting 

consent, when a team of researchers, including the clinical site PI, the study PI, and 

the senior nurse practitioner, as well as the person requesting consent, are all present 

to answer any questions. 

However, as mentioned earlier, the biggest barrier to true generalizability at this moment, 

is the need for the input data to be consistent i.e. a relatively high tracking accuracy, 

which is often not the case with smaller, ad-hoc RTLS systems. 

Validation 

To validate the methods discussed, we compared Gantt chart representation of the 

data discussed in the results and compared it to a similar representation of results used by 

Yen and colleagues(Yen et al., 2016). The authors conducted a time and motion study 

and represented the activities in three dimensions. In our case, with location tracking 

data, we can only represent one of these dimensions. However, in the critical care 

environment it is easier to derive the underlying activities from the location of the 

physicians. We can also model underlying activities given the relative abundance of data 

using probabilistic models (for e.g. Hidden Markov Models). This is something we are 

exploring in our ongoing work.  

It will ultimately be desirable to demonstrate the utility and validity for our 

framework in multiple settings.  However, the work we have done to date has been 

carried out in one environment, the Emergency Department (ED), and in one hospital 

(Mayo Clinic).  The work took almost two years and is itself a substantial demonstration 
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of the utility of the framework, which is theoretically based.  Each new site would require 

months of work to get IRB approvals and the like.  It was not realistic for us to do more 

than a single site for this initial formative work and the proof of concept for this 

manuscript.   

As we have stressed, the goal in this work is to present a series of theoretically-

motivated methods to perform analysis and visualization of data developed using location 

tracking. Our analytics complement our earlier qualitative studies and include user data 

collected from a relatively modern but increasingly ubiquitous technique of location 

tracking (RFID).  Our goal has been to create quantitative workflow metrics. A 

combination of approaches drawn from ethnography and grounded theory-based 

qualitative methods has been used to develop the relevant metrics we develop and 

demonstrate in this work. 

The methods have content and face validity, where the metrics measure clinical 

workflow in the ED, which is quantifiable and can be correlated with what is observed 

using a more labor-intensive method, shadowing. These quantitative workflow metrics 

measure the concept of interest (movement and team communication) in the emergency 

department at one institution. As we’ve discussed, the validity of what we have measured 

is evident, since we have other ways of observing the same variables.  This is what our 

manuscript aims to show, and there is no reason to suspect that the framework or 

techniques would be discordant in other environments. Further validity of these methods 

can be tested in other EDs and other team-based clinical environments, but this aspect of 

the work was not funded and accordingly not within the scope of this work. 
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The next step to understanding the utilization of tracking data in clinical workflow 

analysis is to attempt to combine measures derived from the data with other qualitative 

and quantitative measures. As mentioned previously, the goal of a robust approach to 

clinical workflow analysis must combine those multiple perspectives to be successful in 

affecting process modifications. To that end, the next chapter details a study in which we 

create a mixed-method approach to clinical workflow analysis utilizing multiple 

qualitative and quantitative data streams.  
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CHAPTER 3 

AIM 2: MIXED-METHOD APPROACH FOR WORKFLOW REDESIGN 

The pursuit of increased efficiency and quality of clinical care based on the 

analysis of workflow has seen the introduction of several modern technologies into 

medical environments. Electronic health records (EHRs) remain central to analysis of 

workflow, owing to their wide-ranging impact on clinical processes. The two most 

common interventions to facilitate EHR-related workflow analysis are automated 

location tracking using sensor-based technologies and EHR usage data logs. However, to 

maximize the potential of these technologies, and especially to facilitate workflow 

redesign, it is necessary to overlay these quantitative findings on the contextual data from 

qualitative methods such as ethnography. Such a complementary approach promises to 

yield more precise measures of clinical workflow that provide insights into how redesign 

could address inefficiencies. In this work, we categorize clinical workflow in the 

Emergency Department (ED) into three types (perceived, real and ideal) to create a 

structured approach to workflow redesign using the available data. We use diverse data 

sources: sensor-based location tracking through Radio-Frequency Identification (RFID), 

summary EHR usage data logs, and data from physician interviews augmented by direct 

observations (through clinician shadowing). Our goal is to discover inefficiencies and 

bottlenecks that can be addressed to achieve a more ideal workflow state relative to its 

real and perceived state.  We thereby seek to demonstrate a novel data-driven approach 

toward iterative workflow redesign that generalizes for use in a variety of settings. We 

also propose types of targeted support or adjustments to offset some of the inefficiencies 

we noted. 
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A paper based on this aim was submitted to the Journal of Biomedical Informatics 

titled: “Vankipuram A, Traub S, Patel, VL, and Shortliffe EH. Overlaying Multiple 

Sources of Data to Identify Bottlenecks in Clinical Workflow.”. The sections below are 

adapted from the manuscript to preserve its structure. 

Clinical setting and location tracking setup 

The Mayo ED serves between 26 and 30 thousand patients a year with an 

admission rate of approximately 30% (Traub et al., 2016). There are 24 patient rooms and 

an additional nine hallway beds within the ED. There are also additional medical rooms, 

nurse stations, cleaning utilities etc. The ED is staffed round the clock by board-certified 

physicians, and it is equipped with a Cerner EHR (Cerner, n.d.-b) for which hands-on 

system training is provided to all users. 

We tracked the movements of clinical personnel using a proprietary RFID system 

that allows tracking of individuals throughout the entire ED. The system consists of 

ceiling-mounted RFID readers and passive RFID tags given to each tracked clinician. 

Fig.13 shows a simplified schematic map of the ED with the RFID tracking locations 

highlighted. There are 59 uniquely tracked locations in the ED, with only a subset shown 

in the figure for illustrative purposes. Greater detail about the RFID setup can be found in 

our earlier article on workflow analytics (Akshay Vankipuram et al., 2018a). 
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Figure 63: RFID tracked locations (non-exhaustive) in the Mayo-Phoenix ED 

overlaid on an ED blueprint. The RFID receiver locations are represented as black 

squares with the colored circles representing the approximate tracking range of each 

receiver. The circles are colored to denote the type of their location as shown in the 

legend on the right. The RFID system combines the receivers of the same type 

together when storing some of the location data (e.g., multiple nursing-station 

receivers were stored as a single entity).  When an RFID tag is detected within the 

receiver range, a single time-stamped data point is added to the database, including 

the location and RFID tag id. 

Participants 

The participating physicians were recruited as part of our study on the influence 

of EHR on various performance metrics related to workflow. The study was approved by 
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the Institutional Review Board (IRB), and written consents were obtained from all 

participants in the study (n=20). For the research described here, we used a subset of 

these physicians (n=5) for whom we were able to conduct an overlay analysis by 

matching their interviews, the shadowing results, and the associated RFID tracking data. 

Even though the physician sample was small, our methods were able to combine data to 

provide a representative and precise match between perceived and real processes in the 

ED. 

Data Collection 

As we have indicated above, three sources of data were used: Cerner EHR usage 

measures, RFID movement-tracking data (with context from shadowing observations), as 

well as the coded data from the physician interviews. 

Cerner Advance Data 

We collected EHR usage data for a period of 1 year and 4 months (Jan. 2016 – 

April. 2016) from the Cerner Advance (Cerner, n.d.-a) analytics platform to obtain 

quantifiable measures for EHR usage (Figure 14 details the Cerner analytics technology 

stack). The dataset consisted of monthly summaries of time spent using EHR modules 

such as charting, documentation, and ordering as well as usability measures such as 

number of “tab hops” per clinical note. We consider the latter to be a usability measure 

since it is a commonly used metric for usability along with number of clicks. We then 

eliminated non-numeric measures and other invalid or erroneous data, and for each 

tracked physician, we computed the mean value of the attribute for the entire dataset. For 

example, mean “time spent in the orders” and mean “time spent on clinical notes” for 
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each physician. The monthly datasets were designed to provide the mean measures over 

that period, so we simply extended the time to the  

 

duration of the entire dataset. The final dataset consisted of 77 EHR usage related 

attributes. A sample of the attributes are shown in table  

Table 2: EHR usage data snippet 

Chart review 

time per 

patient 

MPages chart 

review time 

per patient 

Flowsheet 

chart review 

time per 

patient 

Clinical notes 

chart review 

time per 

patient 

Doc viewer 

chart review 

time per 

patient 

0:00:36 0:00:08 0:00:16 0:00:07 0:00:04 

0:00:33 0:00:03 0:00:07 0:00:04 0:00:19 

0:01:05 0:00:22 0:00:15 0:00:17 0:00:08 

0:00:35 0:00:08 0:00:17 0:00:07 0:00:01 

 

RFID data 
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The RFID data, which are a record of the movement of the physicians tracked for the 

entire duration of their shift every day, were collected over a period of 7 months (Aug. 

2016 – Jan. 2017) for five physicians. The attributes of the recorded data were as follows: 

• Unique identifier of RFID tag corresponding to the tracked participant 

• Location of the RFID reader 

• Time stamp recorded when an RFID tag is within the reader’s range 

• Time stamp recorded when RFID tag leaves the reader’s range 

The data were then preprocessed by shortening location names and grouping certain 

locations (i.e., renaming them to the same prefix) for simplicity as shown in Figure 1.  

Interviews  

Face-to-face semi-structured interviews were conducted over an 8-month period 

(Feb. 2016 – Oct. 2016) as part of a related study conducted by Denton et al (Denton et 

al., 2018). The interviews were designed to include four categories lasting about 45min 

each. The categories of physician-specific data were: (i) demographics and experience, 

(ii) perceptions regarding the implementation and use of the current EHR and of any 

previous systems they may have used, (iii) awareness of ED-specific meaningful-use 

measures and their perceived impact on workflow, and (iv) EHR’s impact on workflow, 

quality of care, and patient safety. The physicians rated each factor on a 10-point Likert 

scale. Upon completion they were asked for any additional topics relevant to them, not 

covered during the interview.  Interviews were additionally audio-recorded for further 

analysis and transcription. 

Emerging themes were identified from the interviews using a grounded-theory 

approach (Saldana, 2013). Here, we consider the recurrent themes identified by the 
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authors (including perceptions of the EHR, usability concerns, and the EHR’s influence 

on workflow and quality of care) to be the physician’s perceived state of current clinical 

workflow. 

Data Analysis  

The RFID data were used to map two measures (multi-patient visits and 

information transfer) that are potentially affected by EHR usage (or perceptions of EHR 

usage). RFID data captured movements of physicians and were contextualized with 

observational data.  We found two aspects of physician movements to have the greatest 

potential impact on their perception of EHR use: (i) multi-patient visits and (ii) 

information transfer during clinical workflow.   

Multi-Patient Visits 

Physicians in the qualitative aspect of the study reported concerns associated with 

EHR usability, including the number of clicks and screen navigation problems. This is a 

common issue found in other EHR usability studies as well (Guo, Chen, & Mehta, 2017; 

Mosaly, Mazur, Hoyle, & Marks, 2015). Additional findings also highlighted the burden 

placed by EHR usability concerns on working memory (Mosaly et al., 2015). Based on 

our clinical observations, physicians at times would read several patient charts at a single 

session in the EHR prior to visiting the patient rooms. While it is unclear whether this 

was always in response to EHR usability concerns or a general workflow pattern, this 

behavior could potentially lead to increasing the cognitive burden on the physicians, as 

they would have to remember patient-specific details both when evaluating each of the 

reviewed patients and when returning to the workstation to chart the results of the patient 

encounters.  
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For our analyses, an instance of a multi-patient visit is defined as occurring when 

a physician is noted to have visited more than one exam room between sessions 

interacting with the EHR, as tracked by the RFID system. To analyze this behavior, we 

computed the number of instances of patient visits between EHR sessions per physician 

per day. It must be noted that in the ED in question, EHR workstations are used by 

physicians only at a central location (titled ‘Workspace’ in the RFID data) and therefore 

separating patient visits from EHR use was a straightforward task in our analysis. We 

consider each visit to an exam room as being an instance of a patient-evaluation session.  

The results of multi-patient visit analysis of the physicians from observation and 

RFID data were compared with the reported EHR perceptions from the interview data. 

Finally, we correlated the multi-patient visits with each of the attributes in the EHR usage 

dataset to find the measures that were most highly correlated with multi-patient visit 

behavior. 

Information transfer 

Information transfer during care coordination is an important element in clinical 

workflow and can be used to assess clinical workflow (Malhotra et al., 2007). In the 

context of EHR use, an increase in information searching or transfer needs may be 

associated with additional physical or cognitive burden for physicians.  To investigate 

patterns associated with information transfer, we analyzed the sensor tracking data to 

determine instances of potential interaction between nurses and physicians. We did not 

include physician-physician interactions because the Mayo ED is relatively small.  Since 

we used tracking data for only five physicians, the likelihood of interactions beyond 

hand-offs is small. In addition, co-location data do not allow us to ascertain the direction 
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of information movement. We accordingly are concerned only with instances of potential 

communication. 

In the Mayo ED, a majority of nurse and physician communication occurs at the 

nursing stations. We identified the instances of physicians visiting the nursing station (to 

communicate with nurses) after using the EHR and correlated these data with timing 

provided by the EHR usage data. While nurse stations contain EHR workstations for their 

use, these are not used by physicians and therefore the group of workstations that is being 

considered is at a separate central location used by physicians. 

Results 

Multi-patient Visits 

Figure 14 shows the distribution of the number of instances of multi-patient visits 

per day for each physician. The median number of multi-patient visits per day for all 

physicians was zero. We chose not to disregard the zero values as that is representative of 

how many days physicians engaged in said behavior. The colored section of the boxplot 

for the two physicians represents the third quartile of the data for that individual. As we 

see in Figure 15, all physicians show varying instances of the behavior, but the 

distribution is affected by the number of days with no instances of multi-patient visits and 

accordingly reflects the true distribution of this behavior per physician. 

From Figures 14 and 15 we can see that two physicians engage in this behavior 

more often than the others. Figure 14 shows that two of the physicians more often 

selected the physical vs the cognitive trade-off compared to the other two in the group. In 

their interviews, physicians 3 and 4 both had a negative perception of the EHR and its 
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impact on their workflow. Physicians 1 and 5 held a more neutral to positive view of the 

EHR and physician 2 held an overall negative view.  

 

Figure 14: Probability distribution of number of multi-patient visits (defined as visiting multiple 

patients between each EHR session) per day for each physician. The diamonds represent the total 

number of multi-patient visits on outlier days for each physician. 

 

Figure 15: Mean multi-patient visits per day. Lines represent confidence interval (95%). 
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Associating multi-patient visits with EHR use 

 
Figure 16: Multi-patient visits correlated with EHR module usage (95% confidence level). The 

deeper reds signify a stronger positive correlation i.e. higher instances of multiple patient visits 

per day and the deeper blues signify stronger negative correlations. 

 

We computed the correlation coefficient (Pearson) and p-value for each attribute 

in the EHR usage data (from the data logs) and the multi-patient visits per day for each 

physician and all physicians (by computing the mean of all their EHR usage values). 

Figure 16 shows a heatmap of the highest positive and negative correlations at the 95% 

confidence level (p ≤ 0.05) and Table 3 shows the correlations across all physicians. The 

goal of this analysis was to derive an understanding of the impact of EHRs on the tracked 

behavior both as individuals and groups.  



  66 

 

Table 3: Correlation between multi-patient visits and EHR use 

EHR usage attribute R 

Chart review tab hops per patient 0.96 

Doc viewer chart review time per patient 0.97 

Documentation time per patient 0.89 

Electronic documentation percentage 0.9 

Electronic documentation percentage authored 0.9 

Patient discovery open chart per patient 0.97 

Power note percentage 0.9 

PowerNote (Cerner UK, 2017) documentation time per patient 0.9 

Transcription percentage -0.9 

 

 

Information transfer 

As with multi-patient visits, we plotted the distribution of information transfer 

visits per day for each of the physicians (Figure 17) and the mean of the information 

transfer visits per physician per day (Figure 18). Here too, physicians show varying levels 

of the behavior but, accounting for the days where this behavior was absent, show two 

physicians for whom the information-transfer behavior was more prevalent. 
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Figure 17: Probability distribution of number of information-transfer visits (defined as visiting 

multiple patients between each EHR session) per day for each physician. The diamonds represent 

the total number of multi-patient visits on outlier days for each physician. 

 

Figure 18: Mean information transfer (nurse station visits) per day. Lines represent confidence 

intervals (95%). 
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Unlike what was measured in the case of multi-patient visits, the elements of 

workflow being assessed here are the information needs of the physician and the EHR’s 

ability to support transfer of that information either to the physician or from the physician 

to nurses. Physician frustration due to a lack of information in EHRs based on need has 

been documented in research (Koopman et al., 2015). However, it is also known that 

physicians and nurses prefer to receive information from colleagues (Clarke et al., 2013). 

In our interview data, two of the physicians revealed specific frustrations with 

information access in the EHRs. Physician 3 who held a strongly negative view of 

information access in the EHR also showed a higher number of nurse station visits than 

the others in the group.  

Associating information-transfer visits with EHR use 

We computed correlations to EHR module use individually and as a group. The 

individual correlations are shown in Figure 19. The group correlations revealed no 

associations of interest. In the case of both multi-patient visits and information transfer, 

chart review and documentation time per patient were correlated with the behaviors. In 

this case, most of the positive correlators for nurse station visits (i.e., those associated 

with an increase) were orders and documentation modules.  

The use of PowerNote (Cerner UK, 2017) and order-selection features 

(specifically, favorite items which offers a type of selection shortcut) was correlated to a 

reduction in nurse station visits for some physicians, suggesting the need for additional 

training on these features as well.  
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Figure 19: Information transfer visits correlated with EHR module usage (95% confidence level). 

The deeper reds signify a stronger positive correlation i.e. higher instances of multiple patient 

visits per day and the deeper blues signify stronger negative correlation 

 

Discussion and Limitations 

The goal of this research was to develop and implement novel methods that would 

leverage a set of qualitative and quantitative data sources to analyze, identify, and 

facilitate data-driven iterative workflow redesign. Assessing inefficiencies in workflow is 

best achieved through a combination of targeted and group-wide analysis. In this study, 

we detail and demonstrate the methods for achieving workflow insights by overlaying the 

results of clinical interviews with time-stamped RFID tracking data and EHR usage data. 
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We categorized clinical workflow into perceived, real, and ideal states, and our studies 

show how the collection and analysis of information about the former two states (from 

interviews and RFID data, including observations), inform the movement towards the 

latter. It is also important to specify that in the case of workflow, ‘real’ can be defined 

only contextually, i.e., in relation to the specific topic area being studied. The goal of this 

work was not to discover a global real state because, in a complex environment, that is 

not realistically achievable. We focused, rather, on non-EHR behaviors that are 

influenced by EHR use. To that end, we chose two measures we consider to be most 

relevant to mapping the real state and that are extractable from RFID data: multi-patient 

visits and information transfer. Discrepancies between the real and perceived state of 

workflow, as captured by interviews, served both to narrow down the elements of 

workflow that bore further analysis and to help explain the findings. The value of 

quantifiable data is not only that inferences may be easier to draw but, in the context of 

incremental workflow redesign, they can be used to assess impact either long-term or 

before and after the introduction of interventions into clinical practice. 

There are several findings that could be potentially vital to effecting change in the 

physicians’ workflows. The physicians’ individual EHR usage correlations (Figure 4) 

suggest a different set of EHR modules being associated with this observation. Four out 

of the five physicians held a generally negative view of the usability of and time taken for 

documentation tasks in the EHR (Denton et al., 2018). The pursuit of an idealized state 

requires an improvement in their perceptions of tasks (including documentation) 

performed within the EHR. However, it’s clear that targeted interventions are likely to 

yield better results. 
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Additionally, we were interested in capturing the potential impact of EHR use on 

these behaviors and leveraged EHR usage data to facilitate that analysis. The usage data 

capture the real-state of EHR utilization by the group of physicians.  By overlaying those 

measures with RFID data, we can infer the two dimensions of the real-state of workflow. 

Correlating the measures per physician yields information on specific elements of EHR 

use, the targeting of which could individually yield changes to the workflow.  

We have speculated that multi-patient visits are related to an increase in cognitive 

burden in environments (such as the one being considered) where there is no EHR use 

within patient rooms. So, in this case, the physicians had to place the information of the 

patient in working memory. The alternative to this would be to visit a single patient each 

time, but this represents an inefficiency of a different kind since there would need to be 

repeat trips to the EHR workstations. This element of workflow, therefore, represents a 

trade-off between physical and cognitive inefficiencies. However, we believe the physical 

inefficiency of the latter is less significant than the cognitive inefficiency associated of 

the former.  We could speculate that the multi-patient visit behavior is related to a less 

positive perception. To achieve a more ideal state from perceived and real state of 

workflow, moving physicians 3 and 4 towards the less physically efficient (more 

cognitively efficient) approach may help increase their overall satisfaction with the EHR. 

Alternatively, the ability to record patient interactions or taking notes in the exam room 

may help offset the cognitive burden of multi-patient visits. Tablets or handheld recorders 

may be an appropriate intervention.  This needs to be implemented and studied in-situ, 

but we can see how this combination of data sources would allow us to target and 

facilitate those behavior modifications and assess its impact.  
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In our data, two physicians showed an elevated number of multi-patient visits, and 

they had different EHR usage elements that correlated with it. The reason for computing 

correlations individually and as a group was that the former could be used to target 

specific areas of the EHR that could impact broader workflow and the latter could be 

used to find common themes in the group that may require different types of 

support/interventions. An interesting finding in Figure 4 is that use of chart review 

MPages (which is specific chart review feature of the EHR) was correlated with a 

reduction in multi-patient visit behavior for physician 5. However, MPages are not used 

by all physicians. If utilization of this feature could help reduce instances of multi-patient 

visit behavior, then specific training could be enacted on this feature for the group. 

The findings in Table 1 (group) suggest  that an increase in chart review time per 

patient (time spent by the physicians in the EHR chart review module) is associated with 

an increase in multi-patient visits. There is also a difference in this behavior based on the 

physicians’ use of either transcription services or the EHR documentation module. 

Transcription services are provided to allow physicians to dictate their notes and to have 

them transcribed for electronic documentation using either a human scribe, handheld 

recorder, automated speech-to-text services (i.e. software that converts speech to 

unstructured text that can be structured subsequently). Alternatively, EHRs provide a 

documentation module that ostensibly simplifies the process of entering data into the 

system, thereby negating the need for a transcriber. Increasing satisfaction with the 

electronic documentation services may be a case of performing usability studies and 

determining types of support needed in that manner. 
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Individually, for physician 3 an increase in documentation time per patient was 

associated with a reduction in multi-patient visits. This may seem obvious but data from 

the other physician (4), with higher instances of multi-patient visits, did not show this 

correlation. In their interviews both these physicians highlighted documentation as being 

a specific source of frustration, but reduction of documentation time for physician 3 

might lead to an increase in multi-patient visits and thereby to a related elevation of 

cognitive load on memory. So, for this physician, a more adequate adjustment may be to 

improve the quality of the time spent on the EHR by providing tools or training that 

would facilitate those elements of the interaction and, for physician 4, a more appropriate 

adjustment might to target their use of the ordering module, which was associated with an 

increase in multi-patient visits. Similar judgements can be made about the other 

physicians as well. It is important to note, as previously mentioned, that visiting a single 

patient per EHR session is not the most physically efficient behavior, but likely 

represents a positive trade-off by reducing the cognitive burden of remembering data for 

several patients at one time. 

In the case of information transfer, our methods and analysis yield a different set 

of insights, related to information seeking and behaviors to offset workload. Further 

studies are required in this case to capture the content of conversation (i.e., conversational 

analysis) to make more detailed judgements, but information transfer can be tracked over 

a long period to view trends based on interventions. The EHR usage correlations revealed 

a set of ordering and documentation features that are negatively associated with 

information transfer (nurse station visits). This was consistent with the interview data, 

where physicians specifically singled out the steps required to place on order as being a 
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source of frustration. In this case, rather than information needs, physicians may look to 

offload to the nurses, certain tasks that take a long time (per their perception) to improve 

their perceived workflow. We also found that the use of specific ordering features was 

associated with a reduction in information transfer visits by other physicians.  

Accordingly, the best approach to incremental change may be to train the other 

physicians on features of the EHR ordering module with which they may be unfamiliar 

and to assess the impact on the nursing-station visits over time. In this case, instead of 

individual support, we can use the findings from other physicians to influence the whole 

group positively. Another intervention could be to determine the types of information 

resources required to satisfy those needs and provide them on a per-physician basis. 

Topic-specific infobuttons have been shown to have potential (Clarke et al., 2013). This 

must be balanced with information that providers may prefer to receive directly from 

colleagues. 

The primary limitation of this work is that the generalizability of these measures 

needs to be further demonstrated and tested under other conditions or in another setting. 

Although this work is targeted toward the emergency department, the overlay 

methodology is intended to be a generalizable approach that can be employed in other 

medical or non-medical domains. In the future, we intend to collect data in a non-ED 

clinical environment and to conduct a similar analysis to demonstrate the generalizability 

of the overlay technique.  

Another limitation of this study is that we have yet to validate the specific 

findings. To do this, we intend to review the results with domain experts and to 

categorize findings based on importance. We also intend to use their feedback to explore 
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alternate measures from tracking data. Multi-patient visits are a trade-off between 

cognitive and physical inefficiencies, so we intend to interview physicians to learn more 

about their perceptions of this trade-off. In the case of information transfer, we have 

limited contextual information. We hope to resolve this in the future with modern 

tracking technologies such as  the GPS tracking and audio monitoring tags 

(LOGISTIMATICS, 2018).  Finally, we used aggregate EHR usage data based on 

availability. To supplement our tracking data, we also intend to use trace logs (i.e., time-

stamped per-event data, based on detailed EHR use, that provide insights unavailable 

with the aggregate data gathered over a week or month that were provided to us by the 

EHR system). Trace logs capture every instance of actions performed on the EHR. This 

can potentially add greater depth and accuracy to our analyses of workflow. Such 

techniques could offer greater contextual information associated with specific events in 

the environments, and we could potentially determine what type of data a specific nurse 

was looking at during communication with the physician. This may give us more 

contextual clues than we are able to obtain with tracking and summary EHR data. We did 

not have access to such data at the time of conducting this study, but we intend to do so in 

the future. A limitation of the aggregate data collected from Cerner was that it had 

redundant attributes.  In addition, some of these were named in ways that made it difficult 

to resolve ambiguities with other attributes. In this study, we dropped any attributes that 

were ambiguous but in the future we would like to resolve those discrepancies so that we 

avoid losing potentially relevant attributes. 

This study details a way to overlay a set of disparate data sources to enable 

workflow assessment and to suggest areas for modification. The time-merged 
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combination method described in this aim is novel and may serve as a guide for future 

studies utilizing similar data sources. The targeted nature of this type of analysis means 

that the smaller sample size is not necessarily a limitation. One consideration may be the 

utility of these techniques for larger groups. Tracking measures can be computed in 

parallel for the group. To generate individual correlations, we can use subsets of a larger 

group to simplify interpretation of results. The group-wide correlations can be generated 

for groups of any size because the results are of a manageable size (Table 2).   For 

tracking, it is essential to have an RFID (or similar) system with good coverage (i.e., the 

entire area within the environment that is tracked), which was the case in this study. In 

the future, we hope to increase the pool of physicians and to add nurses so that we can 

analyze their workflow using similar methods. Similarly, one could also increase the 

RFID tracking measurements by expanding the system to include nurses and patients, 

given that full assessment of clinical processes requires information on other team 

members as well as those receiving the care. The real-state of workflow being measured 

and reported in those cases will be dependent on the specific set of processes that involve 

the individuals being traced, which will both supplement the findings and potentially 

yield new measures. 
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CHAPTER 4 

ALT DATA ANALYTICS AND VISUALIZATION: CASE STUDIES 

This document has covered the two primary aims this research thus far. Detailed 

first was the use of tracking data to develop quantitative clinical workflow related 

measures and visualizations. The second aim attempt to expand the depth of possible 

analysis by proposing a mixed-method approach to clinical workflow assessment by 

combining multiple qualitative and quantitative data streams. This chapter aims to 

speculate on the direction and potential destinations of this research by discussing a series 

of case-studies based on on-going and future work.  The chapter is divided based 

different types of utilization of location-tracking and EHR data in analytics and 

visualization. Discussed are the kinds of tools and technologies that can leverage these 

forms of data to create a fully quality-aware clinical system. A fully quality-aware 

clinical system can be defined as a continuously tracked system with automated 

collection of contextual workflow information, which are used to generate and provide 

means to self-driven behavior change for clinicians through analytics and visualizations. 

Case Study: Patient-Provider Interactions 

Patient-provider interaction is an important element of health-care delivery that 

has shown to impact patient/provider satisfaction and affect perceived quality of care. 

Studies have also suggested that providers perceive that they are spending less time with 

patients because of EHR proliferation and extent of use. However, patient-provider 

interactions are difficult to measure using observational techniques alone. Automated 

location tracking of actors in clinical environments has increasingly gained popularity, in 
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recent times. Automated location tracking can potentially facilitate the capture of 

proximity information for patients and providers. In this study, we will analyze patient-

provider interactions using Radio-Frequency Identification data collected over the period 

of one year at the Mayo Clinic Rochester emergency department. This study aims to find 

potentially clinically relevant findings from derived patient-provider interactions and to 

present methods that could be generalizable across clinical environments. It is important 

to note that the content of interaction is not extractable from tracking data alone. 

However, these findings can be supplemented by audio recordings or qualitative 

observations. 

System setup 

The Mayo Clinic ED located at Rochester, MN has installed a 750 sensor RFID 

system to track medical equipment, patients, and medical staff including physicians, 

nurses, pharmacists, and other medical staff. The locational data is structured similarly to 

the Mayo clinic Phoenix location described in chapter 2 i.e. containing tracking id, 

location names, time of tag’s first detection by receivers.  

Participants and data collection 

A subset of data (year 2017) was stored on a SQL server database accessed 

securely through a Mayo clinic VPN. The database consisted of approx. 36million rows 

of data of which approx. 25 million rows are patients and staff tracking data.  Owing to 

the size of the dataset for this proof-of-concept study we will use data for 1 month. The 

final dataset consists of 6127 patients and 339 providers information consisting of 

attending physicians, residents, interns, and nurses (21 types of personnel). No 
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identifiable patient and provider information was be collected.  the RFID sensor, and time 

at which the tag left the range of the sensor.  

Finding patient-provider interactions 

The underlying computing task associated with the capture of patient-provider 

interactions is to find overlapping intervals. Two intervals (s1, e1) and (s2, e2) are said to 

overlap if s1 ≤ e2 and s2 ≤ e1. An additional step in the case of location tracking data is 

to ensure that the two intervals are from users at the same location. Given two 

overlapping intervals (s1, e1) and (s2, e2), the duration of the interaction is min(e1, e2) – 

max(s1, s2). On the Rochester database, we can find interactions simple based on the 

following join query: 

Select patients table p and join staff table s on 

s.LocationName=p.LocationName and 

 p.TimeEnter<=s.TimeExit and 

 s.TimeEnter<=p.TimeExit 

The duration of the interactions will be min(s.TimeExit, p.TimeExit) – 

max(s.TimeEnter, p.TimeEnter). This query can be used to generate interactions between 

physicians, nurses, technicians, or across groups. For this purpose of this case-study, only 

patient-provider interactions were considered. This query generated a data table with 

approx. 800K rows for 1 month of data (from 01-01-2017 to 01-30-2017). Each row 

consisting of an instance of interaction between a patient and provider. The interaction 

dataset was then used to compare personnel of varying expertise and roles on their patient 

interactions patterns. 

Results 

Comparing patient interaction times for residents 
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We looked at the amount of time spent with the patient by interns, and pgy1-3 

residents. Figure 20 shows the boxplot of the time distributions for each type of resident. 

While broadly similar it appears that PGY2 residents spend the most time while also 

having the highest variance in times of interaction i.e. interactions taking an unusually 

long time. Figures 20 and 21 show the breakdown of times spent by the resident in each 

exam room and other important locations within the ED, respectively. 

 

Figure 20. Comparison of patient interaction times in minutes for residents. Dots represent 

outliers. 

The exam rooms were grouped by location with the ED i.e. central, north, south, 

east, west and each location consist of 5-8 exam rooms. We computed the median time 

per room group for Figure 21 which suggests that the times spent in exam rooms are not 
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distinctly different for each type of resident except for south exam rooms. It is also 

important to note that at the Rochester ED, unlike the Phoenix ED, physicians use the 

EHR in patient rooms, so the times shows here are not necessarily time spent directly 

interacting with the patient.  

 

Figure 21. Patient interaction time per exam room by resident type 
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Figure 22. Patient interaction time by other locations by resident type 

 

However, Figure 22 shows a more distinctive difference between the residents 

highlighting the varying responsibilities of each type of resident. Interns spent more time 

in Radiologic procedure and CT rooms with patients that PGY1 and 2 residents. 

Patient progress through the ED by interactions 
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Figure 23. Patient progress (2 patients) through the ED. Radius of the circles represents time 

spent with the provider. Arrows represent the direction of movement. 
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The graphs in Figure 23 show the progress of two patients through the ED. A 

visualization of this type combined with knowledge of patient condition and stage of 

treatment can be used to assess the processes within the ED. The radius of circles 

represents the time spent with that provider and in figure 1(top) the times are relatively 

balanced where in figure 2 (bottom) there is larger amount of time spent with a single 

nurse than any other provider.  

Case study: Discrete event simulations 

Demonstrating clinical utility of location tracking data is incumbent on deriving 

meaningful metrics and relevant ways to present those metrics to the relevant target 

clinical users. Location tracking data has been used in the creation of new workflow 

metrics for the ED from RFID data (Akshay Vankipuram, Traub, & Patel, 2018b) . As 

part of this, the clinical environment was modeled using movement transition 

probabilities to capture its underlying uncertainty. This type of probabilistic model may 

be visualized to derive specific workflow-related insight, but it can also be used to 

simulate parameters of interest in the system (Asamoah, Sharda, Rude, & Doran, 2016; 

Rutberg, Wenczel, Devaney, Goldlust, & Day, 2013). These system simulations can be 

used to assess impact of specific processes or as a predictive model to assess trends.  

DES is a technique used to model complex systems by simulating it in action to 

estimate or predict parameters and outcomes of interest (Rutberg et al., 2013). Systems 

are typically represented as a series of states, events, and transitions, each of which have 

a cost associated with them. The net cost of moving through the system in various 

scenarios is typically then used to estimate the value of the resource that one is looking to 
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optimize. In the medical domain, examples of this could be queue length or wait times for 

patients (A. Vankipuram, Traub, & Patel, 2018). Traditionally, the costs associated 

within the system are set based on clinical expertise. Additionally, the movement through 

the system in the case of branching (concurrent) processes is determined randomly. 

While this is reasonable approximation of uncertainty, various medical environments 

may demonstrate varying levels of uncertainty. It is also possible that uncertainty levels 

may vary during a shift due to cognitive and physical stress (V. Patel, Zhang, 

Yosokowitz, Green, & Sayan, 2008). Using probabilistic models generated from RFID 

data, we can represent the uncertainty of the system in a way that better represents the 

actual workflow. One way to progress through a probabilistic system is to use the Monte-

Carlo method which has been shown to work in DES (Rutberg et al., 2013).  

 

Figure 24: Simplified probability model of the ED  
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The task of estimating the underlying distributions associated with parameters of 

interest in a medical environment has been researched (Asamoah et al., 2016). With 

automated tracking, we can enhance our understanding of the underlying structure of the 

uncertainty.  

Figure 24 represents a simplified view of a clinical movement probability model 

used to simplify the view for this document. As a proof-of-concept Monte-Carlo 

simulations were performed on tracking data. A model like Figure 22 was created for the 

all locations in the ED. The simulations allow us to use transition probabilities to model 

clinical behavior by simulating thousands of potential runs (i.e. movement from any ED 

starting location to an end location) and determine the average cost of each run. The cost 

in this case is the time taken to arrive at the end location from any starting location. The 

determination of appropriate starting and ending locations help us make valuable and 

varied judgments on behavior. As an example, we can consider the case of a physician 

looking up patient data in the EHR workspace and conducting the patient exam. 

Sometimes a physician may move directly to a patient room and others they may move to 

other locations such as the nurse station or other exam rooms first.  Determination of the 

average time taken to move between these locations can help assess time to patient visit 

for physicians. To do this, we first modify our computation of probabilities by 

standardizing the time spent between transitions (i.e. only consider locations separated by 

at least 10 minutes).  

To run the simulation, we begin at the EHR workspace. This is required for the 

specific case being discussed here but depending on the measure being analyzed any 
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location can be picked. Then we select a uniformly random number (n) between 0.0 and 

1.0 inclusive. Do the following: 

Set P = 1.0 

For each transition with probability (pt) from current node: 

 If n >= P – pt and n <= P: 

  Select transition 

 Else 

  P = P – pt 

Update the time counter by 10 minutes. Then we repeat the above for the new 

location until the required end location (in this case exam room) is reached. We now 

repeat this entire process 1000 – 10000 times and average the time counter. 

Number of steps 

Q25: 2, Median: 5, Q75: 9 

Time taken 

Q25: 10.00 min, Median: 25.00 min, Q75: 45.00 min 

The above is an example of running this simulation 10000 times. The above is an 

example of using transition probabilities to simulate measures of interest. In this example, 

we can determine that a median of 25 minutes is required before a patient exam is 

conducted, and it takes a median of 5 movements (these are movement to locations that 

are not the exam room) before a physician meets with the patient. From the perspective or 

workflow analysis, a deeper look at the data can help us determine time sinks i.e. 

locations or activities that are the most time consuming (for e.g. is a majority of the 25 

minutes being spent using the EHR or moving to other locations). This can help with 

process analyses and modification. We can also compare these values pre and post a 

process change to determine its impact. 

Case study: Dashboards 
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Performance reporting through static reports is inconsistent, time consuming, and 

hard to categorize and group (Ghazisaeidi et al., 2015).  We’ve discussed, in the 

introduction chapter, the value of visual analytics. One of its main advantages is the 

ability to dynamically update, contrast, filter, and group data for exploration and 

reporting. Dashboards are a collection of visualizations grouped together thematically to 

summarize the state of the system. In the case of healthcare, dashboards are being 

increasingly utilized to track and present relevant information (Stadler, Donlon, Siewert, 

Franken, & Lewis, 2016). In aims 1 and 2 of the documents, visualizations were 

generated to translate tracking and EHR data to reportable insight. In this section, we 

cover the creation of workflow analytics dashboards and the types of visualizations that 

may be used within them. The goal of such a dashboard would be reporting and 

facilitating self-driven behavior modifications for clinicians.  

Representing relationships 

Within complex systems, an important task can be to present the relationships 

between entities of interest. Relationships can be represented either directly or through 

probabilities. Examples of the latter can be seen in aim 1 when next-location probabilities 

were computed and represented. In the case of the former, two options for presentation 

are: hierarchically or as a connected graph.  

A hierarchical view is a top-down view of organizational structure of an 

underlying process. Figure 25 is an example of a hierarchical chart generated using 

movement data for two physicians. These charts can be generated over different time 
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periods to assess the impact of process modifications or they can be used in an 

exploratory capacity to find areas of concern or interest. 

 

Figure 25. Hierarchical representation of two physician’s movement within the ED 
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Figure 26: Probability of Clinician’s Next Location at Mayo Clinic (Force-layout). Circle radius 

represents the time spent at location and edge thickness represents the probability of transition 

between those locations. 

 

The second approach is the use of a connected graph. We’ve seen an example of 

this in figure 23 using the data from Mayo Clinic Rochester. Two more examples are 

shown in figures 26 and 27 from Mayo Clinic Phoenix. Connected graphs consist of 

nodes and edges between the nodes. The nodes represent the entities of interest (in the 

case of figures 26 and 27 the entity is location) and the edges represent their relationship. 

In the case of figures 26 and 27, the size of the nodes (circles) represents the time spent 

by physicians at that location and the edges represent the movement between the 
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locations. Figure 27 is an alternative approach to graph generation that attempts to 

eliminate overlapping edges as in the case of Figure 26 (called circular-layout). However, 

figure 26 is a more common representation of a network using a force-directed graph 

generation algorithm (Fruchterman & Reingold, 1991). The utilization of each will 

depend on the target audience and the type of interaction allowed on the dashboard. 

Figure 26 is a better static representation of the system/environment, while figure 27 is 

better in a dynamic plot for exploration. 

 

Figure 27: Probability of Clinician’s Next Location at Mayo Clinic (Circular-layout). Circle 

radius represents the time spent at location. 
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Figure 28: Net Duration of Interactions Between Tracked Clinicians at Mayo Clinic. C1-C5 are 

physician with their identities hidden. Chords (bands) represent the amount of time spent 

interacting. The values on the circumference are the absolute times. 

Interactions between tracked entities (physicians in this case) may be another type 

of relationship that can be visualized and explored. Figure 28 is a representation of the 

net duration of interactions between clinicians. Interactions are defined as an event where 

the clinicians were co-located for a length of time. The chord diagram (Figure 27) shows 

duration of interactions between clinicians. Each colored segment on the boundary 

represents a different physician (C1-C5). The chords connecting the segments represent a 

pairwise link and the width of the chord represents the net duration of interaction (the 
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axis of the boundary can be used to estimate the duration). The thickness of chords 

represents the absolute value of time spent interacting (potential interactions only since 

this is generated using tracking data) over the entire period of the dataset. As an example, 

in the figure, physicians C3 and C5 spent approx. 5hrs potentially interacting and C2 

spent a net of 5hrs interacting with all other physicians. As mentioned we are unable to 

assess directly if these were only instances of co-location or interaction. However, since 

data for the 5 physicians was collected at the same location with the similar shifts and 

responsibilities, we can be more certain than these represent interactions since there 

would be no reason a subset of physicians would spend more time co-located than others. 

The practical value of this is its use in process management to provide 

circumstances that maximize interactions and to find pairs of clinicians who are more 

likely to interact and study them further. 

Visualization of other measures in tracking data 

 

Figure 29: Percentage of time spent at locations within the ED for a single physician. 

 

One of the most common measures that can be extracted and visualized is the 

time spent at various locations within the environment. Figure 29 shows the percentage 

breakdown of time spent by a single physician over the duration of the dataset. Here we 
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can see that this physician spent 76.7% of their time at the EHR workstations. We can 

also assess the time spent in exam rooms or nurse stations and compare them to other 

physicians or to other times based on the changing processes or technology. 

 

Figure 30: Trend/Timeline plot of multi-patient visit behaviors for a single physician. 

 

In chapter 4 (Aim 2) the creation of two measures from RFID data was discussed 

(multi-patient visits, information transfer) which could be overlaid onto other data 

sources. We can also plot those generated measures to view trends over time. Figure 30 

shows the trends of multi-patient visits over the period of the dataset for a single 

physician. Deeper blues represent higher number of instances. It’s clear than this type of 

visualization can be used assess specific trends in tracked behaviors. 

Visualizing EHR usage data 

EHR aggregate usage data consists of several attributes each dealing with a specific 

module or subset of modules within the EHR. The attributes represent time spent within 

modules of the EHR and specific navigation-related usability metrics such as clicks and 

tab hops. Visualization of this type of data is most effective when representing trends or 
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comparisons between users. Figures 31-33 show three different measures of interest from 

the EHR dataset. Figure 31 shows the distribution and trends of tab hops per patient chart 

per day for each physician. Tab hops are a measure of switching between module tabs in 

the EHR for each physician. The left side of the figure is the distribution of tab hops per 

patient for each physician and the right side shows the trends over the range of the 

dataset. The two relevant findings here are that physician 5 has a higher number of tab 

hops compared to the others which bears further study into their EHR-related workflow. 

The trends plot on the right is a repeating theme in figures 31 and 33 where there is clear 

change in trends on a period of the dataset. This most likely represents EHR usage down 

time due to the end-of-year holiday season. While, this doesn’t reveal anything 

significant in itself it is clear that we can derive very specific inferences from observing 

these plotted trends. 

 

Figure 31: Tab hops per chart review in EHR per physician. The plot of the left represents the 

distribution of values and the plot on the right are the trends over period the dataset. 



  96 

 

Figure 32: Patients seen per day by each physician. The plot of the left represents the distribution 

of values and the plot on the right are the trends over the period of dataset. 

 

Figure 33: Time spent using EHR grouped by modules. The plot of the left represents the values 

per module (chart review, documentation, orders, and discharge) and the plot on the right are the 

trends over the period of dataset. 

 

The added value of these visualizations is the ability to interactively plot these values 

over any span of time. Figure 32 shows the patient seen per day for each physician and 

this figure does not show any significant variability between physicians as expected but 

would be cause for further analysis if an anomaly were discovered. The trends plot on the 

other hand is significant since there is a significant climb in number of patients seen in 

around January. This can be explored further in the future to assess the cause. Figure 33 

shows the net usage time of each EHR module per patient for all physicians. The bar plot 
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on the right shows that for a single physician the documentation tasks are a significant 

time sink and leads to an overall increase in time spent compared to the other physicians. 

This type of insight can lead to hypothesis generation that seeds further research as 

demonstrated in Aim 2. 

 

 

 

 



  98 

CHAPTER 5 

CONCLUSION 

In this document, research into creating an integrated framework and the use of 

automated location tracking in clinical workflow analysis was presented. The methods 

used are aimed at studying the efficacy of location tracking systems in workflow analysis 

either independently or when combined with other data sources and workflow analysis 

techniques. The goal of this research was not to study the ALT technologies themselves 

but the value of location data in workflow analytics. At the outset, the concept of 

computational ethnography used in this study was defined based on Zheng and his 

colleagues (Zheng, Hanauer, Weibel, & Agha, 2015). In our research presented here, 

ALTs role in computational ethnography are studied and detailed.   

The two primary objectives of this research are: (i) to develop a methodological 

and  exploratory framework for clinical workflow analysis using automated location 

tracking data and (ii) to propose a mixed-method approach for workflow analysis by 

leveraging multiple data sources (qualitative and quantitative). Aim 1 provides a detail 

approach used in creating the methodological framework and for developing a specific 

workflow-related quantitative measures. It is shown that the measures can be used to (a) 

analyze patterns and behaviors in real-time through constant monitoring of the clinical 

environment, (b) assess the impact of interventions or process changes, and (c) to 

supplement or create error analysis mechanism in the future. One of key lessons learned 

during this process is that the key to development of methods for a thorough analysis of 

clinical workflow requires a combination of several quantitative and qualitative  

complementary data sources. This became the approach for aim 2 where the ALT data 
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was combined with EHR log file usage data together with data from interviews and 

physician shadowing to derive two trackable measures based on location mapping. Next, 

these measures were correlated with EHR data to find patterns of interest that allow for 

the assessment of potential inefficiencies.  

The maximization of the utility of workflow analytics is best achieved using 

visualizations and representations of the real-state of the environment. Chapter 4 details 

case-studies that deal with the modeling and representation of elements of workflow. We 

find that data from a modern clinical tracking system with continuous monitoring and a 

high volume can be used to generated and present new types of workflow measures or 

insights. Also presented are ways to simulate behaviors in environments using discrete 

event and Monte-Carlo simulations. These value of simulation techniques in the proactive 

assessment of workflow using predictive modeling is discussed. Finally, the role of 

visualization dashboards to facilitate the creation of a quality aware clinical system by 

utilizing location tracking and EHR data is discussed.  

The primary limitations of these research methods are the need for further 

validation of the methods. This is a goal for the future research. The idea is to implement 

a visual representation of tracked clinical measures and obtain feedback from clinical 

domain experts. This feedback, combined with usability studies of the visualizations, will 

then allow for the demonstration of clinical relevance and to create new measures that are 

important to providers on the clinical floor. Additionally, to tackle generalizability, a 

similar process can be undertaken in other clinical environments, including other 

Emergency settings as well as other clinical departments.  
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The overarching goals of this work has been to present a set of methods that 

convey the value of automated location tracking either independently or combined with 

other sources of data in the analysis of clinical workflow. Both the methods themselves 

and the lessons learned in this research can serve as guides for future endeavors in this 

space. Location tracking is a relatively new technology in the clinical space and the work 

hopes to seed the interest in its utilization. The hope is that this work serves as a basis for 

healthcare systems adopting location tracking technologies  into their environment to 

track processes in a pursuit of quality through workflow analysis. 
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