64 research outputs found

    Combining Binary Decision Diagrams and Backtracking Search for Scalable Backtrack-Free Interactive Product Configuration

    Get PDF
    The impact of the formation of HO2-H2O adducts following reaction between H2O and HO2 and subsequent reaction of this adduct on HOx, H2O2 and O3 as a function of relative humidity in the marine boundary layer has been investigated using a zero-dimensional box model. The results of simulations with different product yields for the reaction of HO2-H2O with HO2 were compared with base case data derived from current recommendations for tropospheric modelling. It is suggested that inclusion of reactions of the HO2-H2O adduct may provide a significant sink for HO2 which has so far not been considered in models of tropospheric chemistry and depending on reaction products may have a significant impact on H2O2 and O3

    Technical Communications of ICLP

    Get PDF
    Abstract Dynamic programming (DP) on tree decompositions is a well studied approach for solving hard problems efficiently. State-of-the-art implementations usually rely on tables for storing information, and algorithms specify how the tuples are manipulated during traversal of the decomposition. However, a major bottleneck of such table-based algorithms is relatively high memory consumption. The goal of the doctoral thesis herein discussed is to mitigate performance and memory shortcomings of such algorithms. The idea is to replace tables with an efficient data structure that no longer requires to enumerate intermediate results explicitly during the computation. To this end, Binary Decision Diagrams (BDDs) and related concepts are studied with respect to their applicability in this setting. Besides native support for efficient storage, from a conceptual point of view BDDs give rise to an alternative approach of how DP algorithms are specified. Instead of tuple-based manipulation operations, the algorithms are specified on a logical level, where sets of models can be conjointly updated. The goal of the thesis is to provide a general tool-set for problems that can be solved efficiently via DP on tree decompositions

    On Formal Methods for Large-Scale Product Configuration

    Get PDF
    <p>In product development companies mass customization is widely used to achieve better customer satisfaction while keeping costs down. To efficiently implement mass customization, product platforms are often used. A product platform allows building a wide range of products from a set of predefined components. The process of matching these components to customers' needs is called product configuration. Not all components can be combined with each other due to restrictions of various kinds, for example, geometrical, marketing and legal reasons. Product design engineers develop configuration constraints to describe such restrictions. The number of constraints and the complexity of the relations between them are immense for complex product like a vehicle. Thus, it is both error-prone and time consuming to analyze, author and verify the constraints manually. Software tools based on formal methods can help engineers to avoid making errors when working with configuration constraints, thus design a correct product faster.</p> <p>This thesis introduces a number of formal methods to help engineers maintain, verify and analyze product configuration constraints. These methods provide automatic verification of constraints and computational support for analyzing and refactoring constraints. The methods also allow verifying the correctness of one specific type of constraints, item usage rules, for sets of mutually-exclusive required items, and automatic verification of equivalence of different formulations of the constraints. The thesis also introduces three methods for efficient enumeration of valid partial configurations, with benchmarking of the methods on an industrial dataset.</p> <p>Handling large-scale industrial product configuration problems demands high efficiency from the software methods. This thesis investigates a number of search-based and knowledge-compilation-based methods for working with large product configuration instances, including Boolean satisfiability solvers, binary decision diagrams and decomposable negation normal form. This thesis also proposes a novel method based on supervisory control theory for efficient reasoning about product configuration data. The methods were implemented in a tool, to investigate the applicability of the methods for handling large product configuration problems. It was found that search-based Boolean satisfiability solvers with incremental capabilities are well suited for industrial configuration problems.</p> <p>The methods proposed in this thesis exhibit good performance on practical configuration problems, and have a potential to be implemented in industry to support product design engineers in creating and maintaining configuration constraints, and speed up the development of product platforms and new products.</p

    Combining configuration and recommendation to define an interactive product line configuration approach

    Full text link
    This paper is interested in e-commerce for complex configurable products/systems. In e-commerce, satisfying the customer needs is a vital concern. One particular way to achieve this is to offer customers a panel of options among which they can select their preferred ones. While solution exists, they are not adapted for highly complex configurable systems such as product lines. This paper proposes an approach that combines two complementary forms of guidance: configuration and recommendation, to help customers define their own products out of a product line specification. The proposed approach, called interactive configuration supports the combination by organizing the configuration process in a series of partial configurations where decisions are made by the recommendation.Comment: arXiv admin note: text overlap with arXiv:1108.5586 by other author

    Computing explanations for interactive constraint-based systems

    Get PDF
    Constraint programming has emerged as a successful paradigm for modelling combinatorial problems arising from practical situations. In many of those situations, we are not provided with an immutable set of constraints. Instead, a user will modify his requirements, in an interactive fashion, until he is satisfied with a solution. Examples of such applications include, amongst others, model-based diagnosis, expert systems, product configurators. The system he interacts with must be able to assist him by showing the consequences of his requirements. Explanations are the ideal tool for providing this assistance. However, existing notions of explanations fail to provide sufficient information. We define new forms of explanations that aim to be more informative. Even if explanation generation is a very hard task, in the applications we consider, we must manage to provide a satisfactory level of interactivity and, therefore, we cannot afford long computational times. We introduce the concept of representative sets of relaxations, a compact set of relaxations that shows the user at least one way to satisfy each of his requirements and at least one way to relax them, and present an algorithm that efficiently computes such sets. We introduce the concept of most soluble relaxations, maximising the number of products they allow. We present algorithms to compute such relaxations in times compatible with interactivity, achieving this by indifferently making use of different types of compiled representations. We propose to generalise the concept of prime implicates to constraint problems with the concept of domain consequences, and suggest to generate them as a compilation strategy. This sets a new approach in compilation, and allows to address explanation-related queries in an efficient way. We define ordered automata to compactly represent large sets of domain consequences, in an orthogonal way from existing compilation techniques that represent large sets of solutions

    Automated Analysis in Feature Modelling and Product Configuration

    Get PDF
    The automated analysis of feature models is one of the thriving topics of research in the software product line and variability management communities that has attracted more attention in the last years. A recent literature review reported that more than 30 analysis operations have been identi ed and di erent analysis mechanisms have been proposed. Product con guration is a well established research eld with more than 30 years of successful applications in di erent industrial domains. Our hypothesis, that is not really new, is that these two independent areas of research have interesting synergies that have not been fully explored. To try to explore the potential synergies systematically, in this paper we provide a rapid review to bring together these previously disparate streams of work. We de ne a set of research questions and give a preliminary answer to some of them. We conclude that there are many research opportunities in the synergy of these independent areas.Ministerio de Ciencia e Innovación TIN2009- 07366Junta de Andalucía TIC-590

    Recommendation Heuristics for Improving Product Line Configuration Processes

    No full text
    In mass customization industries, such as car manufacturing, configurators play an important role both to interact with customers and in engineering processes. This is particularly true when engineers rely on reuse of assets and product line engineering techniques. Theoretically, product line configuration should be guided by the product line model. However, in the industrial context, the configuration of products from product line models is complex and error prone due to the large number of variables in the models. The configuration activity quickly becomes cumbersome due to the number of decisions needed to get a proper configuration, to the fact that they should be taken in pre-defined order, or the poor response time of configurators when decisions are not appropriate. This chapter presents a collection of recommendation heuristics to improve the interactivity of product line configuration so as to make it scalable to common engineering situations.We describe the principles, benefits and the implementation of each heuristic using constraint programming. The application and usability of the heuristics is demonstrated using a case study from the car industry

    Combining configuration and recommendation to enable an interactive guidance of product line configuration

    No full text
    This paper is interested in e-commerce for complex configurable products/systems. E-commerce makes a wide use of recommendation techniques to help customers identify relevant products or services in large collections of offers. One particular way to achieve this is to offer customers a panel of options among which they can select their preferred ones. A trend in the industry is to go a step further, beyond the selection of pre-defined products from a catalogue by handling products customization. The systems engineering community has shown that, based on product line engineering methods, techniques and tools, it is possible to produce customized products efficiently and at low cost. The problem is that there are usually so many products in a PL that it is impossible to specify all of them explicitly, and therefore traditional recommendation techniques cannot be simply applied. This paper proposes an approach that combines two complementary forms of guidance: configuration and recommendation, to help customers define their own products out of a product line specification. The proposed approach, called interactive configuration supports the combination by organizing the configuration process in a series of partial configurations where decisions are made by the recommendation. This paper illustrates this process by applying it to an example with the content based method for recommendation and the a priori configuration approach

    A Feature-based Configurtor for CAM

    Get PDF
    corecore