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Abstract

Scientific community is trying to create climate models as realistic as possible to simulate
interactions and to analyse causal relationships in our environment. With these many
simulations, researchers are trying to establish the most likely situations, and aim to
predict future behaviours. These simulation models have a high rate of variability, in
particular the choice of various elements that influence a particular simulation like the
CO2 cycle or the horizontal grid resolution. This variability is usually managed by a
configurator. But the knowledge base used to develop these models is constantly evolving,
which means a constant review of models and so the configurator.

In order to best manage the variability and the scalability supported by the config-
urator, we suggest to rely on a feature model that provides a reasoning and verification
support that is easier to understand and edit than source code. The goal of our work is
to apply this suggestion to a real case. This project uses a feature modelling language
called Textual Variability Language (TVL) and implements a configurator based on this
language for the configuration of atmospheric models by the Community Atmospheric
Model (CAM).

Moreover, the confrontation to the considered real case shows the importance of default
values to simplify the configuration of a model by the users. However these values are not
part of feature models and require an extension of feature modelling languages. So we’ll
suggest a theoretical extension for TVL.

Keywords: Variability, Configuration, Feature modelling, Scalability, Default values

Résumé

La communauté scientifique essaie de créer des modèles aussi réalistes que possibles afin de
simuler les interactions et d’analyser les liens de causalité au sein de notre environnement.
Par ces nombreuses simulations, les chercheurs tentent d’établir les situations les plus
probables, et ainsi visent à prédire les comportements futurs. Ces modèles de simulation
présentent un haut taux de variabilité, notamment quant au choix des différents éléments
qui influence une simulation particulière, comme le cycle de CO2 ou la résolution de la grille
horizontale. Cette variabilité est généralement gérée par un configurateur. Cependant la
base de connaissance servant à l’élaboration de ces modèles est en constante évolution, ce
qui implique une constante révision des modèles et du configurateur.

Afin de gérer au mieux la variabilité et l’évolutivité supportées par le configurateur,
nous suggérons de se baser sur un modèle de variabilité offrant un support de raisonnement
et de vérification plus facile à comprendre et à modifier qu’un code source. Le but de
notre travail est d’appliquer cette suggestion à un cas réel. Ce projet utilise un langage de
modélisation de la variabilité appelé Textual Variability Language (TVL) et implémente
un configurateur basé sur ce langage pour la configuration de modèles atmosphériques par
le Community Atmospheric Model (CAM).

De plus, la confrontation au cas réel étudié à montrer l’importance des valeurs par
défaut afin de simplifier la configuration d’un modèle par les utilisateurs. Mais ces valeurs
ne font pas partie intégrante des modèles de variabilité et nécessitent une extension des
langages associés. Nous suggérerons donc une théorique extension pour TVL.

Mots-clefs: Variabilité, Configuration, Modélisation de la variabilité, Évolutivité, Valeur
par défaut
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Chapter 1

Introduction

Climate change and impacts of our civilisation on the environment are the focus of many
discussions of the scientific community, and the general public also has a growing interest
about its future on our Earth. Therefore researchers, from Community Earth System
Model (CESM) and others communities, are trying to create models as realistic as possible
to simulate interactions and to analyse causal relationships in our environment. With these
many simulations, researchers are trying to establish the most likely situations, and thus
possibly help improve our fate. These simulation models have a high rate of variability,
in particular the choice of various elements that influence a particular simulation like the
CO2 cycle or the horizontal grid resolution. This variability is usually managed by a
configurator. But the knowledge base used to develop these models is constantly evolving,
which means a constant review of models and the configurator.

The high level of variability and the possibility to build several different models based
on a common code base make CESM similar to a Software Product Line (SPL). Rep-
resent the variability of a family of related products like an SPL is generally done with
feature modelling. Feature modelling appeared in 1980-1990 and was initially introduced
to domain engineering by the Feature-Oriented Domain Analysis (FODA). This method
uses a graphical notation to depict the relationship between the artefacts involved in
the modelled system. Over the year, this kind of modelling progressed and language re-
finements appeared like attributes and cardinality-based decomposition. Tools has also
been developed to provide a reasoning and automatic verification support. Currently, a
text-based feature modelling language, called Textual Variability Language (TVL), is de-
veloped at the University of Namur. In this thesis, we use this language to model a real
case from the climate community, that is Community Atmospheric Model (CAM). This
case offered challenges, like highlighting options interactions, improving maintainability
and supporting default values, that feature modelling should be able to meet, especially
with text-based notation. We figured it out by implementing a feature-based configurator
based on TVL. This configurator is only a prototype to support our study, but it helped
us to well understand reasoning processes on Feature Models (FMs) with solvers.

During our work on this real case, CAM community, like some other industrial compa-
nies [20], expresses the need of default values to make the configuration process among the
model easier for its users. Default values are equivalent to user’s decisions that can be used
to complete a configuration for example. They can be declaratively defined like constraints
but the reader must pay attention to the fundamental difference between constraints and
default values. Constraints restrict the relationship between artefacts modelled within
FMs, while default values set the configuration when users don’t make decisions. In ad-
dition, it came out that these default values usually take their values conditionally to

1



CHAPTER 1. INTRODUCTION 2

the state of other options in the model in order to refine their behaviour. However, this
kind of structure is currently not supported by FMs in general. Only domain-dedicated
configurators like Linux Kernel Configurator (LKC) [35] managed default values. Thus
an extension of feature modelling languages should be produced. To do so, we introduce
three views about default values and suggest a theoretical TVL extension. This suggestion
contains the syntax and semantics to support these conditional default values.

Reader’s guide This document is divided into two parts. First, the background explains
the domain application of our study case, provides an overview of the feature modelling
area and presents configuration management. Chapter 2 describes the foundation of CAM
and states in details the configuration problem. Chapter 3 introduces SPLs, exposes the
origins of FMs and describes TVL. Chapter 4 covers the management of configuration and
summarises possible analyses that can be performed on FMs. This chapter also provides
some configurators examples.

In the second part lays our contribution that is the implementation of a feature-based
configurator and a proposal extension language for TVL. Chapter 5 describes in details the
prototype of a feature-based configurator implemented during our internship and exposes
how feature modelling and this kind of configurator could be helpful for CAM. Chapter 6
exposes possible integration views of default values into FMs and proposes a theoretical
extension language of TVL to support these default values.

Finally, we conclude and propose future works in Chapter 7.
The work is followed by two appendixes. Appendix A provides the TVL feature model

of CAM. Appendix B provides the syntax used by StringTemplate and describes the
templates used to translate TVL into Simple XML Feature Model (SXFM) format and
DOT.



Part I

Background
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Chapter 2

Community Earth System Model

2.1 History1

The National Center for Atmospheric Research (NCAR) is a federally funded research
and development center located in the United States. It is devoted to service, research
and education in the atmospheric and related sciences. NCAR created the Community
Climate Model (CCM) in 1983 as a freely available global atmosphere model especially
for the whole climate research community. Over the past two decades, the formulation
of the CCM has constantly improved, computers powerful enough to run the model have
become relatively inexpensive and widely available, and usage of the model has become
widespread in the university community, and at some national laboratories.

Until 1994, the original CCM did not include models of the global ocean and sea ice.
According to this limitation, NCAR scientists planned to include models of the atmo-
sphere, land surface, ocean and sea ice by developing and using a Climate System Model
(CSM). The components were to be coupled without resorting to any “flux adjustments”
(or flux correction) which adjust the surface heat, water and momentum fluxes artificially
to maintain a stable control climate. Flux adjustments were used in early climate simu-
lations when scientists discover that the model’s predictions start to vary so much from
the historical record that they have to go in and change the values inside the software
to re-fit the model to what’s actually happening. The plan of NCAR scientists was to
focus initially on the physical aspects of the climate system, and then in a subsequent
version to improve biogeochemistry and coupling to the upper atmosphere. The National
Science Foundation (NSF), NCAR’s primary sponsor, approved the plan, and the model
development began immediately.

The first CSM Workshop was held in May 1996 in Breckenridge, Colorado. At this
workshop the CSM components and the results of an early equilibrium climate simulation
were presented. This workshop was also the first step for the full participation of the
scientific community to develop CSM. A period of substantial organization progress has
taken place since this 1996 workshop. A Scientific Steering Committee (SSC) has been
formed to lead the CSM activity and working groups have been producing useful output.
In addition to support from NSF, interest in the CSM from other agencies, like NASA,
has developed. While working toward the second version of CSM, it was also time to
recognize the community of users and sponsors, they changed the name of the model to
the Community Climate System Model (CCSM). The period since May 1996 has
also been a time of substantial scientific progress. For example, a 300-year run has been

1This section summarizes the ‘about’ section of the official CESM website [32]
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CHAPTER 2. COMMUNITY EARTH SYSTEM MODEL 5

performed using the CSM, and the results from this experiment have appeared in a special
issue of the Journal of Climate, 11, June, 1998.

Modelling climate’s complexity2.
The Figure 2.1.1, taken from a larger simulation of 20th century climate, de-
picts several aspects of Earth’s climate system. Sea surface temperatures and
sea ice concentrations are shown by the two color scales. The figure also cap-
tures sea level pressure and low-level winds, including warmer air moving north
on the eastern side of low-pressure regions and colder air moving south on the
western side of the lows. Such simulations, produced by the NCAR-based
Community Climate System Model, can also depict additional features of the
climate system, such as precipitation. Companion software, recently released
as the Community Earth System Model, will enable scientists to study the
climate system in even greater complexity.

Figure 2.1.1: Simulation of 20th century climate ( c©UCAR. Image courtesy Gary Strand, NCAR)

Today, CESM is a “fully-coupled, global climate model that provides state-of-the-
art computer simulations of the Earth’s past, present, and future climate states.”[32]
CESM includes models of the atmosphere, land, land ice, ocean, and sea ice. These
components are coupled with or without “flux adjustments” depending on the experiment.

2From the UCAR AtmosNews, New computer model advances climate
change research, August 18, 2010 (https://www2.ucar.edu/atmosnews/news/2366/
new-computer-model-advances-climate-change-research)

https://www2.ucar.edu/atmosnews/news/2366/new-computer-model-advances-climate-change-research
https://www2.ucar.edu/atmosnews/news/2366/new-computer-model-advances-climate-change-research


CHAPTER 2. COMMUNITY EARTH SYSTEM MODEL 6

The most recent version CESM 1.0.3 was released on June 2011. Each release includes
the complete collection of component model source code, documentation, and input data.
The Figure 2.1.2 represents the software architecture of CESM. It is part of the poster3

used by Kaitlin Alexander to present the results of a project in collaboration with Steve
Easterbrook from the University of Toronto. Each component of the climate system has
been assigned a colour: 1. atmosphere - Purple; 2. ocean - Blue; 3. land - Orange; 4. sea
ice - Green; and 5. land ice - Yellow. Model code for a component is represented with a
bubble. Fluxes are represented with arrows, in a colour showing where they originated.
Couplers are grey. Components pass fluxes through the coupler. The area of a bubble
represents the size of its code base, relative to other components in the model. Radiative
forcings are passed to components with plain arrows.

Figure 2.1.2: Software architecture of CESM

CESM researchers anticipate many important changes in the climate modelling enter-
prise over the next five years. Computer power will increase and be able to support more
elaborate and more sophisticated models and modelling studies, using increased spatial
resolution and covering longer interval of simulated time. Understanding of many compo-
nent processes represented in CESM will be improved, including cloud physics; radiative
transfer; atmospheric chemistry, including aerosol chemistry, boundary-layer processes,
polar processes, and biogeochemical processes; and the interactions of gravity waves with
the large-scale circulation of the atmosphere. Understanding of how these component pro-
cesses interact, numerical methods for the simulation of geophysical fluid dynamics and
observations of the atmosphere, including major advances in satellite observations will

3Available at http://climatesight.org/2011/12/14/the-software-architecture-of-global-climate-models/

http://climatesight.org/2011/12/14/the-software-architecture-of-global-climate-models/
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also increase.

2.2 Purpose4

The CESM project concerns important areas of climate system research. Especially, it is
aimed at understanding and predicting the climate system. Changes in climate, whether
anthropogenic or natural, involve a complex interplay of physical, chemical, and biological
processes of the atmosphere, ocean, and land surface. The challenges of modelling the roles
of anthropogenic emissions of carbon dioxide, reactive trace gases, and of changing land use
in the earth system require a coupled-climate-system approach where components interact
and influence each other. While an appreciation that land-ocean-atmosphere interactions
influence climate is not new, the emergence of coupled-climate-system questions as central
scientific concerns of geophysics constitutes a major change in the research agendas of
atmospheric science, oceanography, ecology, and hydrology.

A comprehensive CESM accurately represents the principal components of the climate
system and their couplings. And its development requires both wide intellectual participa-
tion and computing capabilities. Therefore, CESM must include an improved framework
for coupling existing and future component models developed at multiple institutions, to
permit rapid exploration of alternate formulations. This framework must be flexible to
components of varying complexity and at varying resolutions, in accordance with a bal-
ance of scientific needs and resource demands. In particular, CESM must accommodate
an active program of simulations and evaluations, using an evolving model to address
scientific issues and problems of national and international policy interest.

In the long-term, the CESM project has the following ambitious goals, as listed on the
official web site of CESM:

• to develop and continually improve a comprehensive CESM that is at the forefront
of international efforts in modelling the climate system, including the best possible
component models coupled together in a balanced, harmonious modelling framework;

• to make the model readily available to, and usable by, the climate research com-
munity, and to actively engage the community in the ongoing process of model
development;

• to use CESM to address important scientific questions about the climate system,
including global change and interdecadal and interannual variability; and

• to use appropriate versions of CESM for calculations in support of national and
international policy decisions.

Even if the CESM project remains focused on comprehensive climate modelling, efforts
using simplified models are also important and complementary. Therefore, this kind of
efforts is undertaken by many individuals, including some CESM participants. Actually,
CESM is developed thanks to the active work of relatively small teams of scientists called
the CESM Working Groups. These groups work on individual component models or
specific coupling strategies. Each team takes responsibility for developing and continually
improving its component of CESM consistently with the CESM goal of a fully-coupled
model and with the CESM design criteria. Each team will decide their own development

4This section summarizes information available at the official CESM website [32]
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priorities and work schedules, consistent with the overall goals of CESM, and subject to
oversight by the CESM Scientific Steering Committee (SSC) that leads the CESM activity.

The following Table 2.1 from the official website of CESM lists the CESM working
groups, briefly describes them and names their liaison agent(s).

Table 2.1: List of the CESM working group, their brief description and liaison agent(s).

Working Group Liaison Description

Atmosphere
Model

Cecile
Hannay

The Community Atmosphere Model (CAM) is the latest in
a series of global atmosphere models developed at NCAR
for the weather and climate research communities. CAM
also serves as the atmospheric component of CESM.

Land Ice Stephen
Price

The Land Ice Working Group (LIWG) was formed to de-
velop and apply the ice sheet model component of CESM
and to assess the role of land ice in climate change and
sea-level rise.

Land Model Sam Levis The Community Land Model is the land model for CESM
and the Community Atmosphere Model (CAM).

Ocean Model Susan
Bates

The Ocean Model Working Group was formed to discuss
issues related to ocean components in the CESM context
and to coordinate the development and testing of ocean
components.

Polar Climate David
Bailey

The Polar Climate Working Group (PCWG) is a consor-
tium of scientists who are interested in modeling and un-
derstanding the climate in the Arctic and the Antarctic,
and how polar climate processes interact with and influ-
ence climate at lower latitudes.

Biogeochemistry Keith
Lindsay

The overall goal of the Biogeochemistry Working Group
(BGCWG) is to improve our understanding of the inter-
actions and feedbacks between the physical climate and
biogeochemical systems under past, present and future cli-
mates.

Chemistry-
Climate

Simone
Tilmes

The CESM chemistry-climate working group is formed to
focus on the coupling between the climate system, aerosols,
atmospheric composition and chemistry.

Climate
Variability &
Change

Gary
Strand
and Adam
Phillips

The Climate Variability & Change Working Group
(CVCWG) was created from a merge of the Climate Vari-
ability and Climate Change Working Groups in August
2011. CVCWG conducts simulations with CESM and its
component models that are available to the broad research
community.

continued on next page
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continued from previous page

Working Group Liaison Description

Paleoclimate Nan
Rosenbloom
and
Christine
Shields

The largest climate changes that have occurred on Earth,
such as the Ice Ages, are those recorded in the geologic
record. Understanding the causes of such past climate
changes is an essential part of developing and validating
models of future climate change.

Societal
Dimensions

– The overall goal of the Societal Dimensions Working Group
is to enhance CESM and its application in order to improve
understanding of the interactions between human and earth
systems.

Software
Engineering

– The Software Engineering Working Group (SEWG) was
formed to examine software engineering issues related to
creating and executing CESM model codes, and to recom-
mend and help coordinate software engineering practices
that will help the CESM project to achieve its goals.

Whole
Atmosphere

Mike Mills The Whole Atmosphere Working Group (WAWG) was
formed to examine the range of altitude from the Earth’s
surface to the thermosphere.

2.3 Community Atmosphere Model5

The CAM is the latest in a series of global atmosphere models developed at NCAR for
the weather and climate research communities. CAM also serves as the atmospheric
component of CESM. The most recent version is 5.1, it is used both as a standalone
model and as the atmospheric component of CESM. The standalone model usage means
that the atmosphere model is coupled to an active land model (CLM), a thermodynamic
only sea ice model (CICE), and a data ocean model (DOCN). Researchers speak of “doing
CAM simulations” in that case. When CAM is coupled to active ocean and sea ice models
then they refer to the model as CESM.

This atmosphere model is designed to manage more than seventy options like the type
of the physical and chemical components or the grid size, with dependencies and exclusions
between options. A simulation model can be configured thanks to a specific script. This
script is the current representation of “expert knowledge”, it represents what configuration
possibilities are available and high-level constraints among them. The configuration is
designed with the criterion that the user is the expert, so the user is allowed to make the
choices that he wants under the assumption that he knows what he is doing. But a design
goal is that if the configuration succeeds then the build should succeed.

The primary mechanism for representing and disseminating validated CESM is via
component sets or “compsets”, the same applies for CAM. A compset is a particular
mix of components, along with component-specific configuration and/or namelist settings.
Quality is ensured by routinely testing the supported compsets which have a low gran-
ularity and were rigorously validated. A user can choose to execute a run with custom
changes, but he will be responsible for validating the results. A typical way of doing this
is by comparing those results with output from a validated compset.

5This section summarizes the ‘Community Atmosphere Model (CAM)’ section of the official CESM
website [31]
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2.4 Sample of CAM experiment result

This section presents a sample of the output data computed with CAM5.0 in the stan-
dalone mode for a simulation from 1980 to 1999 at 2 degree resolution. The conventional
name of this experiment is f40 amip cam5 c03 78b. Output data are interpreted by a
diagnostics packages that produces a number of diagnostic plots and metrics in a series of
easily navigable web pages. The following diagnostics are part of atmosphere diagnostics6.

The Figure 2.4.1 represents the annual implied northward heat transport for each
ocean. The red curve is the result of the simulation and the black curve is based on
observed data from the National Centers for Environmental Prediction (NCEP). We can
see that even if curves are not exactly the same, they follow the same trend.

Figure 2.4.1: Annual Implied Northward Ocean Heat Transport

The Figure 2.4.2 represents the 2-meter air temperature over the world (horizontal
vector plots of DJF). The first graph shows the temperatures computed by the simula-
tion between 1980 and 1999. The second one shows the temperatures from Legates and
Willmott data set. The third one shows the temperature difference between CAM data
and Legates data. We can see that around the equator temperatures are similar and when
approaching the poles a gap appears.

2.5 CAM configuration

CAM has a configuration process designed to support a number of different scientific
scenarios. Because of this flexibility, the configuration of CAM is a complex process. To

6Simulation reference: f40 amip cam5 c03 78b. Available at the official website of CESM [32].
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Figure 2.4.2: 2-meter air temperature over the world

build and run CAM in standalone mode the following is required:

• The source tree. CAM-5.1 is distributed with CESM-1.0.3.

• Perl (version 5.4 or later).

• A GNU version of the make utility.

• Fortran90 and C compilers.

• A NetCDF library (version 3.6 or later) that has the Fortran APIs built using the
same Fortran90 compiler that is used to build the rest of the CAM code. This
library is used extensively by CAM both to read input datasets and to write the
output datasets.

• Input datasets. The required datasets depend on the CAM configuration.

When all required items are available, building and running CAM takes place in the
following steps:
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1. Configure model.
This step is accomplished by running the configure utility (in this document we will
call it configuration script) and providing a number of command line parameters that
describe his particular configuration choices including the machine definition, the
climate model options to use and archiving options. The user can supply only pa-
rameters that differ from the default values of most configuration script parameters.
Only few compile-time parameters such as the dynamical core (Eulerian Spectral,
Semi-Lagrangian Spectral, Finite Volume, or Spectral Element), horizontal grid res-
olution, and the type of parallelism to employ (shared-memory and/or distributed
memory) has no default value and must be supplied.

2. Build model.
This step includes compiling and linking the executable using the GNU make com-
mand (gmake). configuration script creates a makefile in the directory where the
build is to take place. Then the user needs only execute the gmake command in this
directory.

3. Build namelist.
This step is accomplished by running the build-namelist utility, which supports a
variety of options to control the run-time behavior of the model. Any namelist
variable recognized by CAM can be changed by the user via the build-namelist
interface. The user can also specify a set of namelist variable settings for running
particular types of experiments.

4. Execute model.
This step includes the actual invocation of the executable. When running using
distributed memory parallelism this step requires knowledge of how one’s machine
invokes (or ”launches”) Message Passing Interface (MPI) executables. When running
with shared-memory parallelism, using Open Multi-Processing (OpenMP), one may
also set the number of OpenMP threads. On most HPC platforms access to the
computing resource is through a batch queue system.

In this thesis, we will focus on the configuration step. A primary function of the
CAM configuration script is to enforce constraints among the configuration options. The
configurable nature of CAM makes it similar to a SPL. An SPL is a collection of similar
software systems that create from a shared set of software assets using a common means
of production. Carnegie Mellon Software Engineering Institute defines an SPL as “a set
of software-intensive systems that share a common, managed set of features satisfying the
specific needs of a particular market segment or mission and that are developed from a
common set of core assets in a prescribed way.”[39] In other words, the CAM codebase
can be used to create a large number of related software applications that vary in different
ways.

Currently, CAM uses a configuration script in Perl that is the current representation of
expert knowledge. It represents what configuration possibilities are available and high-level
constraints among them. So, configuration script checks constraints among the configura-
tion options and selects appropriate source code directories to finally produce a makefile7

and a filepath8 according to the parametrization. But this parametrization must be done
by a domain expert familiar with the configuration script of CAM, otherwise he could re-
ceive a series of error messages.

7Makefile is used by Make utility to automatically build executable programs.
8Filepath contains the list of source directory paths required to compile with Make.
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2.6 Challenges

The current configuration process is entirely managed by a script in PERL. That may
cause some difficulties for different points what we list here (some of the following points
may overlap):

C1: Improving maintainability of CAM system.
Source code like scripts has a significant risk of becoming inconsistent as systems
evolve. The best simple example of inconsistency is conflicting constraints like an
exclusive constraint and a required constraint on two options. If the system covered
by the script has a lot of constraints, it can be really difficult to find and understand
the meaning of a particular constraint and its influence on other ones. Currently,
constraints between CAM options like their dependencies or their exclusions, are
defined in the configuration script as an if-condition. And sometimes assuming the
result of a previous constraint, thanks to the sequential execution of the script.
But what would happen if, evolving, one assumption is no longer respected and is
fundamental for an other constraint?

C2: Setting up a separation of concerns.
The configuration script manages three types of parameters: 1. the machine definition;
2. the climate model options to use; and 3. archiving options. We can assume that
users want to make the difference between these parameters, but currently they are
just listed and sometimes mixed inside the script. configuration script is the definition
of CAM models through constraints and the tool to check the consistency of user’s
choices. Moreover, the configuration script can also be used under two points of view:
the programmer view and the user view. Indeed, the same script is used to debug
the configuration process and to configure CAM models.

C3: Highlighting options interactions.
CAM has its documentation where each parameter is described and listed both in
a namelist and in the ‘help’ display of the configuration script. But the support for
certain features and the effect of making a particular configuration choice are unclear.
Users may be confused about how configuration options interact with each others,
what may lead to a trial-and-error approach to configuration. Even in this way,
users are not sure about the application of their choices. This lack of documentation
appeared thanks to an analysis performed by Rocky Dunlap on the CESM forum9.

C4: Supporting default options.10

Configuration of Climate Model simulation is a highly complex task due to the
need to support a large number of scientific scenarios, introducing a large number of
parameters and options to the configuration setup. Specifying all possible parameters
and configuration options is impractical and time-consuming for users. One of the
ways CAM) counters this complexity is by the introduction of defaults options, a set
of selected options that are already configured to work together. The introduction
of default options helps reduce the number of option needed to be selected, but the
relationships and the constraints between options remains opaque to the user.

9CESM Forum Analysis – Scientific Configuration on Rocky’s Blog at http://rockydunlap.wordpress.
com/2010/10/26/cesm-forum-analysis-scientific-configuration/

10Based on the problem statement of Sameer’s Research [3]

http://rockydunlap.wordpress.com/2010/10/26/cesm-forum-analysis-scientific-configuration/
http://rockydunlap.wordpress.com/2010/10/26/cesm-forum-analysis-scientific-configuration/
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C5: Increasing accessibility.
CAM, and more generally CESM, is designed to be configured by expert users. As
a design criterion is “the user is allowed to make the choices that he wants under
the assumption that he knows what he is doing”. But here, expert users point out
a subset of climate experts whom can understand the output data set, analyse it
and validate or invalidate it. This subset is restricted to users familiar with the
configuration script. A new user must start its CAM usage by learning how the
configuration script works, instead of just making choices according to his domain
knowledge and what he wants experiment.

Actually, “scientist who runs the models as part of their research often has junior
scientist working as “configuration manager” who would become the local experts for
knowledge of how to configure models for particular runs. [...] This complexity in
model configuration slows down scientific progress.” [3]

C6: Supporting domain and model evolution.
Although CAM can be configured to produce a variety of different software prod-
ucts, it is not accurate to call it an SPL (at least in the traditional sense of the
term) because it is generally much less stable than a typical SPL. CAM is more
like a research tool that is constantly under development. There are many ways to
configure CAM, but also many ways that it can be misconfigured.

Doing research with CESM (and CAM) is analogous to working in a physics lab. It
is an experimental environment that is never static.

As CAM can be thought as an SPL, we can try to apply feature modelling which
is widely used in SPL engineering to represent the variability. FMs offer a convenient
and simple notation for documenting commonality and variability in SPL. FMs also allow
one to describe more or less simple constraints among the features. Moreover, feature
modelling is supported by mature tools for configuration and various analyses, they will be
further detailed in Chapter 4. This should be helpful, at least, for visualizing the variation
points (configuration options) of CAM and constraints among the different configuration
options [14]. This modelling can help us take up the challenges described previously.



Chapter 3

Feature Modelling

To represent a family of related programs, like an SPL, feature modelling is generally
used. FMs are an adequate compact representation of all the products of SPLs in terms
of “features”. They are widely used during the whole product line development process
and are commonly used as input to produce other assets such as documents, architecture
definition, or code. When the units of program construction are features, every program in
an SPL is identified by an unique and legal combination of features, and vice versa. FMs
clarify the constraints between different features provided by a system. Constraints can
be represented as a relationship between a parent feature and its children (sub-features)
or expressed with additional cross-tree logical constraints. [25, 27]

Most of the time, a graphical notation based on FODA[23] is used to represent the
variability in an SPL. But this approach lacks scalability and becomes a burden for large
FMs. A text-based feature modelling notation can be more appropriate and provides
engineers with a comprehensive language supporting large-scale models if it provides a
modularisation mechanism. Such a text-based notation, TVL, is being developed by the
University of Namur [10]. TVL covers most of the constructs of existing feature modelling
languages, including cardinality-based decomposition and features attributes while staying
light.

3.1 Software Product Lines

SPL refers to software engineering methods, tools and techniques for creating a collection
of similar software systems from a shared set of software assets using a common means of
production. Carnegie Mellon Software Engineering Institute defines an SPL as “a set of
software-intensive systems that share a common, managed set of features satisfying the
specific needs of a particular market segment or mission and that are developed from a
common set of core assets in a prescribed way” [39].

3.1.1 Concepts1

SPLs are used to manage variability inside software productions when reuse is predicted
in one or more products in a well defined product line. This variability is represented by
software artefacts, aka. core assets. According to Krueger [26], SPLs can be described in
terms of four simple concepts, as illustrated in the Figure 3.1.1:

1Based on the ‘Introduction to Software Product Lines’ by C.W. Krueger [26]

15
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Software asset inputs : a collection of software assets (such as require-
ments, source code components, test cases, architecture and documen-
tation) that can be configured and composed in different ways to create
all of the products in a product line. Each of the assets has a well defined
role within a common architecture for the product line. To accommo-
date variation among the products, some of the assets may be optional
or have internal variation points that can be configured in different ways
to provide different behaviour.

Decision model and product decisions : the decision model describes op-
tional and variable features for the products in the product line. Each
product int the product line is uniquely defined by its product decisions
(choices for each of the optional and variable features in the decision
model).

Production mechanism and process : the means for composing and con-
figuring products from the software asset inputs. Product decisions are
used during production to determine which software asset inputs to use
and how to configure the variation points within those assets.

Software product outputs : the collection of all products that can be pro-
duced for the product line.

Figure 3.1.1: Basic Software Product Line Concepts [26]

The main objectives of SPLs are illustrated through these concepts. SPLs aims “to
capitalize on commonality and manage variation in order to reduce the time, effort, cost
and complexity of creating and maintaining a product line of similar software systems.” [26]
The capitalization on commonality, thanks to consolidation and sharing within the
software asset inputs, allows to avoid duplication and divergence. The variation man-
agement makes the location, rationale, and dependencies for variation explicit thanks to
a clear definition of the variation points and decision model.

The primary specificity of SPLs is the presence of variation in some or all of the
software assets. At the beginning of a SPL lifecycle, software assets contain variation
points that represent unbound options about how the software will behave. Later during
the production process, a selection among the options of each variation points utilizes
product decision, in order to fully-specify the behaviour of the variation point in the final
product. The time at which the decisions for a variation point are bound is referred to as
the binding time.

Examples of different binding times for SPLs include, listed by Krueger [26]:

• Source reuse time. Decisions bound when reusing a configurable source artefact;
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• Development time. Decisions bound during architecture, design, and coding;

• Static code instantiation time. Decisions bound during assembly of code just
prior to a build;

• Build time. Decisions bound during compilation or related processing;

• Package time. Decisions bound while assembling binary & executable collections;

• Customer customizations. Decisions bound during custom coding at customer
site;

• Install time. Decisions bound during the installation of the software product;

• Startup time. Decisions bound during system startup;

• Runtime. Decisions bound when the system is executing.

Multiple binding times can be utilized in a software product line. This allows some
decisions to be bound earlier in the lifecycle and other decisions to be deferred until later
in the process. For example, some decisions should be made by a product manager at
the company developing the software, while other decisions should be made by the end
customer that will use the software. In other words, Kruger says:

With multiple binding times, the software product outputs from binding de-
cisions at one production stage become partially instantiated software asset
inputs for binding decisions at the next production stage. The Figure 3.1.2
illustrates two binding times, though more are possible. [26]

Figure 3.1.2: Multiple binding times [26]

As bind variations in asset are determined through product decisions, partially or fully
instantiated product outputs can be created by the production operation from software
asset inputs. Production in SPLs can be fully automated, completely manual, or some-
where in between. Application generators and product configurators are a good example
of a fully automated production approach. In this approach product decisions provide
sufficient information to automatically generate the product outputs. An example of a
completely manual approach is a textual production plan. In this case, software engineers
interpret and follow directions in the plan and the product decisions to tailor, integrate,
and provide some code to link the software assets in order to create products.

3.1.2 Benefits & Disadvantages2

SPLs offers some benefits, like the following:

2Based on the master’s thesis of P. Faber[17] and the ‘Introduction to Software Product Lines’ by
C.W. Krueger [26]
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B1: Reduction of development costs through the reuse of the artefacts, the cost of
each artefact is inferior to their cost if they are developed by the classical way.

B2: Reduction of time-to-market. In general and for a large production, the time
required to develop a new product based on artefacts is shorter as the common
artefacts are already developed and available thanks to older products.

B3: Reduction of complexity through the variability management and an efficient
reuse of artefacts according to well defined processes and plans that simplify the
software conception.

B4: Improvement of the output software quality through the reuse of artefacts,
they are widely tested, so a bug inside an artefact can more probably be detected
and corrected.

However, SPLs require more effort to be implemented and some factors like the fol-
lowing can compromise it:

D1: Low number of products. Benefits of SPLs appear for a certain number of
developed products. Create an SPL for too less products may lead a company to
never cover its investment, if the development cost stays superior to the benefits.

D2: High variability between products. If the product family is too diversified, the
development of enough flexible artefact may generate additional costs. Moreover,
the range of reused artefacts should be low and reuse advantage would be lost. And
finally, the development cost of each product may become higher than the cost of
the same product developed by the traditional way.

D3: Lack of knowledge about the domain Create an SPL requires to well know the
domain (technologies, market, clients,...). The company must be able to determine
the product set while taking account of the future needs of its clients. Otherwise,
the SPL should be updated to add new products what generates additional costs.
Domain engineers and software engineers must also well know the domain to design
and implement the variability. Wrong choices may generate products that don’t
meet the requirements. Each actor must know the domain, or the conception of the
SPL may fail.

D4: Domain instability If the domain of the SPL is unstable or evolve too quickly
(e.g., once every 6 months), the investments for the maintenance of the SPL may
never pay back. For each update, artefact may be changed and the benefits earn
with the products could always be lower than the cost of these updates.

3.2 Feature Oriented Diagram Analysis3

FODA is a domain analysis method. It was first developed by the Software Engineering
Institute, in 1990, as a comprehensive analysis and refinement of technology developed
from 1983-1990. While some aspects of FODA have changed, and it has become integrated
with model-based software engineering, FODA is still known as the method that initially
introduced feature modelling to domain engineering. [13]

3Based on the initial technical report of FODA [23]
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FODA intents to support functional and architectural reuse. Its objective is to create
a domain model which represents a family of systems which can then be refined into the
particular desired system within the domain. In the initial technical report [23], Kang et
al. introduced the concept of the FMs and defined a feature as “a user-visible aspects or
characteristic of the domain”. The features define both common aspects of the domain
as well as differences between related systems in the domain. Then the FM is a better
communication medium since it provides this external view that the user can understand.

3.2.1 Feature Analysis

The FM is produced during the first activity of FODA domain modelling phase, called
“feature analysis”. The purpose of this activity is to capture in the model the end-user’s
understanding of the general capabilities of applications in a domain. The approach has
an end-user perspective of the functionality of applications. It focuses on the “services”
provided by the applications and the operating environments in which the applications
run. Features are the attributes of a system that directly affect end-users. The end-users
have to make decisions regarding the availability of features in the system.

According to Kang et al. [23], the components of the FM are as follows:

• Feature diagram: A graphical And/Or hierarchy of features

• Composition rules: Mutual dependency (Requires) and mutual exclusion
(Mutex-with) relationships

• Issues and decisions: Record of trade-offs, rationales, and justifications

• System feature catalogue: Record of existing system features

The following paragraphs discuss each of these parts of the FM in detail.

Feature Diagram
The Feature Diagram (FD), shown in Figure 3.2.1, is an And/Or tree of different

features. Optional features are designated graphically by a small circle immediately above
the feature name, as in Air conditioning. Alternative features are shown as being children
of the same parent feature, with an arc drawn through all of the options, as is the case in
Transmission. The arc signifies that one an only one of those features must be chosen. The
remaining features with no special notation are all mandatory. The line drawn between a
child feature and its parent feature indicates that a child feature requires its parent feature
to be present; if the parent is not marked as valid4, then the child feature for that system
is in essence “unreachable.”

Composition Rules
A composition rule constraints the use of a feature. It has two forms: 1. one feature

requires the existence of another feature (because the first depends on the other); and
2. one feature is mutually exclusive with another (they cannot coexist). The textual
representation for these rules is as follows:

< feature1 > (‘requires’|‘mutex-with’) < feature2 >

An example of a composition rule used in the vehicle domain is:

Air conditioning requires Horsepower > 100

4A feature is marked as “valid” if it is either: 1. marked “valid”; 2. mandatory; 3. not marked “invalid”;
or 4. required by a “valid” feature. (Section 3.2.2)
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Figure 3.2.1: Example Showing Features of a Car

Issues and Decisions
A record of the issues and decisions that arise in the course of the feature analysis must

be incorporated into the FM to provide the rationale for choosing options and selecting
among several alternatives. As an example, the Transmission feature has two different
alternatives: Manual and Automatic. It is impossible to select one or the other without
having access to the same information the original designer had. However, if the FM
contains a record of the original rationales, it is a simple process. An issue is composed
of a short description, a raising point and a list of feature decisions. A decision has a
description and a rationale.

System Feature Catalogue
Experience with existing systems in the domain is a useful source to gather information

for the domain analysis. Record the features and feature values of actual existing systems
(even in the case of manual methods) is important to allow later modelling of the systems
in terms of their features.

3.2.2 Automated Tool Support for Features5

Manually creating a FM that correctly describes a complex domain is a large effort and
validating that model in some way is still more difficult. Because the FODA method
was new, and no existing automated tool support was available, a prototype tool was
developed using Prolog. The primary function of the tool is to validate the usefulness of
the feature analysis approach, and secondarily to establish some baseline requirements for
future automated support for the method. As the tool is separated from the information
about the domain being analysed, it may be applied to any domain. The features are stored
in a Prolog fact base, along with the composition rules and other related information.
The tool supports definition of existing or proposed systems by allowing arbitrary sets of
feature values to be specified and checked. The composition rules relating the features
are enforced, as are standard rules about completeness of the model. Given a set of
user-specified (i.e. “marked”) features, the automated features tool presently performs the
following functions:

• Checks for all features that are specified, but which may not be reachable.

• Marks a feature as “valid” if it is either:

5The content of this sub-section comes from the FODA technical report [23, Section 7.3.2.6], only few
adaptations was performed.
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– marked “valid”,

– mandatory,

– not marked “invalid”, or

– required by a “valid” feature.

• Marks a features as “invalid” if it is mutually exclusive with a “valid” feature.

• Produces an error if a feature is marked as both “valid” and “invalid.”

• Enforces the proper selection of alternatives:

– at least one alternative must be marked “valid.”

– more than one alternative cannot be “valid.”

3.2.3 Limitations6

Composition Rules vs. And-Or of Features
Hierarchical relationships between the features in the and/or tree are an alternate

graphical representation of the requires composition rule. Use two alternate representa-
tions of the same relationship complicates the FM, but the FD provides a way for users of
the model to “see” some of the feature relationships. That is difficult to do with a model
composed solely of composition rules. Sophisticated automated support for the interactive
display of the FM, such as hypertext techniques, could provide displays that would make
the FD redundant and hence unnecessary.

Manual vs. Automated Methods
As the amount of information needed to describe a domain grew, the manual techniques

became more complex. For example, the FD had no way of displaying the effects of the
composition rules on the relations between features to show that the existence of one
feature was conditional on another feature. To handle this some notational extensions
to the diagram were tried, but these only made an already complex diagram larger and
more abstruse. The FD had been split across several pages along arbitrary boundaries
in an attempt to make it more manageable, and contained inconsistencies that could
be found only through exhaustive manual examination. This situation was a primary
reason for building a prototype automated features tool to represent the FM and support
consistency and completeness checking.

3.3 Text-based Variability Language7

Most authors used a graphical notation based on FODA. The main drawback of those
approaches is their lack of scalability: they generally do not fit real-size problems. Indeed,
its graphical syntax does not account for attributes or complex constraints and becomes
a limitation for large FMs. So Pr. Heymans and his staff at PReCISE Research Center [2]
develop TVL.

TVL is a text-based feature modelling notation with a C-like syntax. Objectives of the
language are to be scalable and comprehensive. TVL is light and offers modularisation

6The content of this sub-section is extracted from the FODA technical report [23, Section 8.1], only few
adaptations was performed.

7Based on the TVL specification [12] and the “Introducing TVL” paper [10] available at the TVL
website (http://www.info.fundp.ac.be/~acs/tvl)

http://www.info.fundp.ac.be/~acs/tvl
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mechanisms to provide engineers with a human-readable language supporting large-scale
models. TVL also covers most of the FM dialects proposed in the literature, including
cardinality-based decomposition and feature attributes. Furthermore, TVL can serve as
an extensible storage format for feature modelling tools. TVL is currently a language
proposal. It is formally defined with an LALR grammar, a formal semantics and a reference
implementation in Java is available at the TVL website8.

3.3.1 Concepts9

In this sub-section we present an overview of the TVL syntax using snippets. The follow-
ing paragraphs introduce five major parts of the language: feature, attributes, expressions,
constraints and modularisation mechanisms. The different concepts of TVL will be illus-
trated using a basic personal computer product family example FD visible in Figure 3.3.1.
The Computer consists of a Motherboard, a CPU, a Graphic Card and some Accessories,
which are optional (indicated by the hollow circle); all of these features are then further
decomposed. In addition, although not shown in the figure, each of the features has a price,
which can be modelled as an attribute, a typed parameter attached to each feature [7,
Section 2.2].

Figure 3.3.1: Computer example FD [12]

Feature hierarchy
The TVL language has a C-like syntax: it uses braces to delimit blocks, C-style com-

ments, semicolons to delimit statements. The authors’ rationale for this syntax choice
is that nearly all computing professionals have come across a C-like syntax and are thus
familiar with this style. Furthermore, many text editors have built-in facilities to han-
dles this type of syntax. In the example, the root feature, Computer, is decomposed into
four sub-features by an and -decomposition: Motherboard, CPU, GraphicCard and Acces-
sories. Furthermore, the Accessories feature is optional while the other three features are
mandatory. In TVL, this is written as follows:

1 root Computer{

2 group allOf{

3 Motherboard ,

8http://www.info.fundp.ac.be/~acs/tvl
9The content of this sub-section is extracted from the TVL specification [12, Section 2], only few

adaptations was performed.

http://www.info.fundp.ac.be/~acs/tvl
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4 CPU ,

5 GraphicCard ,

6 opt Accessories

7 }

8 }

A decomposition type in TVL is defined with the group keyword. Predefined decom-
position operators are allOf, as used in this example for an and -decomposition, someOf
for or -decompositions and oneOf for xor -decompositions. It is also possible to specify a
cardinality-based decomposition with the group [i..j] syntax, where i and j are the lower
and the upper bounds of the cardinality. When defining a cardinality, one can use the
asterisk character * to denote the number of children in the group, for instance group
[1..*] would be equivalent to group someOf. This way, the engineer does not have to
update the cardinality each time the number of children changes. Optional features like
Accessories are declared by putting the opt keyword in front of their name.

FMs most commonly have a tree structure but, sometimes a Directed Acyclic Graph
(DAG) structure - a feature can have several parents - might be useful [24]. DAG structures
can also be modelled in TVL with the shared keyword associated to a feature name.
This means that the shared feature has several parents as it is illustrated int he following
example where feature D has features B and C as parents:

1 root A

2 group oneOf{

3 B group allOf {D},

4 C group allOf {shared D}

5 }

Attributes
In the example, the Motherboard has four attributes: a price, a width, a height and

a socket type. TVL supports four different attribute types: integer (int), real (real),
Boolean (bool) and enumeration (enum). In the example, price, width and height are
integers. Furthermore, the price value is limited to values between 0 and 500. In TVL,
this is expressed as follows:

1 Motherboard {

2 int price in [0..500];

3 int width;

4 int height;

5 }

Attributes are thus declared by defining their type and name inside the definition block
of the feature they belong to. Each attribute declaration is terminated by a semicolon.
The in keyword is optional, it can be used to restrict the domain of an attribute (which
might speed up automated reasoning). When declaring an attribute as an enumeration
type, this means that it will take exactly one of a set of predefined values. The socket, for
instance, is either LGA1156 or ASB1. We thus declare it as an enum.

1 Motherboard{

2 enum socket is {LGA1156 , ASB1};

3 }

For enumerations, the in is mandatory. Notice the use of curly braces here as opposed
to square brackets for the price attribute above. In TVL, square brackets are used to de-
clare intervals and braces to declare lists. Enumeration are very similar to xor -decomposed



CHAPTER 3. FEATURE MODELLING 24

features: they can be seen as a shorthand notation which avoids clutter and boilerplate
code.

In many cases, the value of an attribute will be calculated based on the values of
some other attributes. The value of the price attribute of Accessories, for example, is the
sum of the prices of its children KeyboardAndMouse, PhilipsScreen and SamsungScreen.
Furthermore, the value of an attribute might also depend on whether its containing feature
is selected or not. All this is written as follow in TVL:

1 Accessories {

2 int price is sum(selectedChildren.price)

;

3 group [0..2] {

4 KeyboardAndMouse{

5 int price is 19;

6 },

7 PhilipsScreen {

8 int price is 99

9 },

10 SamsungScreen {

11 int price , ifIn: is 149, ifOut: is

0;

12 }

13 }

14 }

The keyword is can be used to set the value of an attribute, e.g. Accessories, Key-
boardAndMouse and SamsungScreen. The keywords ifIn: and ifOut: are guards that
allows to specified the value of the attribute in the case in which the containing feature is
selected (ifIn:) or not selected (ifOut:). They illustrate this with the price attribute of
the SamsungScreen whose value will be 149 if the feature is selected and 0 if not.

While the price of the KeyboardAndMouse, PhilipsScreen and SamsungScreen features
is fixed, the price of the Accessories is calculated: it is the sum (using the aggregation
function sum) of the values of the price attribute of its selected children (using the select-
edChildren keyword, which basically represents the list of values of an attribute declared
in all the selected child features). Other operators are available and will be discussed in
next paragraph. A common modelling pattern for attributes declared for all feature is to
compute the value of the parent feature’s attribute by aggregating the attribute values
of its children, up to the root. The price of a Computer, for example, will be calculated
by summing the prices of its selected sub-features, which in turn depend on the prices of
their sub-features, and so on until leaf features with fixed price values are reached.

Expressions
In TVL, expressions are used to determine the value of an attribute (as explained

in the previous paragraph) as well as to express constraints on the FM (detailed in the
following paragraph). The language is strongly typed, each expression being either of type
bool, int or real. For more info about types, see [12, Section 4].

A basic expression is either an integer, a real, a Boolean, or a reference to a feature,
an attribute or a constant. Those basic expressions can then be combined using classical
operators: +, -, /, *, abs for numeric values; !, &&, ||, ->, <-> for Boolean values as well
as comparison operators >, >=, < or <=. Classical FM cross-tree constraints excludes
and requires can also be used as Boolean expressions.

Furthermore, there are a number of aggregation functions sum, mul (multiplication),
min, max, avg (average), count, and, or and xor. These aggregation functions can
simply be used on lists of expressions or they can become powerful shorthand notations
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when used in combination with the children or the selectedChildren keywords. These
allow to aggregate the value of an attribute that is declared for each child of a feature.
The notation is fct(children.attribute), or fct(selectedChildren.attribute) if the
aggregation should be calculated on selected children only.

A full listing of the expressions syntax is given in [12, Section 3.5].

Constraints
Constraints in TVL are attached to features (classical constraints that hold ‘for the

whole model’ can be attached to the root, for instance). They are simply Boolean expres-
sions that can be added to the body of a feature definition, as with attribute declarations.
They are terminated by a semicolon. The ifIn: and ifOut: guards we have previously
seen can be used on constraints, too. In the computer example, the Motherboard feature
has a socket attribute. The value of this attribute depends on the choice of the actual
motherboard, i.e. on the choice of one of the sub-features. One way to model this in TVL
is to define a constraint in each child feature which basically ‘sets’ the value of its parent’s
attribute.

1 Motherboard {

2 enum socket in {LGA1156 , ASB1};

3 group oneOf{

4 Asus{

5 ifIn: parent.socket == LGA1156;

6 },

7 Aopen{

8 ifIn: parent.socket == ASB1;

9 }

10 }

11 }

The constraint is guarded by ifIn:, which means that it is only applicable if the con-
taining feature is selected.

Data Blocks
TVL can serve as an extensible storage format for feature modelling tools. It is possible

to attach to every feature a catalogue of key/value pairs which contain additional, tool-
specifc, data. If, for instance, TVL were to be used as the storage format for a graphical
FM tool, the data block of a feature might contain the coordinates of the feature on the
screen and other style information:

1 Computer {

2 data{

3 "xPos" "123";

4 "yPos" "456";

5 }

6 }

Data blocks are the only part of the language that does not have a meaning in terms
of FMs. Their contents cannot be ‘referenced’ anywhere in the model.

Modularisation mechanism
One of the main goals for, the authors, in designing TVL is modularity (to achieve

scalability). TVL thus offers various mechanism that can help users to modularise large
models. First of all, custom types can be defined on at the top of the file and then be
used in the FM. This allows to factor out recurring types and can thus reduce consistency
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errors. For instance, one might want to define the different sockets upfront and then use
it as a type in an attribute declaration:

1 enum cpuSocket {LGA1156 , ASB1};

2 ...

3 Motherboard {

4 cpuSocket socket;

5 }

It is possible to define structures types to group attributes that are logically linked. A
dimension, for instance, is a couple (height, width) and can be declared as such using a
structured type. This type can then be reused inside the Motherboard feature:

1 struct dimension {

2 int height;

3 int width;

4 }

5 ...

6 Motherboard {

7 dimension size;

8 }

Users can also specify constants using the const keyword followed by a type, a name
and a value. These constants can then be used inside expressions or cardinalities.

1 const int maxRamBlock 4;

Modularisation is achieved through two distinct mechanisms. The first is the include
statement, which takes as parameter the path of a file (relative to the file containing
the root feature). As expected, an include statement will include the contents of the
referenced file at this point. Includes are in fact preprocessing directives and do not have
any meaning beyond the fact that they are replaced by the referenced file.

1 include (./ some/other/file);

The second mechanism is that features can be defined at one place and then be ex-
tended further in the code. This has two consequences: the definition of a feature can be
spread over number of blocks and the physical hierarchy of the FM does not have to be
maintained inside the code (for instance, to break up deeply nested hierarchies requiring
lots of indentations).

Basically, once a feature has been defined in the group block of its parent feature, its
definition can be extended any number of times. In order to extend a feature definition,
one just adds a feature block with the same name to the file. This block cannot be inside
another feature, it has to start its own hierarchy. Each feature block may add constraints
and attributes to the feature body. The children (with the group keyword) can only be
defined in a single one of these blocks.

This mechanism allows modellers to organise the FM according to their preferences
and can be used to implement separation of concerns [36]. For example, one could sep-
arate different attribute concern (e.g. attributes related to price and attributes related
to technical detailed, like the sockets). Another scenario would be to declare part of the
structure of the FM without detailing each feature’s attributes and instead provide them
later on:

1 root Computer {

2 group all Of {

3 Motherboard ,
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4 CPU ,

5 GraphicCard ,

6 opt Accessories

7 }

8 }

9 Computer {

10 int price is sum(selectedChildren.price)

;

11 }

12 ...

13 Motherboard{

14 dimension size;

15 ...

16 }

17 ...

In this example, the decomposition of the top feature computer is defined at the
beginning while its attributes and those of Motherboard are declared further down. The
advantage of this is that the structure is easily understandable because it is not cluttered
by attributes of different features.

3.3.2 Benefits & Disadvantages10

TVL aims to offer a solution with the main benefit of FM that could be really used in the
industry, but it doesn’t pretend to replace FD. And TVLs offers some benefits, like the
following:

B1: Providing modularity mechanisms such that presented in the previous sub-
section, TVL allows to organize the structure of models and separate the concerns.
For instance, thanks to the inclusion mechanism, features belonging to a specific
problem can be isolated in a dedicated file. Thus, each problem can be more easily
manage while the focus is on local pertinent feature.

B2: Plain text notation has a number of advantages the most important of which is the
abundance of established tools dealing with text, generally program code. Moreover,
TVL is inspired by the syntax of C and should appear intuitive to any engineer who
has come in contact with one of the many programming languages with C-like syntax.
So TVL does not require dedicated modelling tools to be deployed. Furthermore,
TVL is concise, its syntax is very light, as opposed to XML, for instance.

B3: Definition through a formal semantics makes the comparison with other lan-
guages easier. Thus, syntactic equivalences between TVL and another language
(that have also a well-defined semantics) can be define. In this case, for instance,
TVL can be used as an exchange format, to export FM from software with a private
language (syntax and semantics are unknown by public, usual in industry). TVL
can also be used as a storage format for graphical software’s. Thanks to data blocks,
this tools can store their own informations inside models. Furthermore, the formal
semantics makes TVL models automatically verifiable with dedicated tools. Those
tools could check constraints validity (e.g. no conflict between constraints), detect
dead features (e.g. features that can not be in any configuration11), etc.

B4: Learning experience for software engineers with a good knowledge of program-
ming languages, especially languages with a C-like syntax, ends with a gentle learning

10Based on the TVL case studies [20] and the master’s thesis of P. Faber[17]
11See definition at Section 4.2
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curve. Software engineers who use only graphical models might need a little more
time to feel comfortable with the syntax.

However according to some case studies, TVLs required more effort to be implemented
and some factors like the following can compromise it:

D1: Verification of the scope of features in constraints is one of the requested func-
tionalities. Since a constraint can contain any feature in the FM, it might rapidly
become hard to identify whether the referenced feature is unique or if a relative
path has to be given. The on-the-fly suggestion of alternative features by the editor
would facilitate constraint definition and make it less error-prone. By extension, the
on-the-fly checking of the satisfiability of the model would avoid wasting time later
on debugging it. The downside of such checks is that they can be resource-intensive
and should thus be carefully scheduled and optimized.

D2: Missing constructs have been pointed out in TVL. First, default values which are
useful to speed up product configuration by pre-defining values. Secondly, feature
cloning is missing and will not be introduced in TVL until all the reasoning issues
implied by cloning is solved (this is work in progress). Thirdly, attribute cardinal-
ity should be available and is technically a simple extension of the decomposition
operators defined for features.

D3: Specification of error, warning and information messages are needed input
for a configurator and so should be directly within the TVL model. These messages
are not simple comments attached to features but rather have to be considered as
guidance provided to the user that is based on the current state of the configuration.



Chapter 4

Configuration systems

FMs are generally used to represent a family of related programs, like an SPL. When
the units of program construction are features, every program in an SPL is identified by
an unique and legal combination of features aka. a configuration, and vice versa. FMs
clarify the constraints between different features provided by a system. Constraints can
be represented as a relationship between a parent feature and its children (sub-features)
or expressed with additional cross-tree logical constraints. [25, 27]

Information can be automatically extracted from FMs using automated mechanism,
called automated analysis. Analysing such models is an error-prone and tedious task, and
it is infeasible to do manually with large-scale FMs. Currently, a number of operations
of analysis, tool, paradigms and algorithms to support the analysis process [6]. The most
popular analyses and some tool are exposed in this chapter.

4.1 Analysis operations on Feature Models1

This section revisits some of the most popular analyses on FMs and reasoning techniques.
A more comprehensive list is available in the systematic review of Benavides et al. [6].

4.1.1 Analyses

For each operation, its definition, an example and possible applications are presented.

Figure 4.1.1: A sample feature model [6]

1Based on A. Hubaux’s PhD thesis [19, section 2.4] and the systematic review of Benavides et al. [6].

29
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Satifiability checking. An FM is satisfiable when at least one configuration, also called
product, can be derived from it. An unsatisfiable FM is synonym of an over-constrained
model from which no product can be derived, i.e. FMs without cross-tree constraint are
all satisfiable. As an example, Figure 4.1.2 depicts an unsatisfiable FM. Constraint C-1
(excludes) makes the selection of the mandatory features B and C not possible, adding a
contradiction to the model because both feature are mandatory.

The automation of this operation is especially helpful when debugging large scale FMs
in which the manual detection of errors is recognized to be an error-prone and time-
consuming task [6].

Figure 4.1.2: Unsatisfiable FM [6]

Configuration validation. A configuration is legal or valid if it satisfies the FM. It
is equivalent to a product that belongs to the set of product represented by the feature
model. For instance, consider the products2 P1 and P2, described below, and the FM of
Figure 4.1.1.

P1 = {MobilePhone, Screen,Colour,Media,MP3}
P2 = {MobilePhone,Calls, Screen,Highresolution,GPS}

Product P1 is not valid since it does not include the mandatory feature Calls. On the
other hand, product P2 does belong to the set of products represented by the model.

This operation may be helpful for SPL analysts and managers to determine whether
a given product is available in an SPL [6].

Partial configuration validation. By extension, a partial configuration is legal if it
is a subset of a legal configuration, i.e. it does not include any contradiction. Consider
as an example the partial configurations3 C1 and C2, described below, and the FM of
Figure 4.1.1.

C1 = ({MobilePhone,Calls, Camera}, {GPS,Highresolution})
C2 = ({MobilePhone,Calls, Camera}, {GPS})

C1 is not a valid partial configuration since it selects support for the camera and removes
the high resolution screen that is explicitly required by the SPL. C2 does not include any
contradiction and therefore could still be extended to a valid full configuration.

This operation results helpful during the product derivation stage to give the user an
idea about the progress of the configuration. A tool implementing this operation could
inform the user as soon as configuration becomes invalid, thus saving time and effort [6].

2Set of features to be selected.
32-tuple of the form (S,R) where S is the set of feature to be selected and R the set of features to be

removed such that S ∩R = ∅.
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Dead feature detection. A feature that can not appear in any configuration is called
dead. Dead features are caused by a wrong usage of cross-tree constraints. These are
clearly undesired since they give the user a wrong idea of the domain. Figure 4.1.3 depicts
some typical situations that generate dead features [6].

Figure 4.1.3: Common cases of dead features (grey features are dead) [6]

Core features detection. Core features are features that appear in every configura-
tions. For instance, the set of core feature of the model presented in Figure 4.1.1 is
{MobilePhone, Calls, Screen}.

Core features are the most relevant features of the SPL since they are supposed to
appear in all products. Hence, this operation is useful to determine which features should
be part of the core architecture of the SPL [6].

Atomic set computation. An atomic set is a group of features (at least one) that
can be treated as a unit when performing certain analyses. The intuitive idea behind
atomic sets is that mandatory features and their parent features always appear together
in products and therefore can be grouped without altering the result of certain operations.
Once atomic sets are computed, these can be used to create a reduced version of the model
simply by replacing each feature with the atomic set that contains it. Figure 4.1.4 depicts
an example of atomic sets computation. Four atomic sets are derived from the original
model, reducing the number of features from 7 to 4. Note that the reduced model is
equivalent to the original one since both represent the same set of products.

Using this technique, mandatory features are safely removed from the model. This
operation is used as an efficient preprocessing technique to reduce the size of feature
models prior to their analysis [6].

Figure 4.1.4: Atomic sets computation [6]

Explanations delivery. This operation delivers informations about why or why not
the corresponding response of the operation. Causes are mainly described in terms of
features and/or relationships involved in the operation and explanations are often related
to anomalies. For instance, Figure 4.1.5 presents a FM with a dead feature. A possible
explanation for the problem would be “Feature D is dead because of the excludes constraitn
with feature B.”

Explanations are a challenging operation in the context of FM error analysis. In
order to provide an efficient tool support, explanations must be as accurate as possible
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when detecting the source of an error, i.e. it should be minimal. This becomes an even
more challenging task when considering extended FMs and relationships between feature
attributes [6].

Figure 4.1.5: Grey feature is dead because relationship C-1 [6]

4.1.2 Automated supports

These operations can be automatically verified with appropriate solvers and formal en-
coding. Benavides et al. [6] identify four groups of reasoning approaches according to the
logic paradigm or method used to provide the automated support.

Propositional logic based analyses. A propositional formula consists of a set of
Boolean variables and a set of logical connectives constraining the values of the variables,
e.g. ¬, ∧, ∨, →, ⇔.

A basic feature model4 and primary cross-tree constraints (e.g. implies and excludes)
can be expressed in Propositional Logic (PL), as shown in Figure 4.1.6.

Two types of solvers are commonly used to efficiently handle FMs encoded as propo-
sitional formulae. Boolean Satisfibility Problem (SAT) solvers (e.g. SAT4J [8] take as
input a propositional formula and determines of the formula is satisfiable, i.e. there is a
variable assignment that makes the formula evaluate to true. SAT solvers usually require
the propositional formula to be converted in a Conjunctive Normal Form (CNF). A CNF
is a conjunction of clauses where each clause is a disjunction of variables such that a
variable and its complement cannot appear in the same clause. It has been proved that
every propositional formula can be converted into an equivalent formula in CNF formula.
This transformation is based on rules about logical equivalences: the double negative law,
De Morgan’s laws, and the distributive law. CNF formulas are generally recorded in the
DIMACS CNF format[11] that is widely accepted as the standard format. The DIMACS
CNF format is an ASCII file format. The file starts with comments (each line starts with
c) then come the number of variables and the number of clauses defined by a line of the
form p cnf variables clauses. Each of the next lines specifies a clause: a positive literal
is denoted by the corresponding number, and a negative literal is denoted by the corre-
sponding negative number. The last number in a line should be zero [1]. For example, the
following sample DIMACS file represents the formula (A ∨ ¬C) ∧ (B ∨ C ∨ ¬A):

1 c A sample .cnf file.

4A basic feature model is a Boolean feature model where the only relationships between a parent feature
and its child features (or sub-features) are categorized as:

• Mandatory - child feature is required.

• Optional - child feature is optional.

• Or - at least one of the sub-features must be selected.

• Alternative (xor) - exactly one of the sub-features must be selected
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2 p cnf 3 2

3 1 -3 0

4 2 3 -1 0

Listing 4.1: Sample DIMACS file

Similarly, a Binary Decision Diagram (BDD) solver (e.g. JavaBDD [41]) takes a propo-
sitional formula as input (not necessarily in CNF) and translate it into a DAG (the BDD
itself) with two terminal nodes respectively representing true and false. Each decision
node is labelled with a Boolean variable, and has exactly two output edges respectively
capturing the assignment of true or false to the variable. This graph representation al-
lows determining if the formula is satisfiable and providing efficient algorithms for counting
the number of possible solutions.

SAT and BDD solvers differ in that SAT solvers suffer from high complexity in time
whereas BDD solver suffer from high complexity in space. In practice, both solvers com-
plement each other and should be picked carefully based on the type of analysis to con-
duct [27].

Figure 4.1.6: Mapping from feature model to propositional logic (adapted from [6])

Constraint programming based analyses. A Constraint Satisfiability Problem (CSP)
is a mathematical problem defined as a set of objects that must satisfy a number of con-
straints or limitations. Constraint programming can be defined as the set of techniques
such as algorithms or heuristics that deals with CSPs. A CSP is solved by finding states
(values for variables) in which all constraints are satisfied. The mapping from an FM to
a particular CSP solver is less straightforward than with propositional logic because each
solver has its own encoding scheme. Moreover, CSP often have high complexity, requiring
a combination of heuristics and combinatorial search methods to be solved in a reasonable
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time. However, in contrast to propositional formulas, CSP solvers can deal with numerical
values such as integers or intervals, not only with binary values (true or false) [6].

Description logic-based. Description Logic (DL) defines a family of formal languages
meant to conceptualise, and reason about knowledge. Essentially DL allow to model
concepts, roles (properties on concepts and relationships among them), and individuals
(instances). A DL reasoner takes as input a problem described in DL and provides facilities
for consistency and correctness checking and other reasoning operations [6].

Other. Other approaches rely on original algorithm especially produce for FMs. These
algorithms are usually bound to a particular dialect of FMs and focus an very specific
analyses. Further information is available in the Benavides et al.’s article [6].

Solvers not only help improve the quality and correction of FMs. They also pro-
vide the backbone that maintains the consistency of the configuration through-
out the application engineering process. [19]

4.2 Feature-based Configuration5

Feature-based Configuration (FBC) is the interactive process during which the selection of
features to be included in a product is performed by the stakeholders. FBC systems (aka.
configurator) have to ensure the validity of the configuration along the whole process. They
should be able to manage an interactive setting: 1. automatically propagating decisions,
and 2. explaining the results of the propagation [19].

A. Hubaux defines the decision propagation as the procedure that automatically sets
the values of variables that depend on the decision. In other words, it automatically
selects feature required by the decision and respectively deselects excluded features. Thus,
a product always remind satisfiable during the configuration, no decision can break it.
As previously introduced, an explanation is the feedback delivered to stakeholders that
details how a decision was made, i.e., manually or automatically. In the automatic case,
the explanation should contain the manual decision that induced the propagation, and
the constraints involved by the (de)selection. Note that several explanations can match a
single decision [19].

In practice, performance, scalability, and integration requirements also prevail. FMs
with thousands of features constrained by quantities of complex constraints show an high
level of complexity that require extremely efficient reasoners to propagate decisions while
preserving the reactivity of the configuration interface [19].

This section presents some configuration tools split into two different categories:1. Generic;
and 2. Domain specific. This presentation aims to provide a glimpse of the configuration
management in practice through key examples that will support our later reflection.

4.2.1 Generic Feature Model Tools

Over the years, the formalisation of FMs helps to support FBC and develop interactive
configurators. Propagation of decisions throughout the FM inside configurators relies on
efficient solvers (typically SAT, BDD and CSP solvers) that excel in the domain. As
said in Section 4.1.2, their reasoning abilities depend on the type of the solver. For in-
stance, Software Product Lines Online Tool (SPLOT) [28] uses SAT and BDD only, which

5Based on A. Hubaux’s PhD thesis [19, section 2.5]
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restricts the reasoning domain to binary decision but enables extremely fast reasoning
about thousands of features [19]. This tool is further detailed below. On the other hand,
a tool using a dialect like Prolog (e.g., pure::variants [34]) gains in expressiveness, thanks
to the general-purpose logic programming language and its support of arbitrary domains
like integers or strings. But in return, it has lower performances. Usually, these tools also
propose other analyses such as explanation, dead feature detection, core feature detection,
model comparison, model metrics computation, and auto-completion [19]. Other tools like
FeatureIDE [38], focus on feature-oriented programming, and create a bridge between an
FM and a code base. The configuration of the FM allows to remove unnecessary source
code from a particular product [19]. FeatureIDE is further detailed below.

All these tools are not domain dependant and could be characterized as generic feature
model tools.

Software Product Lines Online Tool6

SPLOT is a Web-based reasoning and configuration system for SPLs. SPLs are represented
by FMs with additional cross-tree constraints in CNF. SPLOT, developed in Java7, is sup-
ported by sophisticated configuration engines and efficient automated reasoning systems
based on public BDD and SAT engines, respectively JavaBDD and SAT4J [8]. However,
it is well-known that BDDs and SAT solvers can suffer from space (BDD) and/or time
(SAT) intractability problems. To minimize such problems, SPLOT make use of novel
BDD heuristics [27] to reduce the size of BDDs as much as possible. As well, the system
capitalizes on the observed efficiency of SAT systems in the feature modelling domain [29]
to provide high-performance SAT-based algorithm (e.g. valid domain computation) [28].

Specifically, SPLOT uses a BDD engine to count valid configurations, to calculate the
variability degree of feature models and to perform interactive configuration. Moreover,
a SAT solver is also used to support interactive configuration and to perform debugging
tasks such as checking consistency of FMs and detecting common and dead features [28].

Currently, SPLOT provides two major services: automated reasoning and product
configuration. Reasoning focus on automating statistics computation and debugging tasks.
With regards to product configuration, SPLOT supports interactive configuration in which
users make a decision at a time and the configuration system automatically propagates
those decisions to enforce their consistency [28].

Figure 4.2.1 represents the product configuration with SPLOT. The FM is displayed
as a collapsible hierarchical tree and user can interactively select or deselect a feature.
User’s decision are automatically propagated and each step is stored in a steps-history
(on the right). To automatically complete the configuration, users can used the auto-
completion with less or more feature which respectively means to attempt to deselect/select
all remaining features.

FeatureIDE8

FeatureIDE is an Eclipse-based IDE that supports all phases of feature-oriented software
development for the development of SPLs: domain analysis, domain implementation, re-
quirements analysis, and software generation. Different SPL implementation techniques
are integrated such as feature-oriented programming (FOP), aspect-oriented programming
(AOP), delta-oriented programming (DOP), and preprocessors. Currently, FeatureIDE

6This content summarizes the SPLOT’s official reference [28]
7Java Servlet API 2.5
8This content summarized pieces of informations available at the FeatureIDE website [38]
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Figure 4.2.1: SPLOT: Product configuration

provides tool support for AHEAD, FeatureC++, FeatureHouse, AspectJ, DeltaJ, Munge,
and Antenna [38].

FeatureIDE is under constant development. Currently, it’s fully integrated into Eclipse
and provides many features like a FM editor (graphical9 and XML based), a constraint
editor with content assist, syntax, and semantic checking (e.g. dead feature detection) and
a configuration editor to create and edit configurations (Figure 4.2.2b). The configuration
editor comes with support for deriving valid configuration [38].

Figure 4.2.2a depicts the graphical edition of a FM with FeatureIDE. FeatureIDE
supports and-, or- and xor-decompositions, mandatory and optional features, plus abstract
features i.e. features only used to structure the model and selecting or eliminating them
does not make any difference in the generated variant code (Figure 4.2.3) [37]. Under the
FD, three cross-tree constraints are displayed in propositional logic.

Figure 4.2.2b depicts the configuration edition with FeatureIDE. Two views are avail-
able, the main difference is that users can specified undesired features in the ‘Advanced
configuration’ (red minus). In both, user’s decisions propagations are displayed in grey.
Next to the root feature name, between brackets, the validity of the configuration and
the number of solution according to the current configuration are displayed. So, users can
easily create a valid configuration.

4.2.2 Domain-specific configurators

Other configurator primarily designed for a specific domain are also available like LKC
detailed below. These tools emerge from requirement appearing through the domain
evolution. They are conceived to accomplish a dedicated task with the same modelling
and reasoning foundations as generic tools.

9Figure 4.2.2a
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(a) Graphical FM editor [38] (b) Configuration editor [38]

Figure 4.2.2: FeatureIDE screenshots

(a) A 1:1 mapping between features and feature
modules using feature-oriented programming [37]

(b) An n:m mapping between features and pre-
processor statements [37]

Figure 4.2.3: FeatureIDE mappings for code generation
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Linux Kernel Configurator10

LKC is a tool that is delivered within the Linux Kernel in order to enable its configuration
(feature selection). Its first prototype was proposed in 2002, the current version is 1.4,
and as the Linux Kernel, it is released under the GNU General Public License [35].

In 2001, the community around the Linux Kernel started to show dissatisfaction with
the kernel configuration tool, back then known as configuration menu language (CML1).
With the growth of the kernel, the configuration process was getting very complicated.
The tool was responsible for selecting the capabilities to be built into the kernel, handling
dependencies and providing the user interface for feature selection. Moreover, it was
comprised of a mixture of code written in Tcl/Tk scripts, awk scripts, pearl and C, which
made it hard to understand and to maintain. In order to solve this problem, the LKC was
finally proposed [35].

LKC is basically comprised of a parser and a dependency checker that are used as the
back-end. To enable the selection of configuration options aka. features (as defined in a
configuration database aka. FM), different front-ends (graphical, text-mode, command-line
interactive, etc.) are provided [35].

The configuration file is a text file containing the entries which must follow a strict
syntax. The FM is built as a set of entries which define features. Such a file is de-
picted in the example (Listing 4.2 p.39) provided by Julio Sincero and Wolfgang Schröder-
preikschat [35].

Line 1 of Listing 4.2 p.39 shows an entry definition, it starts with the
keyword config and is followed by its name. The next lines of an entry are
used to define its attributes, which can be the following:

type define the type of an entry: boolean, tristate11, string, hex and
integer.

input prompt is the visual name of the feature that is displayed to the user
during configuration. On line 1 the actual configuration name is defined
as GPL which will be used in the generated configuration file, however, the
user will see during configuration the name ROOT as shown on line 2.

default value is assigned to the configuration symbol if no value was set by
the user. An example is given on line 17.

dependencies define the requirements of the menu entry. They can simply
define the depending on a single feature, as shown on line 6, or can be
in the form of logical expression using primitives like && (logical and), ||
(logical or), as shown on line 18.

reverse dependencies are used to forced the lower limit of the value of an-
other symbol. As shown on line 3, if the symbol GPL is selected, the
symbol M1 will automatically be selected as well.

numerical ranges limit the range of possible input values for integer and
hex symbols.

help text defines the feature help text to be shown during configuration. Ex-
amples are shown on line 21 and 31.

10This content summarizes the paper of Julio Sincero and Wolfgang Schröder-preikschat [35]
11The boolean type can be assigned to yes or no, the tristate type allows an extra value (m) which means

that the configuration option should be included, however, as a separate module.
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Moreover, in order to provide a better organization of the entries in the
configuration tree that is displayed to the user (Figure 4.2.4), the following
constructs are allowed:

menu entries defined between the keywords menu and endmenu are grouped
together and displayed in a separated window. It may have an attribute
prompt to name the groups of entries. An example is given between
lines 5 and 14.

choice Only one entry of those defined between the keyword choice and end-
choice can be selected if its parent entry is also selected. [35]

1 config GPL

2 boolean "ROOT"

3 select M1

4

5 choice

6 depends on GPL

7 prompt "Graph Type"

8

9 config DIRECTED

10 boolean " Directed"

11

12 config UNDIRECTED

13 boolean "Undirected"

14 endchoice

15

16 config NUMBER

17 default y if GPL

18 requires (BFS || DFS)

19 boolean "Number"

20 ---help ---

21 Assigns a unique number to each

22 verte x as a result of a graph

23 traversal.

24

25 config CC

26 depends on GPL

27 requires (BFS || DFS)

28 requires UNDIRECTED

29 boolean "Connected Comp."

30 ---help ---

31 Computes the connected components

32 of an undirected graph , which are ...

Listing 4.2: LKC language

Figure 4.2.4 depicts the screenshot of the LKC graphical front-end displaying the FM
of the Graphical Product Line (GPL). The FM is displayed as a collapsible hierarchical
tree. The xor -decomposition is represented by a group of radio button and optional feature
by a check-box [35].

Figure 4.2.5 summarizes the mappings from the LKC language to feature model re-
lations. for mandatory relation, the parent feature forces the selection of the child by
the use of a reverse dependency (select). The optional relation is described by using a
dependency between the child and the parent feature (depends on). The or group is
designed by creating reverse dependencies between the children and the parent, this is
done inside a menu definition in order to group the children together. The alternative
group can be described by including configuration options (the children) inside a choice
definition, which has the same semantic as of alternative group in FMs [35].
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Figure 4.2.4: The LKC graphical interface [35]

4.3 Overview of Configuration beyond Feature Models12

This section aims to present, without looking for completeness, the bigger landscape in
which FMs fit.

The configuration of physical artefacts, recognition of the business value of customiz-
able software products was the focus of traditional research in the knowledge-based pro-
duction configuration field and led to the emergence of Software Product Line Engineering
(SPLE). But even if there is a substantial overlap in research interest of the two fields,
they mostly progress on their own path. And some attempts were made aiming to com-
bining the approaches develop in the different fields. Computer-supported configuration
of products has a long history, so research on the configuration of parametrisable software
is pretty new compared to it [21].

4.3.1 Product configuration13

Product Configuration (PC) is defined by A. Hubaux et al. as “the umbrella activity of
assembling and customizing physical artefacts (e.g. technical equipment, cars or muesli)
or services”. It goal is to save cost by assembling individualised systems from reusable
components. Historically, PC has been a subfield of Artificial intelligence (AI), focusing
on knowledge representation and reasoning techniques to support configuration [21].

A wide range of knowledge modelling approaches (based, e.g., on UML or descriptive
logic) and several types of logics and constraints are used by researchers that work on
PC. Most results built upon the seminal work on FODA (Section 3.2), but a few SPLE
approaches also used UML to capture aspects of configuration knowledge. Models that
can be directly translated into a representation processable by a reasoning engine are
generally preferred by the AI-rooted PC community. And the formal basis of the most
knowledge modelling languages lays the foundation for advanced configuration reasoning
techniques (e.g. checking consistency of configurations, completing partial configurations,
or supporting interactive configuration processes). In contrast, the SPLE community only
started recently a formal foundation of FMs and their analyses [21].

12Based on the research roadmap of A. Hubaux et al. [21] and A. Hubaux’s PhD thesis [19, Chapter 3]
13This sub-section summarizes the content of A. Hubaux et al. [21].
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Figure 4.2.5: Mapping: Feature relations to LKC language [35]

In the AI community, it is not new to encode configuration problems in some logic or as
CSPs. The PC community was the first to apply SAT solvers to configuration problems.
BDDs have also been used for building fast interactive configurators (trading time vs.
space from a complexity point of view). Unfortunately, the SPLE community sometimes
reinvents technique which have been developed previously in PC [21].

4.3.2 Configuration in manufacturing14

Nowaday, a number of tangible products (e.g. cars and mobile phones) as well as intangible
products like software (e.g. operating systems and ERPs) and services (e.g. insurance)
can be parameterized by customers to fit their preferences. Therefore, software vendors
and manufacturing companies have to provide customisable products at the same price
and conditions than previously standard product or could face to a serious competitive
disadvantage [19].

Configurators are commonly used to manage “the sales, product design, and develop-
ment of manufacturing specifications for customised products” [22]. At the core of the
configurator lies the configuration system, which is “an expert system that is able to com-
bine modules which are individually described by a number of characteristics, by using
rules (constraints) which describe which modules are legal to use in combination” [22].

The decision to create or use a configurator should not be technology-driven but rather
result from the clear prevision of commercial advantages like increased customer satisfac-
tion and market share, and reduced production costs. The purpose and design of config-
urator are also determined by a delivery strategy that prescribes the degree of flexibility
and their position in the manufacturing lifecycle [19].

In his thesis A. Hubaux discusses the four main strategies. They are presented below,
in crescent complexity order. Some companies combine different strategies to deal with
the complexity inherent to the required flexibility of both the manufacturing facilities, the
design and specification of the product family [19].

14This sub-section summarizes a part of A. Hubaux’s PhD thesis [19]
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Make-to-stock delivery strategy leads companies to fabricate, assemble and
eventually store finished products. In this strategy, the Customer Order
Decoupling Point (CODP)15, also called order penetration point, is po-
sitioned at the end of the production process. Figure 4.3.1 sketches the
position of the CODP for the make-to-stock strategy as well as those of
three other strategies, which are explained below.

Configure-to-order aka. assemble-to-order. In this strategy, products are
built based on a combination of standard components pieced together
following some choices of the customer like a car.

Make-to-order strategy only starts the manufacturing of already designed
components once the order has been placed. So this strategy is more
flexible than configure-to-order. The fabrication of the pieces is case spe-
cific and building more customisable products is easier. For example,
hardware manufacturing at Dell is an application of such strategy.

Engineer-to-order strategy leaves a maximum flexibility to the customer.
In that case, a substantial amount of work is needed to define accurate
specifications. The production of complex plants like cement factories
belong to that strategy. The nature and complexity of the products

Figure 4.3.1: Different product delivery strategies [19]

determine the type of strategy(ies) that best fits the needs of the company.
It is only once agreed upon that the development of the configurator can
actually start. [19]

4.3.3 Software Configuration Management16

Configuration management is the art of identifying, organizing, and controlling
modifications to the software being built by a programming team. The goal is
to maximize productivity by minimizing mistakes. [4]

Software Configuration Management (SCM) introduces the concept of versions that rep-
resent instances of products and its parts over time. There are two main types of versions:
revisions and variants. Revisions are versions that replace other version due to bug fixes
or addition of new functionalities. Variants are versions intended to coexist through time
to satisfy different user or platform needs [21].

SCM gets in every step of the software engineering life-cyle. It also involves many
actors with distinct responsibilities, tasks, and expectations from the SCM system. For
instance: the project manager monitors the progress of the project and makes sure that

15CODP is “the point in the manufacturing value chain for a product, where the product is linked to a
specific customer order” [33]

16This sub-section summarizes a part of A. Hubaux’s PhD thesis [19]
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the product will be developed within the given time frame; the configuration manager
enforces development policies (e.g. code creation, change, and testing) and collects data
about the status of the project; and the quality assurance manager controls the quality of
the product. The set of functionalities offered by an SCM system has to cover the needs
of every actor [19].

The management of the revisions and the interaction of both is still a weakness of PC
and SPLE, especially when the product and its parts evolve frequently. Another practical
both in PC and SPLE is the constantly growing number of components that can be part
of a configuration [21].

4.3.4 Summary of the overview17

According to A. Hubaux, “the manufacturing industry seems to favour domain-specific
interfaces over generic tree-like representations; no matter what reasoning techniques is
used in the backend” [19]. So Graphical User Interfaces (GUIs) should be designed by
domain experts to best suit their requirements. And FBC should abstract away from
GUIs and focus on its foundation. The FMs is a common representation of the options
laid out in particular interfaces. Moreover, A. Hubaux noticed that FBCs lacks integration
with other systems or components (e.g. ERP system). Although commercial tools have
started integrating other modelling tools, research still a few steps behind. Finally, final
users generally prefer easily understandable with no overhead of maintenance. Genericity
and enhanced expressiveness may lead to too much flexibility which is often seen as “a
source of confusion, inefficiency, and maintenance overhead” [19].

Like A. Hubaux, we are aware of the limitations of these conclusions. To provide
definitive statements, a more systematic and thorough treatment of the fields is needed
but is beyond the scope of this thesis.

17This sub-section summarizes a part of A. Hubaux’s PhD thesis [19]
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Chapter 5

Feature-based configurator

In this chapter, a feature-based configurator prototype, called CAMelot, is presented. At
first, we expose our motivation (Section 5.1) and we propose an overview of the suggested
system (Section 5.2). Then we explain in details the implementation of CAMelot (Sec-
tion 5.3): our working assumptions, the system architecture, the main mechanisms, and
data generation. Finally, we evaluate our contribution as objectively as possible (Sec-
tion 5.4).

5.1 Motivation

The primary goal of this thesis is figure out how feature modelling could be helpful in the
real case of CAM. As we saw in Section 2.5, CAM has a configuration process designed
to support a number of different scientific scenarios. Because of this flexibility, the con-
figuration of CAM is a complex process. To run CAM in the standalone mode, the user
must execute a configuration script and provide a number of command line parameters that
describe his or her particular configuration choices. Users can only supply parameters that
differ from the default values of most configuration options. The final compilation will
include only certain source code folders based on the users’ choices.

One primary function of the CAM configuration script is to enforce constraints among
the configuration options. The configurable nature of CAM makes it more like an SPL than
a single software application. In other words, the CAM codebase can be used to create
a large number of related software applications that vary in different ways. According to
this similarity, we’ll suggest a re-engineering of CAM configuration script based on feature
modelling to improve maintainability of CAM system (Challenge C11). As FMs
offer a convenient and simple notation for documenting common and variation points in
SPLs. As well FMs introduce a separation of concerns (Challenge C2) as A. Hubaux
mentions it in his PhD’s thesis [19, Chapter 4]. Our work is focussed on the climate
model configuration rather than on machine and archiving options but we’ll discuss both
programmer and user points of views.

Moreover, with their graphical notation, FDs also allow you to describe more or less
simple constraints among the features. This should be helpful, at least, for visualizing
the variation points (configuration options) of CAM and constraints among the different
configuration options [14]. That is a first argument in favor to FMs to highlight options
interactions (Challenge C3). A second argument is the tool support that comes with
feature modelling like configurators. These tools offer explanations during the configura-

1This challenge is also taken up through the others.
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tion process thanks to embedded reasoners (Section 4.2). A feature-based configurator,
as the configuration script, would check constraints among the configuration options and
would select appropriate source code directories to finally produce a makefile2 and a
filepath3 according to the parametrization. But this parametrization must currently be
done by a domain expert familiar with the configuration script of CAM, otherwise he or
she could receive a series of error messages. A configurator would guide the configuration
thanks to decision propagation and users would have no longer need to be experts of
configuration script to create a configuration (Challenge C5).

In addition, this kind of script has a significant risk of becoming inconsistent as systems
evolve. The best simple example of inconsistency is conflicting constraints like an exclusive
constraint and a required constraint both define on two particular options. Support the
constant evolution of CAM is a real challenge for the CESM community (Challenge C6).
Readability and version management should be a starting point to meet this challenge.
Generally, FM language don’t provide a higher level of readability than a script, but TVL
is really light and easy to understand. Version management will not be discussed in this
thesis as it’s a problem that affects a wider scope than the FM field.

Finally, the support of default options (Challenge C4) will be discussed in the next
chapter as it’s not part of FMs and require a language extension. Thus at this stage of
our study, we’ll omit the support of default values inside our suggested solution.

CAM configuration process may be more explicit with Figure 5.1.1 that shows the
current process steps with a Roman numeration and the suggested process steps with an
Arabic numeration. This suggested process is described in the next paragraph. The

Figure 5.1.1: Descriptive diagram of CAM configuration.

2Makefile is used by Make utility to automatically build executable programs.
3Filepath contains the list of source directory paths required to compile with Make.



CHAPTER 5. FEATURE-BASED CONFIGURATOR 47

current configuration process using the configuration script is the following:

I execute The user executes the configuration script with the list of parameters which
represents the configuration as input.

II select If the parameters meet all constraints, then the script selects all appropriate
source directories, eventually according to a default configuration file.

IIb ERROR Otherwise, when a constraint is violated, an error message is raised and
the process is interrupted. The user have to restart from the beginning.

III produce Finally, the script produces a makefile and a filepath. These files are
used in the build phase.

Suggested configuration process explained below shows only the basic usage of the
feature-based configurator (see Figure 5.1.1):

1. execute The user executes the configurator and the GUI is displayed which shows
the feature model defined in the TVL model. Then he or she can interactively create
a configuration.

2. enforce constraints Each time a choice is made by the user (i.e. selecting or de-
selecting a feature), the constraints are checked by a solver and some options are
auto-selected or disable, according to the constraints defined in the TVL model.

3. produce When there is no more “unknown” options, the configuration is valid and
can be used to produce a makefile and a filepath. These files are used in the
build phase.

5.2 Overview

The suggested configurator system, is composed of two main parts. The first part is
a generic configurator using FMs. The primary goal of this generic configurator is to
automatically enforce the constraints defined in a TVL model and easily produce a valid
configuration. The second part mananges outputs. So the system can be customized
to produce desired outputs according to users’ configurations. For instance, in the case
of CAM, the configurator would manage a large part of the current configuration script
that means they have the same semantics about the constraints defined on features and
outputs could be identical. The GUI would make the configuration process easier than
the current configuration script. In essence, users would be able to see the interactions
between features.

5.2.1 Functionalities

The system would be composed of two subsystems: a configurator and a generator. The
configurator creates or edits a configuration and checks a configuration. The generator
generates several outputs as: 1. translated FMs from TVL to the format used by SPLOT,
called SXFM; 2. FDs corresponding to TVL FMs; and 3. outputs according a configuration
to build a product, here a CAM standalone model.

The following paragraphs describe the functionalities suited to CAM usage, depicted
in Figure 5.2.1 and basically available in CAMelot.
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Figure 5.2.1: Use case diagram of the system.

Configure CAM standalone model Users can configure a CAM standalone model
with CAMelot by providing a configuration and a TVL FM of CAM. CAMelot produces
the required data to build the CAM model. Users could use the GUI system to create or
edit a configuration and provide it.

Edit configuration Users can edit or create from scratch a configuration with the
configurator, according to a TVL FM. A GUI would be provided to make the process
easier.

Check configuration Users, especially scientists, can submit a configuration to the
configurator to check its validity according to a TVL FM.

Generate documentation Managers of CAM (CAM IT) can automatically generate
several documents based on a TVL FMs, like FDs, translation from TVL into SXFM or
DIMACS format (with a mapping between IDs used in TVL and translated version).

5.2.2 Graphical user interface

This section describes a sketch of the GUI. To make it more explicit, it’s based on the
following hypothetical sample TVL model4. The root feature MyRoot is decomposed
into two sub-features: the feature MyFeature and the optional feature MyFeature2. The
feature MyFeature is composed of either the feature Foo or the feature Bar, and the
feature MyFeature2 is composed of the feature Baz. The feature MyFeature has also
several attributes; those are an integer myInt which takes its value between 1 and 4, a
real myReal which takes its value between 0.5 and 1, an enumeration myEnum with three
choices (One, Two, Three), a Boolean myBool, a structure myStruct that is a couple of
an integer num and a string noun where the value of myStruct.num is restricted to the
value ‘253’, and a string myString restricted to the value ‘tadaam’. See Listing 5.1 p.48.
This sample could be represented by an incomplete FD, as attributes aren’t represented,
made with FeatureIDE[38]. See Figure 5.2.2.

1 struct myStructure {int num; string noun;}

4Keep in mind that currently TVL doesn’t support String attributes.
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2

3 root MyRoot

4 group allof{

5 MyFeature

6 group oneof{

7 Foo ,

8 Bar

9 },

10 opt MyFeature2

11 group allof{

12 Baz

13 }

14 }

15

16 MyFeature{

17 int myInt in [1..4];

18 real myReal in [0.5..1];

19 enum myEnum in {One , Two , Three};

20 bool myBool;

21 myStructure myStruct {num is 253;}

22 string myString is "tadaam ";

23 }

Listing 5.1: myFeature TVL model

Figure 5.2.2: FD of “myFeature TVL model”

Figure 5.2.3 represents the primary window of the configurator, inspired by the LKC
(Section 4.2.2) according to the above sample FM. This primary window is composed of
the fundamental functionalities required to easily configure a product with a GUI. The left
part of the primary window allows users to parametrize the hierarchical tree part of a FM.
This part was actually created with the FeatureIDE configurator (Section 4.2.1). Each
feature is represented by its name in a tree hierarchy as they are defined and is preceded
by an icon that means the feature is selected (green cross), deselected (red minus) or not
yet parametrized (empty square). On the top, users are informed of the validity of the
current configuration and the number of remaining possibilities5.

Furthermore, in TVL, each feature could have attributes that would be parametrized
in the right part of the primary window. This part is divided into a notification and a
parametrization areas. The notification area provides users with different kind of infor-
mative messages. The parametrization area allows users to see all attributes and edit the
value of the enabled attributes. According to constraints in the TVL model, the value of
some attributes can be restricted to an unique value, and so can not be changed.

Notice that menus are not represented and could host many functionalities like generate
outputs according to the current configuration or open a configuration file.

5The number of remaining possibilities shown in Figure 5.2.3 doesn’t consider the attributes and their
variability.
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Figure 5.2.3: Primary window of the configurator.

5.3 Implementation

A prototype of the configurator system described in the previous section has been devel-
oped. This configurator, called CAMelot, is described in details in this section. CAMelot
is more a tool to think about feasibility and interest to feature-based configurators with
the application to a real case, and it’s far to be a proof of excellence (CAMelot can not
pretend to shelter the Holy Grail).

5.3.1 Working assumptions

CAMelot is a prototype, so some working assumptions limit its implementation. CAMelot
has been developed to manage the configuration of CAM in the standalone mode. A TVL
model was written according to the configuration script of CAM and the FD realized by
R. Dunlap6 (Appendix A).

Work on normalized TVL models. CAMelot uses the TVLparser to check the TVL
model and get the model as an Abstract Syntax Tree (AST). Work on normalized
TVL models, inside the configurator, simplify the management of cross-tree con-
straints as all feature IDs are global and local references are translated. However,
we discourage local ID usage in the TVL model as we notice the management of
long IDs is still work in progress in the TVLparser.

Limit to Boolean feature models. CAMelot only considers Boolean FMs that means
only Boolean features and attributes are taken into account. Note that in TVL,
enumeration attributes can be considered as Boolean attributes. Thanks to this
limitation, we can easily manage validity of configurations with a SAT solver. We
use the same solver used by the TVLparser (SAT4J 2.1). To support other types
of attributes like integers, CSP solver are required. This kind of support raises
some issues about the behaviour of the configurator when the domain of an integer
attributes is not constrained, for example.

Use a directories map. One main purpose of the configuration script of CAM is the
production of a filepath according to the features selected or deselected in the
configuration. Each feature has basically a list of source directory paths that have
to be used in the build phase.

6Available at http://rockydunlap.files.wordpress.com/2010/11/cam_features.pdf

http://rockydunlap.files.wordpress.com/2010/11/cam_features.pdf
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As TVL currently doesn’t support string attributes, and the implementation of data
management by the TVLparser is work in progress, we have to use an external file to
link the source directories to their associated features which is called directories map.
This file is important to produce the filepath. As soon as either string attributes
or data are fully supported the directories map could be integrated into the TVL
model.

Generate partial outputs. The configuration script of CAM generates both a makefile

and a filepath according a configuration. The makefile is used to configure Make
according to the environment variables like the operating system. And the filepath
lists the source directory paths that must be compiled with Make to build a CAM
model according to the model variables. So the configuration is composed of two
main types of variables: environment and model variables. We choose to focus our
interest on the model variables and only take them into account, at first, in the CAM
FM. Thus, CAMelot only manages model variables to produce the filepath.

Figure the configuration interface. Due to the limited time to develop the system,
the configuration interface is not developed at first as it requires the knowledge of
domain experts to suit appropriately their requirements. So the configuration edi-
tion activity is not yet supported by CAMelot. Instead, an online service named
SPLOT[28] is currently used to figure the primary window of the configurator.
SPLOT only manages basic Boolean FM that means Boolean attributes are not
supported and have to be translated into features what is semantically equivalent.
However, SPLOT doesn’t support TVL language, thus the FM must be translated
into the specific FM language used by SPLOT, called SXFM. That is the initial
reason of the introduction of a translator component in our system.

5.3.2 Architecture

Concretely, a large part of the configurator system is generic, so it is implemented as a
TVL tool, and CAMelot extends it to adapt the generation of outputs to build CAM
standalone models. As previously said, the system is composed of two main components:
a generic configurator to manage FMs and configurations, and a generator to manage
outputs. Several additional components as a Translator, a Visitor and a TemplatesManager
are used for specific managements. Each component is described in more details below
and represented in Figure 5.3.1.

TVLparser is an external component. It parses the input TVL model and produces a
normalized TVL model formatted into an AST.

GUI system is an external component. It provides users with a GUI to interactively
create a configuration based on an FM. Here, we currently use the configuration
interface provided by SPLOT.

SATsolver is an external component. It resolves Boolean satisfiability problem and pro-
vides the set of solutions. Here, we use SAT4J that requires DIMACS CNF as input
format to encode the problems (Section 4.1.2).

Configurator is composed by two sub-components: an Editor and a Checker; and uses a
Translator. It manages configurations according to an FM.
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Editor uses an Application Programming Interface (API) to communicate with a
GUI system which uses a SATsolver, and edit a configuration. This component
is already present, even if currently the edition activity is not fully supported
by CAMelot (Section 5.3.1) and requires the use of SPLOT.

Checker checks the validity of configurations that may be translated by the Trans-
lator and uses the SATsolver to support this checking according to an FM.

Generator uses the Visitor to walk through the AST produced by the TVLParser to pro-
duce translations of FMs. It also uses the Configurator to produce outputs according
a configuration. All several outputs are described in the Section 5.3.5.

Visitor provides several visitors (see Section 5.3.4) to walk through the structure of a
normalized TVL model produced by the TVLParser and uses a TemplatesManager to
format it in another language syntax (i.e., SXFM).

Translator translates different configuration formats to a format that can be used by the
Configurator. It also translates the FM from TVL into SXFM, DOT [16] or DIMACS
format.

TemplatesManager manages several textual templates used by the Translator to trans-
late FMs thanks to a template engine7. Here, we use StringTemplate (Section 5.3.5).

Utilz is an external component. It contains several utilities for basic management inside
a system.

Figure 5.3.1: Component diagram

5.3.3 Configuration management

First of all, if we want to create a configuration according to an FM, this FM must be
satisfiable. An FM is satisfiable if there is at least one combination of features that meets
all the constraints. This condition can be easily checked for a Boolean FM with a SAT

7A template engine separates the process and its data structures from the textual output designs. It
also provides the possibility of managing different designs without changing the process.
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solver. One has just to translate the FM into the DIMACS format and passes it as input to
the solver. This kind of translation and checking are supported by the TVLparser, and so
CAMelot. Then when the FM is satisfiable, one can composed his or her own configuration
according to a particular FM and checks its validity. CAMelot can check configurations
composed as a list of TVL IDs of features that have to be selected or deselected8, and
configurations created with SPLOT saved into CVS or XML format.

To check a configuration, CAMelot initializes a SAT solver with the TVL model trans-
lated into DIMACS format and tests the configuration choices as additional constraints
through assumptions of the solver. Similarly to the functionalities available with the
configuration editor at SPLOT (Section 4.2.1), CAMelot can automatically complete a
configuration by selecting/deselecting all remaining features.

5.3.4 AST browsing: Visitor pattern

The visitor pattern[18] is used in object-oriented programming and software engineering
to separate an algorithm from an object structure on which it operates. In this way, new
operations can be added to existing object structures without modifying those structures.
However, the visitor pattern is more limited than conventional virtual functions. It is
basically not possible to create visitors for objects without adding a small callback method
inside each class, because of the double dispatching, as described below.

Details

A user object receives a pointer to another object which implements an al-
gorithm. The first is designated the “element class” and the latter the “visitor
class.” The idea is to use a structure of element classes, each of which has an
accept() method taking a visitor object for an argument. visitor is a protocol
(interface in Java) having a visit() method for each element class. The ac-
cept() method of an element class calls back the visit() method for its class.
Separate concrete visitor classes can then be written to perform some partic-
ular operations, by implementing these operations in their respective visit()
methods.(See Figure 5.3.2)

[. . . ] The visitor pattern also specifies how iteration occurs over the object
structure. In the simplest version, where each algorithm needs to iterate in the
same way, the accept() method of a container element, in addition to calling
back the visit() method of the visitor, also passes the visitor object to the
accept() method of all its constituent child elements. [18]

In Java, since Java 1.2, we can use the reflection mechanism [40, 9]. Thanks to this,
visited Objects no longer have to be modified and ignore being visited, so the accept()
method disappears. And any object becomes visitable, if a default method is added.

The visitor pattern with the reflection mechanism seems to be the best practice to
manipulate an AST that corresponds to the model inside the generator, and produce the
different output files from the generator according to the input TVL model.

5.3.5 Outputs generation

CAMelot produces several outputs through the generation activity. It can generate the
translation of TVL models into SXFM or DIMACS format, these format are respectively

8The supports of attributes is not yet implemented.
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Figure 5.3.2: Visitor design pattern diagram.[18]

used by SPLOT and SAT solver. The translation of TVL models comes with a mapping
between feature IDs used in both models. CAMelot can also create FDs corresponding to
TVL models.

Model translation into SXFM format. TVL is a well-formed language with a formal
semantics. So it is easy to defined syntactic equivalences with another FM format9 as
SXFM used by SPLOT. SXFM format supports only basic FM, so it’s equivalent to a
subset of TVL. The following example shows the main syntactic equivalences between
TVL and SXFM languages. Listing 5.2 p.54 represents an FM sample where the root
feature A is decomposed into two mandatory sub-features B and C, and an optional sub-
feature D. The feature B is either I, J or K and has two attributes: the enumaration efg
that takes its value in the set composed of e, f and g ; and the Boolean b. The feature C
is composed of a subset of the sub-features set of M, N and O. Four additional cross-tree
constraints are also defined: 1. the selection of M implies the selection of J or I or both;
2. the selection of K implies the selection of O and vice versa; 3. the selection of J excludes
the selection of N ; and 4. the selection of I requires the selection of D.

1 root A{

2 group allof{

3 B group oneof{I,J,K},

4 C group someof{M,N,O},

5 opt D

6 }

7 M -> (J || I);

8 K <-> O;

9 J excludes N;

10 I requires D;

11 }

12

13 B{

9Section 3.3.2
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14 enum efg in {e,f,g};

15 bool b;

16 }

Listing 5.2: Sample in TVL

The SXFM format is an XML-based language. It represents FMs as an indent tree
with additional cross-tree constraints in CNF. Each feature is declared with the syn-
tax :<type>? <name> (<id>) [1,*]? where <type> is either r (root), m (mandatory), o
(optional), g (group) or empty (sub-feature of a group feature). The group type is used to
represent or - and xor -decomposition, while the and -decomposition is defined as the default
decomposition. So, the group type has an interval definition: [1,1] (xor -decomposition)
or [1,<nbSubFeature>] (or -decomposition). name is the name of the feature, it could
basically be anything, but it is encouraged to use meaningful names. id is the technical
ID of the feature that is used in the additional cross-tree constraints. Constraints are
declared with the syntax <constraint id> : ~?<feature id> (or ~?<feature id>)*

1 <!-- This model was created to be used by

SPLOT ’s Feature Model Editor (http ://

www.splot -research.org) -->

2 <feature_model name=" Feature model of A">

3 <meta >

4 </meta >

5 <feature_tree >

6 :r A(feat_A)

7 :o D(feat_D)

8 :m B(feat_B)

9 :o B.b(bool_B_b)

10 :m B.efg(enum_B_efg)

11 :g (g_1) [1,1]

12 : B.efg_e(enum_B_efg_e)

13 : B.efg_f(enum_B_efg_f)

14 : B.efg_g(enum_B_efg_g)

15 :g (g_2) [1,1]

16 : I(feat_I)

17 : J(feat_J)

18 : K(feat_K)

19 :m C(feat_C)

20 :g (g_3) [1,3]

21 : M(feat_M)

22 : N(feat_N)

23 : O(feat_O)

24 </feature_tree >

25 <constraints >

26 constraint_1 :~ feat_M or feat_J or feat_I

27 constraint_2 :~ feat_K or feat_O

28 constraint_3 :~ feat_O or feat_K

29 constraint_4 :~ feat_J or ~feat_N

30 constraint_5 :~ feat_I or feat_D

31 </constraints >

32 </feature_model >

Listing 5.3: Sample in SXFM

Attributes are not supported in SXFM. However, thanks to the semantic equivalence, we
can define a Boolean attribute as an optional feature and an enumeration attribute as a
xor -decomposition. The following Table 5.1 highlights equivalent syntactical structures
between the sample in TVL and SXFM (Listing 5.2 p.54 and Listing 5.3 p.55 respectively).

As SXFM is a XML format, it can be managed by a template engine. One example is
StringTemplate [30] which is used by CAMelot. StringTemplate is a very powerful Java
template engine. It allows the separation between the process and the output design.
That means that we can define many different templates without changing anything in
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Table 5.1: Syntactical equivalences between TVL and SXFM.

Structure Sample in TVL (Listing 5.2 p.54) Sample in SXFM (Listing 5.3 p.55)

Root feature 1 root A{ 6 :r A(feat_A)

Mandatory feature 2 group allof{ 8 :m B(feat_B)

Optional feature 5 opt D 7 :o D(feat_D)

And-decomposition 2 group allof{

3 B group oneof{I,J,K},

4 C group someof{M,N,O

},

5 opt D

6 }

7 :o D(feat_D)

8 :m B(feat_B)

9 :o B.b(bool_B_b)

10 :m B.efg(enum_B_efg)

11 :g (g_1) [1,1]

12 : B.efg_e(

enum_B_efg_e)

13 : B.efg_f(

enum_B_efg_f)

14 : B.efg_g(

enum_B_efg_g)

15 :g (g_2) [1,1]

16 : I(feat_I)

17 : J(feat_J)

18 : K(feat_K)

19 :m C(feat_C)

Or-decomposition 4 C group someof{M,N,O

},

20 :g (g_3) [1,3]

21 : M(feat_M)

22 : N(feat_N)

23 : O(feat_O)

Xor-decomposition 3 B group oneof{I,J,K}, 15 :g (g_2) [1,1]

16 : I(feat_I)

17 : J(feat_J)

18 : K(feat_K)

Attributes
14 enum efg in {e,f,g}; 10 :m B.efg(enum_B_efg)

11 :g (g_1) [1,1]

12 : B.efg_e(

enum_B_efg_e)

13 : B.efg_f(

enum_B_efg_f)

14 : B.efg_g(

enum_B_efg_g)

1 bool b;V15 9 :o B.b(bool_B_b)

Constraints

7 M -> (J || I); 26 constraint_1 :~ feat_M or

feat_J or feat_I

8 K <-> O; 27 constraint_2 :~ feat_K or

feat_O

28 constraint_3 :~ feat_O or

feat_K

9 J excludes N; 29 constraint_4 :~ feat_J or ~

feat_N

10 I requires D; 30 constraint_5 :~ feat_I or

feat_D
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the process. It can be used for any formatted text output and uses an uncomplicated
language to write the templates. The template of SXFM format is described in more
details in the Appendix B.2.

Model translation into DIMACS format. The translation into the DIMACS format
is already supported by the TVLparser. It uses the Boolean form of the TVL model and
produces the DIMACS file with the associated map between TVL and DIMACS IDs.

Feature diagram generation. CAMelot can generate FDs corresponding to any TVL
models. We have extended the FODA notation (Section 3.2) to integrate attributes in the
diagram. Attributes of a feature are inserted below the node of this feature with their
type and ID. The cross-tree constraints are listed in the left-bottom corner, and so, don’t
really take part of the diagrams similarly to FDs displayed in FeatureIDE (Figure 4.2.2a).
Figure 5.3.3 represents the FD of the sample in TVL (Listing 5.2 p.54).

Figure 5.3.3: FD of the sample in TVL

CAMelot generates FDs thanks to DOT language [15] and so requires a program like
dot to process the graph and get an image. As DOT is a text-based language, we use a
template engine (StringTemplate) as for the model translation into SXFM format. The
template of DOT format is described in more details in the Appendix B.3.

Data exchange Considering the main activity that is the configuration a CAM stan-
dalone model according an FM representation of CAM to produce the resulting filepath,
let us make the data flow a little bit more explicit with the following description, and its
representation in Figure 5.3.4. CAMelot receives an FM encoded in TVL, and the Gen-
erator produces a translated model in the format supported by the GUI system (SXFM
format) and a feature map that links IDs from TVL and translated models. These out-
puts are produced only if the model is satisfiable10. Then a GUI system (SPLOT) using
a SAT solver (SAT4J) shows and enforces constraints expressed in the FM to produce a
configuration. The Configurator takes and checks the configuration to pass a valid and
understandable configuration to the Generator. Note that a configuration created with

10A model is satisfiable if at least one configuration exists in which all constraints are met.
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SPLOT is supposed to be already valid, and the checking is redundant. However, users
could handwrite a configuration file or alter the configuration file from SPLOT to cre-
ate a new configuration and pass it to CAMelot. In those cases, the configuration have
to be checked. Finally, the Generator selects the list of source directory paths from the
directories map11, according to the configuration and produces a filepath.

Figure 5.3.4: Data flow diagram of the system.

5.4 Evaluation

Our objective was to test the benefits of a feature-based configurator on a real case. CAM is
a perfect study case as it contains an hundred of options both Boolean and numerical with
some complex additional constraints. After the retro-engineering of the CAM configuration
script, and the production of the corresponding CAM FM, we were able to determine if
FMs can meet the challenges imposed by CAM (Section 2.6). Even if we have restrained
our study to Boolean options, the potential of FMs can not be under-estimated. However,
integration of numerical options may affect the performance. This kind of drawback is not
discussed in this thesis, even if we are well aware about its importance in practice. We
have preferred focus the study on a more abstract level of thought.

5.4.1 Meeting the challenges

• Improving maintainability of CAM system. (Challenge C1)
Our work shows that FMs can improve the maintainability of CAM. Especially
using a text-based feature modelling language like TVL. This language is concise and

11Until TVL fully supports string attributes or data, this map must be handwritten.
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scalable thanks to the modularisation mechanisms. The definition of the interactions
between CAM options is really easier to understand thanks to the readability of
the TVL model. Indeed, constraints between options are defined declaratively or
translated into sibling relationship if they are related. Moreover, this definition is
independent on their definition order, unlike inside the configuration script. Plus, the
consistency of the CAM definition is easily checkable with a dedicated tool like a
SAT solver in our case.

• Setting up a separation of concerns. (Challenge C2)
According to A. Hubaux [19, Chapter 4], FMs can set up a separation of concerns.
The separation between definition and checking of constraints is well support as we
have on one hand an FM that defines the constraints among options, and on the other
hand a tool to perform various checks like consistency, and build a configuration.
Thus programmers can easily maintain the system and work according to the concern
of a dedicated task. On the point of view of users, they can easily configure a CAM
model without taking care of what programmers do, they can focus themselves on
their area of knowledge which is typically climate interactions modelling in this
case. In our study, only a subset of options managed by the configuration script are
considered, that is the climate model options. Thus, our CAM FM represents the
variability inside a climate model. The other options for machine definition, and
archiving can be considered in other FMs. Then these three FMs could be unified
inside an unique FM thanks to modularity mechanisms like include in TVL. This
is basically transparent for users but can be really useful for programmers as they
can distribute the modelling task to domain expert without need of a configuration
script expert to keep it running.

• Highlighting options interactions. (Challenge C3)
R. Dunlap has figured out a lack of documentation about interactions between op-
tions. FDs are a good support to document this. Its visual notation lets users
embrace immediately the interactions of related options, and modelling errors are
also easier to detect as a graphical notation is generally more concise than a seman-
tically equivalent textual notation. However, FDs are less scalable for expressing
large FMs. So the choice between a graphical and a textual notation depends on the
scale of the model, and its usage. Anyway, we integrate a functionality to generate
FDs corresponding to TVL FMs in our prototype. Moreover, a configurator interac-
tively highlights the influence of user’s choices. Thus, the trial-and-error approach
to configure a model would disappear, especially the error phase.

• Increasing accessibility. (Challenge C5)
Increase the accessibility of CAM is not really require by its community, as they
have learned to deal with its complexity. However, we think that it could have its
importance to let the community focus on its initial purpose without taking care of
technical matters. As the separation of concerns (Challenge C2) and the highlighting
of interactions (Challenge C3) are already met, we could affirm that users can easily
configure a CAM model with only climate knowledge. The configurator has to
enforce the constraints defined inside the FM, and this model represents the current
domain knowledge. According to these assumptions, if a model configured with the
configurator is invalidated by climate researchers, they could easily assume that the
FM has to evolve. As soon the modification is integrated, they could be sure that
they will not be able to recreate an equivalent CAM model.
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• Supporting domain and model evolution. (Challenge C6)
Support domain and so model evolution, as the model represents the current cli-
mate domain knowledge, requires a lot of attention and effort. However, thanks
to the readability of TVL FMs, it would be easier and straightforward than it is
currently with the configuration script. Moreover, as TVL models are text-based,
version management could be apply, and they still easily shareable.

• Supporting default options. (Challenge C4)
This work was presented to the managers of CAM. They were enthusiastic about
the potential of feature modelling. They also mentioned their need of default values
to simplify the configuration by users. The support of default values is currently
not part of FM. Thus, at a first stage our work omitted the default value support.
As this requirement was already present in the feedback received during TVL study
cases [20]. We’ll suggest ideas to integrate default values in FMs and an TVL
extension in the next chapter.

5.4.2 Disadvantages

Our work shows that FMs could meet most of the challenges offered by CAM, what
is a great deal. However, even if a feature-based configurator has benefits for CAM, it
introduces the disadvantages of FMs and solvers used to automatically enforce constraints.

Remind the reader of main disadvantages previously mentioned below:

• The scope of TVL features might rapidly become hard to identify. So know whether
the referenced feature in constraints is unique or if a relative path has to be given is
tricky.

• Missing constructs like defaults values in FMs could limit the representation of the
domain knowledge.

• Solvers are generally resource-intensive. For example, SAT solvers are time-consuming
and BDD solvers are space-consuming. So their use must be carefully scheduled and
optimized.

In our study, we avoid these drawbacks thanks to lucky opportunities. We have used global
IDs inside the TVL model. As the options are related but really different they can be easily
identified with an unique ID. We had to deal with the missing constructs, so we introduced
some working assumptions like only Boolean FM support, and the default values was not
consider at first. Extend the FM to support numerical attributes, for instance, implies a
wide modification in the “configurator kernel” that means a CSP solver would have to be
integrated to continue to automatically enforce the constraints. Finally, the drawback of
solvers do not really occur during our study as the CAM FM still pretty small and we
benefited from the SPLOT expertise to manage their resource consuming.



Chapter 6

Default values

Currently, customers can customize most of products and services before purchasing them.
Computer systems, automobiles, insurance policies and computer software, for examples,
include many possible options that the costumer can select to create its own configura-
tion. Configurators are typically provided to customize and configure this solution. Some
of these configurators are constraint-based. Constraints are enforced between optional
choices, allowing users to select the choices they want, while validating that the resulting
set of user choices is valid [5].

Configure a system with number of options may easily become a burden for users.
They may not know what decision to make, or care about the selection of every option
required to complete the configuration. Make the process easier and faster for users is
required by all business. One way is the usage of “default values”, also called default
decisions.

A default decision may be a simple choice (i.e., a value that is assigned to
some variable) or it may be a more complex constraint involving one or more
variables as operands. [5]

According to C.M. Bagley et al., in the known constraint-based configurators, the
default values are processed as decision after all user choices have been made. However,
users are not able to see the default values or their consequences while making their own
decisions. Plus, if users finally want to change the default values, the entire configuration
has to be done again from scratch [5].

This kind of default structure is currently not part of FMs as it does not directly
influence variability modelling in its fundamental definition. But integrate them earlier in
the configuration process, at the modelling stage, would inform users about influence of
default values on user choices. They may stand as primary configurations (even partial)
that suggest values to users or complete the configuration after all user choices have been
made. That is the problem to know when introduce these values in the configuration.
Moreover, an interesting behaviour for default values could be that they take their values
according to some user choices. This conditional behaviour is more complex, but really
powerful to represent some real business needs. For instance, a customer wants to purchase
a car, the colour of the car can depend on the brand like if it’s a Ferrari the default color
is red and if it’s a Lamborghini the default color is yellow.

In every cases, default values are equivalent to decisions but considered after user’s
choices. That means user’s decisions always override default values. Concretely, if no
user’s choice is made for a variable then a default value is considered, but if no default
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value is defined then the user have to make a decision to complete the configuration. In this
chapter, we’ll propose three views1 of default values inside a feature-based configurator.
This integration rises up an important question about the consistency of FMs supporting
default values. Finally, we’ll suggest a theoretical TVL extension for default values and
apply it to the CAM case.

6.1 Integration of default values

This section aims to present some ways to integrate default values into a feature-based
configuration process, according to the meaning of these values, their influence on a con-
figuration and their technical support. Three main categories appeared during our study:
1. initial configuration; 2. fill-in configuration; and 3. conditional default values. Each
category will be defined, described through its influence on a basic configuration2 and
evaluated. Default values could be stored whether directly inside the FM or in a ded-
icated component like a default configuration file, both approaches are discussed in the
sub-sections below.

6.1.1 Initial configuration

Default values considered as atomic pre-defined decisions is the simplest way to understand
them. That means that before users make any decisions, a particular value is already
chosen for some variables and can be assimilated to a suggestion to the user to help him or
her to configure a product. The set of default values is called an initial configuration in this
case. If default values are equivalent to suggestions, users must be able to change the value
assigned to a particular variable. For example, if a feature is selected by default, users can
chose to deselect it. Obviously, each decision must continue to meet the constraints defined
in the FM, decisions propagation must be applied on default decisions as well on user’s
choices. Otherwise the configuration would become invalid. The default configuration
could be whether partial if some variables have no default value or complete if all variables
have an assigned default value. A complete initial configuration is equivalent to a valid
configuration previously made that users eventually want to edit.

The most important part of the implementation is the integration of default values
during the configuration process. Initial configuration should be instantiated at the be-
ginning of the process, before all user’s decisions. Default decisions should be considered
as assumptions like user’s decisions and marked to be able to reset them if the user change
his or her mind after a customization. Thus they can be displayed as user’s choices with
the possibility to differentiate them.

Storage of default values

Several solution exist to store initial configurations, both partial and complete. Depending
on the number of initial configurations provided to users, they could be directly encoded
inside FMs or stored in a dedicated component like a default configuration file. When the
domain offers only one initial default configuration, the best storage should be to encode
it directly into the FM. To do so, informally, we could use the keyword default followed
by the default value assigned to a particular FM structure. A TVL example of a possible
syntax is shown below with a short description for each main group of FM structures.

1These views are influenced by the work of C.M. Bagley et al. [5] and the Linux Kernel Configurator [35]
2A basic configuration is created without default values.
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Optional features can be in or out the configuration by default. In TVL, it could
be encoded as A{group allOf{B, opt D} default {D;}} that means the optional
feature D is selected by default.

Cardinality-based decompositions that also consider or - and xor -decompositions can
take a set of feature as default value. In TVL, that could be A{group someOf{B,C,D}

default {B&&C;}} which means the feature A is composed by default of the sub-
set {B,C} of the set of feature {B,C,D}. Another example, V{group oneOf{X,Y,Z}

default {Y;}} means that the feature V is composed by default of the sub-set of
an unique feature {Y} from the set {X,Y,Z}.

Attributes can be assigned to a particular value. In TVL already exists the is keyword
that restricts the value of an attribute to a particular value. Assign a default value
follows the same idea without the strict restriction, the default value is a decision
that can be overridden unlike constraints. For instance, Real pi default {3.14;}

means the real attribute pi takes the value 3.14 by default, but the user can change
it to 3.1415 if the user want a more precise value of pi.

Define defaults value with this kind of storage is straightforward. However, it does not
provide a global view of the default configuration, and conflicts between default value can
easily appear.

When many different default configurations can be provided, a better storage is to
encode them into default configuration files. As their name suggests it, a default config-
uration file contains a list of pre-defined decisions to create a configuration. In fact, it
is a configuration file with the list of selected and deselected features that an user can
edit. The concrete syntax of configuration files depend on the configurator. This kind of
storage is more generic than the previous one and does not modify the FM. However it is
generally less readable, and conflicts between default values are also hard to detect inside
configuration files.

Benefits & Disadvantages

Thanks to suggestion aspect and pre-defined decisions of initial configurations, they could
decrease significantly the time required to configure a product with a lot of options. Fur-
ther, several initial configurations can be defined for a particular model. A complete initial
configuration provides a valid configuration (assuming there are no conflicts between the
values) and indicates there is at least one valid configuration.

However, complete initial configurations could lead to a lack of interest from the user
to the configuration, and make the system useless. Partial initial configurations could have
only few variables without default values, in this case users could have some difficulties to
know them, and provide a mechanisms to highlight the decision points should be a great
idea. Plus, users always have to take part of the configuration process based on a partial
default configuration.

6.1.2 Fill-in configuration

Fill-in configuration represents a set of default values used when the user don’t make
any decisions about some variables. It’s really similar to initial configuration, unless
default value are considered after all user’s choices have been made. So compared to
initial configuration, default decisions are no longer like suggestions, but could be used as
an auto-completion for the current user’s configuration. This auto-completion should be
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marked to let the user know the modification, and let him or her modify any attributed
default values that do not meet his or her desire. This is the mechanism used by most of
known constraint-based configurators according to C.M. Bagley et al. [5].

The storage techniques of default values are the same as those used for the initial
configuration described above. Even if in this case provide several different default con-
figuration is less relevant. Thus the storage inside the FM should be preferred.

Benefits & Disadvantages

In this case, users are not influenced by the default values and can freely make their
configuration. So users have a real role during the configuration process.

However, users can not trust that default values will configure all variables they don’t
parametrized. Especially, if the fill-in configuration is partial that means some variables
have no default value. Another case is a conflict between an user’s choice and a default
value that should be apply, in this case the default value would be ignored, the variable is
not configured, and the user have to make a decision to complete the configuration.

6.1.3 Conditional default values

This sub-section presents a more powerful type of default values, called conditional default
values. It can be used as initial or fill-in configurations that can be considered as particular
cases of conditional default values. But its real power is the possibility to define default
values according to user’s choices. Remind the previous example of a customer that wants
to purchase a car, the colour of the car can depend on the brand like if it’s a Ferrari the
default color is red and if it’s a Lamborghini the default color is yellow. An initial default
value could be provided as well to let the possibility to the user to make no choice. Of
course, some variables could have no default values at all or no values that meet the user’s
decisions. In that case, the user have to make a choice to complete the configuration.

Default decisions should be considered as assumptions like user’s decisions and checked
after every user’s decision to fit their conditional aspect. However, it rises up issues about
which assignment should be apply on a variable already configured by the user when the
condition of a conditional default value is met. Keeping the previous example, the user
configures the colour black for his or her car and then sets up the brand to Ferrari ; the issue
is ‘which colour is the car?’, the answer black or red would depend on the implementation
of the configurator, but we suggest to put the priority on the user’s choices, so the colour
should stay black in our example. As user’s and default decisions could appeared at the
same step through decision propagation, a specific display notation should be provided by
the configurator to differentiate them.

Storage of default values

Conditional default values should ideally be stored inside FMs as it is really similar to
constraint definition without the restriction aspect. To do so, informally, we could use
the keyword default followed by a block of the conditional assignment of default value
to particular variables according the value of some others. Thus the definition of default
values can become as complex as constraint definition. A TVL example of a possible
syntax is shown below with a short description for each main group of FM structures.

Optional features can be in or out the configuration by default. In TVL, it could be en-
coded as C{allOf{E, opt D} default {D; A||B->!D;}} that means the optional
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feature D is selected by default, but it is deselected by default if the user chose at
least A or B.

Cardinality-based decompositions that also consider or - and xor -decompositions can
take a set of feature as default value. In TVL, that could be A{group someOf{B,C,D}

default {U->B&&C;}} which means the feature A is composed by default of the sub-
set {B,C} if the user selected the feature U. Note that D stays undefined. Another
example, V{group oneOf{X,Y,Z} default {Y; U&&T->X}} means that the feature
V is composed by default of the sub-set of an unique feature {Y} from the set
{X,Y,Z}. But if the user selected the features U and T, V is composed by default
of the sub-set of an unique feature {X}.

Attributes can be assigned to a particular value. For instance, Real pi default {

3.14159265; !Scientist->3.14; means the real attribute pi takes the value 3.14159265
by default, but if the user deselected the feature Scientist then pi is set to 3.14 by
default.

Keep in mind that all default values can be overridden by a user’s decision. They are not
equivalent to constraints.

Benefits & Disadvantages

Conditional default values are way more powerful than other definitions of default values.
It can be used to define complex default definitions that is closer to real cases.

However, it increases the complexity of the model, especially its management by a
configurator. It becomes also impossible to detect conflicts between default values in a
large scale model.

6.2 Extended model and configuration consistency

Consistency is a critical point in FMs, if a model is not satisfiable that means whether
the domain is not well understand or there are some mistakes in the model encoding.
Hopefully, integrate default values into FMs does not influence the model consistency.
They only acts on configurations. So configuration consistency must be ensure regardless
of the type of default values that is used. The following paragraphs describe a way to
ensure the consistency of configuration along the process. Some of these ways may be
resource-intensive and should require an optimization to be implemented.

Initial configuration

In initial configurations, default values are instantiated inside the current configuration
before any user’s decisions. During the configuration, at each user’s decision, the set of
default value has to be checked. Indeed, a default value may be overridden that means
the user made a decision for the structure related to the default value, or some defaults
values could enter in conflict with the user’s choice. To perform the checking, all default
values are activated. Then in the cases described above, the defaults value are removed
from the current configuration that means the default values are deactivated. All activated
default values are finally displayed to help the user to complete the configuration. Thus
the configuration is still consistent, but in the extreme case default values are all removed
and so become useless. The consistence of the set of default values could be checked on the
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FM without performing the configuration process, as this default set could be used as a
(partial) configuration. At any time, user’s and default decisions are managed separately
and easily identified.

Fill-in configuration

Fill-in configurations acts similarly to initial configuration. The difference is the number of
default value checks. At the beginning and during the configuration, the user has no idea
of default values. Default values are inserted into the configuration when the user wants to
auto-complete his or her configuration. The process is the same as for initial configuration.
All default values which are activated, then the consistency of default values is tested based
on user’s decisions (translated into an assumption) and the model. If a default value rises
a contradiction or is overridden by a user’s choice, this value is removed from the current
configuration. If the configuration is complete the process is over. Otherwise, default
decisions are assimilated to user decisions, and default values are not checked until the
user assesses again that he or she has finished his or her configuration. This type of default
values is less ressource-intensive, and the configuration stays consistent, but users do not
really know about default values. The consistence of the set of default values could also
be checked on the FM without performing the configuration process. But it is less useful
than in the previous case, as the chance to use this default set as a (partial) configuration
is very low.

Conditional default values

Conditional default values are instantiated inside the current configuration before any
user’s decisions as in the case of initial configuration. During the configuration, at each
user’s decision, the set of default value has to be checked. To do so, all default values which
the condition is satisfied are activated. Then the consistency of default values is tested
based on user’s decisions (translated into an assumption) and the model. If a default value
rises a contradiction or is overridden by a user’s choice, this value is removed from the
current configuration. All activated default values are finally displayed to help the user to
complete the configuration. Thus the configuration is still consistent, but in the extreme
case default values are all removed and so become useless. At any time, user’s and default
decisions are management separately and easily identified. Consistency of conditional
default values can not be checked without performing the configuration process as it all
depend on the user’s decisions.

6.3 TVL extension

In this section, the specification of a TVL extension to support conditional default values
inside a FM is described. We provide the grammar extension and its semantic, and we
finish by an application of this language extension on a real case: CAM.

6.3.1 Syntax

To define a grammar extension to support default values into TVL, we’ll follow the same
principles defined in the TVL specification [12, Section 3], where the reader can find the
current grammar specification. Remind the principles:
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The grammar is a conflict-free LALR grammar and is given in extended Backus-
Naur form (EBNF): terminals are encoded in double quotes, parentheses are
used for grouping, (S)? means S is optional, (S)+ means that S repeats one
or more times and (S)* is a shortcut for ((S)+)?. To make the rules more
readable, non-terminals are written in uppercase. [12, Section 3]

Extend feature declarations

The feature body already consists of several items which can be data blocks, constraints,
attributes or the group block declaring the child features. We extend this definition and
add a default block that defines the conditional default values.

FEATURE_BODY_ITEM = [...]

| DEFAULTS ;

Extend attributes declarations

The attribute body allows to restrict the domain of an attribute, or to give it a value as
part of the attribute declaration (instead of doing it in the constraints). The keywords in
and is are used respectively on these purposes. Following the same idea, we extend this
definition with a default block to suggest conditional default values as part of the attribute
declaration (instead of doing it in the defaults blocks of features).

ATTRIBUTE_BODY = [...]

| ("in" SET_EXPRESSION)? "default" "{" DEFAULTS_ATTR_LIST "}"

("," ATTRIBUTE_CONDITIONAL )? ;

Add defaults declarations

A default block starts appropriately with the default terminal, followed by a list of default
expressions. There can be several default block in each feature, all being merged when the
model is parsed. Even if declarations of default values are written like constraints, default
values do not constrain the model, they just suggest values to complete a configuration.
Default values do not have any meaning in the normal FD semantics.

DEFAULTS = "default" "{" DEFAULTS_LIST "}" ;

An default list is just a list of default expressions separated by semi-colons. It is used to
defined the body of default block in feature.

DEFAULTS_LIST = DEFAULTS_EXPRESSION ";" (DEFAULTS_LIST)*

| EXPRESSION "->" DEFAULTS_EXPRESSION ";" (DEFAULTS_LIST)* ;

A default expression is a restricted expression that can only be composed of a long ID, a
literal negation, a conjunction of default expressions or a value assignment.

DEFAULTS_EXPRESSION = LONG_ID

| "!" LONG_ID

| "(" DEFAULTS_EXPRESSION ")"

| DEFAULTS_EXPRESSION "&&" DEFAULTS_EXPRESSION

| LONG_ID "=" EXPRESSION;

A default attribute list is just a list of default declarations separated by semi-colons. It
is used to defined the body of default block in attribute declarations. The left side of the
implication is the condition to apply the default value assignment. The right side of the
implication is the default value assignment to be applied on the attribute to which the
default list is attached.

DEFAULTS_ATTR_LIST = EXPRESSION ";" (DEFAULTS_ATTR_LIST)*

| EXPRESSION "->" EXPRESSION ";" (DEFAULTS_ATTR_LIST)* ;
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6.3.2 Semantics

This sub-section expressed the semantics attached to the syntax introduced above to
support default values into TVL. Declarations of default values have the following syntax:

Condition→ Default;

or

Default; (equivalent to true→ Default; )

where

Condition is the condition to which the default value is applied, and it is expressed
by an Expression3; and

Default is the default value assignment expressed by an Default expression in
feature blocks or a Expression in attribute declarations.

A Default expression D is formed according to the following grammar:

D ::= I | !I | D && D | a = e

I ::= n | a

where

n ∈ N (the non empty set of features) is a feature;

a ∈ A (the set of attributes) is an attribute; and

e is an Expression.

Operator precedence, associativity and parentheses for default expressions have to be
defined like for other expressions in TVL and TVLNF . Operator precedence is defined to
be the same as in TVL and TVLNF .

Definition 1. (Operator precedence in TVL and TVLNF ). Table 6.1 lists all operators in
decreasing order of precedence. The associativity of each operator is given in left column.
Parentheses can be used to group default expressions and clarify an evaluation order.

Table 6.1: Operator precedence in TVL and TVLNF

Associativity Operators

right !

right =

left &&

left ->

Definition 3 from the TVL specification [12, Section 5] exposes steps order to obtain a
model in TVLNF from a model in TVL. Two additional steps have to be added to manage
default values declarations. The first step, called Attribute default value specifica-
tions, should come right after the Attribute domain and value specifications. In this

3Expression is a TVL expression well-defined in the TVL specification [12]
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step, the construct t a default {v;}; allows to specify the default value of an attribute
a. The default construct is removed from the attribute declaration, and a default value
declaration of the form this.a = v is added. Similarly, the construct t a default {c
-> v;}; allows to specify the conditional default value of an attribute a. The default

construct is removed from the attribute declaration, and a default value declaration of the
form c -> this.a = v is added. And the second step, called Default values, should be
added between steps Constraints and Decomposition operators, in order to obtain
in TVL a single set of default values by moving all default values declarations to the root
feature.

As noted before, default values does not concern explicitly FMs but more especially
their instantiation through a configuration. Default values are equivalent to decisions that
can be overridden by user’s decision. They can be managed by a reasoner as constraints
through assumptions. That means, according to Definition 4 from the TVL specifica-
tion [12, Section 5], each product p is a couple p = (c,v), where c is a set of features and
v is a valuation of the attributes:

∀φ ∈ Φ • (Cond→ φ ∧ JCondK |= true)⇒ JφK(c, v) 2 false
iff no user’s decisions override φ.

A default value is overridden by user’s decisions if

∀φ ∈ Φ, (Cond→ φ ∧ JCondK |= true) • JφK(c, v) |= false

The semantics of a default expression, JφK(c, v), is given in Table 6.2

Table 6.2: Default expression semantics in TVLNF , that is, the value of JφK(c, v)

JnK = true iff n ∈ c

JaK = v(a)

J!IK = true iff JIK equals false

JD1&&D2K = true iff JD1K ∧ JD2K

Ja = EK = true iff JaK equals JEK

6.3.3 Example on a real case

As a concrete example, we apply the TVL extension to CAM. So we have extracted
the definition of default values from the configuration script and written the following
file (Listing 6.1 p.69) that encodes the default values in the syntax described above in
Section 6.3.1. It was this case that brought to our attention the importance of conditional
default values.

1 //# Default values definitions #

2

3 //** Physics package

4 Phys_pkg{ default {Cam5 ;}}

5 //** Chemistry package

6 Chem_pkg{

7 default {

8 Trop_mam3;

9 !Phys_pkg.Cam5 -> !Chem_pkg;

10 Chem_pkg.Waccm_ghg || Chem_pkg.Waccm_mozart
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11 -> Dynamics.Fv && Phys_pkg.Cam4 && Hgrid.FvGrid.F1_9x2_5;

12 !( Chem_pkg.Waccm_ghg || Chem_pkg.Waccm_mozart) && Dynamics.Eul

13 -> Hgrid.EulGrid.E64x128;

14 !( Chem_pkg.Waccm_ghg || Chem_pkg.Waccm_mozart) && Dynamics.Sld

15 -> Hgrid.SldGrid.S64x128;

16 !( Chem_pkg.Waccm_ghg || Chem_pkg.Waccm_mozart) && Dynamics.Homme

17 -> Hgrid.HommeGrid.Ne16np4;

18 !( Chem_pkg.Waccm_ghg || Chem_pkg.Waccm_mozart) && Dynamics.FV

19 -> Hgrid.FvGrid.F1_9x2_5;

20 }

21 }

22 //** Interface

23 Interface{ default {Mct ;}}

24 //** Microphysics

25 Microphysics{

26 default {

27 Phys_pkg.Cam5 -> Microphysics.Mg;

28 !Phys_pkg.Cam5 -> Microphysics.Rk;

29 }

30 }

31 //** PBL

32 Pbl{

33 default {

34 Phys_pkg.Cam5 -> Pbl.Uw;

35 !Phys_pkg.Cam5 -> Pbl.Hb;

36 }

37 }

38 //** Radiation package

39 Radiation{

40 default {

41 Phys_pkg.Cam5 -> Radiation.Rrtmg;

42 !Phys_pkg.Cam5 && (Chem_pkg.Waccm_ghg || Chem_pkg.Waccm_mozart)

43 -> Radiation.Camrt;

44 }

45 }

46 //** Ocean package

47 Ocean{

48 default {

49 Docn;

50 Phys_pkg.Ideal || Phys_pkg.Adiabatic -> Ocean.Socn;

51 }

52 }

53 //** Land package

54 Land{

55 default {

56 Clm;

57 Phys_pkg.Ideal || Phys_pkg.Adiabatic || Ocean.aquaplanet

58 -> Land.Slnd;

59 }

60 }

61 //** Sea ice package

62 SeaIce{

63 default {

64 Cice;

65 Phys_pkg.Ideal || Phys_pkg.Adiabatic || Ocean.aquaplanet

66 -> SeaIce.Sice;

67 Phys.pkg.Cam3 -> SeaIce.Csim4

68 }

69 }

Listing 6.1: Default values definition of CAM FM.

This file could be included into the TVL model if our suggested extension of language is
integrated into TVL. Support default values also requires to implement their management
into the configurator.



CHAPTER 6. DEFAULT VALUES 71

6.4 Summary

Default values are a requirement of the industry to help customer to easier configure
products that can have a high number of parametrizable options. This variability can be
modelled with FMs. But these models don’t currently support default values.

Integrate default values in FMs rises up an important issue about their consistency.
We have seen that default values don’t actually acts on FMs but on their instantiation, the
configurations. And the consistency of those configurations can be ensure by some mecha-
nisms inside the configurator. Default values can be declaratively defined like constraints
inside FMs, but configurators have to consider them like user’s choices with a lower level
of priority that means user’s choices must always override default values when they are
applied on the same variable.

Finally, this section has introduced a language extension to support conditional default
values into TVL. However, because of a lack of time, this suggestion remains theoretical
as no concrete integration of the language extension has been implemented yet. Only the
syntax and its semantics are defined and presented in this thesis.
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Conclusion

In the first part of this thesis, the problem statement was introduced with its challenges
in Chapter 2. The high level of variability in the configuration of climate models makes
its management difficult. Moreover, its constant evolution does not help. Nonetheless, a
solution was already pointed out by R.Dunlap, as he affirms the similarity between CAM
and an SPL. According to this assumption, he produced a first FM based on the CAM
configuration script.

Effectively, FMs are generally used to represent the key principle of SPLs: the variabil-
ity. SPL paradigm was discussed in Chapter 3. Plus, concepts of variability modelling were
described and their benefits and disadvantages were also exposed in this chapter. Two
types of notation for FMs were presented: 1. graphical notation; and 2. text-based nota-
tion. Each notation has its benefits and disadvantages. However, a text-based notation
with a formal semantics like TVL is more appropriate to perform automations on FMs.
Another important concept inherent to FMs, their instantiation through configurations,
was also discussed later in Chapter 4. In this chapter some examples of feature-based
configurators like LKC were introduced and influenced our work.

In the second part, the prototype of a feature-based configurator based on TVL was
described (Chapter 5). This prototypes was implemented during our internship to help
our teamwork to figure out how feature modelling and related tools could be helpful for
CAM. It showed that feature modelling can improve the maintainability of CAM thanks
to available concise and scalable language like TVL. Moreover, a separation of concerns
could be set and increased the accessibility of the system. This accessibility could also be
increased through the clarifications of the interactions between model options offered by
CAM what is the basic purpose of FMs. Visualization of these interactions is the key to
primarily understand how configure a model. So the prototype implements a functionality
to generate FDs from TVL models. As regards to the constant model evolution due
to a constant domain evolution, increasing the maintainability through a more readable
support like TVL models resolve part of the problem and version management could also
be applied.

CAM showed up its use of default values to make the configuration process easier and
light for users. This kind of structure is currently not part of FMs. So we decided to suggest
their integration as it appeared to be a need in the industry. This integration was described
in Chapter 6. We pointed out three types of default values: 1. initial configuration; 2. fill-
in configuration; and 3. conditional default values. Then we defined an extension language
of TVL to support conditional default values. However, this extension remains theoretical
at this moment due to a lack of time, so no concrete implementation is provided yet.

72
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Future Works

Our work showed the possibility to met the challenges offered by CAM in a restricted
domain. Indeed, we had restrained the FM to Boolean options from CAM and their
equivalent. Thus extend the model to support all types of options including numericals
variables should be done. This extension will lead to the need to use a CSP solver inside the
configurator instead of a SAT solver but the reasoning principles to manage configurations
should remain the same.

Furthermore, at a first stage, our prototype had no configuration interface like a GUI
and used an external tool, SPLOT, to represent it. The GUI of a configurator helps
users to interactively configure a product. So implement a GUI to support configuration
of TVL structure is another valuable future work. A possible lay out was presented in
Section 5.2.2. This proposition is generic and so may not suit to end-users’ needs as said
A. Hubaux in his PhD thesis [19].

Finally, the last and not least future work is the implementation and test of the sug-
gested language extension of TVL to support conditional default values. As the syntax
and the semantics are already defined its integration should not be too difficult. We have
just to keep in mind that default values even if they can be declaratively defined like con-
straints, they are more similar to user’s choices. They are useful to automatically complete
a configuration and should always be overridden by user’s decisions when they involve the
same variable.
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Appendix A

Feature modelling of CAM

This annex presents the TVL model of CAM in standalone mode. This FM has been
written according to the configuration script of CAM and the FD realized by R. Dunlap1.
This FM only takes into account the climate model option that is used to be set with the
CAM configuration script. It appears to be a basic FM with this limitation.

The TVL model is split into two files. The first file (Listing A.1 p.77) defines the
features and the tree hierarchy between them. The second file (Listing A.2 p.79) defines
additional constraints like cross-tree constraints.

1 root CAM

2 group allof{

3 opt UserCustomSource ,

4 opt Chemistry ,

5 Physics ,

6 Dynamics ,

7 Pbl ,

8 Interface ,

9 opt Parallelization ,

10 EsmfLibraryDirectory ,

11 RadiationDriver ,

12 opt Ocean ,

13 opt Land ,

14 opt SeaIce ,

15 opt CO2Cycle ,

16 Hgrid ,

17 opt PerturbationGrowthTests ,

18 opt Scam ,

19 opt Camiop

20 }

21

22 Chemistry

23 group allof{

24 opt Chem_pkg ,

25 opt Prog_species

26 }

27

28 Chem_pkg

29 group oneof{

30 Super_fast_llnl ,

31 Super_fast_llnl_mam3 ,

32 Trop_bam ,

33 Trop_ghg ,

34 Trop_mam3 ,

35 Trop_mam7 ,

36 Trop_mozart ,

37 Waccm_ghg ,

38 Waccm_mozart

39 }

40

41 Prog_species

42 group someof{

43 DST ,

44 SSLT ,

45 SO4 ,

46 GHG ,

47 OC,

48 BC,

49 CARBON16

50 }

51

52 Physics

53 group allof{

54 Phys_pkg ,

55 Radiation ,

56 Microphysics ,

57 opt Waccm

58 }

59

60 Phys_pkg

61 group oneof{

62 Cam3 ,

63 Cam4 ,

64 Cam5 ,

65 Ideal ,

66 Adiabatic

67 }

68

69 Radiation

70 group oneof{

71 Rrtmg ,

72 Camrt

73 }

74

75 Microphysics

1Available at http://rockydunlap.files.wordpress.com/2010/11/cam_features.pdf

77

http://rockydunlap.files.wordpress.com/2010/11/cam_features.pdf
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76 group oneof{

77 Mg,

78 Rk

79 }

80

81 Dynamics{

82 bool offline;

83 group oneof{

84 Eul ,

85 Sld ,

86 Fv,

87 Homme

88 }

89 }

90

91 Pbl

92 group oneof{

93 Uw,

94 Hb,

95 Hbr

96 }

97

98 Interface

99 group oneof{

100 Mct ,

101 Esmf

102 }

103

104 Parallelization

105 group allof{

106 opt Spmd ,

107 opt Smp

108 }

109

110 EsmfLibraryDirectory

111 group oneof{

112 Custom ,

113 None

114 }

115

116 RadiationDriver

117 group oneof{

118 Offline ,

119 Online

120 }

121

122 Ocean

123 group oneof{

124 Docn ,

125 Dom ,

126 Socn ,

127 Aquaplanet

128 }

129

130 Land{

131 bool vocEmissions;

132 group oneof{

133 Clm ,

134 Slnd

135 }

136 }

137

138 SeaIce

139 group oneof{

140 Cice ,

141 Sice ,

142 Csim4

143 }

144

145 Hgrid

146 group oneof{

147 EulGrid ,

148 SldGrid ,

149 FvGrid ,

150 HommeGrid

151 }

152

153 EulGrid

154 group oneof{

155 E512x1024 ,

156 E256x512 ,

157 E128x256 ,

158 E64x128 ,

159 E48x96 ,

160 E32x64 ,

161 E8x16 ,

162 E1x1

163 }

164

165 SldGrid

166 group oneof{

167 S64x128 ,

168 S32x64 ,

169 S8x16

170 }

171

172 FvGrid

173 group oneof{

174 F0_23x0_31 ,

175 F0_47x0_63 ,

176 F0_5x0_625 ,

177 F0_9x1_25 ,

178 F1x1_25 ,

179 F1_9x2_5 ,

180 F2x2_5 ,

181 F2_5x3_33 ,

182 F4x5 ,

183 F10x15

184 }

185

186 HommeGrid

187 group oneof{

188 Ne2np4 ,

189 Ne7np8 ,

190 Ne5np8 ,

191 Ne10np4 ,

192 Ne16np4 ,

193 Ne16np8 ,

194 Ne21np4 ,

195 Ne30np8 ,

196 Ne60np4 ,

197 Ne120np4 ,

198 Ne240np4

199 }

200

201 /*Cross -tree constraints file*/

202 include(cam_CTconstraints_basic.tvl

);

Listing A.1: TVL model of CAM in
standalone mode
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1 Chemistry{

2 !Chem_pkg && !Prog_species -> !this;

3 }

4

5 Prog_species{

6 this -> !Chem_pkg;

7 }

8

9 Physics{

10 (Phys_pkg.Ideal || Phys_pkg.Adiabatic)

11 -> !Chem_pkg;

12 (Phys_pkg.Cam3 || Phys_pkg.Cam4)

13 -> !( Chem_pkg.Super_fast_llnl_mam3 || Chem_pkg.Trop_mam3 || Chem_pkg

.Trop_mam7);

14 Radiation.Camrt

15 -> !( Chem_pkg.Trop_mam3 || Chem_pkg.Trop_mam7 || Chem_pkg.

Super_fast_llnl_mam3);

16 this.Radiation.Rrtmg -> !Phys_pkg.Cam3 && this.Microphysics.Mg;

17 //this.Waccm -> Dynamics.Fv && (Chem_pkg || Prog_species);

18 }

19

20 Dynamics{

21 this.offline -> this.Fv;

22 this.Homme excludes SeaIce.Cice;

23 this.Eul || (PerturbationGrowthTests && this.Sld) <-> Hgrid.EulGrid;

24 this.Fv <-> Hgrid.FvGrid;

25 this.Sld <-> Hgrid.SldGrid;

26 this.Homme <-> Hgrid.HommeGrid;

27 }

28

29 Pbl{

30 this.Uw -> Physics.Microphysics.Mg;

31 }

32

33 RadiationDriver{

34 this.Online -> !Chem_pkg;

35 }

36

37 Land{

38 vocEmissions -> this.Clm;

39 }

40

41 Scam{

42 //this excludes Parallelization.Spmd;

43 this requires Dynamics.Eul;

44 }

45

46 Camiop{

47 this requires Dynamics.Eul;

48 }

Listing A.2: Additional constraints in TVL model of CAM
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String patterns of CAMelot

Our prototype CAMelot uses a template engine called StringTemplate [30]. StringTem-
plate is a very powerful Java template engine. It allows the separation between the process
and the output design. That means that we can define many different templates without
changing anything in the process. It can be used for any formatted text output and uses
an uncomplicated language to write the templates.

StringTemplate has its own syntax that is briefly described in Annex B.1. Annexes
B.2 and B.3 shows in details the template used inside CAMelot to generate model into
SXFM and DOT format respectively.

B.1 StringTemplate syntax: basics

The content of this section is extracted from the five minute introduction of StringTemplate
available at http://www.antlr.org/wiki/display/ST/Five+minute+Introduction.

Note that:

1. each example in Table B.1 below fits on a single line but, it may appear on more
than a line in the table due to space restrictions and wrapping.

2. StringTemplate supports the use of <...> and $...$ as delimiters (as shown in the
examples)

Table B.1: Basic StringTemplate Syntax.

Syntax Example

Description

<attribute> $user$

<user>

Replaced with value of attribute.ToString() (or empty string if missing).

<attribute.property> $user.name$

<user.name>

Replaced with value of property of attribute (or empty string if missing).

<attribute.(expr)> $user.(name_label)$

<user.(name_label)>

80
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Indirect property lookup. Same as attribute.property except value of expr is the property
name.

<multi-valued-attribute> $users$

<users>

Concatenation of ToString() invoked on each element.

<multi-value-attribute;

separator=expr>

$users; separator=", "$

<users; separator=", ">

Concatenation of ToString() invoked on each element separated by expr.

<template(argument-list)> $bold()$

<bold(item=title)>

Include (i.e. call) template. argument-list is a list of attribute assignments of the form arg-of-
template=expr. expr is evaluated in the context of the surrounding template not of the invoked
template.

<attribute:template(argument-list)> $name:bold()$

<name:checkoutReceipt(items=skus,

ship=shipOpt)>

Template application. The optional argument-list is evaluated before application. The default
attribute it is set to the value of attribute. If attribute is multi-valued, it is set to each element
in turn and template is invoked n times where n is the number of values in attribute.

<attribute:{argument-name_|

_anonymous-template}>

$users:{s|<li>$s$</li>}; separator="\n"$

<users:{s|<li>$s$</li>}; separator="\n">

Apply an anonymous template to each element of attribute. Set the argument-name to the
iterated value and also set it.

<if(!attribute)>subtemplate<endif> $if(users)$ $users:{u|$u$}$ $endif$

<if(users)> <users:{u|<u>}> <endif>

If attribute has no value or is a bool object that evaluates to false, include subtemplate. These
conditionals may be nested.

\$ or \< \$

\<

Escaped delimiter prevent $ or < from starting an attribute expression and results in that single
character.

<\ >, <\n>, <\t>, <\r> $\n$

<\n>

Special characters: space, newline, tab, carriage return.

<! comment !>, $! comment !$ $! this is a comment !$

<! this is a comment !>

Comments, ignored by StringTemplate.
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B.2 SXFM format

The SXFM format is a XML-based language used by SPLOT [28] to encode FM. SXFM
supports basic FM structures that are and -, or - and xor -decompositions, mandatory and
optional features, and cross-tree constraints in CNF.

The following template file (Listing B.1 p.82) in StringTemplate format groups a set
of template required to write any basic FM in SXFM.

Line by line description of Listing B.1 p.82

Lines 1-2 init the template file and define the default delimiters for the template engine.

Lines 4-17 define body template. It represents the main structure of the XML file com-
posed of meta, feature tree and constraints tags inside the feature model tag with
the attribute name.

Lines 19-30 define the meta template. It lists all the meta data that could be provided
for a FM store on the SPLOT platform.

Lines 32-34 define a generic list template.

Lines 36-39 define the featureSet template. It represents a group of feature with an Id, a
cardinality constraint (min, max), and a set of features.

Lines 41-44 define the feature template. It represents a feature with its name, id, and list
of children.

Lines 46-60 defines the four templates for the type of features that is root, mandatory,
optional, and group feature.

Lines 62-72 define the templates to define constraints. The constraint template represent
a constraint line equivalent to a clause. The or template represents the disjunction
of a literal, and a list of literals. And the not template represents the negation of a
literal.

1 group sxfm;

2 delimiters "$", "$"

3

4 body(name , meta , features , constraints) ::= <<

5 <!-- This model was created to be used by SPLOT ’s Feature Model Editor (

http ://www.splot -research.org) -->

6 <feature_model name=" $name$">

7 <meta >

8 $meta$

9 </meta >

10 <feature_tree >

11 $features$

12 </feature_tree >

13 <constraints >

14 $constraints$

15 </constraints >

16 </feature_model >

17 >>

18

19 meta(description ="", creator ="", adresse ="", email ="", phone="", website

="", organization ="", departement ="", data="", reference ="") ::= <<

20 <data name=" description">$meta_description$ </data >

21 <data name=" creator">$meta_creator$ </data >

22 <data name=" address">$meta_adresse$ </data >
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23 <data name=" email">$meta_email$ </data >

24 <data name=" phone">$meta_phone$ </data >

25 <data name=" website">$meta_website$ </data >

26 <data name=" organization">$meta_organization$ </data >

27 <data name=" department">$meta_departement$ </data >

28 <data name="date">$meta_data$ </data >

29 <data name=" reference">$meta_reference$ </data >

30 >>

31

32 list(item) ::= <<

33 $item; separator ="\n"$

34 >>

35

36 featureSet(id, min , max , features) ::= <<

37 :g ($id$) [$min$ ,$max$]$if(features)$

38 $features$$endif$

39 >>

40

41 feature(name , id, children) ::= <<

42 $name$($id$)$if(children)$

43 $children$$endif$

44 >>

45

46 rootFeature(feature) ::= <<

47 :r $feature$

48 >>

49

50 mandFeature(feature) ::= <<

51 :m $feature$

52 >>

53

54 optFeature(feature) ::= <<

55 :o $feature$

56 >>

57

58 groupFeature(feature) ::= <<

59 : $feature$

60 >>

61

62 constraint(id, body) ::= <<

63 constraint_$id$:$body$

64 >>

65

66 or(expr1 , expr2) ::= <<

67 $expr1$ or $expr2$

68 >>

69

70 not(expr) ::= <<

71 ~$expr$

72 >>

Listing B.1: Pattern of SXFM format
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B.3 Feature diagram in DOT format

The DOT language is a text-based format to describe graphs. We used this language to
provide a visualization to any TVL model. So, we have extended the FODA notation
(Section 3.2) to integrate attributes in the FD. Attributes of a feature are inserted below
the node of this feature with their type and id. The cross-tree constraints are inserted
in the left-bottom corner, and so, don’t really take part of the diagrams similarly to FD
in FeatureIDE (Figure 4.2.2a). Figure B.3.1 represents the FD of the sample in TVL
(Listing 5.2 p.54).

Figure B.3.1: FD example of a TVL model

The following template file (Listing B.2 p.86) in StringTemplate format groups a set
of template required to generate a FD from any TVL model.

Line by line description of Listing B.2 p.86

Lines 1-2 init the template file and define the default delimiters for the template engine.

Lines 4-21 define the diagram template. It represents the main structure of the DOT file
that is the diagram with its id, and parametrisation of the diagram.

Line 23 defines a generic list template.

Lines 25-27 define or - and xor -decompositions. Both require a trick to display their visual
notation. We choose to embed a picture for each of those graphical notations. This
picture is put inside the bottom cell of the table that represents the feature node in
the graph (Lines 35).

Line 29 defines the attribute template. It represents an attributes like a couple of its type
and Id.

Lines 31-44 define the feature template. It represents the feature as a node with its id
shaped as a 3-cells table with two optional cells. The first mandatory cell hosts
the feature name (Lines 32-33). The second cell is optional and hosts the feature
attributes if there is at least one, otherwise the cell doesn’t exist (Line 34). The
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thirst cell also optional hosts the picture of the or -/xor -decomposition only if the
children of the feature are constraint by such a decomposition, otherwise the cell
doesn’t exist (Line 35). Then the feature node is linked to its sub-feature node in a
cluster.

Lines 47-53 define the two templates for the type of feature that is mandatory and op-
tional respectively. These types are represented respectively with a filled circle
and an empty circle. These templates are not used with features inside a or -/xor -
decomposition.

Line 55 defines the constraint template. It represents the constraint like a couple of an id
and its body that is its definition inside the normalized TVL model.
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1 group FDdot;

2 delimiters "$", "$"

3

4 diagram(id, root , constraints) ::= <<

5 digraph $id$ {

6 splines=ortho;

7 compound=true;

8 concentrate=true;

9

10 node [shape=plaintext ];

11 edge [headport=n, tailport=s, dir=both , arrowhead=none , arrowtail=none];

12

13 $root$

14

15 $if(constraints.item)$

16 labeljust ="l";

17 label=" Additional constraints :\ l$constraints.item; separator ="\\l"$\l";

18 $endif$

19 fontsize =12;

20 }

21 >>

22

23 list(item) ::= "$item$"

24

25 orGroup(id) ::= "<IMG SRC=\" templates/or.png\"/>"

26

27 xorGroup(id) ::= "<IMG SRC =\" templates/xor.png\"/>"

28

29 attribute(id, type) ::=" $type$ $id$"

30

31 feature(name , id, attributes , children , type , set) ::= <<

32 $id$[label=<<TABLE BORDER ="0" CELLSPACING ="0" CELLPADDING ="4">

33 <TR><TD BORDER ="1">$name$ </TD ></TR>

34 $if(attributes)$<TR ><TD BORDER ="1"> $attributes.item; separator="<br />"$

</TD ></TR>$endif$

35 $if(set)$ <TR ><TD BORBER ="0" CELLPADDING ="0">$set$ </TD ></TR>$endif$

36 </TABLE\>\>];

37 $if(children)$

38 subgraph cluster_$id${

39 color=white;

40 $children.item: {c|$id$ -> $c.id$ $if(c.type)$$c.type$$endif$;$\n$}$

41 $children.item$

42 }

43 $endif$

44 >>

45

46

47 mandFeature(feature) ::= <<

48 [arrowhead=dot]

49 >>

50

51 optFeature(feature) ::= <<

52 [arrowhead=odot]

53 >>

54

55 constraint(id, body) ::= "$id$) $body$"

Listing B.2: Pattern of FD in DOT format
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