
Combining Binary Decision Diagrams and Backtracking Search for Scalable
Backtrack-Free Interactive Product Configuration

Andreas Hau Nørgaard, Morten Riiskjær Boysen, Rune Møller Jensen
IT University of Copenhagen, Denmark
ahn@itu.dk, boysen@itu.dk, rmj@itu.dk

Peter Tiedemann
Configit A/S

pt@configit.com

Abstract
This paper demonstrates how to lower the average
response time of search-based interactive configu-
rators using over and under approximations of the
configuration problem represented by binary deci-
sion diagrams (BDDs) on problems where fast con-
figurators using monolithic BDDs are intractable.
The paper introduces several ways to build the ap-
proximations and our experimental evaluation on
industrial data shows that a search driven exten-
sion of the approximations substantially outper-
forms both purely search-based and purely BDD-
based interactive configurators.

1 Introduction
Configuration Problems (CPs) occur whenever a product that
can be configured needs to be tailored to specific require-
ments. Examples of this ranges from buying t-shirts or com-
puters online to configuring large wind turbines all the way
up to large data centers. These problems are a prime target
for AI techniques either because their complexity is so high
that even a trained user cannot oversee all requirements or
because a user is untrained and must be guided e.g. during a
purchase in an online store. Thus, in the case of the online
store, solving configuration problems is important because it
allows companies to use less resources for support, thus re-
ducing their cost, and because it can give them a competitive
advantage by making the purchase as simple and straightfor-
ward as possible. In the case where a trained person needs to
configure large machineries, configuration becomes a ques-
tion of increasing the productivity of the operator. Perhaps
even more importantly, configuration technology aids in pre-
venting costly invalid configurations by catching errors dur-
ing the configuration instead of after the manufacturing pro-
cess has begun when the cost of fixing the mistakes can be
very high.

1.1 Interactive Configuration
A special form of the Configuration Problem is Interactive
Product Configuration (IPC). In dealing with these problems,
a user is interfacing directly with the configurator and needs

to see the consequences of the choices he makes. This is in
contrast with an automated system where, e.g., a partial as-
signment is given and the configurator has to complete the
product. The requirements of interactive configuration are:

Complete Meaning that all valid configurations can be
reached by the user. If the configurator is not complete,
certain valid product configurations cannot be config-
ured. This is very unfortunate, e.g. if the configurator is
used to configure products in an online store as it would
mean that some valid product configurations cannot be
sold.

Backtrack Free Whenever the user selects a value, all val-
ues that cannot extend the current partial assignment to
a solution will be removed. This means that a partial
assignment is always extendable to a solution, hence the
user never needs to backtrack. This is not a strict require-
ment but it is a very desirable property of an interactive
configurator since backtracking can be very tedious to
the user.

Fast Response Times It is important to display the conse-
quences of an assignment to the user as fast as possible
so the user does not grow impatient with the configura-
tor. How fast this must happen depends on the type of
user and the environment the configurator is used in.

Arbitrary Order of Assignments The user must be allowed
to make assignments to the variables in any order the
user likes.

1.2 Search
Using backtracking search to solve various kinds of CSPs
(not just configuration) is a commonly used technique. When
performing the search, the solver chooses a variable and
branches on it, thereby obtaining a reduced problem, after
which the solver chooses a variable again to branch on, con-
tinuing in that fashion until either the CSP is proven unsatis-
fiable or a solution has been found. Much work has been put
into improving the basic search by using consistency tech-
niques and heuristics to reduce the search tree. These tech-
niques are invaluable in a modern solver. Unfortunately, since
the search tree is potentially exponential in size, these tech-
niques give very little guarantees on the performance with

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/160744189?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

respect to computation time.

1.3 Compiled Representations
Another way to solve a CP is through compilation: The en-
tire set of solutions to the problem is stored in some compact
form. This is the preferred technique for interactive configu-
ration since the representation of solutions only has to be built
once and can be shared by users afterwards. There are many
ways to store the solution space, including Binary Decision
Diagrams (BDDs) [Bryant, 1986], Multi-valued Decision Di-
agrams (MDDs) [Kam et al., 1998], and Cartesian Product
Tables (CPTs) [Møller, 1995].

There exists polynomial time algorithms to do valid do-
main calculations on these data structures, thus giving good
guarantees on the performance. However, there is no such
thing as a free lunch; since CPs are NP-complete, the com-
pilation phase might take exponential time, and, even worse,
the output might take up exponential space. It can be shown
that BDDs and MDDs require exponential space for the all-
different constraint [van Hoeve, 2001], which is vital in
modeling configuration problems involving placement.

The main contribution of this paper is to show a way to
implement a complete backtrack free interactive configurator
capable of handling configuration problems with better run-
time performance than a purely search-based configurator or
a BDD-based configurator on a realistic problem inspired by
a real-world data center configuration problem. In this paper,
we show that it is possible by using a combination of both
techniques.

The results were obtained by combining the Gecode
solver [Schulte et al., 2009] with CLab [Jensen, 2004], which
is a BDD-based configuration library. We used BDDs for
storing approximations of the configuration problem that
makes it possible to eliminate some of the searches performed
by the solver in the valid domain computation. Our compu-
tational results are on industrial data from Configit A/S [An-
dersen and Hulgaard, 2007] and show that a substantial lower
average response time of the configurator can be achieved in
this way compared to a purely BDD-based or a purely search-
based approach.

The idea to use approximations to speed up interactive con-
figurations was first presented in [Tiedemann, 2008], but the
author did not provide any tests or implementation. A pre-
vious study in [Subbarayan et al., 2004] compared a purely
search-based configurator with a BDD-based configurator,
showing that the latter had better run-time performance in
most cases. However, the study did not involve global con-
straints and all problem instances could be represented in a
monolithic BDD. Furthermore, some ideas were presented in
the study for creating an efficient search-based configurator;
these ideas are extended in this paper. Previous research has
been conducted in extracting no-goods from constraints rep-
resented as BDDs [Subbarayan, 2008] but the paper does not
mention the use of search results for building the BDDs. It
focuses entirely on extracting small no-goods from a static
BDD. In [Subbarayan et al., 2006] the authors used BDDs to
build a hybrid SAT solver. However, the work does not in-
clude configuration problems, nor does it use BDDs to store
the results of time consuming searches. Thus, the main con-

tributions of this paper are the implementation and test of
a hybrid configurator using BDDs for good- and no-good
recording (good-recording is described in [Cheng and Yap,
2006]) and a solver for problems that are intractable to be
represented entirely as BDDs.

The remainder of this paper is organized as follows: In
Section 2, we present the concept of interactive configura-
tion and show two different ways of implementing it. One
uses a search-based solver the other uses BDDs. In Section 3
we show how to combine a solver with BDDs to obtain bet-
ter run-time performance than what is possible if using each
technique alone. Section 4 shows how to use and build the ap-
proximations and Section 5 show an alternative way to build
the approximations by using the search results. In Section 6
we show the empirical results obtained and, finally, Section 7
concludes on the results. These results are obtained on a
data center configuration example, provided by Configit, that
models the configuration of a large-scale data center.

2 Backtrack Free Interactive Configuration
A configuration problem C is a triple (X, D, F), where

- X is a set of variables x1, x2, . . . , xn

- D is the Cartesian product of their finite domains D =
D1 ×D2 × . . .×Dn

- F = {f1, f2, . . . , fm} is a set of propositional formulas
over atomic propositions xi = v, where v ∈ Di, specifying
the conditions that the variable assignments must satisfy.
Each formula is inductively defined by f ≡ xi = v | f ∧
g | f ∨ g | ¬f

Furthermore, the solution space S of C is defined as the set
of all complete assignments that satisfy all requirements. In
other words, S is a set containing all the valid configurations
to the configuration problem.

An interactive product configurator (IPC) enables the
configuration process as described in Section 1.1. The
main task of an IPC is to compute the set of valid do-
mains VD for a configuration problem where VD =
{VD1 ,VD2 , . . . ,VDn}. VDi denotes the valid domain for
variable xi where VDi ⊆ Di. Thus, any assignment {(xi =
v) | v ∈ VDi} will never require the user to backtrack. How-
ever, a user might choose to remove an assignment if the con-
sequences of the assignment are not desirable, thus allowing
manual backtracking.

Let VDi denote the valid domain for variable xi, then
VDi ⊆ Di. Thus, any assignment {(xi = v) | v ∈ VDi}
will never lead to the user backtracking.

These are the assignments that are guaranteed to be ex-
tendable to a solution. Once the valid domains have been
computed the user can make a valid assignment. These two
steps are repeated until the product has been configured (all
variables have been assigned), see Algorithm 1.

2.1 Search-based Configuration
The simplest way, albeit very naive, to calculate the valid do-
mains using a search based solver is shown in Algorithm 2.
This algorithm enumerates all possible assignments (xi =

Algorithm 1 An informal definition of the IPC algorithm
1: procedure IPC
2: read and process configuration problem
3: while not all variables assigned do
4: VD ← COMPUTEVALIDDOMAINS
5: user makes a valid assignment

vij) where {(xi, vij) |xi ∈ X, vij ∈ VD ′i}. Before the as-
signments are enumerated, the solver is instructed to prune
as many values as possible using the PROPAGATE procedure.
This runs all propagators to fix-point, thereby possibly re-
moving values that are never part of the solution. Since the
propagators do not generally yield generalized arc consis-
tency with respect to the conjunction of all constraints there
can still be values left in VD ′ that cannot be part of a solution.
An assignment is added to the existing configuration problem
where after this augmented problem is tested for satisfiabil-
ity. If the augmented problem is satisfiable it is known that
vij ∈ VDi . This step is repeated for all possible assignments.
This method performs a search for all (xi, vij) that might be
valid. Hence it performs

∑n
i=1 |Di| searches. In Section 3

we describe several ways to improve this initial algorithm.

Algorithm 2 A naive way to determine the valid domains
1: procedure CVD-NAIVE(C)
2: VD ′ ← PROPAGATE(C)
3: for all xi ∈ X do
4: VDi ← ∅
5: for all vij ∈ VD ′i do
6: if C|xi = vij is satisfiable then
7: VDi = VDi ∪ vij

2.2 BDD-based Configuration
A binary decision diagram (BDD) is a rooted directed acyclic
graph. A BDD has one or two terminal nodes1, labeled 1 or 0,
and a set of variable nodes. The terminal node labeled 0 is de-
noted by T0 and the terminal node labeled 1 is denoted by T1.
Each variable node is an internal node in the BDD and has
exactly two outgoing edges marked low and high. A BDD
represents a boolean function f on a set of n boolean vari-
ables f : Bn → B. The value of the boolean function, given
an assignment of the variables, can be found by recursively
traversing the BDD. The traversal begins at the root and con-
tinues to a terminal node. Whenever a variable is assigned to
true the high branch of the corresponding node along the path
is taken. If a variable is assigned to false the low branch of
the corresponding node is taken. If the path ends at a terminal
labeled 1 the assignments means the value of the function is
true. If the path ends at a terminal labeled 0 the value of the
function is false. An introduction to BDDs and some of the
basic algorithms used on them can be found in [Andersen,].

A reduced ordered binary decision diagram (ROBDD)
[Bryant, 1986] is a BDD with the two additional properties
of being ordered and reduced. A BDD is said to be ordered

1A terminal node has out-degree zero

when all paths from the root node to a terminal node respect
a given variable ordering, meaning that the variables associ-
ated with the nodes will be met in the order defined. A BDD
is said to be reduced when all nodes where the low and high
branches leading to the same node are removed and when
all nodes are unique. A node is unique if no other node ex-
ists that has the same associated variable and branches to the
same destinations on the high and low branches respectively.
If such a duplicate node exist it can be removed by collapsing
the two nodes into a single node. In the rest of this paper we
only use ROBDDs and since it is a De facto standard to use
the abbreviation BDD to mean a reduced ordered binary deci-
sion diagram we will follow the convention and consequently
write BDD from now on when we refer to a reduced ordered
binary decision diagram.

BDDs have been widely used in verification, but it was
later discovered that they are also well suited for configura-
tion problems [Hadzic et al., 2004]. However, a configura-
tion problem can have variables with finite integer domains
whereas a BDD only has boolean variables. Fortunately, an
integer variable xi can be encoded efficiently in a BDD using
ki = dlog2|Di|e boolean variables x0

i , . . . , x
ki−1
i . Further-

more, these variables are places in layers so all boolean vari-
ables encoding the same finite domain variable are placed in
the same layer and all finite domain variables define a unique
layer. The BDD nodes comprising the layer i are denoted by
Vi.

Example: A simple example of a CP is shown in Figure 1.
The constraints corresponds to the relations x1 < x2, x1 <
x3 and x2 6= x3.

X = {x1, x2, x3}
D = {{1, 2, 3}, {1, 2, 3}, {1, 2, 3}}
C = {((x1, x2), {(1, 2), (1, 3), (2, 3)}),

((x1, x3), {(1, 2), (1, 3), (2, 3)}),
((x2, x3), {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)})}

Figure 1: A simple CP

This simple example can be represented by a BDD as seen
in Figure 2.

2.3 BDD-based Valid Domain Computation
In order to use BDDs for IPC we need to be able to perform
assignments and compute the valid domains. Assignments
can be made by using the standard APPLY BDD operation
by conjoining the BDD representing xi = v onto the BDD
G1 representing the current solution space restricted by the
assignments made so far in the configuration process. The
complexity of the restriction operation for variable xi in BDD
G1 is thus O(|G1| · dlog2 |Di|e).

The Compute Valid Domains (CVD) operation determines
from a BDD representing a configuration problem what val-
ues that are guaranteed to be in the solution space and extensi-
ble to a full assignment. The valid domain computation works

Figure 2: The CP from Figure 1 encoded as a BDD with high
edges shown as solid lines and low edges shown as dashed
lines. The integer variables are encoded in little-endian for-
mat and the variable ordering is x0

1 < x1
1 < x0

2 < x1
2 < x0

3 <
x1

3. The layers are shown as the horizontal dashed lines.

by probing the layers. Each value v ∈ Di is tested by travers-
ing the i’th layer from all nodes in Vi with incoming edges
from the preceding layers until support has been found or all
nodes in a layer have been probed. If all traversals for v end
in T0 there is no support for v, so v /∈ VDi . To avoid probing
the same nodes while checking for support for v, all nodes are
checked if they have already been probed with v. If a node
has already been checked, the traversal is stopped since the
traversal will end in T0 (Since it has been probed earlier, that
probe failed. Otherwise, support would have been found and
the probing for v would stop). The checking ensures that a
node in vi is only checked once for each v ∈ Di. Thus, the
worst case complexity of the compute valid domains opera-
tion over a BDD is O(

∑n
i=1 |Vi| · |Di|). For a detailed expla-

nation of the algorithms used for computing valid domains
over a BDD see [Hadzic et al., 2007].
Example: Assume that a valid domain computation is per-
formed on the BDD from Figure 2 and that the algorithm is
about to test the valid domain of x3. First, the value 1 is
tested. There are two nodes with incoming edges from pre-
ceding layers. The probing starts from the left-most node with
the binary encoding of 1. In this probing, the traversal ends
up in T0 after having gone though the node labeled x1

3. The
right-most node in the layer is then probed, but with the bi-
nary encoding of 1, this leads directly to T0. Thus, 1 /∈ VD3 .
When probing for support for 2, the left most node is again
chosen as the start, but this leads directly to T0. The right-
most node is then used to start a traversal, and after pass-
ing through the node labeled x1

3 the traversal ends in T1, so
2 ∈ VD3 . When checking for the value 3 the traversal be-
ginning from the left-most node ends in T1, so there is also
support for 3. The result of the probing is that VD3 = {2, 3}.

3 BDD and Search-based Hybrid
Configurator

To be able to make a fair comparison between the perfor-
mance of a search-based configurator and our hybrid con-
figurator, the algorithm behind the search-based configurator
needs to be improved. In the following we will present a se-
ries of improvements to the naive algorithm shown in Algo-
rithm 2.

Only a very small part of the information provided by the
solver in Algorithm 2 is actually used, namely whether a sin-
gle value is part of the valid domain of a variable or not. The
search result has a lot more information than that; all the as-
signments in the search result are part of the valid domains
of their respective variables. The naive algorithm can there-
fore be improved in two ways. Firstly, the result is traversed
and all assignments are stored as part of the valid domains.
Secondly, before a search is started it is checked whether the
value vij has already been verified to be part of VDi . If it is
the search is simply skipped.

Additionally, we can use former valid domain results to
speed up the valid domain computation since when an as-
signment is made the solution space can never grow, meaning
that S|xi=vij

⊂ S. This implies that a search is redundant if
an assignment (xi = vij) has been discovered as invalid by
a previous search but has not been pruned by propagation yet

because of the non-increasing property of the solution space.
This information can be fed back to the solver and propa-
gation mechanism by posting the unary inequality constraint
xi 6= vij whenever a search fails. The value vij is thus re-
moved from the current domain of xi and hence augments
the solver with information that propagation alone could not
detect. This can improve propagation and increase the search
performance for other variables.

Finally, it is an invariant in the configurator that once the
domain has size 1 it cannot shrink any more. If it could, the
configurator would not be backtrack free. It is therefore pos-
sible to skip the search if all but the last value vlast

i in VD ′i
has been found to be invalid. Therefore, xi = vlast

i must be a
valid assignment.

3.1 Hybrid Configurator
The search preventing hybrid configurator utilizes a combi-
nation of BDDs and search-based techniques. The basic idea
is to avoid as many searches as possible by using BDD-based
approximations.

Over- and Under-Approximations
An over-approximation of a CP with solution space S is a
CP with solution space So ⊇ S. An under-approximation
of a CP with solution space S, is a CP with solution space
Su ⊆ S. Given an over-approximation CPo of a CP and a
partial assignment (PA), CPo can be used to determine if PA
is not extendable to a solution in CP. However, it cannot be
used to determine whether it is extendable to a solution. Con-
versely given an under-approximation CPu of a CP, CPu can
be used to determine if a partial assignment PA is extendable
to a solution in CP but CPu cannot be used to determine if PA
is not extendable to a solution. Thus, if the two approxima-
tions are used together a search is only needed when neither
approximation is able to determine whether PA is definitely
extendable to a solution or definitely not.

This relation is shown in Figure 3. The picture shows the
Cartesian product of the domains of the variables in a CP. The
grey area to the left of the curved line represents the solution
space and the white area to right of the curved line represents
the non-solutions (the set of full assignments that violate one
or more constraints). The box with the bold dashed line rep-
resents the under-approximation and the box with the bold
solid line represents the over-approximation. As the drawing
shows we need to perform a search for elements in the set
So\Su.

Figure 3: The relation between the solution space and the
over- and under-approximation for a CP.

4 Using the Approximations
As described in Section 2.1 a search-based configurator uses
a two-step approach, by first propagating and then search-
ing whenever an assignment has been made and you want
to find the new valid domains. Using an over-approximation
changes the two-step approach into what we could call a two-
and-a-half-step approach because we need to utilize the over-
approximation after the propagation step in order to avoid
the search step as often as possible. As mentioned, we can
avoid a search for all values not in the valid domains of the
over-approximation restricted to the current partial assign-
ment since these will clearly not be in the domain of the
CP. Furthermore, all values in the valid domain of the under-
approximation restricted to the current partial assignment can
be added to the valid domains of the CP before the search
phase because Su ⊆ S.

The valid domain computation including all the optimiza-
tion from Section 3 and the approximations can be seen
in Algorithm 3 where BDDo is the BDD representing the
over-approximation and BDDu is the BDD representing the
under-approximations.

Algorithm 3 Solver-based valid domain computations algo-
rithm using an over- and under-approximation

1: procedure CVD-SP(C)
2: VD ′ ← PROPAGATE(C)
3: VDo ← COMPUTEVALIDDOMAINS(BDDo)
4: VDu ← COMPUTEVALIDDOMAINS(BDDu)
5: VD ← VDu

6: for all xi ∈ X do
7: if |VD ′i | = 1 then
8: VDi = VD ′i
9: continue

10: for all vij ∈ VD ′i do
11: if vij ∈ VDi then
12: continue
13: else if VDi = ∅ ∧ vij = vlast

i then
14: VDi ← {vij}
15: else if vij /∈ VDo

i then
16: continue
17: else if C|xi=vij

is satisfiable then
18: S ← solution to search
19: for all (xk, vk) ∈ S do
20: VDk = VDk ∪ vk

21: else
22: C ← C|xi 6=vij

23: VD ′ ← PROPAGATE(C)

4.1 Constructing an Over-Approximation
Given a CP with solution space S, an over-approximation of
this is also a CP (which we call CP′). Since we represent
our over-approximation by a BDD, a simple way to construct
CP′ is by removing all constraints from the original CP that
are intractable to represent in a BDD. This would make CP′
less restricted than the original CP and therefore S ⊆ So,
which was the requirement.

4.2 Constructing an Under-Approximation
We construct the under-approximation CP′′ by putting ad-
ditional constraints on the CP we are approximating. As
mentioned, alldifferent constraints put an exponential
lower bound on the number of nodes in a BDD. Since the
under-approximation needs to be at least as strict as the orig-
inal CP we cannot remove the alldifferent constraint
from the under-approximation. We have therefore investi-
gated what additional restrictions to add to a CP that contains
an alldifferent constraint in order to limit the amount
of nodes generated in the BDD. The way we have attained
this is by limiting the combinations of values the variables in-
volved in an alldifferent constraint can have. This is
done by limiting the domain of each variable in such a way
that the union of the limited domain of all the variables is still
the complete domain.
Example: If, for example, we have 10 variables with Di =
{1, 2, . . . , 10}, we can slice off one value from each vari-
able so the domains become D1 = {1, 2, . . . , 9}, D2 =
{1, 2, . . . , 8, 10}, D3 = {1, 2, . . . , 7, 9, 10}, etc. If we con-
tinued with the example and we wanted to do a domain
slice of half the values, the domains would become D1 =
{1, 2, . . . , 5}, D2 = {2, 3, . . . , 6}, D3 = {3, 4, . . . , 7}, etc.
To avoid making the under-approximation too narrow, we al-
ways construct the complement set of values when we slice
off values of the domains. In the last example given, the
complement domain values would be D′1 = {6, 7, . . . , 10},
D′2 = {1, 7, . . . , 10},
D′3 = {1, 2, 8, 9, 10}, etc. After slicing the domains, the
alldifferent constraint becomes

Alldiff(x1, x2, . . . , xn)∧
(x1 ∈ D1 ∧ x2 ∈ D2 ∧ . . . ∧ xn ∈ Dn∨
x1 ∈ D′1 ∧ x2 ∈ D′2 ∧ . . . ∧ xn ∈ D′n)

5 Search Driven Approximations
An alternative way of constructing the approximations is by
building it over time. We can achieve this by noting each time
we perform a search to find a solution in the CP given a par-
tial assignment (PA) that takes an excessive amount of time
and does not find a solution. Each time this happens, we can
conjoin an additional constraint on to the over-approximation
of the form ¬PA. By doing this we are using the over-approx-
imation as a way of performing no-good recording [Hawkins
and Stuckey, 200].

In the case of the under-approximations, we are interested
in the case where we perform a search that takes an excessive
amount of time and actually finds a solution. In this case
we can extend the under-approximation by setting it equal to
the disjunction of the solution found and the existing under-
approximation.

6 Results
In this section we compare the search-preventing configura-
tor(s) with the purely search-based configurator. When build-
ing the over- and under-approximations for the various prob-
lems using the search results as described above, we added
all results that took more than 10 ms.

The different configurators use these abbreviations:

CVD-S The purely search-based configurator.

CVD-R The search-preventing hybrid configurator de-
scribed using the statically built over- and under approx-
imations.

CVD-CB The search-preventing hybrid configurator using
over- and under-approximations built purely from search
results.

CVD-WB The search-preventing hybrid configurator using
the statically built over- and under approximations aug-
mented with results gathered while performing search.
This configurator is thus a combination of the two de-
scribed above.

We have not made experiments with a purely BDD-based
configurator since it is intractable to represent all but the
smallest problems in a monolithic BDD.

One of the problems we have tested the hybrid configurator
on is the data center configuration problem. The data center
configuration problem is a modular problem in the sense that
we are configuring a data center that consists of a series of
racks, that each consists of a series of servers, that each con-
sists of a series of boards. The problem contains alldif-
ferent constraints to ensure that specific pieces of hard-
ware are placed only once. In particular, each of the servers
in a rack can only be placed once, and each of the boards of
a particular server can only be placed once. Furthermore, the
data center configuration problem contains local constraints
to ensure the right configuration of specific hardware pieces.
For our purpose we have focused on the configuration of a
single rack.

We have performed tests with 5 differently sized data cen-
ter configuration problems. The sizes are 4, 6, 8, 10 and 11
servers. For each of the problem instances we have created
the under-approximation by slicing half of the domains of the
variables in the alldifferent constraint representing the
constraint that each server can only be used once. It is worth
noting that the maximum number of servers we can have in
a monolithic BDD representing the data center configuration
problem is 10. For this reason, we have tried to see how lit-
tle we could slice of the domains in the under-approximation
representing the data center configuration problem with 11
servers, and still be able to contain it in the under-approxi-
mation BDD. The limit we found is 4 values sliced of each
domain of 11 values. The problem instances in the experi-
mental results are listed as dcNN-SS where NN denotes the
number of servers in the problem instance and SS denotes
the number of values sliced from the domains. All tests were
performed on an Intel Core 2 Duo 6600 2.4 GHz Dual Core
Processor workstation with 2 GB RAM running Windows XP
Professional SP3.

The result of these tests are shown in 3 tables where Table 1
shows the maximum valid domain computation times. As can
be seen, CVD-CB performs the best overall. We attribute this
to the fact that CVD-CB cuts of all those searches that takes
too long and has a relatively small size BDDs compared to
the BDDs used by CVD-WB and CVD-R.

The average valid domain computation times are shown in

Table 2. It is apparent that for the smallest problems the over-
head of using BDDs is not made up by the searches skipped.
We see, however, that when the problem size grows it more
than makes up for it. CVD-CB and CVD-WB perform best.
Furthermore, we see that purely search-based (CVD-S) and
CVD-Reg are about the same.

In Table 3 we see as expected that the maximum number of
searches is performed in CVD-S and the least is performed in
CVD-WB. If we assume that the searches skipped are evenly
distributed among those that are fast and those that are slow
then this is an important fact since it decreases the likelihood
that CVD-WB run into a search that takes an extremely long
time.

Max CVD time [ms]

Problem CVD-S CVD-R CVD-CB CVD-WB

dc4-2 16 16 16 16
dc6-3 31 32 32 32
dc8-4 47 63 47 47
dc10-2 94 63 47 157
dc10-5 79 79 78 63
dc11-4 110 172 78 329
dc11-5 125 157 79 188

Table 1: Max time of the valid domain computations of the
search preventing CVD algorithms.

Average CVD time [ms]

Problem CVD-S CVD-R CVD-CB CVD-WB

dc4-2 2 4 6 5
dc6-3 7 11 10 11
dc8-4 17 22 16 15
dc10-2 28 25 21 24
dc10-5 28 33 24 22
dc11-4 44 55 31 42
dc11-5 44 54 30 35

Table 2: Average time of the valid domain computations of
the search preventing CVD algorithms.

Searches performed

Problem CVD-S CVD-R CVD-CB CVD-WB

dc4-2 1082 785 927 578
dc6-3 2116 2110 1138 1183
dc8-4 3796 3800 1406 1281
dc10-2 5222 3016 1601 1084
dc10-5 5358 5268 1656 1477
dc11-4 7560 7362 1690 1622
dc11-5 7560 7384 1543 1444

Table 3: Searches performed of each of the search preventing
CVD algorithms.

7 Conclusion
This paper has introduced three new algorithms that com-
bine BDDs and backtracking search for backtrack-free inter-
active configuration. Our results show that the performance
of these algorithms dominate purely search- or BDD-based
approaches.

7.1 Directions and Future Work
Another approach to constructing hybrid configurators is to
augment a propagator-centric solver by BDD-based propaga-
tors. The idea is that several constraints can be represented
by a single BDD and thereby improve propagation strength
since there is strong n-consistency between the constraints in
the BDD.

We tested this idea of implementing a BDD-propagator in
Gecode but no improvement of runtime was achieved even
though we did get stronger propagation.

Future work could go into exploring new ways of con-
structing the approximations, which enable them to be as
close to the original problem as possible and at the same
time limit the amount of space needed to represent them. To
achieve this, new data structures could be tested for repre-
senting the approximations. Interesting data structures could
be MDDs [Kam et al., 1998], Tree-of-BDDs [Subbarayan,
2005], and cartesian product tables [Møller, 1995]. It could
also be investigated whether it would be beneficial to use dif-
ferent data structures for two approximations. Furthermore,
experiments should be done on other problems to further val-
idate the techniques used in the paper.

References
[Andersen,] Henrik Reif Andersen. An intro-

duction to binary decision diagrams. http:
//www.configit.com/fileadmin/Configit/
Documents/bdd-eap.pdf.

[Andersen and Hulgaard, 2007] Henrik Reif Andersen and
Henrik Hulgaard. Configit software, 2007.

[Bryant, 1986] Randal E. Bryant. Graph-Based Algorithms
for Boolean Function Manipulation. IEEE Transactions
on Computers, C-35(8):677–691, aug 1986.

[Cheng and Yap, 2006] Kenil C. K. Cheng and Roland H. C.
Yap. Maintaining generalized arc consistency on ad-
hoc n-ary boolean constraints. In Gerhard Brewka, Sil-
via Coradeschi, Anna Perini, and Paolo Traverso, editors,
ECAI, pages 78–82. IOS Press, 2006.

[Hadzic et al., 2004] Tarik Hadzic, Sathiamoorthy Sub-
barayan, Rune Møller Jensen, Henrik Reif Andersen, Hen-
rik Hulgaard, and Jesper Møller. Fast backtrack-free prod-
uct configuration using a precompiled solution space rep-
resentation. In Proceedings of the International Confer-
ence on Economic, Technical and Organizational aspects
of Product Configuration Systems, pages 131–138. DTU-
tryk, 2004.

[Hadzic et al., 2007] Tarik Hadzic, Rune Møller Jensen,
and Henrik Reif Andersen. Calculating valid do-
mains for BDD-based interactive configuration. CoRR,

http://www.configit.com/fileadmin/Configit/Documents/bdd-eap.pdf
http://www.configit.com/fileadmin/Configit/Documents/bdd-eap.pdf
http://www.configit.com/fileadmin/Configit/Documents/bdd-eap.pdf

abs/0704.1394, 2007. informal publication; informal pub-
lication.

[Hawkins and Stuckey, 200] Peter Hawkins and Peter J.
Stuckey. A hybrid BDD and SAT finite domain constraint
solver. In P. Van Hentenryck, editor, Proceedings of the
Practical Applications of Declarative Programming, 8th
International Symposium, volume 3819 of LNCS, pages
103–117. Springer, 200.

[Jensen, 2004] Rune M. Jensen. CLab: A C++ library for
fast backtrack-free interactive product configuration. In
Mark Wallace, editor, Principles and Practice of Con-
straint Programming - CP 2004, 10th International Con-
ference, CP 2004, Toronto, Canada, September 27 - Octo-
ber 1, 2004, Proceedings, volume 3258 of Lecture Notes
in Computer Science, page 816. Springer, 2004.

[Kam et al., 1998] T. Kam, T. Villa, R. K. Brayton, and
A. L. Sangiovanni-Vincentelli. Multi-valued decision dia-
grams: Theory and applications. International Journal on
Multiple-Valued Logic, 4:9–62, 1998.

[Møller, 1995] Gert Møller. On the Technology of Array
Based Logic. PhD thesis, Technical University of Den-
mark, Lyngby, Denmark, 1995.

[Schulte et al., 2009] Christian Schulte, Mikael Lagerkvist,
and Guido Tack. Gecode. Software download and online
material, 2009. http://www.gecode.org.

[Subbarayan et al., 2004] Sathiamoorthy Subbarayan,
Rune M. Jensen, Tarik Hadzic, Henrik R. Andersen, and
Henrik Hulgaard. Comparing two implementations of a
complete and backtrack-free interactive configurator. In
Proceedings of the CP-04 Workshop on CSP Techniques
with Immediate Application, pages 97 – 111, aug 2004.

[Subbarayan et al., 2006] Sathiamoorthy Subbarayan, Lucas
Bordeaux, and Youssef Hamadi. On hybrid SAT solving
using tree decompositions and BDDs. Technical Report
MSR-TR-2006-28, Microsoft Research (MSR), March
2006.

[Subbarayan, 2005] Sathiamoorthy Subbarayan. Integrating
csp decomposition techniques and bdds for compiling con-
figuration problems. In Roman Barták and Michela Mi-
lano, editors, CPAIOR, volume 3524 of Lecture Notes in
Computer Science, pages 351–365. Springer, 2005.

[Subbarayan, 2008] Sathiamoorthy Subbarayan. Efficient
reasoning for nogoods in constraint solvers with BDDs.
In Paul Hudak and David Scott Warren, editors, Practi-
cal Aspects of Declarative Languages, 10th International
Symposium, PADL 2008, San Francisco, CA, USA, Jan-
uary 7-8, 2008, volume 4902 of Lecture Notes in Com-
puter Science, pages 53–67. Springer, 2008.

[Tiedemann, 2008] Peter Tiedemann. Compiled Data Struc-
tures and Global Constraints in Constraint Processing.
PhD thesis, ITU, 2008.

[van Hoeve, 2001] Willem Jan van Hoeve. The alldifferent
constraint: A survey. CoRR, cs.PL/0105015, 2001. infor-
mal publication.

http://www.gecode.org

	Introduction
	Interactive Configuration
	Search
	Compiled Representations

	Backtrack Free Interactive Configuration
	Search-based Configuration
	BDD-based Configuration
	BDD-based Valid Domain Computation

	BDD and Search-based Hybrid Configurator
	Hybrid Configurator

	Using the Approximations
	Constructing an Over-Approximation
	Constructing an Under-Approximation

	Search Driven Approximations
	Results
	Conclusion
	Directions and Future Work

