4,032 research outputs found

    A global generic architecture for the future Internet of Things

    Get PDF
    The envisioned 6A Connectivity of the future IoT aims to allow people and objects to be connected anytime, anyplace, with anything and anyone, using any path/network and any service. Because of heterogeneous resources, incompatible standards and communication patterns, the current IoT is constrained to specific devices, platforms, networks and domains. As the standards have been accepted worldwide, most existing IoT platforms use Web Services to integrate heterogeneous devices. Human-readable protocols of Web Services cause non-negligible overhead for object-to-object communication. Other issues, such as: lack of applications and modularized services, high cost of devices and software development also hinder the common use of the IoT. In this paper, a global generic architecture for the future IoT (GGIoT) is proposed to meet the envisioned 6A Connectivity of the future IoT. GGIoT is independent of particular devices, platforms, networks, domains and applications, and it minimizes transmission message size to fit devices with minimal capabilities, such as passive RFID tags. Thus, lower physical size and cost are possible, and network overhead can be reduced. The proposed GGIoT is evaluated via performance analysis and proof-of-concept case studies

    Enhancing the Internet of Things with Knowledge-Driven Software-Defined Networking Technology : Future Perspectives

    Get PDF
    The Internet of Things (IoT) connects smart devices to enable various intelligent services. The deployment of IoT encounters several challenges, such as difficulties in controlling and managing IoT applications and networks, problems in programming existing IoT devices, long service provisioning time, underused resources, as well as complexity, isolation and scalability, among others. One fundamental concern is that current IoT networks lack flexibility and intelligence. A network-wide flexible control and management are missing in IoT networks. In addition, huge numbers of devices and large amounts of data are involved in IoT, but none of them have been tuned for supporting network management and control. In this paper, we argue that Software-defined Networking (SDN) together with the data generated by IoT applications can enhance the control and management of IoT in terms of flexibility and intelligence. We present a review for the evolution of SDN and IoT and analyze the benefits and challenges brought by the integration of SDN and IoT with the help of IoT data. We discuss the perspectives of knowledge-driven SDN for IoT through a new IoT architecture and illustrate how to realize Industry IoT by using the architecture. We also highlight the challenges and future research works toward realizing IoT with the knowledge-driven SDN.Peer reviewe

    A scalable middleware-based infrastructure for energy management and visualization in city districts

    Get PDF
    Following the Smart City views, citizens, policy makers and energy distribution companies need a reliable and scalable infrastructure to manage and analyse energy consumption data in a city district context. In order to move forward this view, a city district model is needed, which takes into account different data-sources such as Building Information Models, Geographic Information Systems and real-time information coming from heterogeneous devices in the district. The Internet of Things paradigm is creating new business opportunities for low-cost, low-power and high-performance devices. Nevertheless, because of the "smart devices" heterogeneity, in order to provide uniform access to their functionalities, an abstract point of view is needed. Therefore, we propose an distributed software infrastructure, exploiting service-oriented middleware and ontology solutions to cope with the management, simulation and visualization of district energy data

    Overlay networks for smart grids

    Get PDF
    • …
    corecore