10,767 research outputs found

    The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling

    Get PDF
    Over the past few years growing global competition has forced the manufacturing industries to upgrade their old production strategies with the modern day approaches. As a result, recent interest has been developed towards finding an appropriate policy that could enable them to compete with others, and facilitate them to emerge as a market winner. Keeping in mind the abovementioned facts, in this paper the authors have proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing, and leagile principles to compete in the existing market scenario. The paper also proposes a model based on leagile principles, where the integrated planning management has been practiced. In the present work a scheduling problem has been considered and overall minimization of makespan has been aimed. The paper shows the relevance of both the strategies in performance enhancement of the industries, in terms of their reduced makespan. The authors have also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. The proposed algorithm inherits the prominent features of the Genetic Algorithm (GA), Simulated Annealing (SA), and the Fuzzy Logic Controller (FLC). The ESCSA algorithm reduces the makespan significantly in less computational time and number of iterations. The efficacy of the proposed algorithm has been shown by comparing the results with GA, SA, Tabu, and hybrid Tabu-SA optimization methods

    Optimization of operation sequences using constraint programming

    Get PDF
    In this paper, we connect the dots: design and optimization of production systems. A possible link between these two areas, is a previously presented modeling language, Sequence Planner Language (SPL). It has been demonstrated how relevant information can be extracted from production systems modeling applications, and converted into SPL. We show how the SPL model can be converted into a constraint programming model for optimization. Also, a useful abstraction concept, work-equivalence, is introduced to enable alternative model formulations. A case study consisting of an aero engine structure assembly plant is presented, in which the efficiency of the resulting constraint programs is investigated. The formulations enabled by abstraction are shown to perform better than the standard formulation

    The Project Scheduling Problem with Non-Deterministic Activities Duration: A Literature Review

    Get PDF
    Purpose: The goal of this article is to provide an extensive literature review of the models and solution procedures proposed by many researchers interested on the Project Scheduling Problem with nondeterministic activities duration. Design/methodology/approach: This paper presents an exhaustive literature review, identifying the existing models where the activities duration were taken as uncertain or random parameters. In order to get published articles since 1996, was employed the Scopus database. The articles were selected on the basis of reviews of abstracts, methodologies, and conclusions. The results were classified according to following characteristics: year of publication, mathematical representation of the activities duration, solution techniques applied, and type of problem solved. Findings: Genetic Algorithms (GA) was pointed out as the main solution technique employed by researchers, and the Resource-Constrained Project Scheduling Problem (RCPSP) as the most studied type of problem. On the other hand, the application of new solution techniques, and the possibility of incorporating traditional methods into new PSP variants was presented as research trends. Originality/value: This literature review contents not only a descriptive analysis of the published articles but also a statistical information section in order to examine the state of the research activity carried out in relation to the Project Scheduling Problem with non-deterministic activities duration.Peer Reviewe

    Balancing labor requirements in a manufacturing environment

    Get PDF
    “This research examines construction environments within manufacturing facilities, specifically semiconductor manufacturing facilities, and develops a new optimization method that is scalable for large construction projects with multiple execution modes and resource constraints. The model is developed to represent real-world conditions in which project activities do not have a fixed, prespecified duration but rather a total amount of work that is directly impacted by the level of resources assigned. To expand on the concept of resource driven project durations, this research aims to mimic manufacturing construction environments by allowing a non-continuous resource allocation to project tasks. This concept allows for resources to shift between projects in order to achieve the optimal result for the project manager. Our model generates a novel multi-objective resource constrained project scheduling problem. Specifically, two objectives are studied; the minimization of the total direct labor cost and the minimization of the resource leveling. This research will utilize multiple techniques to achieve resource leveling and discuss the advantage each one provides to the project team, as well as a comparison of the Pareto Fronts between the given resource leveling and cost minimization objective functions. Finally, a heuristic is developed utilizing partial linear relaxation to scale the optimization model for large scale projects. The computation results from multiple randomly generated case studies show that the new heuristic method is capable of generating high quality solutions at significantly less computational time”--Abstract, page iv

    Designing a manufacturing cell system by assigning workforce

    Get PDF
    Purpose: In this paper, we have proposed a new model for designing a Cellular Manufacturing System (CMS) for minimizing the costs regarding a limited number of cells to be formed by assigning workforce. Design/methodology/approach: Pursuing mathematical approach and because the problem is NP-Hard, two meta-heuristic methods of Simulated Annealing (SA) and Particle Swarm Optimization (PSO) algorithms have been used. A small randomly generated test problem with real-world dimensions has been solved using simulated annealing and particle swarm algorithms. Findings: The quality of the two algorithms has been compared. The results showed that PSO algorithm provides more satisfactory solutions than SA algorithm in designing a CMS under uncertainty demands regarding the workforce allocation. Originality/value: In the most of the previous research, cell production has been considered under certainty production or demand conditions, while in practice production and demand are in a dynamic situations and in the real settings, cell production problems require variables and active constraints for each different time periods to achieve better design, so modeling such a problem in dynamic structure leads to more complexity while getting more applicability. The contribution of this paper is providing a new model by considering dynamic production times and uncertainty demands in designing cells.Peer Reviewe

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    An integer programming approach for Balancing and Scheduling in Extended Manufacturing Environment

    Get PDF
    In the fiercely competitive era induced by expansion of open business archetypes, the managerial aspects of Extended Manufacturing Environments (EMEs) are experiencing growing concerns. There is no scope of leaving a possible operational improvement unexplored. For enhanced operational efficiency and capacity utilization the balancing and scheduling problems of EMEs are, therefore, rightfully considered and an integer programme is proposed in this paper. The model is designed in a spread sheet and solved through What'sBest optimizer. The model capabilities is assessed through a test problem. The results have demonstrated that the model is capable of defining optimized production schedules for EMEs.This study has been conducted under FRGS project (FRGS14- 102-0343) funded by Ministry of Higher Education (MOHE), Malaysia. The authors are grateful to MOHE and Research Management Centre (RMC), International Islamic University Malaysia (IIUM) for their support.info:eu-repo/semantics/publishedVersio

    A hybrid CFGTSA based approach for scheduling problem: a case study of an automobile industry

    Get PDF
    In the global competitive world swift, reliable and cost effective production subject to uncertain situations, through an appropriate management of the available resources, has turned out to be the necessity for surviving in the market. This inspired the development of the more efficient and robust methods to counteract the existing complexities prevailing in the market. The present paper proposes a hybrid CFGTSA algorithm inheriting the salient features of GA, TS, SA, and chaotic theory to solve the complex scheduling problems commonly faced by most of the manufacturing industries. The proposed CFGTSA algorithm has been tested on a scheduling problem of an automobile industry, and its efficacy has been shown by comparing the results with GA, SA, TS, GTS, and hybrid TSA algorithms
    corecore