
Chalmers Publication Library

Optimization of operation sequences using constraint programming

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

IFAC Proceedings Volumes. 14th IFAC Symposium on Information Control Problems in

Manufacturing, INCOM'12, Bucharest, 23-25 May 2012 (ISSN: 1474-6670)

Citation for the published paper:
Sundström, N. ; Wigström, O. ; Falkman, P. (2012) "Optimization of operation sequences
using constraint programming". IFAC Proceedings Volumes. 14th IFAC Symposium on
Information Control Problems in Manufacturing, INCOM'12, Bucharest, 23-25 May 2012,
vol. 14(1), pp. 1580-1585.

http://dx.doi.org/10.3182/20120523-3-RO-
2023.00249

Downloaded from: http://publications.lib.chalmers.se/publication/159941

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/70595166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.3182/20120523-3-RO-2023.00249
http://dx.doi.org/10.3182/20120523-3-RO-2023.00249
http://publications.lib.chalmers.se/publication/159941

Optimization of Operation

Sequences using Constraint

Programming

Nina Sundström ∗ Oskar Wigström ∗ Petter Falkman ∗

Bengt Lennartson ∗

∗ Automation Research Group,Department of Signals and Systems,
Chalmers University of Technology, SE-412 96, Göteborg, Sweden,

(e-mail: nina.sundstrom@chalmers.se)

Abstract: In this paper, we connect the dots: design and optimization of production systems.
A possible link between these two areas is a previously presented modeling language, sequence
planner language (SPL). It has been demonstrated how relevant information can be extracted
from production systems modeling applications, and converted into SPL. We show how the SPL
model can be converted into a constraint programming model for optimization. Also, a useful
abstraction concept, work equivalence, is introduced to enable alternative model formulations.
A case study consisting of an aero engine structure assembly plant is presented, in which the
efficiency of the resulting constraint programs is investigated. The formulations enabled by
abstraction are shown to perform better than the standard formulation.

Keywords: Scheduling, Constraint programming, Flexible manufacturing systems, Discrete
event systems, Multi-product production planning

1. INTRODUCTION

Scheduling in manufacturing and production industries
tends to be quite complex. The production system it-
self consists of resources that enable various operations.
Multiple products are to pass through the system, and
each product requires a set of predefined operations to
be performed in a specific order. This specific order is
known as a product recipe, which can be described as a
set of sequences of operations (SOPs). These can in turn
be modeled using a modeling language called sequence
planner language (SPL). Even though modeling tools can
portray large systems, as the number of products increase
so does the complexity of scheduling these operations. A
framework for generating schedules for this type of systems
is called job-shop scheduling which is a classical NP-hard
problem.

It has been shown how SOPs can be automatically gener-
ated from manufacturing system modeling tools Magnus-
son et al. (2011). In this paper, we demonstrate how these
SOPs can be transformed to constraint programming (CP)
models. The OPL optimization programming language
(OPL) Van Hentenryck (1999) is used for formulating the
models. Additionally we introduce an abstraction, often
applicable to flexible manufacturing systems, that enables

? This work was carried out at the Wingquist Laboratory VINN Ex-
cellence Center within the Area of Advance Production at Chalmers.
The work has been supported by the EU-FP7 FLEXA project,
Swedish Governmental Agency for Innovation Systems (VINNOVA)
and Swedish Research Council (VR). The support is gratefully ac-
knowledged.

some alternative CP modeling approaches. A case study
consisting of an aero engine structure assembly plant is
used to measure the CP model performance when imple-
mented in the optimization software IBM ILOG Optimiza-
tion Studio.

There are numerous languages available for describing
sequential operational behaviour. In the industry, the
most popular is perhaps Microsoft Excel, other popular
more graphical representations are Gantt charts Kerzner
(2003) and PERT charts Levin and Kirkpatrick (1966).
Other alternatives used in software development include
among others statecharts Harel (1987) (subset of UML).
In Lennartson et al. (2010), a new language for expressing
SOPs was presented, SPL, which holds a number of inter-
esting properties. In contrast to the previously mentioned
languages, it includes a formal definition of operations and
SOPs as well as a full synchronous composition (FSC)
operator Hoare (1978). The FSC operator is a necessary
condition if one is to use supervisory control theory Ra-
madge and Wonham (1989) for supervisor synthesis, and
operation states that simplify precondition and postcon-
dition expressions for complex systems.

In flexible production systems, a large numbers of parts
require processing. In the literature, this type of system
falls into the category of job-shops Graves (1981) Pardalos
and Resende (2002). In a flexible job-shop problem, a
number of jobs, each consisting of a set of operations, are
to be processed by a set of resources. Each operation can be
processed by alternative or multiple resources. There are
several variations, jobs can for example have precedence

constraints and machines can be related or have sequence-
dependent setups.

Today, solving various job-shop formulations is still a
large research topic. But in contrast to the early days
of branch and bound techniques based on mixed integer
programming Graves (1981), a myriad of competitive
methods now exist. Modern approaches are often based
on advanced heuristics and local search algorithms, e.g
Nowicki and Smutnicki (2005). CP methods by themselves
are relatively competitive while providing a more flexible
approach Zhou (1996). In combination with heuristics they
outperform even the best local search algorithms Grimes
et al. (2009), see also for example Watson and Beck (2008)
Malapert et al. (2009).

Most of the papers cited in the previous paragraph concern
the general case and its extensions. Our focus is primarily
on the transformation of automatically generated data
describing a production system into a CP model. The de-
velopment of new fast heuristics and propagation methods
for this problem class is outside the scope of this paper.
However, we have considered the impact of the model
formulation and investigated which modeling approach is
most suited for this specific problem category.

The paper is outlined as follows. Section 2 provides an in-
troduction and characterization of flexible manufacturing
systems considered in this paper. A brief guide to modeling
using SPL is also included as well as the definition of work
equivalence (WE) and WE abstraction. In Section 3 it is
shown how an SPL model intuitively can be represented
as a CP model. Finally, a case study of an aero engine
structure assembly plant is presented in Section 4 followed
by results in Section 5 and conclusions in Section 6.

2. MODELING

In a flexible manufacturing system, multiple products are
to pass through the system according to a predefined set
of SOPs called the product recipe. In the following sub-
sections, flexible job-shop scheduling is introduced, as well
as an SPL modeling tool, Sequence Planner (SP). Also, we
define WE which is an abstraction method applicable to
manufacturing systems.

2.1 The Flexible Job-Shop Problem

Job-shop problems concern the efficient utilization of re-
sources while performing some predetermined tasks. More
formally, given a set of jobs where each job consists of
a set of operations. If the operations are to be processed
in a specific order on specific machines, how can a set of
resources be allocated as to achieve optimality. The opti-
mization criterion could e.g. be to minimize the makespan,
workloads of machines or waiting times, etc. Each opera-
tion has a given processing time and a resource required
for processing. A flexible job-shop scheduling problem is
a generalization of the job-shop problem. It enables an
operation to be processed by any resource from a given
set of resources. In this paper, a multi-resource system is
considered where an operation may need several resources
at the same time to be performed. The processing time for
an operation is allowed to vary depending on the resource
performing the operation.

An example of a classical job-shop problem is a hospital
where patients are considered as jobs. Each patient follows
a given route and is treated at different stations during
their stay at the hospital. The resources in this case consist
of nurses, doctors, rooms and equipment. A surgery may
require at least one of each mentioned resource while a
simple routine examination may only require a room and a
doctor. In the multi-product system considered in this pa-
per, several products pass through a manufacturing facil-
ity, each product following a route defined by its individual
product recipe. All operations require several resources,
for example a fixture and a robot in order to be moved.
Some of the operations have a resource flexibility where
different resources may perform the operation. There are
also precedence conditions, for example when finished sub-
parts are assembled into larger products.

2.2 Modeling using Sequence Planner

A modeling tool called SP has been developed by the
Automation Group at Chalmers University of Technology
Lennartson et al. (2010). It can be used for the definition
and visualization of product recipes. SP uses an approach
where operations can be modeled as self-contained with
only relevant information on when and how an operation
can execute. Sequences of operations based on e.g. different
resources or products can be displayed by using a projec-
tion of operations that somehow relates to that resource
or product. Recently, it has been shown that transport
operations can be automatically generated from simulation
software Magnusson et al. (2011). The next step is to also
generate process operations based on the product recipe
from external CAD software.

In SP it is possible to model straight, parallel, alterna-
tive and arbitrary sequences. In order to define relations
between operations, pre- and postconditions can be used.
These conditions have to be fulfilled before an operation
can execute. For example, consider two operations in a
straight sequence. When viewed as self-contained opera-
tions, a precondition is added to the latter operation stat-
ing that the previous operation has to be finished before
the operation can start. Operations may also have pre- and
postactions for booking and unbooking resources. When
an operation requires one or more resources, a precondition
for execution is that the necessary resources are available
for booking. This implies that the preaction in this case,
is the booking of the resources. A processing time for each
operation can also be specified.

2.3 Work Equivalence Abstraction

When dealing with many products of the same type
passing through a production system, abstraction can be
used to reduce complexity. For example, within a number
of product instances of the same product type, it is not
necessary to explicitly keep track of each instance identity.
This type of abstraction can be applied to more than
just product instances of the same type. In this paper
we introduce the concept of WE. In short, suppose that
the SOPs or a subset of SOPs for a set of product types
are the same, i.e. the SOPs have the same structure and
resource dependence. If also the processing times are fully

or approximately equivalent, then this set of product types
can be considered to hold WE or weak WE respectively.

Note that if two products hold weak WE, i.e. similar
processing times, then the longest processing time can be
relaxed to the shorter, and as such make the products WE.
With this relaxation, solving the resulting optimization
problem will yield a lower bound for the optimization
problem. Reversely, the shortest execution time can be
regarded as equivalent to the longer in order to derive an
upper bound. In this paper we consider problems where
the occurrence of WE is common.

The reason for introducing WE is that it enables abstrac-
tion of product types, permitting favourable changes to the
optimization model. The WE abstraction works as follows,
if a set of product types are WE, these can be regarded as
consisting of one meta-product type. Each meta-product
instance can represent any one of the WE products. Thus,
if the processing order of the meta-product instances are
constrained, no information is lost as each instance still
represents any product. Suppose a different product type
requires one of the WE products in order to start its exe-
cution. Then it is enough to know that one meta-product
is available for processing. This ’buffer’ of available meta-
products can be kept track of via a time variable. Note
that which explicit product type one specific meta-product
instance actually represents, may be given implicitly by
future operations.

3. CONSTRAINT PROGRAMMING

The origin of CP lies in the artificial intelligence and
computer science communities and can be traced back to
the constraint satisfaction problems (CSPs) studied in the
1970s Pinedo (2005). A CSP entails finding a feasible set
of decision variables subject to a number of constraints,
i.e. assigning values to variables that satisfy all constraints
Rossi et al. (2006). During the last decades, CP has evolved
into solving optimization problems, that is finding the
solution in a feasible set that minimizes or maximizes
a given objective function. The constraints may be of
various different types; linear, nonlinear, logical, cardinal
and global. This makes modeling problems using CP much
more flexible compared to operations research, where only
linear and integer constraints may be used.

3.1 Scheduling using Constraint Programming

In this paper, IBM ILOG Optimization Studio is used for
implementing the optimization models. The software is
an OPL integrated development environment containing
among others, a CP solution engine. OPL is a language
designed to model and solve optimizations problems us-
ing both CP techniques and mathematical programming
approaches.

The decision variables for CP scheduling problems using
OPL are intervals. Each interval represents an operation
and is characterized by a start value, end value and size.
Examples of constraints that are used in OPL to describe
the structure of an SOP are e.g. endBeforeStart() and al-
ternative(). The former states that the start of one interval
has to be greater than the end of another interval. The

latter models an exclusive alternative between different in-
tervals. Another useful function in OPL is cumulFunction
which can be used for the resource allocation in a job-
shop scheduling problem. This function is incremented as
a resource is booked and decremented when the resource
is released, acting as a pulse function.

If a resource has to be booked for the duration of several
operation intervals a pulse function may not be used.
Instead, an OPL expression stepAtStart() can be used
to increment the cumulative function at the start of an
operation. In the same way, stepAtEnd() can be used to
decrement the resource at the end of an operation. An
upper bound for the cumulFunction corresponds to the
capacity of the resource.

3.2 Mapping of Operation Sequences

As previously mentioned, operations in CP using OPL are
represented by interval decision variables. The length of
the intervals equals the processing time of each operation.
The mapping of the SOPs depicted in Fig. 1 to CP will be
described in the following paragraphs. An interval variable
O1 is initiated as

1: interval O1 size(Omin
1 ,Omax

1)

where Omin
1 is the minimum execution time and Omax

1 is
some sufficiently large constant. Serial execution of two
operations, O1 and O2 can be described in two ways.
Either by

1: endBeforeStart(O1,O2)

which allows for a segment of time between the two oper-
ations when nothing is performed. However, if a resource
is to be booked during O1, and until O2 starts it can be
convenient to use

1: endAtStart(O1,O2)

This constraint will ensure that O1 ends as O2 starts
and thus guarantee that the resource is booked for the
necessary period. Two operations, O2 and O3, executing in
parallel without mutual dependence can be modeled using
two sequential constraints. If O1 is an operation preceding
the two parallel operations, the system can be modeled by

1: endBeforeStart(O1,O2)
2: endBeforeStart(O1,O3)

If an SOP contains alternative operations, the alternative()
constraint can be used. Suppose either O5 or O6 is to be
executed after the preceding interval O4. The following
code will ensure the correct behaviour.

1: interval Oi[5..6] optional size(Omin
i ,Omax

i)
2: endBeforeStart(O4, D)
3: alternative(D, {O5, O6})

Fig. 1. Graphical representations of parallel, alternative
and arbitrary sequences.

First, O5 and O6 are initiated as optional, i.e. neither of
them have to be executed. Then, D , a dummy interval is
constrained to start after O4. The alternative() constraint
then states that if D is executed, it will start and end with
one of O5 and O6. This will force one of these optional
intervals to be executed.

An arbitrary sequence is when two operations are both
to be executed, but during different time intervals. This
behaviour can also be interpreted as a parallel sequence
and a dummy resource that mutually excludes the oper-
ations. The necessary constraints for mutual exclusion of
two operations O8 and O9 are the following

1: endBeforeStart(O7,O8)
2: endBeforeStart(O7,O9)
3: cumulFunction C = pulse(O8)+pulse(O9)
4: C ≤ 1

A cummulFunction C is used to represent a dummy re-
source. The cummulFunction is a time dependent variable
which on row 4 is constrained to a maximum value of 1.
A pulse is a timed expression which attains value 1 as its
target operation executes. As a result, with C defined as
the sum of two pulses on row 3, the two operations cannot
execute simultaneously without violating the upper bound
of C. In other words, O8 and O9 mutually exclude each
other. However, the order in which they execute is not
specified.

Pre- and/or post conditions may be added to opera-
tions. These define relations to other operations, e.g. an
operation O11 cannot execute until another operation
O10 has finished. This may be expressed as a precon-

dition Of
10 for operation O11. Expressed in OPL, sim-

ply endBeforeStart() could be used. The resource book-
ing/releasing is handled through pre- and/or postactions.
A preaction may be added to operation O11 to book a
resource R. In the same way, a postaction may be added
to release the resource. The corresponding pre- and postac-
tion added to operation O11 are R+ and R−. As mentioned
earlier, the resource booking/releasing can be modeled by
cumulative functions. In this case a cumulFunction R is
defined by

∑
i pulse(Oi), where i are the indices of all

operations that require R during execution.

3.3 Implementing Work Equivalence

From a CP modeling perspective, WE abstraction implies
two things. First, the sequential order of meta-product
instances can be explicitly defined. That is, for each set of
WE products or WE subsets of SOPs, choose any arbitrary
ordering and constrain the set of WE jobs to start in this
predetermined order. In the case study it is shown that
this is beneficial for large problems. The reason for this is
a concept known as symmetry. Symmetry appears when
multiple combinations result in the same solution. Take
the hospital scheduling problem for example. Consider the
case when two doctors with the same qualifications are to
be scheduled. Suppose two schedules for the doctors are
proposed, then it does not matter which doctor gets which
schedule. In the same way, product instances of the same
product type are also prone to symmetry. To remove this,
they are constrained to be started in a certain order. What
WE abstraction does, is to expose hidden symmetry in the

problem and remove it. Weak WE that can be relaxed to
WE can be thought of as almost symmetric elements.

Second, if there are preconditions that require some meta-
product to be completed. Then the number of finished
meta-products can be modeled by cumulative resource
variables that are decremented during the mentioned pre-
conditions. In practice, there are products which have
precedence constraints on the completion of the WE jobs,
create a cumulative function that represents the number of
finished WE jobs. Have each job increment the cumulative
function with a step at completion. Also, make the prece-
dence constrained job decrement the cumulative function,
as to indicate the consumption of a buffer element. If
one job requires several other jobs to be started, multiple
cumulative functions may have to be decremented. Using
this abstraction, the constraints binding one product to
another via a precondition is somewhat loosened. This
implies that the size of the search space is actually in-
creased. But in this particular case this leads to the local
neighborhood of each solution to be expanded. This in turn
will result in local search methods finding more solutions.

As the constrained order and the cumulative buffers ab-
straction methods work in two quite opposite directions,
we found it best to apply only one method at a time.
During which conditions it is advantageous to apply each
abstraction method is discussed in the result section.

4. CASE STUDY

For our case study we have considered a manufacturing
facility for aero engine structures, to be more specific the
turbine exhaust case. Traditionally this structure has been
delivered as one big piece of casting which has then been
machined in several steps. The manufacturing process is
very robust and several steps may be performed in the
same station by using multi-purpose machines. However,
a major drawback is that only a few suppliers in the world
can deliver these big pieces of casting. The aero engine
industries are therefore looking into the possibility of
using automation in their manufacturing processes. They
study possible methods to divide the structure into smaller
parts which are automatically assembled to sub-assemblies
which are further assembled to the final structure. Much
in the same way as processes in the automotive industry
where automation is used to a great extent.

4.1 Process Description

The manufacturing steps studied in this paper, are the
processes that refine smaller parts before they are assem-
bled, as well as the assembly operations of the smaller
parts to the larger parts, called segments. The manufac-
turing facility contains tables for fixating and unfixating
the parts, robots for transporting the parts, machines for
milling, washing, deburring, measuring and welding. The
parts and segments are attached to fixtures throughout all
operations. There are 8 types of segments, each consisting
of either 3 or 4 smaller parts. Additionally, there are 14
different types of parts. With WE, the parts/segments that
use the same type of fixture and have the same processing
time are bundled to one meta-product type. This results in
a total of 5 part types and 2 segment types. The product

recipe for all part types except one is given by

Fixate → Milling → Unfixate → Washing → Deburring
→ Washing

The product recipe for the last part type is given by the
last three operations in the above recipe. The product
recipes for the segment types are given by

Fixate→Measuring→Welding→Measuring→ Unfixate

There are two robots in the manufacturing cell that
performs the necessary transportation of products between
operations. The segment recipe only uses the first robot
while the parts utilize both robots for transport. The
characteristics of the considered system are given below.

• 21 resources, 49 parts, 13 segments, 787 operations
• Alternative transportation paths due to buffers.
• In the product recipes some operations are repeated,

which results in parts returning to a workstation
previously visited.
• Parts always have one ore more resources booked

throughout their SOPs.

The analyzed manufacturing system has two identical
parallel milling machines. Hence, if we apply WE on
the machines, they can be viewed as one resource with
capacity 2. Due to buffers, parts may before and after
the milling operation be transported either to a buffer or
the next workstation according to their product recipe.
In the washing and the measuring workstation parts may
come from an upstream or downstream workstation. For
example, after the parts have been washed, a deburring
operation will take place in a downstream workstation.
Later, the parts will be transported back to the washing
machine for further processing.

The SOPs for each part are modeled as interconnected
operations, i.e. a succeeding operation starts at the end of
a preceding operation. The lower bound of the operation
interval equals the processing time of the operation. The
upper bound is set to a large value. The processing time
to e.g. fixate a part equals 2 minutes. However, after
the operation has been performed the part may still
occupy the loading table. A reason to why the part is
not transported to the next workstation might be that
the robot performing the transport is busy. Therefore,
the operation interval may be longer than the actual
processing time.

The objective is to minimize the makespan of the produc-
tion of 13 segments, i.e. a total of 49 parts. This implies
that we would like to minimize the largest completion
time of the last operation for all segments. As mentioned
earlier, there are two different types of segments. For the
engine structure to be produced in this case study, there
are 3 segments of the first type and 10 of the second type.
We have investigated different ratios between the segment
types including varying the total number of segments.
Three different modeling approaches have been analyzed in
order to compare which constraint program that is more
efficient. These approaches are based on the abstraction
methods described in Section 3.3. The different approaches
are presented in the following section.

4.2 Modeling Approaches

As previously mentioned, WE can be used for two types
of abstraction. We have compared these two types with
’out of the box’ CP scheduling methodology, which we will
simply refer to as the normal model. The two WE modified
models are the constrained order model and cumulative
buffers model. All models have identical procedures for
resource booking and alternative operations. The latter
behaviour originating from the buffers in the production
system. The following paragraphs describe the three meth-
ods.

Normal The normal approach does not constrain the
order between operations for parts of the same type, i.e.
all parts and segments are free to start in any order.

Constrained Order For the constrained order approach,
all meta-product instances are constrained to start in a
specific order, i.e. all parts as well as segments of each
meta-product type have a constrained order.

Cumulative Buffers No constraints applied to product
order. Cumulative functions are used to model buffers of
completed meta-products, i.e. the parts and segments are
only connected via the cumulative buffers.

The performance measures of each method is presented in
the following section.

5. RESULTS

In the previous section a manufacturing facility for aero
engine structures was described. One complete structure
requires 13 segments, 3 type-A and 10 type-B segments.
Besides scheduling the specific combination of segments
mentioned, 3/10 in short, we have run the algorithm for a
number of other combinations. All optimization was run
on a Windows 7 64-bit system with a 2.66 [GHz] Intel
Core2 Quad CPU and 4 [GB] of RAM.

Fig. 2(a) shows the resulting duality gap for a number
of segment combinations after 5 minutes of algorithm
execution. The resulting gap after 25 minutes of optimiza-
tion is depicted in Fig. 2(b). The duality gap is defined
as (Cost − LB)/LB, where LB is a crude lower bound
derived from the assumption that the welding station acts
as a bottleneck. In reality, the asynchronous output of
the milling machines and washing machine causes further
delay. The segment combinations have been ordered by
total number of parts in increasing order from left to right.
The number of parts for the five different combinations
are {33, 38, 41, 44, 49} respectively. The white bar repre-
sents the cumulative buffers model, the black bar is the
constrained order model and the gray bar shows the result
from the normal model. Both WE modified models show
better results after both 5 and 25 minutes. The constrained
order model yields better results in the short run but
looking at Fig. 2(b) shows that the cumulative buffers
model performs better in the long run.

Fig. 3 shows the progression of the three algorithms for
the 3/10 case. The dashed curve represents the normal
model and is the worst of the three at all times. The dotted
curve shows the cumulative buffers model and the solid is
the constrained order model. Up to about 12 minutes into

the optimization, the constrained order model shows much
better results, but in the long run it is outperformed by
the cumulative buffers model.

6. CONCLUSION

This paper shows how sequence of operations can be con-
verted into constraint programming models. These models
can be used for scheduling of operations. We also present
an abstraction method, work equivalence, which allows
modification of the constraint programming model. A case
study of a multi-product production system is presented.
We evaluate various product configurations to measure
the performance of constraint programming and work
equivalence. Three different approaches were considered. A
normal unmodified model was outperformed by two work
equivalence models. One of the latter performed better in
the long run, while the other could produce good results in
short time. We hope to feed back the resulting time-based
schedules to sequence planner and generate event-based
control policies.

REFERENCES

Graves, S. (1981). A review of production scheduling.
Operations Research, 29(4).

Grimes, D., Hebrard, E., and Malapert, A. (2009). Clos-
ing the open shop: contradicting conventional wisdom.
In Proceedings of the 15th international conference
on Principles and practice of constraint programming,
CP’09, 400–408. Springer-Verlag.

Harel, D. (1987). Statecharts: A visual formalism for
complex systems. Sci. Comput. Program., 8, 231–274.

Hoare, C.A.R. (1978). Communicating sequential pro-
cesses. Commun. ACM, 21, 666–677.

Kerzner, H. (2003). Project management: A systems
approach to planning, scheduling and controlling. Wiley.

Lennartson, B., Bengtsson, K., Yuan, C., Andersson, K.,
Fabian, M., Falkman, P., and Åkesson, K. (2010). Se-
quence planning for integrated product, process and
automation design. IEEE Transactions on Automation
Science and Engineering, 7, 791–802.

Levin, R. and Kirkpatrick, C. (1966). Planning and control
with PERT/CPM. New York, McGraw-Hill.

Magnusson, P., Sundström, N., Bengtsson, K., Lennartson,
B., Falkman, P., and Fabian, M. (2011). Planning
transport sequences for flexible manufacturing systems.
In Preprints of 18th World Congress of the International
Federation of Automatic Control.

Malapert, A., Cambazard, H., Gueret, C., Jussien, N.,
Langevin, A., and Rousseau, L.M. (2009). An optimal
constraint programming approach to solve the open-
shop problem. Technical Report CIRRELT-2009-25.

Nowicki, E. and Smutnicki, C. (2005). An advanced tabu
search algorithm for the job shop problem. Journal of
Scheduling, 8, 145–159.

Pardalos, P. and Resende, M. (2002). Handbook of applied
optimization. Oxford University Press.

Pinedo, M. (2005). Planning and scheduling in manufac-
turing and services. Number v. 1 in Springer series in
operations research. Springer.

Ramadge, P. and Wonham, W. (1989). The control of
discrete event systems. Proceedings of the IEEE, 77,
81–98.

3/6 6/5 3/8 8/5 3/10
0

20

40

60

D
ua

lit
y

ga
p

[%
]

5 minutes

(a) The duality gap after 5 minutes of optimization.

3/6 6/5 3/8 8/5 3/10
0

20

40

60

D
ua

lit
y

ga
p

[%
]

25 minutes

(b) The duality gap after 25 minutes of optimization.

Fig. 2. The resulting duality gap after 5 minutes (a) and
25 minutes (b) of optimization. White bar shows
cumulative buffers model, black bar is constrained
order model and gray bar represents normal model.

0 10 20 30

25

50

75

100

D
ua

lit
y

ga
p

[%
]

Elapsed time [minutes]

Change in objective function during optimization

700

800

900

1000

1100

O
bj

ec
tiv

e
fu

nc
tio

n
[m

in
ut

es
]

Fig. 3. Time/Objective plot for the case study (3/10). The
normal model (dashed curve) gives the worst results.
The constrained order model (solid curve) finds a low
result fast while the cumulative buffers (dotted curve)
achieves the best result in the long run.

Rossi, F., van Beek, P., and Walsh, T. (2006). Handbook
of Constraint Programming (Foundations of Artificial
Intelligence). Elsevier Science Inc., New York, NY, USA.

Van Hentenryck, P. (1999). The OPL optimization pro-
gramming language. MIT Press, Cambridge, MA, USA.

Watson, J.P. and Beck, J.C. (2008). A hybrid constraint
programming/local search approach to the job-shop
scheduling problem. Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial
Optimization Problems, 5015, 263–277.

Zhou, J. (1996). A constraint program for solving the
job-shop problem. In Second International Conference
on Principles and Practice of Constraint Programming
(CP’96), 150. Springer Verlag.

