44 research outputs found

    Survivability aspects of future optical backbone networks

    Get PDF
    In huidige glasvezelnetwerken kan een enkele vezel een gigantische hoeveelheid data dragen, ruwweg het equivalent van 25 miljoen gelijktijdige telefoongesprekken. Hierdoor zullen netwerkstoringen, zoals breuken van een glasvezelkabel, de communicatie van een groot aantal eindgebruikers verstoren. Netwerkoperatoren kiezen er dan ook voor om hun netwerk zo te bouwen dat zulke grote storingen automatisch opgevangen worden. Dit proefschrift spitst zich toe op twee aspecten rond de overleefbaarheid in toekomstige optische netwerken. De eerste doelstelling die beoogd wordt is het tot stand brengen vanrobuuste dataverbindingen over meerdere netwerken. Door voldoende betrouwbare verbindingen tot stand te brengen over een infrastructuur die niet door een enkele entiteit wordt beheerd kan men bv. weredwijd Internettelevisie van hoge kwaliteit aanbieden. De bestudeerde oplossing heeft niet enkel tot doel om deze zeer betrouwbare verbinding te berekenen, maar ook om dit te bewerkstelligen met een minimum aan gebruikte netwerkcapaciteit. De tweede doelstelling was om een antwoord te formuleren om de vraag hoe het toepassen van optische schakelsystemen gebaseerd op herconfigureerbare optische multiplexers een impact heeft op de overleefbaarheid van een optisch netwerk. Bij lagere volumes hebben optisch geschakelde netwerken weinig voordeel van dergelijke gesofistikeerde methoden. Elektronisch geschakelde netwerken vertonen geen afhankelijkheid van het datavolume en hebben altijd baat bij optimalisatie

    Artificial intelligence (AI) methods in optical networks: A comprehensive survey

    Get PDF
    Producción CientíficaArtificial intelligence (AI) is an extensive scientific discipline which enables computer systems to solve problems by emulating complex biological processes such as learning, reasoning and self-correction. This paper presents a comprehensive review of the application of AI techniques for improving performance of optical communication systems and networks. The use of AI-based techniques is first studied in applications related to optical transmission, ranging from the characterization and operation of network components to performance monitoring, mitigation of nonlinearities, and quality of transmission estimation. Then, applications related to optical network control and management are also reviewed, including topics like optical network planning and operation in both transport and access networks. Finally, the paper also presents a summary of opportunities and challenges in optical networking where AI is expected to play a key role in the near future.Ministerio de Economía, Industria y Competitividad (Project EC2014-53071-C3-2-P, TEC2015-71932-REDT

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Journal of Telecommunications and Information Technology, 2009, nr 1

    Get PDF
    kwartalni

    Design and operation of mesh-restorable WDM networks

    Get PDF
    The explosive growth of Web-related services over the Internet is bringing millions of new users online, thus creating a growing demand for bandwidth. Wavelength Division Multiplexed (WDM) networks, employing wavelength routing has emerged as the dominant technology to satisfy this growing demand for bandwidth. As the amount of traffic carried is larger, any single failure can be catastrophic. Survivability becomes indispensable in such networks. Therefore, it is imperative to design networks that can quickly and efficiently recover from failures.;In this dissertation, we explore the design and operation of survivable optical networks. We study several survivability paradigms for surviving single link failures. A restoration model is developed based on a combination of these paradigms. We propose an optimal design and upgrade scheme for WDM backbone networks. We formulate an integer programming-based design problem to minimize the total facility cost. This framework provides a cost effective way of upgrading the network by identifying how much resources to budget at each stage of network evolution. This results in significant cost reductions for the network service provider.;As part of network operation, we capture multiple operational phases in survivable network operation as a single integer programming formulation. This common framework incorporates service disruption and includes a service differentiation model based on lightpath protection. However, the complexity of the optimization problem makes the formulation applicable only for network provisioning and o2ine reconfiguration. The direct use of such methods for online reconfiguration remains limited to small networks with few tens of wavelengths. We develop a heuristic algorithm based on LP relaxation technique for fast, near optimal, online reconfiguration. Since the ILP variables are relaxed, we provide a way to derive a feasible solution from the relaxed problem. Most of the current approaches assume centralized information. They do not scale well as they rely on per-flow information. This motivates the need for developing dynamic algorithms based on partial information. The partial information we use can be easily obtained from traffic engineering extensions to routing protocols. Finally, the performance of partial information routing algorithms is compared through simulation studies

    Dynamic Virtual Network Restoration with Optimal Standby Virtual Router Selection

    Get PDF
    Title form PDF of title page, viewed on September 4, 2015Dissertation advisor: Deep MedhiVitaIncludes bibliographic references (pages 141-157)Thesis (Ph.D.)--School of Computing and Engineering and Department of Mathematics and Statistics. University of Missouri--Kansas City, 2015Network virtualization technologies allow service providers to request partitioned, QoS guaranteed and fault-tolerant virtual networks provisioned by the substrate network provider (i.e., physical infrastructure provider). A virtualized networking environment (VNE) has common features such as partition, flexibility, etc., but fault-tolerance requires additional efforts to provide survivability against failures on either virtual networks or the substrate network. Two common survivability paradigms are protection (proactive) and restoration (reactive). In the protection scheme, the substrate network provider (SNP) allocates redundant resources (e.g., nodes, paths, bandwidths, etc) to protect against potential failures in the VNE. In the restoration scheme, the SNP dynamically allocates resources to restore the networks, and it usually occurs after the failure is detected. In this dissertation, we design a restoration scheme that can be dynamically implemented in a centralized manner by an SNP to achieve survivability against node failures in the VNE. The proposed restoration scheme is designed to be integrated with a protection scheme, where the SNP allocates spare virtual routers (VRs) as standbys for the virtual networks (VN) and they are ready to serve in the restoration scheme after a node failure has been identified. These standby virtual routers (S-VR) are reserved as a sharedbackup for any single node failure, and during the restoration procedure, one of the S-VR will be selected to replace the failed VR. In this work, we present an optimal S-VR selection approach to simultaneously restore multiple VNs affected by failed VRs, where these VRs may be affected by failures within themselves or at their substrate host (i.e., power outage, hardware failures, maintenance, etc.). Furthermore, the restoration scheme is embedded into a dynamic reconfiguration scheme (DRS), so that the affected VNs can be dynamically restored by a centralized virtual network manager (VNM). We first introduce a dynamic reconfiguration scheme (DRS) against node failures in a VNE, and then present an experimental study by implementing this DRS over a realistic VNE using GpENI testbed. For this experimental study, we ran the DRS to restore one VN with a single-VR failure, and the results showed that with a proper S-VR selection, the performance of the affected VN could be well restored. Next, we proposed an Mixed-Integer Linear Programming (MILP) model with dual–goals to optimally select S-VRs to restore all VNs affected by VR failures while load balancing. We also present a heuristic algorithm based on the model. By considering a number of factors, we present numerical studies to show how the optimal selection is affected. The results show that the proposed heuristic’s performance is close to the optimization model when there were sufficient standby virtual routers for each virtual network and the substrate nodes have the capability to support multiple standby virtual routers to be in service simultaneously. Finally, we present the design of a software-defined resilient VNE with the optimal S-VR selection model, and discuss a prototype implementation on the GENI testbed.Introduction -- Literature survey -- Dynamic reconfiguration scheme in a VNE -- An experimental study on GpENI-VNI -- Optimal standby virtual router selection model -- Prototype design and implementation on GENI -- Conclusion and future work -- Appendix A. Resource Specification (RSpec) in GENI -- Appendix B. Optimal S-VR Selection Model in AMP

    Regenerator placement and fault management in multi-wavelength optical networks.

    Get PDF
    Shen, Dong.Thesis (M.Phil.)--Chinese University of Hong Kong, 2011.Includes bibliographical references (p. 98-106).Abstracts in English and Chinese.Abstract --- p.i摘要 --- p.ivAcknowledgements --- p.vTable of Contents --- p.viChapter Chapter 1 --- Background --- p.1Chapter 1.1 --- Translucent Optical Networks --- p.1Chapter 1.1.1 --- The Way Towards Translucent --- p.1Chapter 1.1.2 --- Translucent Optical Network Architecture Design and Planning --- p.3Chapter 1.1.3 --- Other Research Topics in Translucent Optical Networks --- p.6Chapter 1.2 --- Fault Monitoring in All-Optical Networks --- p.12Chapter 1.2.1 --- Fault Monitoring in Network Layer's Perspective --- p.12Chapter 1.2.2 --- Passive Optical Monitoring --- p.14Chapter 1.2.3 --- Proactive Optical Monitoring --- p.16Chapter 1.3 --- Contributions --- p.17Chapter 1.3.1 --- Translucent Optical Network Planning with Heterogeneous Modulation Formats --- p.17Chapter 1.3.2 --- Multiplexing Optimization in Translucent Optical Networks --- p.19Chapter 1.3.3 --- An Efficient Regenerator Placement and Wavelength Assignment Scheme in Translucent Optical Networks --- p.20Chapter 1.3.4 --- Adaptive Fault Monitoring in All-Optical Networks Utilizing Real-Time Data Traffic --- p.20Chapter 1.4 --- Organization of Thesis --- p.22Chapter Chapter 2 --- Regenerator Placement and Resource Allocation Optimization in Translucent Optical Networks --- p.23Chapter 2.1 --- Introduction --- p.23Chapter 2.2 --- Translucent Optical Network Planning with Heterogeneous Modulation Formats --- p.25Chapter 2.2.1 --- Motivation and Problem Statements --- p.25Chapter 2.2.2 --- A Two-Step Planning Algorithm Using Two Modulation Formats to Realize Any-to-Any Topology Connectivity --- p.28Chapter 2.2.3 --- Illustrative Examples --- p.30Chapter 2.2.3 --- ILP Formulation of Minimizing Translucent Optical Network Cost with Two Modulation Formats under Static Traffic Demands --- p.34Chapter 2.2.4 --- Illustrative Numeric Examples --- p.42Chapter 2.3 --- Resource Allocation Optimization in Translucent Optical Networks --- p.45Chapter 2.3.1 --- Multiplexing Optimization with Auxiliary Graph --- p.45Chapter 2.3.2 --- Simulation Study of Proposed Algorithm --- p.51Chapter 2.3.3 --- An Efficient Regenerator Placement and Wavelength Assignment Solution --- p.55Chapter 2.3.4 --- Simulation Study of Proposed Algorithm --- p.60Chapter 2.4 --- Summary --- p.64Chapter Chapter 3 --- Adaptive Fault Monitoring in All-Optical Networks Utilizing Real-Time Data Traffic --- p.65Chapter 3.1 --- Introduction --- p.65Chapter 3.2 --- Adaptive Fault Monitoring --- p.68Chapter 3.2.1 --- System Framework --- p.68Chapter 3.2.2 --- Phase 1: Passive Monitoring --- p.70Chapter 3.2.3 --- Phase 2: Proactive Probing --- p.71Chapter 3.2.4 --- Control Plane Design and Analysis --- p.80Chapter 3.2.5 --- Physical Layer Implementation and Suggestions --- p.83Chapter 3.3 --- Placement of Label Monitors --- p.83Chapter 3.3.1 --- ILP Formulation --- p.84Chapter 3.3.2 --- Simulation Studies --- p.86Chapter 3.3.3 --- Discussion of Topology Evolution Adaptiveness --- p.93Chapter 3.4 --- Summary --- p.95Chapter Chapter 4 --- Conclusions and Future Work --- p.95Chapter 4.1 --- Conclusions --- p.96Chapter 4.2 --- Future Work --- p.97Bibliography --- p.98Publications during M.Phil Study --- p.10

    A Survey on the Path Computation Element (PCE) Architecture

    Get PDF
    Quality of Service-enabled applications and services rely on Traffic Engineering-based (TE) Label Switched Paths (LSP) established in core networks and controlled by the GMPLS control plane. Path computation process is crucial to achieve the desired TE objective. Its actual effectiveness depends on a number of factors. Mechanisms utilized to update topology and TE information, as well as the latency between path computation and resource reservation, which is typically distributed, may affect path computation efficiency. Moreover, TE visibility is limited in many network scenarios, such as multi-layer, multi-domain and multi-carrier networks, and it may negatively impact resource utilization. The Internet Engineering Task Force (IETF) has promoted the Path Computation Element (PCE) architecture, proposing a dedicated network entity devoted to path computation process. The PCE represents a flexible instrument to overcome visibility and distributed provisioning inefficiencies. Communications between path computation clients (PCC) and PCEs, realized through the PCE Protocol (PCEP), also enable inter-PCE communications offering an attractive way to perform TE-based path computation among cooperating PCEs in multi-layer/domain scenarios, while preserving scalability and confidentiality. This survey presents the state-of-the-art on the PCE architecture for GMPLS-controlled networks carried out by research and standardization community. In this work, packet (i.e., MPLS-TE and MPLS-TP) and wavelength/spectrum (i.e., WSON and SSON) switching capabilities are the considered technological platforms, in which the PCE is shown to achieve a number of evident benefits

    Robustness to failures in two-layer communication networks

    Get PDF
    A close look at many existing systems reveals their two- or multi-layer nature, where a number of coexisting networks interact and depend on each other. For instance, in the Internet, any application-level graph (such as a peer-to-peer network) is mapped on the underlying IP network that, in turn, is mapped on a mesh of optical fibers. This layered view sheds new light on the tolerance to errors and attacks of many complex systems. What is observed at a single layer does not necessarily reflect well the state of the entire system. On the contrary, a tiny, seemingly harmless disruption of one layer, may destroy a substantial or essential part of another layer, thus making the whole system useless in practice. In this thesis we consider such two-layer systems. We model them by two graphs at two different layers, where the upper-layer (or logical) graph is mapped onto the lower-layer (physical) graph. Our main goals are the following. First, we study the robustness to failures of existing large-scale two-layer systems. This brings us some valuable insights into the problem, e.g., by identifying common weak points in such systems. Fortunately, these two-layer problems can often be effectively alleviated by a careful system design. Therefore, our second major goal is to propose new designs that increase the robustness of two-layer systems. This thesis is organized in three main parts, where we focus on different examples and aspects of the two-layer system. In the first part, we turn our attention to the existing large-scale two-layer systems, such as peer-to-peer networks, railway networks and the human brain. Our main goal is to study the vulnerability of these systems to random errors and targeted attacks. Our simulations show that (i) two-layer systems are much more vulnerable to errors and attacks than they appear from a single layer perspective, and (ii) attacks are much more harmful than errors, especially when the logical topology is heterogeneous. These results hold across all studied systems. A natural next step consists in improving the failure robustness of two-layer systems. In particular, in the second part of this thesis, we consider the IP/WDM optical networks, where an IP backbone network is mapped on a mesh of optical fibers. The problem lies in designing a survivable mapping, such that no single physical failure disconnects the logical topology. This is an NP-complete problem. We introduce a new concept of piecewise survivability, which makes the problem much easier in practice. This leads us to an efficient and scalable algorithm called SMART, which finds a survivable mapping much faster (often by orders of magnitude) than the other approaches proposed to date. Moreover, the formal analysis of SMART allows us to prove that a given survivable mapping does or does not exist. Finally, this approach helps us to find vulnerable areas in the system, and to effectively reinforce them, e.g., by adding new links. In the third part of this thesis, we shift our attention one layer higher, to the application-over-IP setting. In particular, we consider the design of Application-Level Multicast (ALM) for interactive applications, where a single source sends a delay-constrained data stream to a number of destinations. Interactive ALM should (i) respect stringent delay requirements, and (ii) proactively protect the system against overlay node failures and against (iii) the packet losses at the IP layer. We propose a two-layer-aware approach to this problem. First, we prove that the average packet loss rate observed at the destinations can be effectively approximated by a purely topological metric that, in turn, drops with the amount of IP-level and overlay-level path diversity available in the system. Therefore, we propose a framework that accommodates and generalizes various techniques to increase the path diversity in the system. Within this framework we optimize the structure of ALM. As a result, we reduce the effective loss rate of real Internet topologies by typically 30%-70%, compared to the state of the art. Finally, in addition to the three main parts of the thesis, we also present a set of results inspired by the study of ALM systems, but not directly related to the 'two-layer' paradigm (and thus moved to the Appendix). In particular, we consider a transmission of a delay-sensitive data stream from a single source to a single destination, where the data packets are protected by a Forward Error Correction (FEC) code and sent over multiple paths. We show that the performance of such a scheme can often be further improved. Our key observation is that the propagation times on the available paths often significantly differ, typically by 10-100ms. We propose to exploit these differences by appropriate packet scheduling, which results in a two- to five-fold improvement (reduction) in the effective loss rate

    Multi-layer survivability in IP-over-WDM networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore