311 research outputs found

    Integrated software fingerprinting via neural-network-based control flow obfuscation

    Get PDF

    Three Decades of Deception Techniques in Active Cyber Defense -- Retrospect and Outlook

    Full text link
    Deception techniques have been widely seen as a game changer in cyber defense. In this paper, we review representative techniques in honeypots, honeytokens, and moving target defense, spanning from the late 1980s to the year 2021. Techniques from these three domains complement with each other and may be leveraged to build a holistic deception based defense. However, to the best of our knowledge, there has not been a work that provides a systematic retrospect of these three domains all together and investigates their integrated usage for orchestrated deceptions. Our paper aims to fill this gap. By utilizing a tailored cyber kill chain model which can reflect the current threat landscape and a four-layer deception stack, a two-dimensional taxonomy is developed, based on which the deception techniques are classified. The taxonomy literally answers which phases of a cyber attack campaign the techniques can disrupt and which layers of the deception stack they belong to. Cyber defenders may use the taxonomy as a reference to design an organized and comprehensive deception plan, or to prioritize deception efforts for a budget conscious solution. We also discuss two important points for achieving active and resilient cyber defense, namely deception in depth and deception lifecycle, where several notable proposals are illustrated. Finally, some outlooks on future research directions are presented, including dynamic integration of different deception techniques, quantified deception effects and deception operation cost, hardware-supported deception techniques, as well as techniques developed based on better understanding of the human element.Comment: 19 page

    The Effect of Code Obfuscation on Authorship Attribution of Binary Computer Files

    Get PDF
    In many forensic investigations, questions linger regarding the identity of the authors of the software specimen. Research has identified methods for the attribution of binary files that have not been obfuscated, but a significant percentage of malicious software has been obfuscated in an effort to hide both the details of its origin and its true intent. Little research has been done around analyzing obfuscated code for attribution. In part, the reason for this gap in the research is that deobfuscation of an unknown program is a challenging task. Further, the additional transformation of the executable file introduced by the obfuscator modifies or removes features from the original executable that would have been used in the author attribution process. Existing research has demonstrated good success in attributing the authorship of an executable file of unknown provenance using methods based on static analysis of the specimen file. With the addition of file obfuscation, static analysis of files becomes difficult, time consuming, and in some cases, may lead to inaccurate findings. This paper presents a novel process for authorship attribution using dynamic analysis methods. A software emulated system was fully instrumented to become a test harness for a specimen of unknown provenance, allowing for supervised control, monitoring, and trace data collection during execution. This trace data was used as input into a supervised machine learning algorithm trained to identify stylometric differences in the specimen under test and provide predictions on who wrote the specimen. The specimen files were also analyzed for authorship using static analysis methods to compare prediction accuracies with prediction accuracies gathered from this new, dynamic analysis based method. Experiments indicate that this new method can provide better accuracy of author attribution for files of unknown provenance, especially in the case where the specimen file has been obfuscated

    On the Generation of Cyber Threat Intelligence: Malware and Network Traffic Analyses

    Get PDF
    In recent years, malware authors drastically changed their course on the subject of threat design and implementation. Malware authors, namely, hackers or cyber-terrorists perpetrate new forms of cyber-crimes involving more innovative hacking techniques. Being motivated by financial or political reasons, attackers target computer systems ranging from personal computers to organizations’ networks to collect and steal sensitive data as well as blackmail, scam people, or scupper IT infrastructures. Accordingly, IT security experts face new challenges, as they need to counter cyber-threats proactively. The challenge takes a continuous allure of a fight, where cyber-criminals are obsessed by the idea of outsmarting security defenses. As such, security experts have to elaborate an effective strategy to counter cyber-criminals. The generation of cyber-threat intelligence is of a paramount importance as stated in the following quote: “the field is owned by who owns the intelligence”. In this thesis, we address the problem of generating timely and relevant cyber-threat intelligence for the purpose of detection, prevention and mitigation of cyber-attacks. To do so, we initiate a research effort, which falls into: First, we analyze prominent cyber-crime toolkits to grasp the inner-secrets and workings of advanced threats. We dissect prominent malware like Zeus and Mariposa botnets to uncover their underlying techniques used to build a networked army of infected machines. Second, we investigate cyber-crime infrastructures, where we elaborate on the generation of a cyber-threat intelligence for situational awareness. We adapt a graph-theoretic approach to study infrastructures used by malware to perpetrate malicious activities. We build a scoring mechanism based on a page ranking algorithm to measure the badness of infrastructures’ elements, i.e., domains, IPs, domain owners, etc. In addition, we use the min-hashing technique to evaluate the level of sharing among cyber-threat infrastructures during a period of one year. Third, we use machine learning techniques to fingerprint malicious IP traffic. By fingerprinting, we mean detecting malicious network flows and their attribution to malware families. This research effort relies on a ground truth collected from the dynamic analysis of malware samples. Finally, we investigate the generation of cyber-threat intelligence from passive DNS streams. To this end, we design and implement a system that generates anomalies from passive DNS traffic. Due to the tremendous nature of DNS data, we build a system on top of a cluster computing framework, namely, Apache Spark [70]. The integrated analytic system has the ability to detect anomalies observed in DNS records, which are potentially generated by widespread cyber-threats

    Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned

    Full text link
    Binary code similarity analysis (BCSA) is widely used for diverse security applications such as plagiarism detection, software license violation detection, and vulnerability discovery. Despite the surging research interest in BCSA, it is significantly challenging to perform new research in this field for several reasons. First, most existing approaches focus only on the end results, namely, increasing the success rate of BCSA, by adopting uninterpretable machine learning. Moreover, they utilize their own benchmark sharing neither the source code nor the entire dataset. Finally, researchers often use different terminologies or even use the same technique without citing the previous literature properly, which makes it difficult to reproduce or extend previous work. To address these problems, we take a step back from the mainstream and contemplate fundamental research questions for BCSA. Why does a certain technique or a feature show better results than the others? Specifically, we conduct the first systematic study on the basic features used in BCSA by leveraging interpretable feature engineering on a large-scale benchmark. Our study reveals various useful insights on BCSA. For example, we show that a simple interpretable model with a few basic features can achieve a comparable result to that of recent deep learning-based approaches. Furthermore, we show that the way we compile binaries or the correctness of underlying binary analysis tools can significantly affect the performance of BCSA. Lastly, we make all our source code and benchmark public and suggest future directions in this field to help further research.Comment: 22 pages, under revision to Transactions on Software Engineering (July 2021

    On the Implementation of Location Obfuscation in openwifi and Its Performance

    Get PDF
    Wi-Fi sensing as a side-effect of communications is opening new opportunities for smart services integrating communications with environmental properties, first and foremost the position of devices and people. At the same time, this technology represents an unprecedented threat to people’s privacy, as personal information can be collected directly at the physical layer without any possibility to hide or protect it. Several works already discussed the possibility of safeguarding users’ privacy without hampering communication performance. Usually, some signal pre-processing at the transmitter side is needed to introduce pseudo-random (artificial) patterns in the channel response estimated at the receiver, preventing the extraction of meaningful information from the channel state. However, there is currently just one implementation of such techniques in a real system (openwifi), and it has never been tested for performance. In this work, we present the implementation of a location obfuscation technique within the openwifi project that enables fine manipulation of the radio signal at transmitter side and yields acceptable, if not good, performance. The paper discusses the implementation of the obfuscation subsystem, its performance, possible improvements, and further steps to allow authorized devices to “de-obfuscate” the signal and retrieve the sensed information

    Machine learning techniques for identification using mobile and social media data

    Get PDF
    Networked access and mobile devices provide near constant data generation and collection. Users, environments, applications, each generate different types of data; from the voluntarily provided data posted in social networks to data collected by sensors on mobile devices, it is becoming trivial to access big data caches. Processing sufficiently large amounts of data results in inferences that can be characterized as privacy invasive. In order to address privacy risks we must understand the limits of the data exploring relationships between variables and how the user is reflected in them. In this dissertation we look at data collected from social networks and sensors to identify some aspect of the user or their surroundings. In particular, we find that from social media metadata we identify individual user accounts and from the magnetic field readings we identify both the (unique) cellphone device owned by the user and their course-grained location. In each project we collect real-world datasets and apply supervised learning techniques, particularly multi-class classification algorithms to test our hypotheses. We use both leave-one-out cross validation as well as k-fold cross validation to reduce any bias in the results. Throughout the dissertation we find that unprotected data reveals sensitive information about users. Each chapter also contains a discussion about possible obfuscation techniques or countermeasures and their effectiveness with regards to the conclusions we present. Overall our results show that deriving information about users is attainable and, with each of these results, users would have limited if any indication that any type of analysis was taking place
    • …
    corecore